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Non-Archimedean analytic geometry as relative
algebraic geometry (∗)

Oren Ben-Bassat (1) and Kobi Kremnizer (2)

ABSTRACT. — We show that non-Archimedean analytic geometry can
be viewed as relative algebraic geometry in the sense of Toën–Vaquié–
Vezzosi over the category of non-Archimedean Banach spaces. For any
closed symmetric monoidal quasi-abelian category we define a topology
on certain subcategories of the category of (relative) affine schemes. In
the case that the monoidal category is the category of abelian groups,
the topology reduces to the ordinary Zariski topology. By examining this
topology in the case that the monoidal category is the category of Banach
spaces we recover the G-topology or the topology of admissible subsets
on affinoids which is used in rigid or Berkovich analytic geometry. This
gives a functor of points approach to non-Archimedean analytic geometry.
We demonstrate that the category of Berkovich analytic spaces (and also
rigid analytic spaces) embeds fully faithfully into the category of (rela-
tive) schemes in our version of relative algebraic geometry. We define a
notion of quasi-coherent sheaf on analytic spaces which we use to charac-
terize surjectivity of covers. Along the way, we use heavily the homological
algebra in quasi-abelian categories developed by Schneiders.

RÉSUMÉ. — Nous montrons que la géométrie analytique non-archimé-
dienne peut être considérée comme la géométrie algébrique relative, au
sens de Toën-Vaquié, au-dessus de la catégorie des espaces de Banach non-
archimédiens. Pour toute catégorie symétrique monoïdale fermée quasi-
abélienne nous définissons une topologie sur certaines sous-catégories de
la catégorie des schémas affines (relatifs). Dans le cas où la catégorie
monoïdale est celle des groupes abéliens, la topologie coïncide avec la to-
pologie de Zariski usuelle. En examinant cette topologie pour la catégorie
des espaces de Banach, nous retrouvons la G-topologie faible ou encore la
topologie des sous-ensembles admissibles sur un affinoïde utilisée en géo-
métrie rigide. Cela donne une approche de type foncteur des points à la
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géométrie analytique non-archimédienne. Nous démontrons que la catégo-
rie des espaces analytiques de Berkovich (et aussi des espaces analytiques
rigides) se plonge de manière pleinement fidèle dans la catégorie des sché-
mas relatifs. Nous définissons une notion de faisceau quasi-cohérent sur
les espaces analytiques que nous utilisons pour caractériser les familles
couvrantes. En chemin nous utilisons l’algèbre homologique dans les ca-
tégories quasi-abéliennes développée par Schneiders.

1. Introduction

Berkovich analytic spaces and rigid analytic spaces [13, 14] have the ad-
vantage that both schemes of finite type over a field and formal comple-
tions of such schemes along their closed subschemes can be thought of as
living in the same category of analytic spaces. Punctured tubular neighbor-
hoods of algebraic subvarieties inside ambient varieties over any field can
be defined [12, 57] as Berkovich analytic spaces. In this article, we consider
non-Archimedean analytic spaces from the perspective of algebraic geome-
try relative to the closed symmetric monoidal categories of Banach spaces.
This language is very universal and provides a place to compare different
geometries (rigid analytic spaces, Berkovich spaces and others). Toën and
Vaquié introduced in [60] algebraic geometry relative to any closed symmet-
ric monoidal category. This idea had also been pursued by Hakim [25] and
Deligne [20]. We examine one of Toën and Vezzosi’s [63] topologies (which
we call the homotopy Zariski topology) restricted to the opposite category of
affinoid algebras over a non-Archimedean field and show that Berkovich and
rigid analytic geometry embed fully and faithfully into the resulting category
of schemes. We use the framework of Toën, Vaquié and Vezzosi to suggest
a new approach to analytic geometry which will extend in a natural way to
the setting of higher and derived analytic stacks over Banach rings. This of
course produces the difficult task of comparing the abstract definitions to
the existing ones. In order to make this article accessible to a broad range of
mathematicians, we have included as many details as was possible. In forth-
coming work [9, 10], we incorporate complex analytic geometry and give a
more general approach that covers dagger analytic geometry and Stein geom-
etry over a general valuation field (Archimedean or non-Archimedean). Some
of the properties of the localization maps which we look at were proven from
a complex analytic or differential geometric point of view in [15, 41, 54].
Some similar work to ours was done [36] by A. Macpherson who uses an
abstract, categorical notion of localizations instead of the condition on de-
rived categories which we use. See also [65] and the references therein for the
relationship with mirror symmetry.
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Using the homological algebra from the work of Schneiders [52], we give
a new interpretation of the homotopy Zariski topology from [63] which is
suited to deal with quasi-abelian categories. Two of the theorems which we
prove (Theorems 5.16 and 5.31) show that the finitely presented morphisms
of affinoid algebras A → B which are homotopy epimorphisms (meaning that
B⊗̂L
AB ∼= B) correspond geometrically to the affinoid subdomains (affinoids

which are the unions of rational domains). In terms of modules, this says
that a morphism of affinoidsM(B)→M(A) is a domain embedding if and
only if the corresponding morphism D−(B) → D−(A) is fully faithful. Our
categorical characterization of affinoid domains answers an open question
poised by Soibelman in [53, Section 1.4]. He identifies this question as being
a key step in the development of non-commutative analytic geometry. The
other main feature of the G-topology is that the covers in this topology
have finite subcovers π :

∐
iM(AVi

) → M(A) of an affinoid by affinoid
subdomains which are surjective. In order to understand this surjectivity
via modules, we introduce the notion of a RR-quasicoherent module for
a commutative monoid A relative to a symmetric monoidal quasi-abelian
category in Definition 4.47. We call this category of modules ModRR(A). We
prove in Lemmas 5.32 and 5.34 that π :

∐
iM(AVi

) → M(A) is surjective
if and only if a morphism f : M → N of RR-quasicoherent modules is
an isomorphism if and only if π∗f : π∗M → π∗N is an isomorphism. These
modules satisfy a version of Tate acyclicity (see Remark 5.35) for the version
we use of the Tate complex which uses only completed tensor products. More
work on the category of quasi-coherent sheaves in analytic geometry will
appear in [10, 11].

The condition we use on morphisms of algebras: homotopy epimorphism,
is the key idea behind the holomorphic functional calculus studied by [54] by
Taylor in complex analytic geometry, who called these morphisms absolute
localizations. Pirkovskii in [41] shows that open embeddings of complex Stein
manifolds satisfy the same abstract condition.

In [11] we construct monoidal model structures on categories of simpli-
cial objects and on categories of complexes (negatively graded or unbounded)
in a quasi-abelian category C satisfying certain extra conditions. We prove
in [11] that these structures form HAG contexts in the sense of [64]. A
HAG context is essentially a monoidal model category M satisfying a long
list of axioms that make it easy to work with. The model structure is in-
duced from the model structure on simplicial sets. For instance, a morphism
X• → Y• in the category M = sC of simplicial objects in C is a fibration
(resp. weak equivalence) if for all projectives P in C (defined in 4.13) that
Hom(P,X•) → Hom(P, Y•) is a fibration (resp. weak equivalence) of sim-
plicial sets. In particular, our main application is when the quasi-abelian
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category C = Ind(BanR) is the category of Ind–Banach spaces over a Ba-
nach ring. In [64] derived and homotopy algebraic geometry is developed
relative to a HAG context. Derived algebraic geometry (the case where C is
the abelian category of abelian groups) is only one special case of their work.
Our goal is to show that derived analytic geometry is another. A key feature
in their work is definitions of (Grothendieck) topologies on the categories of
affine schemes relative to M . Affine schemes are defined to be opposite cate-
gory to Comm(M), the category of commutative monoids relative toM . The
main way to describe these topologies is to explain which morphisms should
appear in the cover, and describe when such a collection of morphisms is
a cover. Both of these can be explained in terms of geometrically induced
functors on the homotopy categories of modules. One topology that can be
defined from their point of view says

Definition 1.1. — A cover of spec(A) ∈ Comm(M)op is a collection of
morphisms spec(Bi)→ spec(A) in Comm(M)op for i ∈ I such that for some
finite set J ⊂ I we have

(1) the push forward functor from the derived category of modules on
Bi to that on A is fully faithful for all i ∈ J ;

(2) a morphism in the derived category of modules on A is an isomor-
phism if and only if it becomes an isomorphism when pulled back in
the derived sense to a morphism in the derived category of modules
on Bi for all i ∈ J .

For more details see [64, Definition 1.2.6.1(3)] for the first item and [64,
Definition 1.2.5.1] for the second.

In our type of derived analytic geometry, the category of affine schemes
over a valuation field is opposite to the category of commutative monoids
relative to M = sInd(Bank). Theorem 5.39 shows that on the subcategory
opposite to affinoid algebras, the topology in Definition 1.1 restricts to the
weak G-topology on affinoids. The derived geometry interpretation of The-
orem 5.39 relies on [11].

While Condition (1) of Definition 1.1 restricts by our results to something
completely classical and well understood, Condition (2) of Definition 1.1
seems difficult to check on modules. Therefore, one might try to use a similar
condition on the (underived) quasi-abelian category of modules using the
underived pullback. However, this does not correspond to the surjectivity
condition on covers, forcing us to reconsider which modules we care about
and introduce the RR-quasicoherent modules. For this reason, we defined
the formal homotopy Zariski topology on a subcategory A of the category of
affine schemes (Comm(C)op) of a closed symmetric monoidal quasi-abelian
category C where A and C satisfy a few simple conditions. The covers are a
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collection of morphisms A → Bi of in A for i ∈ I such that for some finite
set J ⊂ I

(1) A→ Bi are homotopy epimorphisms in Comm(C) for all i ∈ J
(2) a morphism f : M → N in ModRR(A) is an isomorphism if and only

if the induced morphisms M⊗ABi → N⊗ABi are for all i ∈ J .

In the special case that C = Bank and A is the category of affinoids our
Theorem 5.37 says that this topology restricts to the weak G-topology on
affinoids. Our work, put together with the work of Toën and Vezzosi estab-
lishes foundations for derived (and homotopy) analytic geometry and the
study of higher and derived stacks over general Banach rings. There is an-
other approach due to F. Paugam [40]. This other approach is based on
Lurie’s pre-geometries. See the work of M. Porta [43, 44] in the complex
analytic situation which as opposed to our work is based on Lurie’s con-
cept of a pre-geometry. Our work is instead based on the approach of Toën
and Vezzosi. See also the work of M. Porta and T. Yue Yu [45, 46] in the
non-Archimedean case also based on Lurie’s pre-geometries.
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2. Algebras and modules in closed symmetric monoidal
categories

We assume that the reader is comfortable with the idea of a symmetric
monoidal category. In particular the bifunctor ⊗ admits an adjoint Hom :
Cop × C→ C in the sense that there are natural isomorphisms

Hom(U⊗V,W ) ∼= Hom(U,Hom(V,W ))
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for any U, V,W ∈ C. Consider a category C which has all finite limits and
colimits equipped with extra data (Hom,⊗, id) making it into a closed, sym-
metric monodial category. In such a category one always has the following
natural isomorphisms for any U, V,W ∈ C

(1) Hom(U, V ) ∼= Hom(id,Hom(U, V ))
(2) Hom(U⊗V,W ) ∼= Hom(U,Hom(V,W ))

which lifts by taking the Hom from id the corresponding isomor-
phisms for Hom instead of Hom

(3) U ∼= Hom(id, U).

Also, there are natural morphisms for any T,U, V,W ∈ C

(1) Hom(U,U)⊗U → U
(2) Hom(V,W )⊗Hom(U, V )→ Hom(U,W )

satisfying associativity
(3) Hom(T,U)⊗Hom(V,W )→ Hom(T⊗V,U⊗W )
(4) id→ Hom(U,U)

which are compatible with the corresponding morphisms for Hom instead of
Hom.

Remark 2.1. — The morphisms in the second item are adjoint to mor-
phisms

Hom(V,W )→ Hom(Hom(U, V ),Hom(U,W ))
and

Hom(U, V )→ Hom(Hom(V,W ),Hom(U,W ))
and hence maps

Hom(V,W )→ Hom(Hom(U, V ),Hom(U,W ))
and

Hom(U, V )→ Hom(Hom(V,W ),Hom(U,W )).

Such categories admit clear definitions of categories of commutative uni-
tal algebras objects in them. We denote these categories by Comm(C). The
opposite category to Comm(C) we will be denoted Aff(C) = Comm(C)op and
if A ∈ Comm(C) we use spec(A) to indicate this object in the opposite cate-
gory.

For any fixed commutative unital algebra object A ∈ Comm(C) there
is a category of unital left modules over such an algebra which we denote
Mod(A). See [38, Chapter 1.3] for details. Because we will be considering
the unital notions only, we drop the word unital from our descriptions. This
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category is also a closed symmetric monoidal category and has all finite
limits and colimits. We write ⊗A for the monoidal structure and HomA for
the morphisms in this category. Given a morphism p : spec(B) → spec(A),
we sometimes write p∗ for the functor

Mod(A)→ Mod(B)

given by
M 7→ B⊗AM.

Definition 2.2. — Let us consider A ∈ Comm(C) and E,F ∈ Mod(A).
Let aE : A⊗E → E and aF : A⊗F → F denote the action morphisms. The
set of morphisms HomA(E,F ) is defined as the limit of the diagram

Hom(E,F )

f 7→f◦aE

))

h 7→idA⊗h ((

Hom(A⊗E,F )

Hom(A⊗E,A⊗F )
g 7→aF ◦g

55
.

In order to describe the tensor product, let us use σ : A⊗F → F⊗A to denote
the symmetric structure. Let E⊗AF ∈ Mod(A) be the element of C given as
the colimit of the diagram

E⊗A⊗F
idE⊗aF

,,

(aE⊗idF )◦(σ⊗idF )
22 E⊗F (2.1)

endowed with the obvious action of A.

Notice that for any E ∈ Mod(A) and F ∈ C can define

LE,F : A⊗Hom(E,F )→ Hom(E,F )

as the composition

A⊗Hom(E,F )→ Hom(E,E)⊗Hom(E,F )→ Hom(E,F )

where the morphism A → Hom(E,E) is adjoint to the action morphisms
A⊗E → E. Similarly for any E ∈ C and F ∈ Mod(A), one can define a
morphism

RE,F : A⊗Hom(E,F )→ Hom(E,F )
as the composition

A⊗Hom(E,F )→ Hom(F, F )⊗Hom(E,F )
→ Hom(E,F )⊗Hom(F, F )→ Hom(E,F ).
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Both LE,F and RE,F endow Hom(E,F ) with the structure of an element
of Mod(A) satisfying various natural properties and we use these structures
without further comment.

Lemma 2.3. — Suppose now that C is a closed, symmetric monoidal
additive category with all finite limits and colimits and A ∈ Comm(C). Then
Mod(A) is a closed symmetric monoidal category with all finite limits and
colimits as well. These limits and colimits can be computed in C.

Proof. — By tensoring the morphisms id→ Hom(A,A) with the identity
of Hom(E,F ) one can form

Hom(E,F )→ Hom(A,A)⊗Hom(E,F )→ Hom(A⊗E,A⊗F ).
Now by using the functor Hom(A⊗E, ) and the contravariant functor
Hom( , F ) applied to A⊗F → F and A⊗E → E respectively one can de-
fine HomA(E,F ) with the same type of limit as in Definition 2.2 replacing
Hom with Hom. Both LE,F and RE,F induce well defined (and equal) mor-
phisms on HomA(E,F ) and give HomA(E,F ) the structure of an element
of Mod(A). �

We have natural isomorphisms
Hom(M⊗AN,L) ∼= Hom(M,HomA(N,L)) (2.2)

which satisfy the relevant axioms of a closed, symmetric monoidal category.
It is easy to see that (as in) [37] for any E ∈ Mod(A)

Lemma 2.4.
HomA(A,E)→ E

f 7→ f(1)
is an isomorphism and so for any modules M,N ∈ Mod(A) and any V ∈ C
we have

(1) A⊗AM ∼= M
(2) HomA(A⊗V,E) ∼= Hom(V,E)
(3) HomA(E,Hom(A, V )) ∼= Hom(E, V )
(4) HomA(A,HomA(M,N)) ∼= HomA(M,N)

We will discuss in this article various closed symmetric monoidal cate-
gories whose objects are vector spaces over Archimedean or non-Archimedean
fields equipped with extra structures. The unit object in these categories is
the field itself and it is easy to check the associativity, commutativity, and
unit constraints. It is also clear that all of our closed symmetric monoidal
categories are k-linear additive categories, as are the categories Mod(A) for
A ∈ Comm(C). Because C has all finite limits and colimits, Mod(A) does as
well.
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Definition 2.5. — A functor F : T→ S is said to be conservative under
the condition that a morphism f in T is an isomorphism if and only if F(f)
is an isomorphism.

Notice that for every p : spec(B) → spec(A) in Aff(C) the functor p∗ :
Mod(A) → Mod(B) has a conservative right adjoint given by considering a
B module as an A module

p∗ : Mod(B)→ Mod(A).

Definition 2.6. — If C has countable coproducts, the forgetful functor
F : Comm(C)→ C has a left adjoint S : C→ Comm(C), given on objects by

S(V ) =
∐
n>0

Sn(V )

where Sn(V ) are the co-invariants for the symmetric group action on V ⊗n.
If A is a commutative algebra in C we get in a similar way a functor
SA : Mod(A)→ Comm(Mod(A)) which is left adjoint to the forgetful functor.

Definition 2.7. — Let C be a closed symmetric monoidal category with
countable coproducts. Let E and E′ be two objects, and assume given a map
of algebras α : S(E′) → S(E). Let us denote by S(E,E′, α) the quotient of
S(E) by the ideal generated by the image of α restricted to the augmentation
ideal. In the case that A ∈ Comm(C) and E and E′ are in Mod(A) we use
the notation SA(E,E′, α) to denote the same construction taken in the closed
symmetric monoidal category Mod(A) in place of C. An equivalent way of
describing it is as the quotient of S(E) by the ideal generated by the image
of the object E′ under the map α.

3. Algebraic geometry relative to closed symmetric monoidal
categories

In this section, we review several notions from the article [60] by Toën and
Vaquié. We review their definitions of a flat morphism, a Zariski open im-
mersion, and the Zariski and fpqc topologies on the opposite of the category
of algebra objects in a closed, symmetric monoidal category admitting all fi-
nite limits and colimits. We also include definitions of a formal Zariski open
immersion and the formal Zariski topology. We also review the definitions
of schemes and (higher) stacks in this setting.

Definition 3.1. — The category of presheaves of sets on Aff(C) is the
category whose objects are contravariant functors Aff(C) → Set and whose
morphisms are natural transformations. It will be denoted Pr(Aff(C)). Given
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a Grothendieck topology T on the category Aff(C) we will often consider
the full subcategories of sheaves of sets Pr(Aff(C)T ) ⊂ Pr(Aff(C)), where
Aff(C)T is the site consisting of the underlying category Aff(C) along with
the Grothendieck topology T .

Definition 3.2. — A family of functors {Fi : C → Di}i∈I is said to
be conservative if a morphism f in C is an isomorphism if and only if the
morphisms Fi(f) in Di are isomorphisms for all i ∈ I.

Since we do not assume the existence of arbitrary limits and colimits, we
need to define finite presentation in a non-standard way.

Definition 3.3. — Let C be a closed symmetric monoidal category with
all finite limits and colimits, as well as filtered colimits. An object W ∈ C
is called of finite presentation if for every filtered diagram of objects Vi ∈ C,
the natural morphism

colimi HomC(W,Vi)→ HomC(W, colimi Vi) (3.1)
is an isomorphism.

Remark 3.4. — Notice that any finite colimit of finitely presented ob-
jects is finitely presented.

Definition 3.5. — Let C be a closed symmetric monoidal category with
all finite limits and colimits. A morphism A → B in Comm(C) is of finite
presentation if for every filtered diagram of objects A′i ∈ A/Comm(C) such
that colimiA

′
i exists in A/Comm(C), the natural morphism

colimi HomA/Comm(C)(B,A′i)→ HomA/Comm(C)(B, colimiA
′
i) (3.2)

is an isomorphism.
Remark 3.6. — Notice that a morphism A→ B in Comm(C) is of finite

presentation if and only if B is of finite presentation with respect to the
category A/Comm(C).

Remark 3.7. — Let C be a closed symmetric monoidal category with all
finite limits and colimits. We will need to pay special attention to the epimor-
phisms in Comm(C): those morphisms p : A→ B in Comm(C) such that for
all C ∈ Comm(C), the induced map HomComm(C)(B,C)→ HomComm(C)(A,C)
is injective. These correspond to monomorphisms in Aff(C). Notice that
p : A→ B is an epimorphism if and only if the multiplication B⊗AB → B is
an isomorphism. Indeed, the multiplication B⊗AB → B is an isomorphism
if and only if the two canonical morphisms B → B⊗AB are isomorphisms
which in turn holds if and only if for all morphisms B⊗AB → C in Comm(C)
the induced morphisms Hom(B⊗AB,C) → Hom(B,C) are isomorphsms.
Because Hom(B⊗AB,C) is the fiber product of the diagram

Hom(B,C)→ Hom(A,C)← Hom(B,C)
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that happens if and only if the morphisms Hom(B,C) → Hom(A,C) are
always injective, which means that A→ B is an epimorphism.

Definition 3.8. — Let C be a closed symmetric monoidal category with
all finite limits and colimits. An object V ∈ C is called flat when the functor
C→ C given by W 7→ V⊗W is exact (commutes with finite limits).

Remark 3.9. — Suppose that C be a closed symmetric monoidal category
with all finite limits and colimits and that finite products and coproducts
agree in C. Then a finite coproduct of elements of C is flat if and only if each
of them is individually flat.

Definition 3.10. — Let C be a closed symmetric monoidal category with
all finite limits and colimits. A morphism p : A→ B in Comm(C) is flat when
the morphism

p∗ : Mod(A)→ Mod(B)
is exact (commutes with finite limits). This precisely says that B is flat in
Comm(Mod(A)).

Say that q : spec(C) → spec(A) is arbitrary. Consider the Cartesian
diagram

spec(C ⊗A B) q′ //

p′

��

spec(B)

p

��
spec(C)

q
// spec(A).

(3.3)

Using the notation of Diagram (3.3) There is a natural equivalence [60]

p∗q∗ =⇒ q′∗p
′∗ (3.4)

called base change.

Definition 3.11. — A base change of a morphism p : spec(B) →
spec(A) is the morphism p′ appearing in Diagram (3.3) for some q.

Lemma 3.12. — Let C be a closed symmetric monoidal category with all
finite limits and colimits. Suppose that p : A → B is a flat morphism in
Comm(C) then any base change p′ of p is also a flat morphism in Comm(C).

Proof. — By assumption, p∗ : Mod(A) → Mod(B) is exact. Let L be a
finite category and consider the categories Mod(D)L, the category of functors
from L to Mod(D). Consider the functor

lim
L,D

: Mod(D)L → Mod(D)
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which takes a diagram inMod(D) to its limit. Consider the following commu-
tative diagram of natural transformations of functors Mod(C)L → Mod(B):

q′∗ limL,C⊗AB p
′∗

+3

limL,B q
′
∗p
′∗ks limL,B p

∗q∗ks +3 p∗q∗ limL,C

��
q′∗p
′∗ limL,C .

All the natural transformations except the curved one on the bottom are in-
vertible. This follows from the base change natural equivalences and the fact
that the pushforward functors are right adjoints and so commute with limits.
Therefore, the natural transformation on the bottom is also invertible. Since
q′∗ is conservative, the natural transformation limL,C⊗AB p

′∗ =⇒ p′∗ limL,C
of functors Mod(C)L → Mod(C⊗AB) is also invertible and so p′∗ commutes
with finite limits. Therefore, p′ is flat. �

Lemma 3.13. — Let C be a closed symmetric monoidal category with all
finite limits and colimits. Let p be a morphism in Aff(C) and let p′ be a base
change of p. If p is a monomorphism then so is p′. If Aff(C) has filtered
colimits and p is of finite presentation, so is p′.

Proof. — Left to the reader. �

Consider the following very slight modification of Proposition 2.4 and its
proof from [60] (we only require finite limits and colimits and consider only
a special case of their proposition).

Lemma 3.14. — Let C be a closed symmetric monoidal category with all
finite limits and colimits. Suppose that a family {pi : Xi → X} in Aff(C)
is such that the family {p∗i : Mod(X)→ Mod(Xi)} has a finite conservative
subfamily. Then any pull-back family {p′i : Xi ×X Y → Y } coming from a
base change Y → X has the same property.

Proof. — In order to show the base change property, consider q : Y →
X. Choose a finite set J ⊂ I such that

∏
i∈J p

∗
i is conservative. Consider

the functor
∏
i∈J p

′∗
i where q′i, p′i and pi play the role of q′, p′ and p in

Diagram (3.3). In order to show it is conservative, its enough to show that∏
i∈J q

′
i∗p
′∗
i is conservative but using equation (3.4) this is isomorphic to

(
∏
i∈J p

∗
i )q∗ which is conservative since q∗ is conservative. �

Proposition 3.15. — Let C be a closed symmetric monoidal category
with all finite limits and colimits. Consider the families {pi : Xi → X}i∈I
in Aff(C) such that the family {p∗i : Mod(X) → Mod(Xi)}i∈I has a finite
conservative subfamily and that each p∗i is left exact. These families define
a pretopology on Aff(C).
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Proof. — In order to show the base change property, consider q : Y → X
in Aff(C) and let q′i, p′i and pi play the role of q′, p′ and p in Diagram (3.3).
Lemma 3.14 implies that the family {p′∗i }i∈I has a finite conservative sub-
family. The fact that the p′∗i are left exact follows from Lemma 3.12. �

Definition 3.16. — For any closed symmetric monoidal category C
which has all finite limits and colimits, the topology coming from Proposi-
tion 3.15 is called the fpqc topology on Aff(C) = Comm(C)op. When equipped
with this topology, we denote this category by Aff(C)fpqc. The category of
sheaves of sets is denoted Sh(Aff(C)fpqc).

Definition 3.17. — The morphism spec(B)→ spec(A) is called a for-
mal Zariski open immersion if the corresponding morphism A → B in
Comm(C) is a flat epimorphism (defined in Remark 3.7 and Definition 3.10).

Definition 3.18. — The morphism spec(B) → spec(A) is called a
Zariski open immersion if the corresponding morphism A→ B in Comm(C)
is a flat epimorphism of finite presentation (defined in Remark 3.7 and
Definitions 3.5 and 3.10).

Lemma 3.19. — If a family {A→ Bi}i∈I is conservative and A′ is any
A-algebra then the family {A′ → Bi ⊗A A′}i∈I is conservative.

Proof. — This has already been shown in Proposition 3.15. �

Proposition 3.20. — There is a pretopology whose covering families
{A→ Bi}i∈I are those families where each A→ Bi is a formal Zariski open
immersion and the family {A→ Bi}i∈I has a finite conservative subfamily.

Proof. — This follows immediately from Lemmas 3.12, 3.13 and 3.19. �

Definition 3.21. — The formal Zariski topology on Aff(C) is the topol-
ogy associated to the pretopology from Proposition 3.20. When equipped with
this topology, we denote the category by Aff(C)fZar. The category of sheaves
of sets is denoted Sh(Aff(C)fZar).

Proposition 3.22. — There is a pretopology whose covering families
{A → Bi}i∈I are those families where each A → Bi is a Zariski open im-
mersion and the family {A→ Bi}i∈I has a finite conservative subfamily.

Proof. — This follows immediately from Lemmas 3.12, 3.13 and 3.19. �

Definition 3.23. — The Zariski topology on Aff(C) is the topology as-
sociated to the pretopology from Proposition 3.22. When equipped with this
topology, we denote the category by Aff(C)Zar. The category of sheaves of
sets is denoted Sh(Aff(C)Zar).
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Definition 3.24. — For any affine object spec(A), A ∈ Comm(C), the
presheaf of sets hA is given by

Aff(C)→ Set
spec(B) 7→ HomComm(C)(A,B).

Corollary 2.11 of [60] implies that:

Proposition 3.25. — For any A ∈ Comm(C), the preseheaf hA is a
sheaf for fpqc, the formal Zariski and the Zariski topologies.

Definition 3.26 ([60]). — Let X ∈ Aff(C) and F ∈ Sh(Aff(C)Zar) be a
subsheaf of X. Then F is a called a Zariski open of X if there is a family
of Zariski opens {Xi → X}i∈I such that F is the image of the morphism
of sheaves

∐
i∈I Xi → X. A morphism F → G in Sh(Aff(C)Zar) is called

a Zariski open immersion if for every X ∈ Aff(C) and every X → G the
induced morphism F ×G X → X is a monomorphism whose image is a
Zariski open in X. The category Sch(Aff(C)Zar) of schemes is defined to be
the full subcategory of Sh(Aff(C)Zar) of sheaves F such that there exists a
family of Xi ∈ Aff(C) for i ∈ I and a morphism p :

∐
i∈I Xi → F such that

p is an epimorphism of sheaves and for each i the morphism Xi → F is a
Zariski open.

Definition 3.27. — Suppose that A is a full subcategory of Aff(C) and
suppose that τ is a subcategory of A with all objects and such that all mor-
phisms in τ are monomorphisms and so that the base change of a morphism
in τ by an arbitrary morphism of A is in τ . Say that T is a pre-topology
whose covers consist of families of morphisms where each morphism in the
cover belongs to τ . Let X ∈ A and F ∈ Sh(AT ) be a subsheaf of X. Then F is
a called a τ -open if there is a family of morphisms in τ written {Xi → X}i∈I
such that F is the image of the morphism of sheaves

∐
i∈I Xi → X. A mor-

phism F → G in Sh(AT ) is called is a τ -open immersion if for every X ∈ A
and every X → G the induced morphism F ×GX → X is a monomorphism
whose image is a τ -open in X. The category of schemes Sch(A, T, τ) is de-
fined to be the full subcategory of Sh(AT ) of sheaves F such that there exists
a family of Xi ∈ A for i ∈ I and a morphism p :

∐
i∈I Xi → F such that

p is an epimorphism of sheaves and for each i the morphism Xi → F is a
τ -open immersion.

Example 3.28. — Two interesting general categories of schemes that we
have in mind are Sch(A, T, τ) where A = Aff(C). First, the case where τ
of Zariski open immersions and T is the Zariski pre-topology. Second, the
category τ of formal Zariski open immersions and T is the formal Zariski
pre-topology.
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Example 3.29. — Let k be any field and consider the category C = Vectk.
Then Comm(C) is the category of k-algebras. Recall that a morphism A→ B
of k-algebras is of finite presentation in the usual sense when B is finitely
generated as an A algebra and the ideal of relations is also finitely generated.
Let us temporarily call a morphism TVfp if it satisfies the condition from
Definition 3.5. Consider the functor

F : Set→ A/Comm(C)

which sends each set to the A-algebra freely generated by it. Then Lawvere’s
work on finitary algebraic theories and Corollary 3.13 and the remark fol-
lowing it in [5] show that A → B is TVfp if and only if there exists finite
sets Sg and Sr and an isomorphism in A/Comm(C) of the form

colim[FSr ⇒ FSg]→ B.

So a morphism f : A→ B of k-algebras is of finite presentation in the cate-
gorical sense if and only it is of finite presentation in terms of generators and
relations. This fact also appears in the algebraic geometry literature. The im-
plication that finite presentation in terms of generators and relations implies
finite presentation in the categorical sense was shown in this case in Lemma
III.8.8.2.3 of [23]. For the opposite implication see [1]. Now [23, IV.17.9.1]
tells us that a morphism of schemes is a flat monomorphism, locally of finite
presentation if and only if it is an open immersion. Since a morphism of
affine schemes spec(B)→ spec(A) is locally of finite presentation if and only
if the corresponding morphism A → B realizes B as an A-algebra of finite
presentation we can conclude that the Zariski open immersions are precisely
the standard (Zariski) open immersions in algebraic geometry. The Zariski
topology in the sense of relative algebraic geometry agrees with the Zariski
topology in the standard sense in the case C = Vectk. We should remark
that this is the only example in this article for which we can use Lawvere’s
theory and [5] in a straightforward way. Another way to characterize the
Zariski open immersion is by replacing the flat epimorphism condition with
a homotopy epimorphism condition, i.e. that the natural morphism in the
derived category B⊗L

AB → B is an isomorphism. It is this condition that we
examine this article for the category of Banach spaces, and not the flatness
condition which would give a different answer. We comment on the case of
vector spaces again in Remark 5.18.

Definition 3.30. — A morphism f : F → G in Pr(Aff(C)) is a Zariski
open immersion if for every affine scheme X and every morphism X → G,
the induced morphism F ×G X → X is a monomorphism of presheaves
and its image agrees with the image of the map of sheaves

∐
i∈I Xi → X

corresponding to a family of Zariski opens Xi → X.
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Definition 3.31. — Suppose F ∈ Pr(Aff(C)) and X ∈ Aff(C). A mor-
phism X → F is flat if for every Y ∈ Aff(C) and every morphism Y → F
there is a Zariski open cover

∐
Zi → X ×F Y such that the combined mor-

phisms Zi → X ×F Y → Y are flat.

Definition 3.32. — A morphism f : F → G in Pr(Aff(C)) is flat if for
every affine scheme X and every morphism X → G and every flat morphism
W → X ×G F the composition W → X ×G F → X is flat.

Consider the Grothendieck site Aff(C)fpqc. The category of simplicial ob-
jects in Pr(Aff(C)) is denoted SPr(Aff(C)). This category comes with a (local)
model structure as explained in [58].

Definition 3.33 ([58]). — An object F ∈ SPr(Aff(C)fpqc) is called a
pre-Stack. An object F ∈ SPr(Aff(C)fpqc) is called an fpqc stack if for any
X ∈ Aff(C) and any hypercovering H• → X, the natural morphism

F (X)→ holim[n]∈∆F (Hn)

is an equivalence of simplicial sets. The category St(Aff(C)fpqc) =
Ho(SPr(Aff(C)fpqc)) is the category of stacks.

An equivalent definition to the above is to define pre-stacks as functors
Aff(C)op → ∞− Gpd, where ∞− Gpd is the category of infinity groupoids.
This is a full subcategory of the category of (∞, 1)-categories for which one
could use quasi-categories. ∞-groupoids in this model are Kan simplicial
sets. Stacks would be pre-stacks which satisfy descent with respect to hy-
percovers [21, 35, 33, 62, 64]. Similarly we could define (pre-)stacks valued
in other categories, for instance a pre-stack in categories would be a functor
Aff(C)op → (∞, 1) − Cat. Note that the category of (1, 1)-categories em-
beds into the category of (∞, 1)-categories. Using quasi-categories to model
(∞, 1)-categories, the nerve of a 1-category is a quasi-category. We can also
view dg-categories as stable quasi-categories tensored over complexes [19].
We will use this later to view categories of quasi-coherent O-modules, and
D-modules (derived or underived) as pre-stacks valued in categories. There
is an inductive definition of an n-algebraic stack for n = 0, 1, 2, . . . . An al-
gebraic fpqc stack on Aff(C) is an fpqc stack on Aff(C) which is n-algebraic
for some n.

One can study schemes and stacks using with the fpqc or Zariski topology
we have defined above. These could be useful in the analytic context as well
when C is the category of Banach spaces and one can study faithfully flat
descent in this context. However, the usual G-topology that is usually studied
in non-Archimedean geometry as well as the classical metric topology of
complex analytic geometry are finer topologies and have smaller “open sets”.
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The localizations from Definition 5.6 are not flat with respect to the monoidal
structure on Bank and for this reason we need to introduce new abstractly
defined topologies which will fit in well with these facts. To do so, we need
to use quasi-abelian categories.

4. Quasi-abelian categories

We review some of Schneiders’ theory of quasi-abelian categories. These
are special cases of Palamodov’s semi-abelian categories and of pseudo-
abelian categories. They also have the structure of a (Quillen) exact category
in one natural way. The main reference for this section is [52].

Definition 4.1. — Let E be an additive category with kernels and cok-
ernels. A morphism f : E → F is E is called strict if the induced morphism

coim(f)→ im(f)
is an isomorphism.

Here the image of f is the kernel of the canonical map F → coker(f),
and the coimage of f is the cokernel of the canonical map ker(f)→ E.

Definition 4.2. — Let E be an additive category with kernels and coker-
nels. We say that E is quasi-abelian if it satisfies the following two conditions:

• In a cartesian square

E′
f ′ //

��

F ′

��
E

f
// F

If f is a strict epimorphism then f ′ is a strict epimorphism.
• In a co-cartesian square

E
f //

��

F

��
E′

f ′
// F ′

If f is a strict monomorphism then f ′ is a strict monomorphism.

Remark 4.3. — Any morphism in a quasi-abelian category with a right
inverse is a strict epimorphism. Any morphism in a quasi-abelian category
with a left inverse is a strict monomorphism.
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Definition 4.4. — Let E be a quasi-abelian category. Let E′ e′−→ E
e′′−→

E′′ be a sequence of maps such that e′′ ◦ e′ = 0. We call such a sequence
strictly exact (resp. strictly coexact) if e′ (resp. e′′) is strict and the canonical
map im(e′) → ker(e′′) is an isomorphism. A complex E1 → · · · → En is
strictly exact (resp. strictly coexact) if each subsequence Ei−1 → Ei → Ei+1
is strictly exact (resp. strictly coexact).

Remark 4.5. — Note that the sequence

0 // E
u // F

v // G // 0 (4.1)

is strictly exact if and only if u is the kernel of v and v is the cokernel of
u. Any strict monomorphism or strict epimorphism can be completed to a
strictly exact sequence in the form of (4.1). This implies that such a sequence
is strictly exact if and only if it is strictly coexact.

Let E be a closed symmetric monoidal quasi-abelian category with all
finite limits and colimits. Then an object is flat if and only if tensoring with
it preserves strict short exact sequences.

Definition 4.6. — Call a sequence E′ e′−→ E
e′′−→ E′′ exact (resp. coex-

act) if the canonical map im(e′) → ker(e′′) is an isomorphism. A sequence
E1 → · · · → En is exact (resp. coexact) if each subsequence Ei−1 → Ei →
Ei+1 is exact (resp. coexact).

Remark 4.7. — Note that the sequence

0 // E
u // F

v // G // 0 (4.2)

is exact if and only if ker(u) = 0, im(v) = G and im(u) → ker(v) is an
isomorphism. Any monomorphism or epimorphism can be completed to a
exact sequence in the form of (4.2).

The following is Remark 1.1.11 in [52]:

Theorem 4.8. — Let E be a quasi-abelian category. The class of strictly
exact short exact sequences endows E with the structure of an exact category.

Definition 4.9. — Let E be a quasi-abelian category. Let K(E) be its
homotopy category. The derived category of E is D(E) = K(E)/N(E) where
N(E) is the full subcategory of strictly exact sequences.

Definition 4.10. — Let E be a quasi-abelian category. Let K(E) be its
homotopy category. A morphism in K(E) is called a strict quasi-isomorphism
if its mapping cone is strictly exact.
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The following is 1.2.17, 1.2.19, 1.2.20, 1.2.27 and 1.2.31 in [52]:
Theorem 4.11. — Let E be a quasi-abelian category.

(1) D(E) has a canonical t-structure (the left t-structure). A complex E
belongs to D60 if and only if it is strictly exact in strictly positive
degrees. E belongs to D>0 if and only if it is strictly exact in strictly
negative degrees.

(2) The heart of this t-structure LH(E), is equivalent to the localization
of the full subcategory of K(E) consisting of complexes E of the form

0 // E
u // F // 0 (4.3)

where u is a monomorphism and F is in degree 0, by the multi-
plicative system formed by morphisms which are both cartesian and
cocartesian.

(3) There is a canonical fully faithful functor I : E→ LE(E). A sequence
E′ → E → E′′ is strictly exact in E if and only if I(E′) → I(E) →
I(E′′) is exact in LH(E).

(4) The functor I induces an equivalence between D(E) and D(LH(E)).
This equivalence sends the (left) t-structure on D(E) to the standard
t-structure on D(LH(E)).

Remark 4.12. — The embedding I : E→ LH(E) is universal in the sense
that induces an equivalence for any abelian category F between left strictly
exact functors from E to F and left exact functors from LH(E) to F . In this
sense LH(E) is the (left) abelian envelope of E. See [52, 1.2.33].

Definition 4.13. — Let E be an additive category with kernels and cok-
ernels. An object I is called injective (resp. strongly injective) if the functor
E 7→ Hom(E, I) is exact (resp. strongly exact), i.e. for any strict (resp. arbi-
trary) monomorphism u : E → F , the induced map Hom(F, I)→ Hom(E, I)
is surjective. Dually, P is called projective (resp. strongly projective) if the
functor E 7→ Hom(P,E) is exact (resp. strongly exact), i.e. for any strict
(resp. arbitrary) epimorphism u : E → F , the associated map Hom(P,E)→
Hom(P, F ) is surjective.

Definition 4.14. — A quasi-abelian category E has enough projectives
if for any object E there is a strict epimorphism P → E where P is projective.
A quasi-abelian category E has enough injectives if for any object E there is
a strict monomorphism E → I where I is injective.

The following is 1.3.24 in [52]:
Lemma 4.15. — Let E be a quasi-abelian category.

(1) An object P of E is projective if and only if I(P ) is projective in
LH(E).
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(2) E has enough projectives if and only if LH(E) has enough projectives.
In this case an object of LH(E) is projective if it is isomorphic to
I(P ) where P is projective in E.

The following is 1.3.22 in [52]:

Theorem 4.16. — Let E be a quasi-abelian category with enough pro-
jectives (resp. injectives). Let P be the full additive subcategory of projec-
tive objects (resp. I the category of injective objects). The canonical functor
K−(P)→ D−(E) (resp. K+(I)→ D+(E)) is an equivalence.

4.1. Closed symmetric monoidal quasi-abelian categories.

The following is 1.5.1 in [52]:

Proposition 4.17. — Suppose that C is a closed symmetric monoidal
quasi-abelian category with all finite limits and colimits. Suppose that A ∈
Comm(C). The category Mod(A) is quasi-abelian and the forgetful functor
Mod(A)→ C preserves limits and colimits. A morphism in Mod(A) is strict
if and only if it is strict in C.

Lemma 4.18. — Suppose that C is a closed symmetric monoidal quasi-
abelian category with all finite limits and colimits. Using Remark 4.3 we see
that for any V ∈ Mod(A) the canonical morphism

V⊗A→ V

is a strict epimorphism and the canonical morphism
V → Hom(A, V )

is a strict monomorphism.

Definition 4.19. — Suppose that C is a closed symmetric monoidal
quasi-abelian category with all finite limits and colimits. An object V is called
finite if there is a strict epimorphism

∐n
i=1 idC → V in C for some finite

non-negative integer n. In the case that C = Mod(A) for A a commutative
monoid in a closed symmetric monoidal quasi-abelian category, we denote
the full subcategory of finite objects by Modf (A).

Lemma 4.20. — Suppose that 0→ L→M → N → 0 is a strictly exact
sequence in Mod(A) and F = A⊗P ∈ Mod(A) is free and C = Hom(A, I) ∈
Mod(A) is cofree. Then the sequences

0→ HomA(F,L)→ HomA(F,M)→ HomA(F,N)→ 0
and

0→ HomA(N,C)→ HomA(M,C)→ HomA(L,C)→ 0
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are exact. If the sequence 0 → L → M → N → 0 is only exact and F is
strictly free and C is strictly cofree we can make the same conclusion.

Proof. — Using Lemma 2.4 these sequences are isomorphic to the se-
quences

0→ Hom(P,L)→ Hom(P,M)→ Hom(P,N)→ 0
and

0→ Hom(N, I)→ Hom(M, I)→ Hom(L, I)→ 0
which are exact by definition of projectivity and injectivity (or the strict
versions). �

Lemma 4.21. — If P is projective in C then P⊗A is projective in
Mod(A). Similarly, if I is injective in C then Hom(A, I) is injective in
Mod(A).

Proof. — Both of these facts are immediately implied by Lemma 4.20
together with Remark 4.5. �

Lemma 4.22. — The functor E 7→ E⊗A takes epimorphisms in C to epi-
morphisms in Mod(A). The functor E 7→ Hom(A,E) takes monomorphisms
in C to monomorphisms in Mod(A).

Proof. — This follows directly from the definitions and Lemma 2.4. �

Definition 4.23. — For A ∈ Comm(C) a moduleM in Mod(A) is called
kernel flat if for any morphism f : E → F in Mod(A) the natural morphism

B⊗ ker(f)→ ker(fM ) (4.4)

is an isomorphism where fM is defined as idM⊗Af : M⊗AE → M⊗AF. A
morphism A→ B in Comm(C) is called kernel flat if it makes B kernel flat
over A.

Lemma 4.24. — Suppose that C is a closed symmetric monoidal quasi-
abelian category. An object V ∈ C is kernel flat if and only it is flat (see
Definition 3.8). Therefore, a morphism of algebras p : A → B is kernel flat
(see Definition 4.23) if and only if it is flat (Definition 3.8) in Comm(C).

Proof. — First of all if p is flat it is clearly kernel flat since a kernel is a
type of limit. In the other direction suppose that p is kernel flat. It means
that tensoring with B commutes with kernels. Note that every limit over a
finite diagram can be written as a combination of finite products and kernels.
Finite products are isomorphic to finite coproducts and the functor given by
tensoring with B commutes with coproducts and hence it commutes with
finite products. Therefore, tensoring with B commutes with finite limits and
hence p is flat. �
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Lemma 4.25. — Suppose that C is a closed symmetric monoidal
quasi-abelian category with all finite limits and colimits. Suppose that A ∈
Comm(C). If the category C has enough projectives then the category Mod(A)
has enough projectives. If the category C has enough injectives then the cat-
egory Mod(A) has enough injectives.

Proof. — Suppose that C has enough projectives. Suppose that V ∈
Mod(A). Choose a strict epimorphism in C of the form P → V where P
is projective in C. Lemma 4.21 implies that P⊗A is projective in Mod(A).
Consider the morphism P⊗A → V. We need to show it is a strict epimor-
phism in Mod(A). It factorizes as

P⊗A→ V⊗A→ V. (4.5)

The second morphism is a strict epimorphism because it admits a right in-
verse. The arrow P⊗A → V⊗A is an epimorphism by Lemma 4.22 and in
fact a strict epimorphism because the monoidal product with A is a left ad-
joint functor and preserves cokernels. Therefore Mod(A) has enough projec-
tives. Suppose that C has enough injectives. Choose a strict monomorphism
in C of the form V → I where I is injective in C. Lemma 4.21 implies that
Hom(A, I) is injective in Mod(A). Consider the morphism V → Hom(A, I).
We need to show that it is a strict monomorphism in Mod(A). It factorizes
as

V → Hom(A, V )→ Hom(A, I). (4.6)
Notice that here, we are considering Hom(A, V ) and Hom(A, I) as elements
ofMod(A) using the action of A on itself. The first arrow is a strict monomor-
phism because it admits a left inverse. Using Lemma 4.22, Hom(A, V ) →
Hom(A, I) is a monomorphism inMod(A) and in fact a strict monomorphism
because the internal Hom from A is a right adjoint functor and preserves
kernels. Therefore Mod(A) has enough injectives. �

Lemma 4.26. — Suppose that F : C→ D is a functor which has a right
adjoint R and which preserves strict monomorphisms (preserves monomor-
phisms). Then an injective (strongly injective) in D is an injective (strongly
injective) when considered in C via R .

Proof. — Suppose that I ∈ D is injective (strongly injective). Then con-
sider a strict monomorphism (monomorphism) E → F in C. Then F(E) →
F(F ) is a strict monomorphism (monomorphism) in C. We have a commu-
tative diagram

C(F,R(I)) // C(E,R(I))

D(F(F ), I) //

OO

D(F(E), I).

OO
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Because the upwards arrows are isomorphisms and the lower horizontal arrow
is surjective, the upper horizontal arrow is surjective as well. Therefore, I is
injective (strongly injective) when considered as an object of C. �

Lemma 4.27. — Suppose that G : C→ D is a functor which has a left ad-
joint L and which preserves strict epimorphisms (preserves epimorphisms).
Then a projective (strongly projective) in D is projective (strongly projective)
when considered in C.

Proof. — Suppose that P ∈ D is projective (strongly projective). Con-
sider a strict epimorphism (epimorphism) E → F in D(A). Then by G(E)→
G(F ) is a strict epimorphism (epimorphism) in D. We have a commutative
diagram

C(L(P ), E) // C(L(P ), F )

D(P,G(E))

OO

// D(P,G(F ))

OO

Because the upwards arrows are isomorphisms and the lower horizontal arrow
is surjective, the upper horizontal arrow is surjective as well. Therefore, P
is projective (strongly projective) when considered in C. �

Let E be a closed symmetric monoidal quasi-abelian category and let
A ∈ Comm(E). The following is contained in [52, 2.1.18]: If P is projective
in E then A⊗P is projective in Mod(A).

4.2. Derived Functors

Let F : C → D be an additive functor betwen quasi-abelian categories C
and D. Schneiders gave the following definitions in [52, 1.3.2]

Definition 4.28. — A full additive subcategory P of C is called F-
projective if:

(1) for any object V of C there is an object P of P and a strict epimor-
phism P → V

(2) in any strictly exact sequence
0→ V ′ → V → V ′′ → 0

of C where V and V ′′ are objects of P, V ′ is as well
(3) for any strictly exact sequence

0→ V ′ → V → V ′′ → 0
of C where V, V ′ and V ′′ are objects of P, the sequence

0→ F(V ′)→ F(V )→ F(V ′′)→ 0
is strictly exact in D.
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A full additive subcategory I of C is called F-injective if:

(1) for any object V of C there is an object I of I and a strict monomor-
phism V → I

(2) in any strictly exact sequence
0→ V ′ → V → V ′′ → 0

of C where V and V ′′ are objects of I, V ′ is as well
(3) for any strictly exact sequence

0→ V ′ → V → V ′′ → 0
of C where V, V ′ and V ′′ are objects of I, the sequence

0→ F(V ′)→ F(V )→ F(V ′′)→ 0
is strictly exact in D.

Schneiders also includes the following:

Lemma 4.29 ([52, Lemma 1.3.3]). — Let C be a quasi-abelian category
and let P be a subset of the objects of C. Assume that for any object V of C
there is a strict epimorphism P → V with P ∈ P. Then for each object V of
C−(C) there is a quasi-isomorphism u : P → V with P in C−(P) and such
that each uk : P k → V k is a strict epimorphism.

From this we get:

Proposition 4.30 ([52, Proposition 1.3.5]). — Let F : C → D be an
additive functor between quasi-abelian categories C and D.

(1) Assume that C has an F-projective subcategory. Then F has a left
derived functor LF : D−(C)→ D−(D).

(2) Assume that C has an F-injective subcategory. Then F has a right
derived functor RF : D+(C)→ D+(D).

Definition 4.31. — In the situations of Lemma 4.30, F is called ex-
plicitly left derivable or explicitly right derivable.

Here, derived functors are defined as usual by their universal property.

Remark 4.32. — Note that if F is exact (sends strict short exact se-
quences to strict short exact sequences) then the full subcategory C itself is
an F-projective (and injective) subcategory. Hence exact functors are always
derivable.

As in the abelian case, projective and injectives form F-projective and
F-injective subcategories ([52, Remark 1.3.21]):
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Proposition 4.33. — Let F : C → D be an additive functor between
quasi-abelian categories C and D.

(1) Assume that C has enough projectives. Then the full subcategory of
projective objects is a F-projective subcategory and therefore can be
used to explicitly left derive the functor F .

(2) Assume that C has enough injectives. Then the full subcategory of
injective objects is a F-injective subcategory and therefore can be
used to explicitly right derive the functor F .

We also have the following ([52, Remark 1.3.7]):

Lemma 4.34. — Let F : C → D be an additive functor between quasi-
abelian categories C and D. Assume that F has a right derived functor RF :
D+(C)→ D+(D). Call an object I F-acyclic if RF(I) ∼= F(I). Assume that
for any object A, there is an F-acyclic object I and a monomorphism A→ I.
Then the F-acyclic objects form a F-injective subcategory. Assume that F has
a left derived functor LF : D−(C) → D−(D). Call an object P F-acyclic if
LF(P ) ∼= F(P ). Assume that for any object A, there is an F-acyclic object P
and a epimorphism P → A. Then the F-acyclic objects form a F-projective
subcategory.

Definition 4.35. — Let C be a closed symmetric monoidal quasi-abelian
category with monoidal structure ⊗. An object V of C is called ⊗-acyclic if
V is F-acyclic for all of the functors F : C→ C given by U 7→ U⊗W for any
object W in C.

4.3. Topologies based on homological algebra

Using the homological algebra in this section, we now introduce some
more classes of morphisms and Grothendieck topologies on a closed sym-
metric monoidal quasi-abelian category C with all finite limits and colimits.

Lemma 4.36. — For any morphism p : spec(B) → spec(A) in Aff(C),
the induced morphism p∗ : Mod(B) → Mod(A) is derivable to a functor
D−(B)→ D−(A).

Proof. — This functor sends strict exact sequences to strict exact se-
quences so this follows from Remark 4.32. �

Definition 4.37. — A morphism p : spec(B) → spec(A) in Aff(C) is
called a homotopy monomorphism in Aff(C) if the induced morphism p∗ :
D−(B)→ D−(A) is fully faithful.
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Lemma 4.38. — The composition of homotopy monomorphisms in
Aff(C) is a homotopy monomorphism in Aff(C).

Proof. — This follows from the fact that the composition of fully faithful
functors is fully faithful. �

Lemma 4.39. — Assume that p : spec(B) → spec(A) in Aff(C) and
that the functor p∗ : Mod(A) → Mod(B) given by tensoring with B over A
is explicitly left derivable to a functor Lp∗ : D−(A) → D−(B). Then p is
homotopy monomorphism if and only if the natural morphism of functors
Lp∗p∗ → idD−(B) is an isomorphism.

Proof. — We have natural isomorphisms for any objects M,N ∈ D−(B)
HomD−(B)(Lp∗p∗M,N) ∼= HomD−(A)(p∗M,p∗N).

Therefore, if Lp∗p∗ → idD−(B) is an isomorphism then p is a homotopy
epimorphism. The converse follows from a simple application of the Yoneda
lemma. �

Lemma 4.40. — Assume that p : spec(B) → spec(A) is a morphism in
Aff(C) and that the functor Mod(A) → Mod(B) given by tensoring with B
over A is explicitly left derivable to a functor D−(A) → D−(B). Then p is
homotopy monomorphism if and only if B⊗L

AB
∼= B.

Proof. — For any object M of D−(B) we have

M⊗L
AB
∼= M⊗L

B(B⊗L
AB).

Hence Lp∗p∗ → idD−(B) is an isomorphism if and only if we have natural
isomorphisms M⊗L

AB
∼= M for any M ∈ D−(B) which happens if and only

if B⊗L
AB
∼= B. �

Remark 4.41. — Notice that in the above situation, a homotopy epi-
morphism in Comm(C) is in particular an epimorphism in Comm(C) because
one can apply the zeroth cohomology functor to both sides of B⊗L

AB
∼= B

obtaining B⊗AB ∼= B (see Remark 3.7).

Definition 4.42. — Let C be a closed, symmetric monoidal quasi-abelian
category with enough projectives. The morphism spec(B) → spec(A) of
Aff(C) is called a homotopy formal Zariski open immersion if the corre-
sponding morphism A→ B in Comm(C) is a homotopy epimorphism.

Definition 4.43. — Let C be a closed, symmetric monoidal quasi-abelian
category with enough projectives. The morphism spec(B) → spec(A) of
Aff(C) is called a homotopy Zariski open immersion if the corresponding
morphism A→ B in Comm(C) is a homotopy epimorphism of finite presen-
tation.
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Definition 4.44. — The Amitsur complex of a morphism f : A → B
in Comm(C) is the complex A (f) given by

0→ A→ B → B⊗AB → B⊗AB⊗AB → · · ·

where the morphism B⊗
m
A → B⊗

m+1
A is defined by

d(b1⊗b2⊗ · · ·⊗bm) =
m+1∑
i=1

(−1)ib1⊗ · · ·⊗bi−1 ⊗ 1⊗bi⊗ · · ·⊗bm.

In the case that we can chose a decomposition f =
∏n
i=1 fi : A→

∏n
i=1Bi =

B there is a strictly included subcomplex A a(f) → A (f) where A a(f) is
given by the finite complex

0→ A→
∏

16i16n
Bi →

∏
16i1<i26n

Bi1⊗ABi2 → · · · → B1⊗A · · · ⊗ABn → 0

with the induced differentials.

Definition 4.45. — Let C be a closed, symmetric monoidal quasi-abelian
category with enough projectives. We call a full subcategory A ⊂ Aff(C) ho-
motopy Zariski transversal if it is closed under fiber products and for any
homotopy monomorphism spec(B) → spec(A) in A and for any morphism
spec(C)→ spec(A) in A

the natural morphism B⊗L
AC → B⊗AC is an isomorphism.

Lemma 4.46. — If A ⊂ Aff(C) is a homotopy Zariski transversal subcate-
gory then the base change of a homotopy monomorphism in A by a morphism
in A is a homotopy monomorphism.

Proof. — If A→ B is a homotopy epimorphism in A and A→ C is any
morphism in A then

(B⊗AC)⊗L
C(B⊗AC) ∼= (B⊗L

AC)⊗L
C(B⊗L

AC) ∼= B⊗L
A(B⊗L

AC)
∼= (B⊗L

AB)⊗L
AC
∼= B⊗L

AC
∼= B⊗AC. �

The following definition comes from work [48] of Ramis–Ruget on quasi-
coherent sheaves in complex analytic geometry. Based on their work, quasi-
coherent modules in the complex analytic context were discussed in the
book [22]. Our definition is inspired by that one.

Definition 4.47. — Let A ⊂ Aff(C) be a homotopy Zariski transversal
subcategory. For spec(A) ∈ A define ModRRA (A) to be the full subcategory of
Mod(A) consisting of modules M such that M is transversal to all homotopy
epimorphisms in A. That is, we consider modules M such that the natural
morphism

M⊗L
AB →M⊗AB
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is an isomorphism for all homotopy epimorphisms A → B. We call these
RR-quasi-coherent modules.

Lemma 4.48. — Let A ⊂ Aff(C) be a homotopy Zariski transversal sub-
category. If spec(C) → spec(A) is any morphism in A then the morphism
A→ C gives C the structure of an object of ModRRA (A).

Proof. — This is an obvious consequence of Definition 4.45. �

Lemma 4.49. — If A ⊂ Aff(C) is a homotopy Zariski transversal sub-
category then pushforwards by morphisms in A preserve the category of RR-
quasi-coherent modules. If a morphism in A is transverse to a RR-quasi-
coherent module, then the pull-back of this module by that morphism is also
RR-quasi-coherent. Therefore, pullbacks by homotopy monomorphisms or
flat morphisms in A also preserve this category.

Proof. — Say we are given a morphism spec(C) → spec(A) in A. Given
any object M of ModRRA (C) and a homotopy monomorphism spec(B) →
spec(A), we have

M⊗L
AB
∼= M⊗L

C(C⊗L
AB) ∼= M⊗L

C(C⊗AB) ∼= M⊗C(C⊗AB) ∼= M⊗AB.

This proves the statement about push-forwards. For the statements about
pullbacks, fix a morphism spec(D)→ spec(C) in A (which we will pullback
with) which is transverse to M and a homotopy monomorphism spec(E)→
spec(D) in A. Then

(M⊗CD)⊗L
DE
∼= (M⊗L

CD)⊗L
DE
∼= M⊗L

CE
∼= M⊗CE

∼= (M⊗CD)⊗DE. �

As a corollary, we can get a helpful analogue of Lemma 3.14:

Corollary 4.50. — Let C be a closed symmetric monoidal quasi-abelian
category. Suppose that A ⊂ Aff(C) is a homotopy Zariski transversal subcat-
egory. Suppose that a family {pi : Xi → X} in A of homotopy monomor-
phisms is such that the family {p∗i : ModRRA (X)→ ModRRA (Xi)} has a finite
conservative subfamily. Then any pull-back family {pi : Xi ×X Y → Y }
coming from a base change Y → X has the same property.

Proof. — The proof of Lemma 3.14 uses only the functors q∗, q′∗, p∗i and
p′
∗
i . The first three preserve the categories of RR-quasi-coherent modules by

Lemma 4.49 and the last one does by Lemmas 4.46 and 4.49. Therefore, that
same proof works here. �

Proposition 4.51. — Let C be a closed, symmetric monoidal quasi-
abelian category with enough projectives. Let A be a homotopy transversal
subcategory of Aff(C). Consider the families {pi : Xi → X}i∈I in A such
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that the family {p∗i : ModRRA (X)→ ModRRA (Xi)}i∈I has a finite conservative
subfamily and that each pi is a homotopy monomorphism. These families
define a pretopology on A.

Proof. — In order to show the base change property, consider q : Y → X
in A and let q′i, p′i and pi play the role of q′, p′ and p in Diagram (3.3).
Lemma 3.14 implies that the family {p∗i } has a finite conservative subfam-
ily. The fact that the p′i are homotopy monomorphisms follows from the
assumption. �

Let C be a closed symmetric monoidal quasi-abelain category with enough
projectives. Let A ⊂ Aff(C) be a homotopy Zariski transversal subcategory.
Say that q : spec(C) → spec(A) is arbitrary. Say we are given A,B,C ∈
Comm(sC). Consider a Cartesian diagram

spec(C ⊗L
A B) q′ //

p′

��

spec(B)

p

��
spec(C)

q
// spec(A).

(4.7)

Using the notation of Diagram (4.7) there is a natural equivalence
(Lp∗)q∗ =⇒ q′∗(Lp′∗) (4.8)

called base change.

Lemma 4.52. — Let C be a closed symmetric monoidal quasi-abelain
category with enough projectives. Let A ⊂ Aff(C) be a homotopy Zariski
transversal subcategory. Suppose that a family {pi : Xi → X} of homotopy
monomorphisms in A is such that the family {Lp∗i :D−(X)→D−(Xi)} has a
finite conservative subfamily. Then any pull-back family {pi : Xi×X Y → Y }
coming from a base change Y → X in A has the same property.

Proof. — In order to show the base change property, consider q : Y → X.
Choose a finite set J ⊂ I such that

∏
i∈J Lp∗i is conservative. Consider the

functor
∏
i∈J Lp′

∗
i where q′i, p′i and pi play the role of q′, p′ and p in Di-

agram (3.3). In order to show it is conservative, its enough to show that∏
i∈J q

′
i∗Lp′

∗
i is conservative. By the definition of homotopy Zariski transver-

sal, the natural morphism Xi ×X Y → Xi ×hX Y is an isomorphism. There-
fore, we can use (3.4) to conclude that

∏
i∈J q

′
i∗Lp′

∗
i is natrually equivalent

to (
∏
i∈J Lp∗i )q∗ which is conservative since q∗ is conservative. �

Remark 4.53. — Notice that the derived base change of a homotopy
monomorphism is always a homotopy monomorphism but there is no reason
that such a thing would work for ordinary base changes. In order to construct
a Gronthendieck topology, we need the admissible opens to be preserved
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by base change. Because the current article is not about derived geometry
which will be discussed in [11], we defined our Gronthendieck topology on
a homotopy transversal subcategory A ⊂ Aff(C). The main application in
this article is the case where C is the category Bank for a non-Archimedean
valued field k and A is the opposite to the category of affinoid algebras. In
the preprints [9] and [10] we take C to be the category of Ind–Banach spaces
and A to be categories of dagger affinoid and Stein algebras which we define.
In these upcoming articles we do not assume the field is non-Archimedean
so they apply to complex analytic geometry as well. In the article on derived
analytic geometry [11], we take C to be the monoidal model category of
simplicial Ind–Ban spaces.

Definition 4.54. — Let C be a closed, symmetric monoidal quasi-abelian
category with enough projectives. Let A be homotopy Zariski transversal sub-
category of Aff(C) . The topology coming from Proposition 4.51 is called the
formal homotopy Zariski topology on A. When equipped with this topology,
we denote this category by AfhZar. The category of sheaves of sets is denoted
Sh(AfhZar). The category of schemes is denoted by Sch(AfhZar).

Proposition 4.55. — Consider the families {pi : Xi → X}i∈I in A
such that the family {p∗i : ModRR(X) → ModRR(Xi)}i∈I has a finite con-
servative subfamily and that each pi is a homotopy monomorphism of finite
presentation. These families define a pretopology on A.

Proof. — In order to show the base change property, consider q : Y → X
in A and let q′i, p′i and pi play the role of q′, p′ and p in Diagram (3.3).
Lemma 3.14 implies that the family {p∗i } has a finite conservative subfam-
ily. The fact that the p′i are homotopy monomorphisms follows from the
assumption. �

Definition 4.56. — Let C be a closed, symmetric monoidal quasi-abelian
category with enough projectives. Let A be homotopy Zariski transversal sub-
category of Aff(C). The topology coming from Proposition 4.55 is called the
homotopy Zariski topology on A. When equipped with this topology, we denote
this category by AhZar. The category of sheaves of sets is denoted Sh(AhZar).
The category of schemes is denoted by Sch(AhZar).

5. Main Theorems

5.1. From Berkovich geometry to Banach algebraic geometry

Let k be a non-Archimedean valuation field. We now introduce the full
subcategory Afndk ⊂ Comm(Bank). The objects in this category are the
k-affinoid algebras from the literature on Berkovich analytic spaces.
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Definition 5.1. — For any finite ordered set of positive real numbers
r = (r1, . . . , rn), let

k{r−1
1 x1, . . . , r

−1
n xn} ∈ Comm(Bank)

be the completion of k[x1, . . . , xn] with respect to the norm∥∥∥∥ ∑
I∈Zn

>0

aIx
I

∥∥∥∥
r

= maxI{|aI |rI}

where for each I = (i1, . . . , in) ∈ Zn>0, aI = ai1,...,in and xI = xi11 · · ·xinn .

Lemma 5.2. — More concretely, we have

k{r−1
1 x1, . . . , r

−1
n xn}=

{∑
aIx

I ∈ k[[x1, . . . , xn]]
∣∣∣∣ lim
|I|→∞

|aI |rI = 0
}

(5.1)

where |I| = i1 + · · ·+ in and we equip the right hand side with the norm∥∥∥∥ ∑
I∈Zn

>0

aIx
I

∥∥∥∥
r

= sup
I
{|aI |rI}

Proof. — First, notice that the right hand side is complete: given a
Cauchy sequence {f (j)} in the right hand side of (5.1), note that for each I,
the sequence of coefficients f (j)

I of xI must be Cauchy, and hence converge
in k, to some fI . Define f =

∑
I∈Zn

>0
fIx

I . It is easy to check that f lies in
the right hand side using the inequality

|fI |rI 6 max
{
|fI − f (j)

I |r
I , |f (j)

I |r
I
}
.

If f is an element of the right hand side, let f (j) =
∑
I∈Zn

>0,|I|6j
fIx

I .

These polynomials f (j) converge to f so the polynomials are dense in the
right hand side. �

Remark 5.3. — Notice by Lemma A.25 that the right hand side consists
precisely of the formal power series which can be evaluated on elements
(x1, . . . , xn) ∈ kn such that |xi| 6 ri for i = 1, . . . , n.

Definition 5.4. — A k-affinoid algebra A is an object in Comm(Bank)
which admits an admissible surjection

k{r−1
1 x1, . . . , r

−1
n xn} → A.

whose multiplication is contracting (see Definition A.11). The full category
of Comm(Bank) consisting of such objects is denoted Afndk.
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Notice that the completed symmetric algebra in Ban61
k on kr1 ⊕ kr2 ⊕

· · · ⊕ krn
is just k{r−1

1 x1, . . . , r
−1
n xn} from Definition 5.1. So these algebras

are precisely the free commutative monoids in Ban61
k . In fact, we have

Lemma 5.5. — Affinoid algebras are precisely the finitely presented ob-
jects in Comm(Ban61

k ). This means that they are exactly those objects which
are the coequalizer of the zero morphism and a morphism in Comm(Ban61

k )
of free commutative algebra objects:

k{s−1
1 y1, . . . , s

−1
m ym} → k{r−1

1 x1, . . . , r
−1
n xn}.

Proof. — Let A = k{r−1
1 x1, . . . , r

−1
n xn}/I be an affinoid algebra. It is

known [55] that k{r−1
1 x1, . . . , r

−1
n xn} is Noetherian. Therefore, I must be

finitely generated by some finite set of non-zero elements f1, . . . , fm ∈
k{r−1

1 x1, . . . , r
−1
n xn}. Let sj = ‖fj‖ for j = 1, . . . ,m. Consider the mor-

phism of algebras

k{s−1
1 y1, . . . , s

−1
m ym} → k{r−1

1 x1, . . . , r
−1
n xn}

determined by the (contracting) morphism of Banach spaces

ks1 ⊕ · · · ⊕ ksm → k{r−1
1 x1, . . . , r

−1
n xn}

determined by the maps sending 1 ∈ ksj to fj . Its image is the ideal gener-
ated by f1, . . . , fm. Conversely, given such a coequalizer diagram, the image
generates an ideal I and the quotient k{r−1

1 x1, . . . , r
−1
n xn}/I is an affinoid

algebra which satisfies the universal property of the coequalizer. �

Definition 5.6. — A k-affinoid localization is a morphism A → D of
k-affinoid algebras such that the morphism |M(D)| → |M(A)| is injective,
the image of |M(D)| is closed in |M(A)| and any morphism of k-affinoid
algebras A → B such that |M(B)| lands in the image of |M(D)| factors
uniquely as A → D → B.

Note that k-affinoid localizations correspond to the subspaces known as
affinoid domain embeddings. They are usually written as A → AV where V
is the closed image and they satisfy the property (proven in [13, 2.2.2(iv)])
that

AV1∩V2
∼= AV1⊗̂AAV2

for affinoid domains V1 and V2.

Three important examples are the localizations corresponding to the ra-
tional, Weirstrass and Laurent domains. Any affinoid domain is a union of
a finite collection of rational domains.
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Definition 5.7. — A rational localization is a morphism of affinoid
algebras of the form

A → A{T1

r1
, . . . ,

Tm
rm
}/(gT1 − f1, . . . , gTm − fm)

for some g, fj ∈ A such that (f1, . . . , fm, g) = 1.

Notice that the norm of this morphism is one.

Remark 5.8. — Proposition 2.2.4(ii) of [13] tells us that AV is a flat
A-algebra with respect to the algebraic (non-completed) tensor product,
however it is not flat with respect to ⊗̂A. Note that since completions
commute with colimits, a rational localization AV is the completion of
A[T1, . . . , Tn]/(gT1−f1, . . . , gTn−fn) with respect to the residue semi-norm
coming from the semi-norm in Definition 5.25. We have an isomorphism of
A modules

Ag = A[S]/(gS − 1)→ A[T1, . . . , Tn]/(gT1 − f1, . . . , gTm − fm)
given by S = b+

∑n
i=1 aiTi where bg +

∑n
i=1 aifi = 1. The inverse is given

by Ti = fiS. Therefore A[T1, . . . , Tn]/(gT1 − f1, . . . , gTn − fn) is flat over A
in the algebraic sense. Given anyM∈ Mod(A) we have a morphismMg →
M⊗̂AAV and M⊗̂AAV is the completion of Mg = M[T1, . . . , Tn]/(gT1 −
f1, . . . , gTm−fm) with the residue semi-norm of the algebraic tensor product
M[T1, . . . , Tn].

Definition 5.9. — A Weirstrass localization is a rational localization
for which g = 1.

Definition 5.10. — A Laurent localization is a localization of the form

A → A
{
T1

p1
, . . . ,

Tn
pn
, q1S1, . . . , qmSm

}
× (T1 − f1, . . . , Tn − fn, g1S1 − 1, . . . , gmSm − 1)

where the pi and qj are positive reals and fi, gj ∈ A.

Definition 5.11. — Fix a system A → AVi which give a cover ofM(A)
by a finite collection of affinoid domains Vi. The Čech-Amitsur complex is
the complex

0→M→
∏
i

M⊗̂AAVi
→
∏
i,j

M⊗̂AAVi
⊗̂AAVj

→ · · · . (5.2)

To any morphismM→N we have the obvious morphism of Čech-Amitsur
complexes. The complex written here differs from the standard long exact
sequence defined in Section 8.2 of [16] in that we consider the completed
tensor products everywhere whereas they only complete the tensor products
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between the various AVi
terms. The standard complex mentioned is exact

as proven in the Acyclicity Theorem (Proposition 2.2.5 of [13]). The above
complex is not always exact, however.

Remark 5.12. — We think that an easy double complex argument shows
that the complex in Definition 5.11 is strictly exact for modulesM such that
the natural morphism

M⊗̂L
A

∏
i

AVi →M⊗̂A
∏
i

AVi

is an isomorphism. See Remark 5.35 for a similar statement.

Lemma 5.13. — Let A be an affinoid algebra over a non-Archimedean
valuation field k. Let AV be the localization AV = A{Ts }/(T − f) for some
f ∈ A or AV = A{Ts }/(gT − 1) for some g ∈ A. Let B be an affinoid
A-algebra. Then the natural morphism

B⊗̂L
AAV → B⊗̂AAV

is an isomorphism in D−(A). In particular, by taking B = AV we see that
the morphisms A → A{Ts }/(gT − 1) and the morphism A → A{Ts }/(T − f)
are homotopy epimorphisms.

Proof. — Notice that it enough to show that for any affinoid algebra C
and any element f ∈ C the morphism

C{T
s
} T−f→ C{T

s
} (5.3)

is a strict monomorphism and for any g ∈ C the morphism

C{T
s
} gT−1→ C{T

s
} (5.4)

is a strict monomorphism. Indeed, we can use in the case C = A

A{T
s
} T−f→ A{T

s
}

or
A{T

s
} gT−1→ A{T

s
}

as resolutions of AV whose terms are projective and ⊗̂A-acyclic. Then by
taking the completed tensor product over A with B we find a representative
for B⊗̂L

AAV which looks like

B{T
s
} T−f→ B{T

s
}

or
B{T

s
} gT−1→ B{T

s
}
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where the f and g here are the images of the original ones in B. These
complexes are immediately recognized as also being special cases of (5.3)
and (5.4) in the case C = B. This shows that the operation of taking the
completed tensor product over A with B is (strictly) exact.

We start by showing that (5.3) and (5.4) are monomorphisms which using
Lemma A.29 simply means to show that they are injective. Multiplication
by gT − 1 is clearly injective as can be seen by looking at the lowest order
term in T . Consider the ascending sequence of ideals of C given by the kernel
of the morphisms of C to itself defined by multiplication by f i:

ker(f) ⊂ ker(f2) ⊂ ker(f3) ⊂ · · · .

Since C is Noetherian by Proposition 2.1.3 of [13] this sequence must termi-
nate at some ker(fN ). Suppose that

(T − f)
( ∞∑
j=0

ajT
j

)
= 0

with
∑∞
j=0 ajT

j 6= 0 and let ai be the first non-zero coeficient. Then
fNai+N = ai and so fN+1ai+N = fai = 0 and so ai+N ∈ ker(fN+1) =
ker(fN ). This shows that ai = 0, a contradiction. Therefore, multiplication
by T − f is injective. Let us assume for a moment that k is non-trivially
valued. To show that these morphisms are strict one must simply show that
the set-theoretic image is closed. However, this set-theoretic image in both
cases is an ideal and all ideals in affinoid algebras are closed by Proposi-
tion 2.1.3 of [13]. Therefore, they are strict monomorphisms in this case.
Now if k is arbitrary we find that these two morphisms become strict after
tensoring with the non-trivially valued field introduced in Proposition 2.1.2
of [13]. Therefore, by this same proposition, they were strict monomorphisms
all along. �

Lemma 5.14. — Let AV be a rational localization of an affinoid k-algebra
A. Let B be an affinoid k-algebra. Then the natural morphism

AV ⊗̂
L
AB → AV ⊗̂AB

is an isomorphism in D−(A). In particular taking B = AV , any rational,
Weirstrass, or Laurent localization A → AV is a homotopy epimorphism.

Proof. — Assume now that k is non-trivially valued and consider the
rational localization

AV = A{T1

r1
, . . . ,

Tm
rm
}/(gT1 − f1, . . . , gTm − fm)

where ri > 0 and (f1, . . . , fm, g) = 1. Notice that following Proposition 1
of [16, 7.2.4], |g| cannot be arbitrarily small for | | ∈ M(AV ) and in fact we
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can realize the rational localization as an Laurent localization of a Weier-
strass localization. That is, there is an ε > 0 such that

AV ∼=
(
A
{
S

ε−1

}
/(gS − 1)

){
T1

r1
, . . . ,

Tm
rm

}
/

(
T1 −

f ′1
g′
, . . . , Tm −

f ′m
g′

)
where the f ′i and g′ are the image of fi and g in A{εS}/(gS − 1). This
corresponds to the fact that we can choose ε > 0 such that the conditions
|fi| 6 ri|g| and (f1, . . . , fm, g) = 1 are equivalent to |g| > ε and | fi

g | 6 ri.
Therefore Lemma 5.13 implies that the natural morphism

AV ⊗̂
L
AB → AV ⊗̂AB

is an isomorphism in D−(A). Now if k is trivially valued, consider, using
Proposition 2.1.2 of [13], a field Kr containing k which is flat over k with
respect to the completed tensor product and non-trivially valued. When we
take the tensor product of the canonical morphism

AV ⊗̂
L
AB → AV ⊗̂AB

with Kr over k we get, using the flatness of Kr, that

(AV ⊗̂kKr)⊗̂
L
A⊗̂kKr

(B⊗̂kKr)→ AV ⊗̂AB⊗̂kKr

is an isomorphism in D−(A⊗̂kKr) and hence the original morphism
AV ⊗̂

L
AAV → AV ⊗̂AB is an isomorphism in D−(A). �

Lemma 5.15. — Let AW1 and AW2 be affinoid localizations of an affinoid
k-algebra A corresponding to subdomains W1 and W2. Assume also that
W1 ∪W2 is an affinoid subdomain. Let B be an affinoid k-algebra. Assume
that the morphisms

AWi⊗̂
L
AB → AWi⊗̂AB

are isomorphisms for i = 1, 2. Assume also that the morphism

AW1∩W2⊗̂
L
AB → AW1∩W2⊗̂AB

is an isomorphism. Then the morphism

AW1∪W2⊗̂
L
AB → AW1∪W2⊗̂AB

is an isomorphism.

Proof. — This follows immediately from considering the strict short exact
sequence

0→ AW1∪W2 → AW1 ×AW2 → AW1∩W2 → 0. �

Finally, we are able to show in the following theorem that affinoid sub-
domains of affinoids give examples of homotopy monomorphisms of affine
schemes in the sense of the relative algebraic geometry we have described.
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Theorem 5.16. — Let AV be an affinoid localization of an affinoid k-
algebra A. Let B be an affinoid k-algebra. Then the natural morphism

AV ⊗̂
L
AB → AV ⊗̂AB

is an isomorphism in D−(A). In particular let AW1 and AW2 be affinoid
localizations of an affinoid algebra A. Then AW1⊗̂

L
AAW2

∼= AW1⊗̂AAW2 .
Therefore taking W1 = W2, any affinoid localization is a homotopy epimor-
phism.

Proof. — Suppose that V = V1 ∪ · · · ∪ VN is an affinoid domain written
as a union of rational domains. For N = 1 the claim is true by Lemma 5.14.
For general N assume that the claim is true for V written as a union of N−1
or fewer rational domains. The induction step follows from considering the
derived tensor product of B over A with the short exact sequence

0→ AV → AV1∪···∪VN−1 ×AVN
→ AV1∪···∪VN−1⊗̂AAVN

→ 0. (5.5)
We have

(AV1∪···∪VN−1 ×AVN
)⊗̂L
AB ∼= AV1∪···∪VN−1⊗̂

L
AB ×AVN

⊗̂L
AB

∼= AV1∪···∪VN−1⊗̂AB ×AVN
⊗̂AB

∼= (AV1∪···∪VN−1 ×AVN
)⊗̂AB

(5.6)

and we have
(AV1∪···∪VN−1⊗̂AAVN

)⊗̂L
AB ∼= AV1∪···∪VN−1⊗̂

L
A(AVN

⊗̂L
AB)

∼= AV1∪···∪VN−1⊗̂
L
A(AVN

⊗̂AB)
∼= AV1∪···∪VN−1⊗̂A(AVN

⊗̂AB)
∼= (AV1∪···∪VN−1⊗̂AAVN

)⊗̂AB

(5.7)

and by induction we get the result for all N . �

Remark 5.17. — For Weirstrass or Laurent localizations Theorem 5.16
follows using induction on Lemma 5.13. When AW1 and AW2 are rational lo-
calizations the claim in Theorem 5.16 has been shown already in Lemma 5.14.

Remark 5.18. — This is analogous to Lemma 2.1.4(1) of [63] where it
is shown that homotopy Zariski open immersions in the category of affine
schemes relative to the closed symmetric monoidal category of abelian groups
give precisely the ordinary notion of a Zariski open immersions. In that
reference first a special case (inverting a single element of the ring) was
shown and the general case follows by their descent formalism.

Definition 5.19. — A quasi-net on a topological space X is a collection
T of subsets of X such that for every x ∈ X there is a subset Tx ⊂ T with
|Tx| <∞ such that x ∈

⋂
V ∈Tx

V and there is an open set U ⊂ X such that
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x ∈ U ⊂
⋃
V ∈Tx

V. A net is a quasi-net T such that for every U, V ∈ T the
set {W ∈ T | W ⊂ U ∩ V } is a quasi-net of subsets of U ∩ V . A k-analytic
space is a locally Hausdorff topological space X, a net τ0 on X, a functor
φ : τ0 → Afndk, and an invertible natural transformation Top =⇒ Top ◦ φ.

Definition 5.20. — For any k-affinoid algebra A, the topological space
|M(A)| is defined to be the set of non-archimedean bounded semivaluations
| | on A equipped with the weakest topology such that for each f ∈ A, the
maps |M(A)| → R+ defined by sending | | to |f | is continuous.

Definition 5.21. — A k-affinoid space is a locally ringed space of the
form M(A) = (|M(A)|,OM(A)) where A is a k-affinoid algebra and
OM(A)(U) is the limit over AV , where V ⊂ U is a finite union of affinoid
domains. The category of k-affinoid spaces defined to be a full subcategory
of the category of locally ringed spaces of the given form.

The category of k-affinoid spaces is equivalent to the category Afndopk . So
we treatM as a functor giving this equivalence from Afndopk to the category
of k-affinoid spaces.

Definition 5.22. — A k-analytic space consists of a triple (X, τ,A)
where X is a locally Hausdorff topological space, τ is a net on X, and for
each V ∈ τ , A(V ) is a k-affinoid algebra along with a homeomorphism
|M(A(V ))| ∼= V (functorially assigned to the elements of τ) such that if
V, V ′ ∈ τ and V ′ ⊂ V then V ′ is an affinoid subdomain of M(A(V ))
with coordinate ring A(V ′) = A(V )V ′ . In the event that for every U ∈ τ2,
τ1 restricted to g−1(U) is an atlas of g−1(U), a morphism (X1, τ1,A1) →
(X2, τ2,A2) consists of a continuous and G-continuous map g : X1 → X2
along with bounded homomorphisms g#

U,V : A2(U) → A1(V ) for every U ∈
τ2, V ∈ τ1 with g(V ) ⊂ U such that for every V, V ′ ∈ τ1 with V ′ ⊂ V and
U,U ′ ∈ τ2 with U ′ ⊂ U such that g(V ) ⊂ U and g(V ′) ⊂ U ′ the diagram

A2(U)

��

// A1(V )

��
A2(U ′) // A1(V ′)

(5.8)

commutes. We use the terms k-analytic space and Berkovich analytic spaces
interchangeably. Let Ank denote the category of k-analytic spaces.

Lemma 5.23. — Any finite set T = {V1, V2, . . . Vm} of closed subsets of
a topological space X which cover X is a quasi-net.

Proof. — Given x ∈ X, consider the subset Tx ⊂ T defined by those
subsets in T which contain x. Then x ∈

⋂
V ∈Tx

V . Let U = X−
⋃
V ∈T−Tx

V,
this satisfies the required property. �
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Consider Afndopk /X, the category of affinoid k-analytic spaces over X.
This means that the objects are pairs (M(A), f) whereM(A) is an affinoid
k-analytic space and f : M(A) → X is a morphism of k-analytic spaces.
The morphisms from (M(A1), f1) to (M(A2), f2) are morphisms to X com-
muting with the fi.

Lemma 5.24. — Any k-analytic space X is a colimit of the category
Afndopk /X when considered as a subcategory of Ank.

Proof. — Consider the family τ̂ of all affinoid domains in |X|. It is a
net and |X| has a maximal k-affinoid atlas Â. For each V ∈ τ̂ , Â assigns
M(AV ) → X. In particular, Â assigns homeomorphisms |M(AV )| ∼= V ⊂
|X| and such that these homeomorphisms satisfy obvious compatibilities.
For any other k-analytic space X ′ we have by Exercise 3.2.2 of [14] an iso-
morphism

Hom(X,X ′)

→ eq
[ ∏
V ∈τ̂

Hom(M(AV ), X ′)⇒
∏

(V,W )∈τ̂2

Hom(M(AV ⊗̂kAW ), X ′)
]
. (5.9)

Together with the factorization of this isomorphism as

Hom(X,X ′)→ lim
M∈Afndop

k
/X

Hom(M, X ′)

↪→ eq
[ ∏
V ∈τ̂

Hom(M(AV ), X ′)⇒
∏

(V,W )∈τ̂2

Hom(M(AV ⊗̂kAW ), X ′)
]

(note that the right hand side is the limit in the smaller category of affinoid
subdomains in X) this implies that the natural morphism

Hom(X,X ′)→ lim
M∈Afndop

k
/X

Hom(M, X ′)

is an isomorphism. Therefore, X = colimM∈Afndop
k
/XM. �

5.2. From Banach algebraic geometry to Berkovich geometry

Consider the category C = Bank for some valuation field k. We have
shown in Section A.3 that it is a closed symmetric monoidal quasi-abelian
categories with Hom = Homk and ⊗ = ⊗̂k with all finite limits and col-
imits and enough projectives so that we can do algebraic geometry rel-
ative to Bank. In particular the categories of affine schemes over it has
certain distinguished morphisms and topologies and we have notions of
(Archimedean/non-Archimedean) Banach schemes Banach (infinity) stacks
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and n-algebraic Banach stacks over an (Archimedean/non-Archimedean) val-
uation field k. In the Archimedean case we could compare this geometry to
the geometry of complex varieties covered by Stein compact subsets. How-
ever, we focus here on the non-Archimedean case. In this section k will be a
non-Archimedean valuation field.

Definition 5.25. — Let A be a k-affinoid algebra. Given r1, · · · , rn ∈
R, we can define an A algebra

A{r−1
1 T1, . . . , r

−1
n Tn} (5.10)

as the completion of A[T1, . . . , Tn] with respect to the norm∥∥∥∑ aIT
I
∥∥∥
r

= maxI{‖aI‖ArI}.

Let r be a real number greater than zero, denote by Ar the A module
with norm ‖a‖ = r‖a‖A.

Lemma 5.26. — A{r−1
1 T1, . . . , r

−1
n Tn} is the symmetric algebra (see

Subsection 2.6) on V = Ar1 ⊕ · · ·⊕Arn in Mod61(A). It can also be seen as
the filtered colimit in Mod61(A) of

S0(V) ↪→ S0(V)⊕ S1(V) ↪→ S0(V)⊕ S1(V)⊕ S2(V) ↪→ · · ·
where

Sm(V) =
{ ∑
|I|=m

aIT
I
∣∣∣ aI ∈ A}

equipped with the norm∥∥∥∥ ∑
|I|=m

aIT
I

∥∥∥∥ = max
|I|=m

‖aI‖rI .

Proof. — Left to the reader. �

Remark 5.27. — We expect that using the non-expanding category has
the advantage that a morphism p : A → B in Comm(Ban61

k ) induces a
presentation

B ∼= A{
T1

r1
, . . . ,

Tg
rg
}/(P1, . . . , Pr) (5.11)

where Pi ∈ A{T1
r1
, . . . ,

Tg

rg
} if and only if p is of finite presentation in

Comm(Ban61
k ) as defined in Definition 3.5. However, the homological al-

gebra in this article did not seem to work out well using the non-expanding
category.

The following two lemmas are technical results that will be used only in
the proof of Theorem 5.31.
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Lemma 5.28. — Let A, C be k-affinoid algebras considered as objects in
Comm(Bank) and let f : A → C be morphism in Comm(Bank) which is a
strict epimorphism when considered in Bank such that there is a k-affinoid
algebra B and the post-composition of f with some homotopy epimorphism
g : C → B in Comm(Bank) is a homotopy epimorphism h : A → B in
Comm(Bank). Then there is a k-affinoid algebra A′ and an isomorphism A ∼=
C×A′ such that the projection to C corresponds to f under this isomorphism.

Proof. — The morphisms
A → C → B

induce morphisms on the derived categories
D−(B)→ D−(C)→ D−(A).

Since the composition is fully faithful and the first morphism is as well,
the second morphism must be fully faithful and so by Lemma 4.40 we have
C⊗̂L
AC ∼= C. Let I = ker(f). There is a strict, short exact sequence

0→ I → A→ C → 0. (5.12)
If we consider the derived completed tensor product of (5.12) over A with C
we find an exact triangle

I⊗̂L
AC → C → C⊗̂

L
AC

and because the second morphism is an isomorphism, we see that I⊗̂L
AC is

isomorphic to 0. If we now consider the derived completed tensor product
over A of (5.12) with I we get an exact triangle

I⊗̂L
AI → I → I⊗̂L

AC

and so we get an isomorphism I⊗̂L
AI → I. So we have I = image[I⊗̂AI → I]

and in fact this implies that I = I2 := image[I ⊗A I → I]. Therefore, there
exists an element e ∈ A such that e2 = e and eA = I. This gives the
structure of a k-affinoid algebra to I, which we denote by A′ = A/(1− e)A.
Now because f is a strict epimorphism, there is a strict short exact sequence

0→ I → A f→ C → 0
which in fact is split by the morphism of algebras e : A → A′. Therefore,

(e, f) : A → A′ × C
is an isomorphism. �

Lemma 5.29. — Let A,B be k-affinoid algebras and let f : A → B
be a morphism in the category of k-affinoid algebras with the property that
|M(A)| has a finite covering by affinoid domains Vj corresponding to affi-
noid domain embeddings M(AVj

) → M(A). Suppose also that morphisms
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M(AVj
⊗̂AB) → M(AVj

) are affinoid domain embeddings. Then the mor-
phismM(B)→M(A) is an affinoid domain embedding.

Proof. — Let us denote by U the image of |M(B)| inside |M(A)|. We
have U ∩ Vj = U ∩ Vj for all j. Since U ∩ Vj is closed in Vj and Vj is closed
in |M(A)| we see that U ∩Vj is closed in |M(A)|. Therefore U ∩Vj = U ∩Vj
for all j. Hence U = U and so U is closed inside |M(A)|. Let A → C
be a bounded homomorphism of affinoid k-algebras such that the image of
|M(C)| lies in U . We wish to show that the morphismM(C)→M(A) fac-
tors through a morphism M(C) → M(B). Notice that AVj → C⊗̂AAVj

is a bounded homomorphism of affinoid k-algebras such that the image
of M(C⊗̂AAVj

) lies in U ∩ Vj . Therefore, the morphisms M(C⊗̂AAVj
) →

M(AVj ) factor in a unique way through morphisms M(C⊗̂AAVj ) →
M(AVj ⊗̂AB). When thought of as morphismsM(C⊗̂AAVj ) →M(B) they
agree when pulled back toM(C⊗̂AAVj∩Vk

). The preimages of Vj in |M(C)|
are analytic domains by [55, Exercise 3.2.2(v)]. These preimages are the pull-
back of a quasi-net and therefore form a quasi-net by Lemma 5.23 and there-
fore by [14, Exercise 3.2.2(v)] we have a unique morphism M(C) → M(B)
which restricts to the morphismsM(C⊗̂AAVj

)→M(B). Indeed, this follows
from the commutative diagram of exact sequences

0

��

0

��
Hom(M(C),M(B))

��

// Hom(M(C),M(A))

��∏
j Hom(M(C⊗̂AAVj

),M(B)) //

��

∏
j Hom(M(C⊗̂AAVj

),M(A))

��∏
j,kHom(M(C⊗̂AAVj∩Vk

),M(B)) // ∏
j,kHom(M(C⊗̂AAVj∩Vk

),M(A)).
(5.13)

This clearly provides the required factorisation. �

If also, theM(AVj
) are rational inM(A) andM(AVj

⊗̂AB) is rational in
M(AVj

) notice thatM(B) is a union of the rational domainsM(AVj
⊗̂AB)

inM(A).

Lemma 5.30. — Let A be a k-affinoid algebra and suppose there is a
morphism f : A → B of finite presentation in Comm(Ban61

k ). Then B is a
k-affinoid algebra.

Proof. — By combining a presentation for B over A and a presentation
for A over k one can write B as a finite colimit of objects of finite presentation
in Comm(Ban61

k ). Therefore, B has finite presentation in Comm(Ban61
k ). �
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Theorem 5.31. — Let A,B be k-affinoid algebras and let f : A → B
be a morphism in the category of k-affinoid algebras. Assume that f is a
homotopy epimorphism (see Definition 4.37) when considered in the category
Comm(Bank). Then the morphismM(B)→M(A) corresponding to f is an
affinoid domain embedding.

Proof. — We refer here to Temkin’s proof [56] of the Gerritzen–Grauert
Theorem for morphisms of affinoid algebras. This theorem, assuming only
the epimorphism condition on f , produces a finite collection of morphisms
of k-affinoid algebas A → AVi

corresponding to rational domain embeddings
M(AVi

) → M(A) covering |M(A)| with the images Vi. The theorem fur-
ther ensures that the morphisms AVi → B⊗̂AAVi induced from f admit
factorizations

AVi
� Ci ↪→ B⊗̂AAVi

.

These factorizations are the pre-composition of the morphisms of k-affinoid
algebras Ci → (Ci)Wi

= B⊗̂AAVi
corresponding to Weierstrass domain em-

beddings with the surjective morphisms of affinoid k-algebras AVi
→ Ci cor-

responding to closed immersions. Therefore, by Lemma 5.14 the morphism
Ci → B⊗̂AAVi

is a homotopy epimorphism in the category Comm(Bank).
Notice that

(B⊗̂L
AAVi)⊗̂

L
AVi

(B⊗̂L
AAVi) ∼= B⊗̂

L
AAVi

because homotopy epimorphisms are closed under derived base change. How-
ever, applying Lemma 5.14 we have

B⊗̂L
AAVi

∼= B⊗̂AAVi

and so we see that

(B⊗̂AAVi)⊗̂
L
AVi

(B⊗̂AAVi) ∼= B⊗̂
L
AAVi

and so by Lemma 4.40 the morphisms AVi
→ B⊗̂AAVi

are homotopy epi-
morphisms. Also, the morphisms of affinoid algebras corresponding to Weier-
strass domain embeddings are injective. Therefore, Lemma 5.28 can applied
by choosing the f from that lemma to be the morphism AVi

→ Ci and g from
that lemma to be the morphism Ci → B⊗̂AAVi

. The lemma then tells us
that the morphismM(Ci)→M(AVi

) is simply the inclusion of a connected
component in a disjoint union of affinoids. Therefore, M(Ci) →M(AVi) is
an affinoid domain embedding. Because the composition of affinoid domain
embeddings is an affinoid domain embedding, we conclude that the mor-
phisms M(B⊗̂AAVi

) → M(AVi
) are affinoid domain embeddings as well.

By Lemma 5.29 we conclude that the original morphism gives an affinoid
domain embeddingM(B)→M(A). �

From now on we write ModRR(A) in place of ModRRAfndop
k

(A).
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Lemma 5.32. — Let A be a k-affinoid algebra. Let {fi : A → AVi
}i∈I

be a family of affinoid localizations such that for some finite set J ⊂ I the
corresponding family of functors

ModRR(A)→ ModRR(AVi
)

for i ∈ J is conservative. Then the morphism
∐
i∈JM(AVi) → M(A) is

surjective.

Proof. — We argue by contradiction. First assume that k is non-trivially
valued and A is strictly affinoid. Suppose that the family of functors is
conservative and some point x ∈ M(A) is not in the image. By Proposi-
tion 2.1.15 of [13] the subset of points of y ∈ M(A) such that ker(| |y)
is a maximal ideal is a dense subset of M(A). Therefore, since the image
is the closed set ∪i∈JVi we may assume (by changing the point x) that
x ∈M(A) is not in the image and ker(| |x) is a maximal ideal. Chose using
Proposition 2.2.3(iii) of [13] an affinoid subdomain W of M(A) such that
x ∈ W and W ∩ Vi is empty for all i ∈ J . Consider the morphism 0→ AW
of ModRR(A). It is not an isomorphism but for each i ∈ J , the pullback to
each spec(AVi

) is the isomorphism 0→ 0 = AW ⊗̂AAVi
ofModRR(AVi

). This
gives a contradiction. For the general case, choose using Proposition 2.1.2
of [13], a valuation field extension k → K such that the valuation on K
is non-trivial and A⊗̂kK is a strictly K-affinoid algebra. Notice that the
conservativity assumption on the original family implies by Corollary 4.50
applied to the base change spec(A⊗̂kK)→ spec(A) that the family of func-
tors {ModRR(A⊗̂kK) → ModRR(AVi

⊗̂kK)}i∈J is also conservative. The
morphism

∐
i∈JM(AVi

⊗̂kK) → M(A⊗̂kK) cannot be surjective because
in the commutative diagram,∐

i∈JM(AVi
⊗̂kK)

��

// ∐
i∈JM(AVi

)

��
M(A⊗̂kK) //M(A)

the horizonal arrows are surjective. Therefore, we have reduced to the pre-
vious case and so the proof is complete. �

Lemma 5.33. — Consider a (surjective) cover of X =M(A) by a finite
collection of affinoid domains Vi =M(AVi). Then the complex

0→ A→
∏
i1

AVi1
→

∏
i1<i2

AVi1
⊗̂AAVi2

→ · · ·

→ AV1⊗̂AAV2⊗̂A · · · ⊗̂AAVn
→ 0.

is strictly exact.
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Proof. — By Proposition 1, section 8.1 of [16], the inclusion (which is
strict) of alternating cochains inside all cochains is a quasi-isomorphism. On
the other hand, the complex of all cochains is strictly exact by Proposi-
tion 2.2.5 of [13]. The conclusion follows. �

Lemma 5.34. — Consider a (surjective) cover of X =M(A) by a finite
collection of affinoid domains Vi =M(AVi

). Then the corresponding family
of functors ModRR(A)→ ModRR(AVi

) is conservative.

Proof. — Let f : M → N in ModRR(A) be any morphism such that
fi : M⊗̂AAVi

→ N⊗̂AAVi
are isomorphisms for all i. The alternating ver-

sion of the Čech-Amitsur complex (see Definition 4.44) corresponding to the
morphism A →

∏n
i=1AVi

is a strictly exact bounded above complex by 5.33
and so defines an element of D−(A) (in fact the 0 element!).

0→ A→
∏
i1

AVi1
→

∏
i1<i2

AVi1
⊗̂AAVi2

→ · · ·

→ AV1⊗̂AAV2⊗̂A · · · ⊗̂AAVn
→ 0.

Each object in this complex is acyclic for the functor M⊗̂A(−) since M
(being RR-quasi-coherent) is transversal to localizations of A. Therefore by
Proposition 4.33, if we apply the derived functorM⊗̂L

A(−) we are left with
a strictly exact complex

0→M→
∏
i1

M⊗̂AAVi1
→

∏
i1<i2

M⊗̂AAVi1
⊗̂AAVi2

→ · · ·

→M⊗̂AAV1⊗̂AAV2⊗̂A · · · ⊗̂AAVn
→ 0.

We can do the same thing for N . The fi extend uniquely to morphisms of the
complexes resolvingM and N . Therefore f is an isomorphism. Conversely,
if f is an isomorphism, the fi obviously are as well. �

Remark 5.35. — In the proof of Lemma 5.34 we showed the interesting
fact that for anyM∈ ModRR(A), and any finite cover

∐
iM(AVi

)→M(A)
the complex

0→M→
∏
i1

M⊗̂AAVi1
→

∏
i1<i2

M⊗̂AAVi1
⊗̂AAVi2

→ · · ·

→M⊗̂AAV1⊗̂AAV2⊗̂A · · · ⊗̂AAVn
→ 0.

is strictly exact (a version of Tate acyclicity).

Example 5.36. — This example was suggested via a correspondence with
V. Berkovich. The analogue of Corollary 4.48 is false for finite modules
since they are not preserved by push-forward. On the other hand, RR-
quasi-coherent modules are preserved by push-forward (see Lemma 4.49)
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and do detect surjectivity. If k is a field equipped with the trivial valua-
tion and A = k{xr } for 0 < r < 1 and AV = k{ xr′ } for 0 < r′ < r then
M(AV )→M(A) is not surjective while the natural morphism A → AV in-
duces an equivalence Modf (A) → Modf (AV ), as both categories are equiv-
alent to the category of finite modules in the algebraic sense over k[[x]].
On the other hand, it is easy to find objects of ModRR(A) which go to
zero in ModRR(AV ). For instance, choose a valued extension K of k such
that K is non-trivialy valued and A⊗̂kK is strictly affinoid. Choose a point
x ∈M(A⊗̂kK)−M(AV ⊗̂kK) such that ker(| |x) is a closed maximal ideal
of A⊗̂kK. Choose using Proposition 2.2.3(iii) of [13] a rational subdomain
W ofM(A⊗̂kK) such that W does not intersectM(AV ⊗̂kK) and x ∈ W .
Then we have the non-zero object (A⊗̂kK)W of ModRR(A). It is the push-
forward of (A⊗̂kK)W ∈ ModRR(A⊗̂kK) along spec(A⊗̂kK)→ spec(A) and
therefore RR-quasicoherent by Lemma 4.49. It goes to zero after applying
the functor (−)⊗̂AAV because using (3.4) we have

(A⊗̂kK)W ⊗̂AAV ∼= (A⊗̂kK)W ⊗̂A⊗̂kK
(AV ⊗̂kK) ∼= 0.

5.3. Topologies in the Banach algebraic geometry setting

Theorem 5.37. — Consider the Berkovich spaceM(A) for A ∈ Afndk.
The covers in the weak G-topology on M(A), as defined on page 30 of [13],
coincide precisely with the covers of spec(A) by affinoids in the formal ho-
motopy Zariski topology on the homotopy transversal subcategory Afndopk ⊂
Aff(Bank) (using the terminology of Definition 4.42 and Proposition 4.51).

Proof. — Say that we are given a cover of M(A) by rational domains
which has a finite subcover. Lemma 5.14 tells us that the affinoid domains
correspond to homotopy epimorphisms A → Bi for some i ∈ I in Afndopk .
Lemma 5.34 tells us that the family of functors indexed by the finite subset
J ⊂ I corresponding to the finite subcover is conservative. In the other
direction suppose we are given a cover of X in the formal homotopy Zariski
topology. It has a finite conservative sub-cover which must be surjective by
Lemma 5.32. Every element of it must be a subset ofM(A) because every
morphism in the cover is a monomorphism. In fact, Theorem 5.31 implies
that every morphism in the cover is an affinoid domain embedding. This
concludes the proof. �

Lemma 5.38. — Let A,Bi be k-affinoid algebras and let {fi : A → Bi}i∈I
be a family of morphisms of k-affinoid algebras which is a formal homotopy
Zariski open cover in the category Afndopk . Chose a finite subset J ⊂ I with
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the conservative property. Then for any k-analytic space X we have

Hom(M(A), X)

= eq
[∏
i∈J

Hom(M(Bi), X)⇒
∏

i∈J,j∈J
Hom(M(Bi⊗̂ABj), X)

]
. (5.14)

Therefore, the presheaf hX is a sheaf in the formal homotopy Zariski topology
on the homotopy transversal subcategory Afndopk ⊂ Aff(Bank).

Proof. — Lemma 5.32 and Theorem 5.31 imply that the family of mor-
phisms indexed by J corresponds to a finite cover by affinoid domains.
Lemma 5.23 implies that it is a quasinet. Exercise 3.2.2(v) of [14] now tells
us that Equation 5.14 is valid. �

Unlike the rest of this article, the following theorem is only significant
given the results in [11].

Theorem 5.39. — The topology of Definition 1.1 restricted to the cate-
gory Afndopk agrees with the weak G-topology.

Proof. — In light of Theorems 5.16 and 5.31 we only need to understand
why Condition (2) of Definition 1.1 is equivalent to a finite collection of
affinoid subdomains Vi covering every point of an affinoid M(A). Suppose
first that the union of the Vi is all ofM(A). Say we have a morphismM→N
in D−(A) and we know that the induced morphismM⊗̂L

AAVi → N⊗̂
L
AAVi

is an isomorphism in D−(A) for all i. For any i1 < i2 < · · · < ip we get an
isomorphismM⊗̂L

AAVi1,...,ip
→ N⊗̂L

AAVi1,...,ip
where

AVi1,...,ip
= AVi1

⊗̂A · · · ⊗̂AAVi1
= AVi1

⊗̂L
A · · · ⊗̂

L
AAVi1

.

Therefore, we get an isomorphism from

M⊗̂L
A

(∏
i1

AVi1
→

∏
i1<i2

AVi1,i2
→ · · · → AV1,2,...,n

→ 0
)

(5.15)

to
N⊗̂L

A

(∏
i1

AVi1
→

∏
i1<i2

AVi1,i2
→ · · · → AV1,2,...,n

→ 0
)

(5.16)

in D−(A). Since by Lemma 5.33 the natural morphism from A to∏
i1

AVi1
→

∏
i1<i2

AVi1,i2
→ · · · → AV1,2,...,n

→ 0

is an isomorphism in D−(A), (5.15) and (5.16) are equivalent toM and N
respectively. Therefore, we can conclude that the original morphismM→N
is an isomorphism. Conversely, suppose that there is a point x ∈ M(A)
which is not in any of the Vi. Suppose first that k is non-trivially valued
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and that A is strictly k-affinoid. Choose as in Lemma 5.32 a subdomain W
of M(A) such that x ∈ W and W does not intersect any of the Vi. Then
AW → 0 is a morphism in D−(A) but for each Vi the derived pullback gives
an isomorphism AW ⊗̂

L
AAVi

∼= AW ⊗̂AAVi
∼= 0 → 0. For the general case,

choose using Proposition 2.1.2 of [13], a valuation field extension k → K
such that the valuation on K is non-trivial and A⊗̂kK is a strictly K-
affinoid algebra. Notice that the conservativity assumption on the original
family implies by Lemma 4.52 applied to the base change spec(A⊗̂kK) →
spec(A) that the family of functors {D−(A⊗̂kK) → D−(AVi

⊗̂kK)}i∈J is
also conservative. The morphism

∐
i∈JM(AVi⊗̂kK) →M(A⊗̂kK) cannot

be surjective because in the commutative diagram,∐
i∈JM(AVi⊗̂kK)

��

// ∐
i∈JM(AVi)

��
M(A⊗̂kK) //M(A)

the horizonal arrows are surjective. Therefore, we have reduced to the pre-
vious case and so the proof is complete. �

For the next lemma, we will need the notion of continuous and cocontin-
uous functors. These are defined in the appendix in Definition B.1.

Lemma 5.40. — The inclusion functor
Afndopk → Aff(Bank)

is fully faithful and continuous with respect to the Zariski, formal Zariski,
homotopy Zariski, formal homotopy Zariski and fpqc topologies.

Proof. — Most of these properties are more or less obvious at this point.
The fiber products correspond to completed tensor products of affinoid al-
gebras or commutative algebra objects in Bank. The fact that these functors
take covers to covers in the various topologies follows from the definition of
covers on the domain of the functors. The fully faithful property is discussed
in B.2 of the appendix. �

Recall that Ank is the category of Berkovich spaces over a non-Archi-
medean valuation field k.

Theorem 5.41. — There is a fully faithful embedding from Ank to the
categories of presheaves of sets on Afndopk and Comm(Bank)op. This embed-
ding induces a fully faithful embedding

Ank ↪→ Sch((Afndopk )fhZar).
For any affinoid algebras A and B, the scheme assigned toM(A) evaluates
on spec(B) to HomAfndk

(A,B).
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Proof. — Let X be a k-analytic space. Consider the contravariant func-
tors

hX : Afndopk → Set
defined by

hX(spec(A)) = HomAnk
(M(A), X)

for A ∈ Afndk. They form a functor

Ank
h→ Pr(Afndopk ) (5.17)

which can be seen the Yoneda embedding for Ank followed by the restric-
tion functor Pr(Ank) → Pr(Afndopk ). We would like to know that for every
X1, X2 ∈ Ank that

HomAnk
(X1, X2)→ HomPr(Afndop

k
)(hX1 ,hX2)

is an isomorphism. The fact that the functor h is fully faithfull follows im-
mediately from Lemma 5.24 which says that X is the final object in the
category of morphisms spec(A) → X where A ∈ Afndk and the fact that
for any full subcategory C ⊂ D such that every object d in D is a colimit of
objects in C mapping to d, the functor h embeds C fully and faithfully into
the category of presheaves of sets on D. This fact can be found in [7, Exp I,
Prop. 7.2]. Consider the fully faithful, continuous and cocontinuous functor
from Lemma 5.40

u : Afndopk → Aff(Bank).
which is left adjoint to the restriction functor.

It is clear by the definition of Berkovich analytic spaces that we actually
get a fully faithful embedding

Ank ↪→ Sch((Afndopk )fhZar)

and when we restrict the scheme to the subcategory Afndopk this assignment
agrees with the standard functor of points in the category Ank. �

Remark 5.42. — Note that exactly the same argument shows that
the category of rigid analytic spaces (which contains the category of strict
k-analytic spaces as a full subcategory) embeds fully faithfully into
Sch((Afndopk )fhZar).

Remark 5.43. — In order to embed k-analytic spaces and rigid analytic
spaces into a category of Banach schemes, Sch(Bank), we need to work in
the derived setting as the homotopy Zariski topology is only well defined
on simplicial Banach algebras. As Afndk is a homotopy Zariski transversal
subcategory, this topology restricts to the non-derived site of affinoids. The
derived approach is pursued in [11].
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5.4. Huber Points

Let X be an object of Sch((Afndk)op)hZar). Define a category hZar(X) as
the full sub-category of Sh((Afndk)op)hZar)/X whose objects are u : Y → X
with u a homotopy Zariski open immersion. This category is a locale and
inherits a topology: a family {Yi → Y } is a covering if and only if

∐
Yi → Y

is an epimorphism of sheaves. We have the full subcategory hZarAff(X)
whose objects are u : Y → X where Y is affine. The continuous inclu-
sion hZarAff(X)→ hZar(X) induces an equivalence of categories of sheaves:
Sh(hZar(X)) ∼= Sh(hZarAff(X)).

The fact that hZar(X) is a locale and that the topology on it is generated
by a quasi-compact pre-topology (as covering families in Sh(hZarAff(X)) are
finite), implies that hZar(X) is equivalent as a locale to the locale of open
subsets of a topological space |X|. Using this we can view X a Comm(Bank)-
valued ringed space: (|X|,OX), where OX is a sheaf valued in Comm(Bank).

Lemma 5.44. — Let X be a Berkovich space. Then hZarAff(X) is the
rigid analytic site (i.e. the site determined by the weak G-topology) on X.

Proof. — This is a rephrasing of Theorem 5.37. �

Theorem 5.45. — Let X be a Berkovich space. The space |X| is the
space of Huber points.

Proof. — From the previous lemma we know that the locale correspond-
ing to X is the rigid analytic one. From Huber [29], we see that the topolog-
ical space corresponding to this locale is the space of Huber points of X. �

6. Work in progress

In future work, we intend to embed rigid analytic spaces and Huber
spaces into the categories of schemes over the opposite category to Banach
algebras. We also intend develop a variant which will work with complete,
convex bornological algebras, instead of Banach algebras or Fréchet alge-
bras or other types of topological vector spaces. Similarly to Paugam [40]
we would like to handle the Archimedean and non-Archimedean cases with
a single language. Also with the same goal, Bambozzi has defined and stud-
ied affinoid bornological algebras and dagger algebras in his thesis [8]. The
categories based on convex bornological spaces are nicer than those based
on Bank in that they have arbitrary limits and colimits. The bornological
categories contain the categories based on Banach spaces or Fréchet spaces
via fully faithful embeddings. A lot of work in this direction of bornologi-
cal geometry and representation theory has been done by Meyer [38] in the
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Archimedean case over C and by Houzel and others [27, 28] in the case of
a valuation field where the valuation is not the trivial valuation. The exten-
sion to the case of a trivially valued field is more difficult, especially in the
definition of completeness. Therefore, we could have done our constructions
for convex bornological vector spaces over an arbitrary field or for complete
convex bornological vector spaces over a non-discretely valued field. In an-
other direction we think that categories of topological spaces, topological
manifolds, differentiable manifolds and real analytic manifolds could also be
described in terms of this style of algebraic geometry. This could fit in well
with the algebraic analysis of Kashiwara, Schapira, Saito and others. Non-
commutative versions may be possible as well along the lines of [32, 53]. It
would also be nice to be able to work over rings instead of fields, for instance
the rings of p-adic intgers Zp and the integers equipped with either the
discrete or the standard norm and do types of analytic geometry over these
rings. We are developing a formalism of derived analytic stacks along the lines
of following Toën and Vezzosi’s approach [61] or Lurie’s approach [33, 35].
It will work simultaneously in the Archimedean and non-Archimedean set-
ting. In particular we need to define a cotangent complex and the notion of
smooth and étale morphisms and compare these notions with the notions
defined by Berkovich. We also believe that a non-Archimedean versions of
both Lurie’s Tanakian duality theorem [34] and (after developing differen-
tial graded categories of modules) the algebrization theorem [59] of Toën and
Vaquié should be provable in our framework. We plan to prove a version of
the Beilinson–Bernstein localization theorem over certain non-Archimedean
fields in our context which would be a generalisation of the work of [6] over
Qp. Finally, we believe that when working over a finite field with trivial valu-
ation, our formalism will be useful for studying G-bundles over an algebraic
surface or Kac–Moody bundles over an algebraic curve with an eye towards
representation theory as in [18, 31, 39]. This is based on the relationship be-
tween G-bundles on a punctured formal neighborhood of a curve in surface
and twisted G((t))-bundles on the curve.

Appendix A. Semi-normed spaces and Banach spaces

Let k be any field. We use Vectk to denote the category of k-modules and
k-linear morphisms. This is a closed symmetric monoidal category which
has all limits and colimits. The set of morphisms will be denoted Homk(·, ·)
and we use the same notation when considering it as a k-module in the
natural way. The tensor product will be denoted ⊗k. We will often consider
a valuation field: a field equipped with a multiplicitive map (called a norm)
| | : k → R>0 such that |a + b| 6 |a| + |b| for all a, b ∈ k and |a| = 0 if
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and only if a = 0 and such that the field is complete with respect to the
(metric defined by the) norm. Such a field together with its norm is called a
valuation field. We consider two types of valuation fields.

Definition A.1. — A non-Archimedean field is a valuation field k such
that |c1 + c2| 6 max{|c1|, |c2|} for any c1, c2 ∈ k. Any valuation field that
which is not non-Archimedean is called an Archimdedean field.

Remark A.2. — Any field can be considered a non-Archimedean field by
equipping it with the trivial valuation which is defined by |k − {0}| = 1. In
the Archimedean case it is know that the only examples are R or C equipped
with the norm | |ε where 0 < ε 6 1.

Definition A.3. — An Archimedean semi-normed space over an Archi-
medean field k is a k-module V together with a map ‖ ‖ : V → R>0 which
satisfies

• ‖cv‖ = |c|‖v‖
• ‖v + w‖ 6 ‖v‖+ ‖w‖

for all c ∈ k and v, w ∈ V . An Archimedean normed space is an Archimedean
semi-normed space such that ‖v‖ = 0 if and only if v = 0.

Definition A.4. — A non-Archimedean semi-normed space over a non-
Archimedean field k is a k-module V together with a map ‖ ‖ : V → R>0
which satisfies

• ‖cv‖ = |c|‖v‖
• ‖v + w‖ 6 max{‖v‖, ‖w‖}

for all c ∈ k and v, w ∈ V . A non-Archimedean normed space is a non-
Archimedean semi-normed space such that ‖v‖ = 0 if and only if v = 0.

Remark A.5. — If V is a non-Archimedean normed space over a non-
Archimedean field k and v, w ∈ V then if ‖v‖ 6= ‖w‖ then ‖v + w‖ =
max{‖v‖, ‖w‖}.

Remark A.6. — When we speak of a normed space over a valuation field
k we are talking about one of the above situations depending on whether k
is Archimedean or non-Archimedean.

Definition A.7. — The category of Archimedean (resp. non-Archime-
dean) semi-normed spaces is defined as the category with the objects given
by Archimedean (resp. non-Archimedean) normed spaces and the morphisms
given by those k-linear maps f : V → W for which there exists a constant
C ∈ R such that ‖f(v)‖ 6 C‖v‖ for all v ∈ V . We denote this category
SNrmk.
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Remark A.8. — Notice that a subspace V of a semi-normed space W
inherits a natural semi-norm. If V is a subspace ofW then the quotient vector
space W/V can be considered a semi-normed space when equipped with the
semi-norm ‖[w]‖ = infv∈V ‖w − v‖. The quotient map π : W → W/V is
bounded and in fact ‖π‖ 6 1.

Definition A.9. — Let V be a semi-normed space over a valuation field
k. A subset S ⊂ V is called bounded if sups,t∈S ‖s− t‖ <∞.

Definition A.10. — If V,W ∈ SNrmk, we can define a map
Homk(V,W )→ R+ which sends T to ‖T‖, the map is defined by

‖T‖ = inf{C ∈ R | ‖Tv‖ 6 C‖v‖ ∀v ∈ V }. (A.1)

Definition A.11. — A morphism f : V → W in SNrmk is called con-
tracting if ‖f‖ 6 1.

Lemma A.12. — For any valuation field, the category SNrmk is quasi-
abelian.

Proof. — We simply note that the proof in [52] works fine in this more
(Archimedean or non-Archimdean) general context. �

A.1. The non-expanding semi-normed category

Let k be a valuation field.

Definition A.13. — The category SNrm61
k is defined to have the same

objects as SNrmk. The morphisms are the linear maps with norm less than
or equal to one (they are contracting).

In the Archimedean case the product
∏
i∈I Vi of a collection {Vi}i∈I in

SNrm61
k is given by {

(vi)i∈I ∈ ×i∈IVi
∣∣∣ sup
i∈I
‖vi‖ <∞

}
equipped with the norm

‖(vi)i∈I‖ = sup
i∈I
‖vi‖.

In the Archimedean case the coproduct
∐
i∈I Vi of a collection {Vi}i∈I in

SNrm61
k is given by ⊕

i∈I
Vi
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equipped with the norm

‖(vi)i∈I‖ =
∑
i∈I
‖vi‖.

In the non-Archimedean case, the product
∏
i∈I Vi of a collection Vi in

SNrm61
k is given by a subspace of the product of vector spaces{

(vi)i∈I ∈ ×i∈IVi
∣∣∣ sup
i∈I
‖vi‖ <∞

}
equipped with the semi-norm

‖(vi)i∈I‖ = sup
i∈I
‖vi‖.

In the non-Archimedean case, the coproduct
∐
i∈I Vi of a collection Vi in

SNrm61
k is given by ⊕

i∈I
Vi

equipped with the semi-norm
‖(vi)i∈I‖ = sup

i∈I
‖vi‖.

Kernels and cokernels in SNrm61
k are the same as those in SNrmk which

will be described in Lemma A.17. The category SNrm61
k has all limits and

colimits.

A.2. Morphisms and the closed structure

Definition A.14. — The structure defined in A.10 gives functors
SNrmop

k × SNrmk → SNrmk

and
(SNrm61

k )op × SNrm61
k → SNrm61

k

which will be denoted
(V,W ) 7→ Homk(V,W ).

Definition A.15. — The symmetric monoidal structure which we will
use assigns to two objects V,W ∈ SNrmk or SNrm61

k their projective tensor
product. In the Archimedean case it is given by the algebraic tensor product
V ⊗k W equipped the semi-norm

‖u‖ = inf
{ n∑
i=1
‖vi‖‖wi‖

∣∣∣∣ u =
n∑
i=1

vi ⊗ wi
}
. (A.2)
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In the non-Archimedean case it is given by the algebraic tensor product V ⊗k
W equipped with the semi-norm

‖u‖ = inf
{

max{‖vi‖‖wi‖ | i = 1, . . . , n}
∣∣∣∣ u =

n∑
i=1

vi ⊗ wi
}
. (A.3)

It will be denoted simply V ⊗k W and it defines bi-functors

SNrmk × SNrmk → SNrmk

and
SNrm61

k × SNrm61
k → SNrm61

k

which are exact in each variable.

The following result is appears in many forms in the literature but we
include it anyway to make sure it works when the field has trivial valuation.

Lemma A.16. — Let k be a valuation field and let U, V,W be semi-
normed spaces over k. The natural equivalence of functors

Vectopk × Vectopk × Vectk → Vectk

given by
Homk(U ⊗k V,W ) ∼= Homk(U,Homk(V,W ))

induces a natural equivalence of functors

SNrmop
k × SNrmop

k × SNrmk → SNrmk

given by morphisms of norm 1.

Homk(U ⊗k V,W ) ∼= Homk(U,Homk(V,W )) (A.4)

where U ⊗k V was defined in Definition A.15. Therefore,

SNrmk(U ⊗k V,W ) ∼= SNrmk(U,Homk(V,W ))

and
SNrm61

k (U ⊗k V,W ) ∼= SNrm61
k (U,Homk(V,W ))

showing that U 7→ U ⊗k V is left adjoint to W 7→ Homk(V,W ) in SNrmk

and SNrm61
k .

Proof. — We check this in the non-Archimedean case. It will be obvious
how to adapt it to the Archimedean case. Consider corresponding vectors
φ ∈ Homk(U,Homk(V,W )) and ψ ∈ Homk(U ⊗k V,W ). This means that for
any u ∈ U and v ∈ V that ψ(u⊗ v) = φ(u)(v).
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If ψ is bounded and so can be considered as an element of Homk(U ⊗k
V,W ) we have for any u ∈ U

‖φ(u)‖ = inf{C ∈ R | ‖ψ(u⊗ v)‖ 6 C‖v‖ ∀v ∈ V }
6 inf{C ∈ R | ‖ψ‖‖u⊗ v‖ 6 C‖v‖ ∀v ∈ V }
= ‖ψ‖ inf{C ∈ R | ‖u⊗ v‖ 6 C‖v‖ ∀v ∈ V }
6 ‖ψ‖ inf{C ∈ R | ‖u‖‖v‖ 6 C‖v‖ ∀v ∈ V }
= ‖ψ‖‖u‖

(A.5)

and so φ(u) is bounded for all elements u of U and also φ is bounded so
φ ∈ Homk(U,Homk(V,W )) and ‖φ‖ 6 ‖ψ‖. In the other direction if φ(u)
is bounded for all u ∈ U and φ ∈ Homk(U,Homk(V,W )) then for any
y ∈ U ⊗k V and for all real ε > 0 there is a collection u1, v1, u2, v2, . . . , un, vn
such that y =

∑n
i=1 ui ⊗ vi and ‖y‖ + ε 6 maxi=1,...,n ‖ui‖‖vi‖. Then we

have

‖ψ(y)‖ 6 ‖
n∑
i=1

φ(ui)(vi)‖ 6 max
i=1,...,n

‖φ(ui)(vi)‖

6 max
i=1,...,n

‖φ(ui)‖‖vi‖ 6 max
i=1,...,n

‖φ‖‖ui‖‖vi‖

6 ‖φ‖(‖y‖+ ε).

(A.6)

Since ε was arbitrary, we conclude that ψ is bounded so can be considered
as an element of Homk(U ⊗k V,W ) and ‖φ‖ 6 ‖ψ‖. Thus we have shown
that the natural bijection induces an isomorphism as in A.4 and it is an
isometry in the sense that ‖φ‖ = ‖ψ‖. In the Archimedean case, the only
difference is that maxni=1 is replaced by

∑n
i=1 in the four places it appears

in the proof. �

Lemma A.17. — For any valuation field k, the category SNrmk has all
finite limits and finite colimits.

Proof. — First of all, it is easy to see that given a finite collection of semi-
normed spaces V1, . . . , Vn with norms ‖ ‖1, . . . , ‖ ‖n, the product

∏n
i=1 Vi as

vector spaces equipped with the norm ‖(v1, . . . , vn)‖ = maxni=1 ‖vi‖i is a
product in SNrmk. In the Archimedean case, the sum

⊕n
i=1 Vi of vector

spaces equipped with the norm ‖(v1, . . . , vn)‖ =
∑n
i=1 ‖vi‖i is a co-product

in SNrmk. In the non-Archimedean case, the sum
⊕n

i=1 Vi of vector spaces
equipped with the norm ‖(v1, . . . , vn)‖ = maxni=1 ‖vi‖i is a co-product in
SNrmk. The category of semi-normed spaces over k has kernels: the kernel
of a morphism f : V → W in SNrmk is just the kernel in Vectk equipped
with the restriction of ‖ ‖V . The category of semi-normed spaces over k
also has has cokernels: The cokernel of the morphism f is just V/f(V ). By
combining these operations, it is easy to form the limit of a finite diagram
of semi-normed spaces as an appropriate kernel of the product of objects
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and the colimit of a finite diagram of semi-normed spaces as an appropriate
cokernel of the direct sum of objects in a finite category. �

Lemma A.18. — For any finite collection of semi-normed spaces
V1, . . . , Vn the natural morphism

⊕n
i=1 Vi →

∏n
i=1 Vi is an isomorphism

in SNrmk when these spaces are equipped with the semi-norms described in
Lemma A.17.

Proof. — In the non-Archimedean case this is obvious and in the Archi-
medean case, it follows immediately from the fact that

max
i=1,...,n

‖ ‖i 6
n∑
i=1
‖ ‖i 6 n max

i=1,...,n
‖ ‖i

and so the identifications of the underlying vector spaces are bounded in
both directions. �

Definition A.19. — A semi-normed space V is complete if every
Cauchy sequence in V converges.

A.3. Banach Spaces

Definition A.20. — The category of Archimedean (resp. non-Archi-
medean) Banach spaces is defined as the full subcategory of category of of
Archimedean (resp. non-Archimedean) normed spaces whose objects are com-
plete (defined in Definition A.19). We use Bank to denote this category.

The case of a trivially valued field presents some interesting behavior, as
we show in the following example.

Example A.21. — Consider a field k equipped with the trivial valuation.
Consider the vector space k[[t]] over k. Let r be a real number satisfying
0 < r < 1. We can consider two non-Archimedean Banach spaces over k:
given by (k[[t]], ‖ ‖triv) and (k[[t]], ‖ ‖adic) where ‖ ‖triv is the trivial norm
and ‖ ‖adic is the norm which sends a series

∑∞
i=0 ait

ni with ai 6= 0 and
ni > 0 strictly increasing integers to rn0 . Then the identity map

(k[[t]], ‖ ‖triv)→ (k[[t]], ‖ ‖adic)

is bounded but these spaces have no isomorphism between them due to the
fact that in the adic space there is a non-zero sequence t, t2, t3, . . . con-
verging to zero and in the trivial valuation case there is no such sequence.
The normed space k[t] when equipped with the adic norm is not complete,
whereas it is clearly complete when equipped with the trivial norm.
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Remark A.22. — If V ∈ Bank and W is a closed subspace of V then
the induced semi-norm onW is complete and the semi-norm on the quotient
V/W is complete.

Lemma A.23. — For any valuation field k, the category Bank has all
finite limits and finite colimits. As in Lemma A.18, finite products and finite
coproducts agree.

Proof. — The finite products and finite coproducts in Bank are inherited
automatically from those in SNrmk which were discussed in the proof of
Lemma A.17. The category of Banach spaces over k has kernels: the kernel
of a morphism f : V →W in Bank is just the kernel (which is always closed)
in Vectk equipped with the restriction of ‖ ‖V . The cokernel of the morphism
f is justW/f(V ). By combining these operations, it is easy to form the limit
as an appropriate kernel of the product of objects in a finite category and
the colimit as an appropriate cokernel of the direct sum of objects in a finite
category. �

Definition A.24. — Suppose that k is a non-Archimedean valuation
field and V ∈ Bank. Given a collection of elements vi ∈ V indexed by some
set I, a limit of them is an element v ∈ V such that for all ε > 0 there is a
finite subset J ⊂ I such that if i is not in J then ‖vi − v‖ < ε. If it exists
then it is unique and written as limi∈I vi. The notation

∑
i∈I vi refers to a

limit of the elements
∑
i∈J vi where J runs over all finite subsets of I.

The following lemma is well known

Lemma A.25. — Suppose that k is a non-Archimedean valuation field
and V ∈ Bank. A sum

∑
i∈I vi of elements vi ∈ V converges if and only if

limi∈I vi = 0, i.e. if and only if limi∈I ‖vi‖ = 0.

Lemma A.26. — The category Bank has no infinite product or coproduct
of any collection of non-zero objects.

Proof. — Suppose that C is the coproduct in Bank of the infinite collec-
tion Vi for i ∈ I where no Vi is 0. Let C̃ be the coproduct of the Vi in Ban61

k .
Consider a collection of morphisms idi ∈ Bank(Vi, Ṽi) where Ṽi is the vector
space Vi with its norm multiplied by ni > 0 where ni take arbitrarily high
values. Then notice that ‖idi‖ is unbounded. Notice that there is a canonical
morphism in Bank from C to C̃ commuting with the morphisms from the Vi
to both C and C̃. By construction of C̃, the morphisms from Vi to C̃ have
norm 1. Let ˜̃C be the coproduct of the Ṽi in the category Ban61

k . This results
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in the commutative diagram in Bank

C // C̃

˜̃C Vi.

OO``

oo

Because the upper triangle is commutative, the norms of the diagonal maps
must be bounded as we range over i ∈ I. By the universal property of C,
there is a morphism C → ˜̃C making the diagram commute. However this is
a contradiction because the lower horizontal morphism has norms that go to
infinity as we range over i ∈ I, while the norms of the diagonal maps remain
bounded. The proof in the case of infinite products is similar. �

Remark A.27. — Suppose that some filtered colimit exists in Bank. By
passing to the (closure of the) images of the terms in this colimit it turns out
that one necessarily has only gets finitely many distinct sub-objects of the
colimit this way. In this case, the original filtered diagram can be replaced
by a finite subcategory with finitely many objects and morphisms.

The coimage of a morphism need not be isomorphic to the image.
Definition A.28. — Two norms ‖ ‖ and ‖ ‖′ on a vector space are

equivalent if there exist real numbers C,C ′ > 0 such that C‖ ‖ 6 ‖ ‖′ 6 C ′‖ ‖.

The following facts are easily proven the category Bank in complete gen-
erality following along the lines of the proofs in [47]. The last item uses
Banach’s open mapping theorem which is valid only in the non-trivially val-
ued setting and can be found in Chapter 1 section 3 of [17].

Lemma A.29. — For any morphism u : E → F in Bank

(1) u is continuous (Conversely, continuous linear map between Banach
spaces will be bounded as long as the valuation is non-trivial)

(2) u−1(0) is closed
(3) ker(u) ∼= u−1(0) with the induced norm from E

(4) coker(u) ∼= F/u(E) with the quotient norm
(5) im(u) ∼= u(E) with the induced norm from F
(6) coim(u) ∼= u(E) where ‖f‖u(E) = infu(e)=f ‖e‖E
(7) u is a monomorphism if and only if it injective
(8) u is an epimorphism if and only if u(E) is dense in F
(9) u is strict if and only if u(E) is closed and there exists a constant

C > 0 such that
inf

e∈u−1f
‖e‖ 6 C‖f‖.

for all f ∈ u(E).
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(10) u is a strict monomorphism if and only if there is a constant C > 0
such that

‖e‖ 6 C‖u(e)‖
for all e ∈ E.

(11) If u is a strict epimorphism then u is surjective.
(12) If the valuation on k is non-trivial then u is strict if and only if

u(E) is closed which in turn happens if and only if there exists a
constant C > 0 such that

inf
e∈u−1f

‖e‖ 6 C‖f‖.

for all f ∈ u(E). Therefore, if the valuation on k is non-trivial, u
is a strict epimorphism if and only if u is surjective.

The following is based on Proposition 3.1.7 of [47].

Lemma A.30. — For any valuation field, the category Bank is quasi-
abelian.

Proof. — The proof in [47] works fine in the general Archimedean setting,
so we simply check that it can be adapted to the non-Archimedean setting.
The additivity holds just because finite products and coproducts are clearly
isomorphic. Suppose that u is a strict epimorphism in the cartesian diagram

E′
u′ //

v′

��

F ′

v

��
E

u
// F

in Bank. Then E′ = ker[(u,−v) : E ⊕ F ′ → F ]. For any (e, f ′) ∈ E′ with
u′(e, f ′) = f ′ we have ‖f ′‖ 6 ‖(e, f ′)‖ and so

inf{‖(e, f ′)‖|u′(e, f ′) = f ′} > ‖f ′‖

For any ε > 0 and any f ′ ∈ F ′, using that u is strict epimorphism, we
can pick e ∈ E with u(e) = v(f ′) and ‖e‖ < Cu‖u(e)‖ + ε. Then since
‖v(f ′)‖ 6 ‖v‖‖f ′‖ we have

‖(e, f ′)‖ = max{‖e‖, ‖f ′‖} 6 max{Cu‖u(e)‖+ ε, ‖f ′‖}
6 max{Cu‖v‖‖f ′‖+ ε, ‖f ′‖}.

Since ε was arbitrary, we conclude that

inf{‖(e, f ′)‖|u′(e, f ′) = f ′} 6 max{Cu‖v‖, 1}‖f ′‖.

Because u is surjective, u′ is surjective as well and so u′(E′) is closed and so
we can conclude that u′ is a strict epimpormism. Suppose that u is a strict
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monomorphism in the co-cartesian diagram

E′
u′ // F ′

E

v

OO

u
// F

v′

OO

in Bank. Then ‖e‖ 6 Cu‖u(e)‖ 6 Cu‖(v,−u)(e)‖ and therefore (v,−u)(E)
is closed and so we have F ′ = (E′⊕F )/((v,−u)E). Fix f ′ ∈ F ′ and suppose
that u′(e′) = f ′. In the quotient, we have

‖(e′, 0)‖ = inf {‖(e′′, f)‖ | f = −u(e), e′′ − e′ = v(e)} .

Also, if f = −u(e), e′′ − e′ = v(e) we have ‖(e′′, f)‖ = max{‖e′′‖, ‖f‖} and
so

max{Cu‖v‖, 1}‖(e′′, f)‖
> max(‖e′′‖, Cu‖v‖‖f‖) = max(‖e′ + v(e)‖, Cu‖v‖‖u(e)‖)
> max(‖e′ + v(e)‖, ‖v‖‖e‖) > max(‖e′ + v(e)‖, ‖v(e)‖) > ‖e′‖.

(A.7)

Therefore, max{Cu‖v‖, 1}‖(e′, 0)‖ > ‖e′‖. Therefore, u′ is a strict monomor-
phism. �

Observation A.31. — The category Bank is closed: the internal Hom
functor defined on semi-normed spaces over k in Definition A.14 preserves
the property of being complete. Therefore for Banach spaces, the internal
Hom functor between them is defined by treating them as semi-normed spaces.

Definition A.32. — The symmetric monoidal structure which use on
Bank assigns to two objects V,W ∈ Bank their projective tensor product. In
the Archimedean case it is given (see Chapter 2 of [50]) by the completion of
the algebraic tensor product V ⊗k W with respect to the norm

‖u‖ = inf
{ n∑
i=1
‖vi‖‖wi‖

∣∣∣∣ u =
n∑
i=1

vi ⊗ wi
}
.

In the non-Archimedean case it is given (see Section 3.2 of [24]) by the
completion of the algebraic tensor product V ⊗kW with respect to the norm

‖u‖ = inf
{

max{‖vi‖‖wi‖ i = 1 . . . n }
∣∣∣∣ u =

n∑
i=1

vi ⊗ wi
}
.

It will be denoted V ⊗̂kW.

The completed tensor product is the bi-functor

Bank × Bank → Bank
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given on objects by
(V,W ) 7→ V ⊗̂kW.

Definition A.33. — The internal Hom in this category

Banopk × Bank → Bank.

is denoted by Homk(V,W ) and given by the Banach space whose underlying
vector space is

{T ∈ Homk(V,W )|‖T‖ <∞}

with norm given by ‖T‖ = supv∈V,v 6=0
‖T (v)‖
‖v‖ . We write V ′ for Hom(V, k) ∈

Bank.

Lemma A.34. — Let k be a valuation field. For any W ∈ Bank and any
strict epimorphism p : E → V in Bank, the induced morphism p̃ : E⊗̂kW →
V ⊗̂kW is a strict epimorphism in Bank.

Proof. — We prove this first in the non-Archimedean setting and then
comment on how to alter the proof in the Archimedean case. Because p
is surjective, it is clear that p̃(E⊗̂kW ) is dense, so we only need to show
strictness. Using 1.1.9, Corollary 6 of [16] it is enough to show that the
morphism E ⊗kW → V ⊗kW is strict, where we use the same definition of
strictness in the Banach and semi-normed settings. Here, the tensor products
E ⊗kW and V ⊗kW carry the semi-norms from Equation (A.3). Choose C
such that infe∈p−1(v) ‖e‖ 6 C‖v‖ for all v ∈ V . Fix f ∈ V ⊗k W and ε > 0.
Suppose that f =

∑n
i=1 vi ⊗wi. Using surjectivity of p and the strictness of

p, choose ei ∈ E such that ‖ei‖ < C‖vi‖ + ε
‖wi‖ and p(ei) = vi. Then and

p̃(
∑n
i=1 ei ⊗ wi) = f and∥∥∥∥ n∑

i=1
ei ⊗ wi

∥∥∥∥ 6 max
i=1,...,n

‖ei‖‖wi‖ < max
i=1,...,n

C‖vi‖‖wi‖+ ε.

Therefore,
inf

ẽ∈p̃−1(f)
‖ẽ‖ < max

i=1,...,n
C‖vi‖‖wi‖+ ε.

Since ε was arbitrary, we conclude that

inf
ẽ∈p̃−1(f)

‖ẽ‖ 6 max
i=1,...,n

C‖vi‖‖wi‖.

Because this holds for all presentations f =
∑n
i=1 vi ⊗ wi we can conclude

that
inf

ẽ∈p̃−1(f)
‖ẽ‖ 6 C‖f‖.

The only difference in the proof for the Archimedean setting is that we use
the tensor product from Equation (A.2) and

∑n
i=1 replaces maxi=1,...,n. �
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Lemma A.35. — Let k be a valuation field. For any W ∈ Bank and
any strict monomorphism j : V → E in Bank, the induced morphism j̃ :
Homk(W,V )→ Homk(W,E) is a strict monomorphism in Bank.

Proof. — Because j is a strict monomorphism we can choose C such that
‖v‖ 6 C‖j(v)‖ for all v ∈ V . Then for any w ∈ W where w 6= 0 and any
φ ∈ Homk(W,V ) we have

‖φ(w)‖
‖w‖

6 C
‖j(φ(w))‖
‖w‖

.

By passing to the supremum over all w ∈W where w 6= 0 we conclude that
‖φ‖ 6 C‖j ◦ φ‖ = C‖j̃(φ)‖

for all φ ∈ Homk(W,V ). Therefore, j̃ is a strict monomorphism. �

A.4. The non-expanding Banach category

Let k be a valuation field. In this subsection we consider the category of
Banach spaces over k with non-expanding morphisms. We do not consider
geometry relative to this category in the present article, but rather will use
the good properties of this category to construct and characterize objects in
the category Bank.

Definition A.36. — The category Ban61
k is defined to have the same

objects as Bank. The morphisms are the linear maps with norm less than or
equal to one (they are contracting).

Product and coproducts in Ban61
k exist. In the Archimedean case (see [26,

p. 63]) the product
∏
i∈I Vi of a collection {Vi}i∈I in Ban61

k is given by{
(vi)i∈I ∈ ×i∈IVi

∣∣∣ sup
i∈I
‖vi‖ <∞

}
equipped with the norm

‖(vi)i∈I‖ = sup
i∈I
‖vi‖

while the coproduct
∐
i∈I Vi of a collection {Vi}i∈I in Ban61

k is given by{
(vi)i∈I ∈ ×i∈IVi

∣∣∣∣ ∑
i∈I
‖vi‖ <∞

}
equipped with the norm

‖(vi)i∈I‖ =
∑
i∈I
‖vi‖.
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In the non-Archimedean case they can be computed as in [24]: the product∏
i∈I Vi of a collection {Vi}i∈I in Ban61

k is given by{
(vi)i∈I ∈ ×i∈IVi

∣∣∣ sup
i∈I
‖vi‖ <∞

}
equipped with the norm

‖(vi)i∈I‖ = sup
i∈I
‖vi‖

while the coproduct
∐
i∈I Vi of a collection {Vi}i∈I in Ban61

k is given by{
(vi)i∈I ∈ ×i∈IVi

∣∣∣ lim
i∈I
‖vi‖ = 0

}
equipped with the norm

‖(vi)i∈I‖ = sup
i∈I
‖vi‖.

Suppose we are given a collection {fi : Vi →Wi}i∈I in Ban61
k . Then observe

that the natural morphism∐
i∈I

ker(fi)→ ker
[∐
i∈I

Vi →
∐
i∈I

Wi

]
is an isomorphism. Similarly, if Vi ⊂ V and Wi ⊂W are an increasing union
of subspaces with union V and W respectively then the natural map

∪i∈I ker(fi)→ ker[V →W ]

is an isomorphism. The closed symmetric monoidal structure on Ban61
k is

defined in precisely the same way as in Observation A.31 and Definition A.32.
Suppose now that k is non-Archimedean. Then Ban61

k is an additive category.
Kernels and cokernels in Ban61

k are the same as those in Bank which were
described in Lemma A.23. They commute. The category Ban61

k has all limits
and colimits and the product of a finite collection agrees with the coproduct
of a finite collection. Although we don’t use this, if k is non-Archimedean,
the category Ban61

k is quasi-abelian.

A.5. Enough projectives and injectives

The proof in [47] that the quasi-abelian category Bank has enough pro-
jectives does not work in the case where the valuation is trivial. We give a
more general proof to make sure that the category Bank always has enough
projectives.
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Definition A.37. — Suppose that k is non-Archimedean and let V ∈
Bank. Define

c0(V ) = {(cv)v∈V−{0}|cv ∈ k, lim
v∈V−{0}

‖cvv‖ = 0}

equipped with the norm

‖(cv)v∈V−{0}‖ = sup
v∈V−{0}

‖cvv‖.

This is a Banach space because it is the coproduct of the collection k‖v‖ over
all v ∈ V − {0} in the category Ban61

k .

Lemma A.38. — Suppose that k is a non-Archimedean valuation field.
Suppose that V ∈ Bank. Then c0(V ) is projective in Bank.

Proof. — Suppose that µ : E → F is a strict epimorphism, and consider
a bounded linear map ν : c0(V ) → F. Define 1w = (δv,w)v∈V−{0} ∈ c0(V ).
For each v ∈ V − {0} we have by Lemma A.29

inf
µ(e)=ν(1v)

‖e‖E 6 Cµ‖ν(1v)‖F 6 Cµ‖ν‖‖1v‖c0(V ) = Cµ‖ν‖‖v‖

Choose ε > 0. For each v ∈ V − {0} we can use the surjectivity of µ from
Lemma A.29 to choose ev ∈ E such that µ(ev) = ν(1v) and

‖ev‖E < Cµ‖ν‖‖v‖+ ‖v‖ = (Cµ‖ν‖+ ε)‖v‖.

Notice that

lim
v∈V−{0}

‖cvev‖ = lim
v∈V−{0}

|cv|‖ev‖ 6 lim
v∈V−{0}

(Cµ‖ν‖+ ε)|cv|‖v‖

= (Cµ‖ν‖+ ε) lim
v∈V−{0}

‖cvv‖ = 0.

Therefore by Lemma A.25, we can form the sum
∑
v∈V−{0} cvev. Notice that∥∥∥∥ ∑

v∈V−{0}

cvev

∥∥∥∥ 6 sup
v∈V−{0}

‖cvev‖ 6 sup
v∈V−{0}

(Cµ‖ν‖+ ε)‖cvv‖

= (Cµ‖ν‖+ ε)‖(cv)v∈V−{0}‖. (A.8)

This means that the linear map

ν′ : c0(V )→ E

given by
(cv)v∈V−{0} 7→

∑
v∈V−{0}

cvev

is bounded. It is easy to see that µ ◦ ν′ = ν. Therefore, c0(V ) is projective
in Bank. �
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Lemma A.39. — There is a strict epimorphism c0(V ) → V in Bank.
For any valuation field, the category Bank has enough projectives.

Proof. — For the general Archimedean case one can use a variation on
the proof over C in [47]. Suppose first that k is a non-Archimedean field and
let V ∈ Bank.

Notice that for every element (cv)v∈V−{0} ∈ c0(V ) there is a well defined
element ∑

v∈V−{0}

cvv ∈ V

because limv∈V−{0} ‖cvv‖ = 0. Using Lemma A.25 we may define a linear
morphism

κV : c0(V )→ V (A.9)
given by

(cv)v∈V−{0} 7→
∑

v∈V−{0}

cvv.

It is bounded and in fact ‖κV ‖ 6 1 because∥∥∥∥ ∑
v∈V−{0}

cvv

∥∥∥∥ 6 sup
v∈V−{0}

‖cvv‖ = ‖(cv)v∈V−{0}‖.

Also, it is surjective because κV (0) = 0 and for any w ∈ V − {0},
κV (1w) = w. In fact it is a strict epimorphism in Bank because by the
above ifκV ((cv)v∈V−{0}) = w then ‖w‖ 6 ‖(cv)v∈V−{0}‖ and so ‖w‖ 6
infκV ((cv)v∈V−{0})=w ‖(cv)v∈V−{0}‖ and also

inf
κV ((cv)v∈V−{0})=w

‖(cv)v∈V−{0}‖ 6 ‖1w‖ = ‖w‖

for all w ∈ V −{0} and of course infκV ((cv)v∈V−{0})=0 ‖(cv)v∈V−{0}‖ = 0. �

Definition A.40. — Suppose that k is non-Archimedean valuation field
and V ∈ Bank.

Define

`∞(V ) =
{

(cv)v∈V−{0}
∣∣∣∣ cv ∈ k, sup

v∈V−{0}

|cv|
‖v‖

<∞
}

equipped with the norm

‖(cv)v∈V−{0}‖ = sup
v∈V−{0}

|cv|
‖v‖

.

This is a Banach space because it is the product of the collection k‖v‖−1 over
all v ∈ V − {0} in the category Ban61

k . For any morphism f : V → W in
Bank, let

`∞(f) : `∞(V ′)→ `∞(W ′)
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be the morphism (f(cα)α∈V ′−{0})β = cβ◦f .

Lemma A.41. — Suppose that k is non-Archimedean with a non-trivial
valuation and also that k is spherically complete. Suppose that V ∈ Bank.
Then `∞(V ) is injective in the quasi-abelian category Bank.

Proof. — Suppose that µ : E → F is a strict monomorphism in Bank and
ν : E → `∞(V ) is any morphism in Bank. Define, for each v ∈ V − {0}, νv
as the composition E → `∞(V ) → k where we project onto the coordinate
labeled by v. We have

|νv(e)| 6 ‖v‖‖ν(e)‖ 6 ‖v‖‖ν‖‖e‖
and therefore the linear map νv is bounded with norm less than or equal to
‖ν‖‖v‖. Using the Hahn–Banach theorem (valid in this spherically complete
context by [30]) we can extend each νv to a morphism ν′v : F → k without
increasing the norm. We have |ν′v(f)| 6 ‖ν‖‖v‖‖f‖ for any f ∈ F . Finally,
the sought after factorization is provided by

ν′ : F → `∞(V )
defined by

f 7→ (ν′v(f))v∈V−{0}.
Notice that this is bounded and in fact ‖ν′‖ 6 ‖ν‖ because for any f ∈ F
we have

‖(ν′v(f))v∈V−{0}‖ = sup
v∈V−{0}

|ν′v(f)|
‖v‖

6 ‖ν‖‖f‖.

Therefore, `∞(V ) is injective in Bank. �

Lemma A.42. — Let k be a valuation field. The quasi-abelian category
Bank has enough injectives.

As far as the first statement is concerned, for the general Archimedean
case or the non-trivially valued non-Archimedean case one can use a variation
on the proof over C in [47]. So we assume that k is non-Archimedean.

Proof. — First, assume that k is non-trivially valued and spherically com-
plete. Consider the morphism

u : V → `∞(V ′)
defined by

u(v)α = α(v)
for each α ∈ V ′ − {0}. It is a strict monomorphism in Bank because if
(cα)α∈V ′−{0} is the image of v then

‖(cα)α∈V ′−{0}‖ = sup
α∈V ′−{0}

|cα|
‖α‖

= sup
α∈V ′−{0}

|α(v)|
‖α‖

= ‖v‖.
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At the last step we have used the pseudo-reflexivity of V (see Section 11
of [51] for this property and its validity in the spherically complete context).
Now, suppose that k is a general non-Archimedean field and V ∈ Bank.
There is a strict monomorphism over k of V into the completed tensor prod-
uct of V over k with a certain non-trivially valued field Kr introduced in
Proposition 2.1.2 of [13]. If k was already non-trivially valued, one could
simply use k itself instead of Kr. The field Kr has the property that the
completed tensor product with it preserves strict monomorphisms. Notice
also that a strict monomorphism in BanKr remains a strict monomorphism
when considered as a morphism in Bank. Therefore by Lemma 4.26 applied
to the functor given given by the completed tensor product with Kr

Bank → BanKr

and its right adjoint forgetful functor, it is enough to produce a strict
monomorphism of the resulting element of BanKr

into an injective of BanKr
.

Therefore, we may assume that k is non-trivially valued. Let K be a spheri-
cal completion of the fraction field of Sym61(V ). We are using the notation
Sym61(V ) to refer to the symmetric algebra introduced in Subsection 2.6
computed in the category Ban61

k . See [49, 3.2.2] for more information on the
spherical completion of a field. The construction in [49] refers to the case
where the field is the algebraic closure of Qp but the construction works for
any non-Archimedean field. Because the norm on Sym61(V ) is strictly mul-
tiplicative (as can be seen from the Gauss Lemma as in Proposition 1 of 5.1.2
in [16]) the norm on Frac(Sym61(V )) is as well. Therefore Frac(Sym61(V ))
is a non-Archimedean valuation field. Properties of the spherical completion
imply that the norm on Frac(Sym61(V )) agrees with the norm on its image
(a closed subspace of) K and that K is spherically complete. The morphism
V → K is a strict monomorphism in Bank because it decomposes into strict
monomorphisms in Bank

V → Sym61(V )→ Frac(Sym61(V ))→ K.

Consider the composition u given by
V → K → `∞(K ′). (A.10)

Using Lemmas 4.26 and A.41 we see that `∞(K ′) is injective in Bank. Since
K is both non-trivially valued and spherically complete, the morphism K →
`∞(K ′) is a strict monomorphism in BanK . Therefore, (A.10) is a strict
monomorphism in Bank. �

Definition A.43. — Let I : Bank → Bank be the functor constructed
in the proof of Lemma A.42 together with the functorial construction in
Definition A.40. This is also extended to a strictly exact sequence

0→M → I(M)1 → I(M)2 → I(M)3 → · · ·
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where I(M)0 = M , I(M)1 = I(M) and I(M)i+1 = I(I(M)i/ I(M)i−1) for
i > 1.

Remark A.44. — Much of the gymnastics involved in the proof of
Lemma A.42 can be avoided if we use the fact that for any non-Archimedean
valuation field k there is a spherically complete field K containing k so that
the completed tensor product with K over k preserves strict exact sequences
and any such sequence embeds isometrically into its completed tensor prod-
uct with K. See [24] and Lemma 3.1 of [42].

A.6. The closed structure in the category of Banach spaces

Lemma A.45. — Let k be a valuation field and let U, V,W be Banach
spaces over k. The natural equivalence of functors

Vectopk × Vectopk × Vectk → Vectk
given by

Homk(U ⊗k V,W ) ∼= Homk(U,Homk(V,W ))
induces a natural equivalence of functors

Banopk × Banopk × Bank → Bank
given by morphisms of norm 1

Homk(U⊗̂kV,W ) ∼= Homk(U,Homk(V,W )).
Therefore,

Bank(U⊗̂kV,W ) ∼= Bank(U,Homk(V,W )),
and

Ban61
k (U⊗̂kV,W ) ∼= Ban61

k (U,Homk(V,W )),
showing that U 7→ U⊗̂kV is left adjoint to W 7→ Homk(V,W ) in Bank and
Ban61

k .

Proof. — The proof goes along the lines of the corresponding statement
for semi-normed spaces which was Lemma A.16. The only difference is that
because we are now using the tensor product of Banach spaces defined in
Definition A.32, we use the canonical bijection between bounded maps from
U ⊗k V to W in the category of semi-normed spaces and morphisms in the
category of Banach spaces between U⊗̂kV and W . �

Observation A.46. — Notice that the completion functor defined in
Definition A.48 is a morphism of closed symmetric monoidal categories from
the category of semi-normed spaces to the category of Banach spaces. This
morphism is essentially surjective.
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In the category Bank it is easily checked that any finite dimensional object
is isomorphic to k⊕n∞ for some positive integer n, this indicates the vector
space k⊕n equipped with the norm ‖(v1, . . . , vn)‖ = maxni=1 |vi|. However,
in the category Ban61

k this is not the case.

Definition A.47. — For each r ∈ R+, define the one dimensional Ba-
nach spaces kr over k to be k equipped with the norm c 7→ r|c|.

We have kr1⊗̂kkr2
∼= kr1r2 . For any Banach space W over k we have

Ban61
k (ks,W ) ∼= {w ∈W |‖w‖ 6 s} (A.11)

where the morphism on the left is determined by sending 1 to w. Notice
that if r1, r2 ∈ R>0 then the one dimensional Banach spaces kri over k are
isomorphic in Ban61

k if and only if r1
r2
∈ |k×|.

A.7. Completion

Definition A.48. — Let k be a complete valuation field. When we speak
of the categories SNrm61

k or Ban61
k assume that we are in the non-Archi-

medean setting. There is a completion functor
Ck : SNrmk → Bank

defined in the standard way by taking equivalence classes of Cauchy se-
quences. We sometimes denote the completion of a morphism φ : V →W by
φ̂ : V̂ → Ŵ .

Remark A.49. — The completion functor Ck from Definition A.48 is left
adjoint to the forgetful functor Bank → SNrmk. It commutes with colimits.
Note that the morphism V → Ck(V ) is the colimit of the category whose
objects are pairs (f,W ) where W ∈ Bank and f ∈ SNrmk(V,W ) and whose
morphisms are commuting triangles. By Proposition 5 from [16, Chapter 1]
the completion functor commutes with kernels of admissible morphisms as
well. The underlying topological space of Ck(V ) is the closure of the image
of V in Ck(V ).

The completion functor is not fully faithful but it respects the other
structures we have introduced

Lemma A.50. — For any M,N ∈ SNrmk there are natural isomor-
phisms

Ck Homk(M,N) ∼= Homk(Ck(M),Ck(N))
and

Ck(M ⊗N) ∼= Ck(M)⊗̂k Ck(N).
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There is a commutative diagram of adjoint pairs

Vectk
..
Comm(Vectk)ll

SNrmk

..

��

OO

Comm(SNrmk)

��

OO

mm

Bank
..
Comm(Bank)ll

(A.12)

where the top arrow in each row takes a Banach space to the (completion in
the Banach case) of the symmetric algebra over it and the bottom arrow is
a forgetful functor. The arrows going up are also forgetful functors and the
arrows going down are completion functors (defined in Definition A.48).

A.8. Banach algebras and modules

Let k be a complete, valued field.

Remark A.51. — The objects of Comm(Bank) differ from the standard
definition of Banach k-algebras in that for each algebra object A there is a
universal constant C such that ‖ab‖ 6 C‖a‖‖b‖ for all a, b ∈ A but we do
not insist that C = 1.

In this subsection, we discuss the categories Mod(A) (and Mod61(A) in
the non-Archimedean case) for any A ∈ Comm(Bank).

Definition A.52. — For k a non-Archimedean complete valued field,
the category Mod61(A) has the same objects as Mod(A) but its morphisms
are those which have norm less than or equal to one.

Let us sumerize some of their properties.

Lemma A.53. — The categories Mod(A) and Mod61(A) are closed sym-
metric monoidal category having finite limits and colimits. The closed struc-
tures will be denoted HomA. The monoidal structures will be denoted ⊗̂A.
Note that for any E ,F ,G ∈ Mod(A) we have the adjunction isomorphisms

HomA(E⊗̂AF ,G) ∼= HomA(E ,HomA(F ,G))
which behave as in Lemma A.16. In both of these categories, the functor of
tensoring with F is therefore left adjoint to the functor of mapping from F
and therefore the former is right exact and the later is left exact. In all the
cases where we have said that limits and colimits in Mod(A) or Modc(A)
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exist, they can be computed simply by equipping the models we have given
for the corresponding limits and colimits in Bank or Ban61

k with the obvious
A module structures. The analogue of Lemma A.29 holds in Mod(A).

Proof. — Define

HomA(F ,G) = {φ ∈ Hom(F ,G) | φ(af) = aφ(f) ∀a ∈ A, f ∈ F} .

The rest of these properties are easily checked. �

Lemma A.54. — The functor ⊗A defined in Definition 2.2 agrees with
the standard notion ⊗̂A in the literature. So the tensor product E⊗AF in
Mod(A) or Mod61(A) is isomorphic in the non-Archimedean case to be the
completion of the Banach space E ⊗A F with respect to the semi-norm

‖u‖ = inf
{

max{‖ei‖‖fi‖ i = 1, . . . , n }
∣∣∣∣ u =

n∑
i=1

ei ⊗ fi
}

along with the action induced by (a, e ⊗ f) 7→ ae ⊗ f = e ⊗ af . In the
Archimedean case it is

‖u‖ = inf
{ n∑
i=1
‖ei‖‖fi‖

∣∣∣∣ u =
n∑
i=1

ei ⊗ fi
}
.

Proof. — The claim follows immediately from (1) Remark A.49, (2) the
fact that

E ⊗A F = colim
[
E ⊗k A⊗k F

--
11 E ⊗k F

]
(A.13)

where the completion of the diagram E ⊗k A⊗k F
--
11 E ⊗k F is

the diagram in Equation 2.1 which defined E⊗AF as a colimit similarly to
Equation A.13 and (3) the fact that taking colimits in different orders leads
to naturally isomorphic answers. �

Remark A.55. — In the non-Archimedean setting, the products and co-
products in the category Mod61(A) have interesting properties. Consider
for instance the coproduct of some elements Vi in the category Mod61(A).
Conceretly, it is the Banach space{

(vi)i∈I ∈
∏
i∈I

Vi

∣∣∣∣ lim
i∈I
‖vi‖ = 0

}
equipped with the norm

‖(vi)i∈I‖ = sup
i∈I
‖vi‖.
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and the obvious action of A. For any other object W , we have natural iso-
morphisms (see Proposition 8, page 76 of [16])(∐

i∈I
Vi

)
⊗̂AW ∼=

∐
i∈I

(Vi⊗̂AW ) (A.14)

and for any families {Vi}i∈I and {Wi}i∈I we have natural isomorphisms∐
i∈I

(Vi ×Wi) ∼=
(∐
i∈I

Vi

)
×
(∐
i∈I

Wi

)
because finite products and coproducts are isomorphic. The inclusions Vi →∐
i∈I Vi are strict monomorphisms and if the Vi are ⊗̂A-acyclic then so is∐
i∈I Vi.

Theorem A.56. — Let k be a valuation field. Choose A ∈ Comm(Bank).
The quasi-abelian category Mod(A) has enough ⊗̂A-acyclices, projectives and
injectives.

Proof. — In order to see the statements about projectives there are two
ways to go. The first is simply to consider that the proof that Bank has
enough projectives and every object has a contracting strict epimorphism
from a projective object. All the constructions involved in that proof actually
can be carried out directly in the categories Mod(A) more or less replacing
k by A. For the other proof one can just tensor all the constructions with
A. Therefore, it is an immediate combination of Lemmas 4.25, A.39 and
Lemma A.34. We now consider the statements about injectives. They follow
immediately from Lemmas 4.25, A.42 and A.35. �

Definition A.57. — We define a preferred resolution in the closed sym-
metric monoidal quasi-abelian category Mod(A) of any objectM. Let

P(M) =
∐

m∈M−{0}

A‖m‖

where the coproduct is computed in the category Mod61(A). Note that P(M)
is both projective and ⊗̂A-acyclic in the closed symmetric monoidal quasi-
abelian category Mod(A). We have a strict epimorphism

φ : P(M)→M (A.15)

in Mod(A) defined by

(am)m∈M−{0} 7→
∑

m∈M−{0}

amm.

We define a strictly exact sequence

· · · → P(M)3 → P(M)2 → P(M)1 →M→ 0
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with P(M)0 = M, P(M)1 = P(M) and P(M)i+1 = P(ker[P(M)i →
P(M)i−1]) for i > 1.

Lemma A.58. — For any V ∈ Mod(A) the morphism

P(M)⊗̂AV →M⊗̂AV

is a strict epimorphism.

We will now introduce another family of objects which one could use for
the computation of derived tensor products. Let A ∈ Comm(Bank) and M ∈
Mod(A). Since the category Mod(A) has enough projectives (any object has
a strict epimorphism from a projective object), the functor F(N) = N⊗̂AM
is left derivable. As projectives which are coproducts of A are F-acyclic, and
any object has a strict epimorphism from such a coproduct, we get from
Lemma 4.34 that the class of F-acyclics is F-projective.

Appendix B. Category theory background

Let C be a category with fiber products. A full subcategory D ⊂ C is
called dense when the restriction of the Yoneda embedding

C→ Pr(D) = Hom(Dop,Set)

is fully faithful. This implies (see [7, Exp I, Prop. 7.2]) that any c ∈ C is the
colimit of the canonical diagram D/c→ C. Recall that a site with underlying
category C consists for every U ∈ C of a collection SU of covering families
{Ui → U}i∈I in C including isomorphisms, closed under compositions and
pullbacks with respect to arbitrary morphisms in C. These are called covering
families of U and define a Grothendieck pretopology on C. We denote this
site by CS . Let CS and DT be sites and assume that they are subcanonical,
this means that representable presheaves are sheaves.

Definition B.1. — A functor u : C → D is called continuous (with
respect to the set of covers S and T ) if the image of every covering family
in S is a covering family in T and for any W → V in C the morphism

u(W ×V Vi)→ u(W )×u(V ) u(Vi)

is an isomorphism. A functor u : C→ D is called cocontinuous (with respect
to the set of covers S and T ) if for every c ∈ C and any covering {dj →
u(c)}j∈J of D there exists a covering {ci → c}i∈I such that the family of
maps {u(ci)→ u(c)}i∈I refines the covering {dj → u(c)}j∈J .
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The category of presheaves Pr(C) is simply the category of functors from
Cop to the category of sets. The category of sheaves with respect to a topology
S on C is be denoted Sh(CS).

Say u : C → D is any functor. The pullback functor on presheaves will
be written u−1 : Pr(D) → Pr(C). It has left and right adjoints u! and u∗
respectively. It is shown in SGA4 [7] I.5.6 that the functor u! is fully faithful
if and only if u is fully faithful.

The category of sheaves with respect to the topology S on C will be
denoted Sh(CS). We use us to denote the composition Sh(CS) → Pr(C) u!→
Pr(D)→ Sh(DT ) where the first map is the fully faithful inclusion of sheaves
into presheaves and the final map is sheafification. It is known (see [3]) that
if u is continuous that u−1 preserves sheaves and by Lemma 7.14.3 of [2] that
us is a left adjoint to u−1 : Sh(DT )→ Sh(CS). From [4] and the cocontinuity
we get a natural equivalence between u−1 us and the identity and therefore
we have the following

Lemma B.2. — Suppose we are given a continuous, cocontinuous, fully
faithful functor u : C → D between the categories underlying sub-canonical
sites CS and DT . Then the functor us : Sh(CS)→ Sh(DT ) is fully faithful.

Remark B.3. — Notice that in the situation of Lemma B.2, us commutes
with colimits. Also by Lemma 7.14.5 of [2], us preserves representable sheaves
in the sense that us(hc) = hu(c) for every c ∈ C. We have

(u−1 us(hc))(c′) = us(hc)(u(c′)) = hu(c)(u(c′)) = Hom(u(c′),u(c))
for every c, c′ ∈ C. Therefore since u is fully faithful, we have natural iso-
morphisms u−1 us(hc) ∼= hc for every c ∈ C.
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