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An Exercise(?) in Fourier Analysis on the Heisenberg
Group

Daniel Bump (1), Persi Diaconis (2), Angela Hicks (3),
Laurent Miclo (4) and Harold Widom (5)

ABSTRACT. — Let H(n) be the group of 3 × 3 uni-uppertriangular
matrices with entries in Z/nZ, the integers mod n. We show that the
simple random walk converges to the uniform distribution in order n2

steps. The argument uses Fourier analysis and is surprisingly challenging.
It introduces novel techniques for bounding the spectrum which are useful
for a variety of walks on a variety of groups.

RÉSUMÉ. — Soit H(n) le groupe des matrices supérieures 3 × 3 ne
contenant que des 1 sur la diagonale et dont les entrées appartiennent à
Z/nZ, l’anneau des entiers modulo n. On montre que la marche aléatoire
simple y converge vers la probabilité uniforme en un temps d’ordre n2. La
preuve utilise l’analyse de Fourier et, curieusement, n’est pas immédiate.
De nouvelles techniques sont introduites pour borner le spectre, qui sont
utiles pour d’autres exemples de marches aléatoires sur des groupes.
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1. Introduction

For a positive integer n, let H(n) be the “Heisenberg group mod n”, the
group of 3× 3 uni-uppertriangular matrices with entries in Z/nZ:1 x z

0 1 y
0 0 1

 x, y, z ∈ Z/nZ.

Write such a matrix as (x, y, z), so

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

A minimal symmetric generating set is

S = {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0)} (1.1)

A random walk proceeds, starting at the identity (0, 0, 0), by repeatedly
choosing an element from S with probability 1

4 and multiplying. More for-
mally, define

Q(g) =
{

1
4 g ∈ S
0 otherwise.

(1.2)

For g ∈ H(n),

Q ∗Q(g) =
∑
h

Q(h)Q(gh−1), Q∗k(g) =
∑
h

Q(h)Q∗(k−1)(gh−1).

If n is odd, high convolution powers of Q converge to the uniform distribution
U(g) = 1

n3 , Q∗k(g) → U(g). Measure the speed of convergence by the total
variation distance

‖Q∗k − U‖ = max
A⊆H

|Q∗k(A)− U(A)| = 1
2
∑
g∈H
|Q∗k(g)− U(g)|.

One purpose of this paper is to give a new proof of the following theorem.

Theorem 1.1. — For Q defined by (1.2) on H(n), there are universal
positive constants A and C such that

Ae
−2π2k
n2 6 ‖Q∗k − U‖TV 6 Ce

−2π2k
n2

for all odd n and all k.

We say “order n2 steps are necessary and sufficient for convergence”.
Theorem 1.1 is proved by Fourier analysis on H(n). This natural approach
is known to be challenging (see Section 2). As explained in Section 3, the
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Fourier proof involves bounding the spectrum of the n× n matrices (where
the unmarked entries are taken to be zero):

M(ξ) = 1
4

2 1 1
1

1 1

1
1 1




2 cos

(
2πξj
m

)
, 0 6 j 6 m − 1 (1.3)

These same matrices come up in a variety of solid state physics and ergodic
theory problems as “Harper’s Operator,” “Hofstader’s Butterfly,” and the
“Ten Martini’s Problem” discussed in Section 2. They further occur in the
engineering literature on the fast Fourier transform and for other random
walks on the meta-abelian groups.

Section 2 is a literature review, including the parallel problem of a random
walk on H(R) and H(Z). It describes the physics problems, the connections
with the fast Fourier transform, and connections to Lévy’s area. Section 3
gives background on Fourier analysis on H(n). Theorem 1.1 is proved there
assuming our eigenvalue bounds (which are proved later). It also gives a
variety of other walks on other groups where matrices M(ξ) (and thus our
bounds) appear.

Eigenvalue bounds are given in Section 4. Two new techniques are devel-
oped. The first uses geometric path methods, developed for Dirichlet eigen-
values of stochastic matrices to give upper bounds for the largest eigenvalue
ofM(ξ); note that some entries ofM(ξ) are negative and the rows don’t sum
to a constant. The second is a new technique for lower bounds on smallest
eigenvalues. The bounds are rough (but more than adequate for the task)
and work generally.

2. Background and References

For background on Markov chains and random walks on groups, a good
introduction is [32]. The Fourier approach is developed in [13]. A variety of
analytic approaches are described in [38] and [39]. The Heisenberg group is
ubiquitous in mathematics and physics through its connections to the quan-
tum harmonic oscillator [12], Harmonic analysis [26], theta functions [28, 33],
and number theory [9]. Analysis and geometry on the Heisenberg group have
recently been important in finding counterexamples to the Goemans–Linial
conjecture in complexity theory [31]. When p is prime, the groups H(p) are
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building blocks of the extra special p-groups (groups with center, commuta-
tor and derived group equal to Z/pZ). See [27] and [44].

The literature on random walks on the Heisenberg group is reviewed
in 2.1, the connection to fast Fourier transform is treated in 2.2 the solid
state connection is reviewed in 2.3, and the connection to Lévy’s area is given
in 2.3. Section 2.5 describes two companion papers. The first generalizes to
other groups; the second gives precise asymptotics for the top and bottom
eigenvalues of M(ξ).

2.1. Random Walk on H(n)

The probabilistic study of a random walk on H(n) was started by Zack
([45]), who gave an interpretation of the walk in terms of random number
generation. Theorem 1.1 was first proved in joint work with Saloff-Coste
(see [18, 19, 20]) using “geometric theory.” The first proof used Nash in-
equalities, the second proof uses moderate growth, showing that a similar
proof holds for any sequence of finite nilpotent groups with bounded class
and number of generators: (diameter)2 steps are necessary and sufficient for
convergence. (The diameter of H(n) with generating set S is of order n.)
The third proof of Theorem 1.1 lifts to a random walk on a free nilpotent
group (here H(Z)). Then results of Herbish–Saloff-Coste give bounds on the
decay rate of convolution powers for the lifted walk. These are transferred
down to the finite quotient using Harnack inequalities. The beautiful work
of Alexopoulos ([1]) should allow similar results for less symmetric walks
on quotients of groups with polynomial growth. A new approach to these
problems using Abelian harmonic analysis is in [15].

A fourth proof appears in [14]. This completes the generating set S to a
union of conjugacy classes. Character theory is used to bound the conjugacy
walk. Finally, comparison theory is used to go from the conjugacy walk to the
walk based on S. Richard Stong ([41, 42, 43]) has results which specialize
to three yet different proofs. His approach, using “twisted random walks”
works for other classes of groups, such as the Burnside groups B(n, 3). It
deserves to be developed further.

A further set of approaches/results is worth mentioning. A simple random
walk on n× n uni-uppertriangular matrices with coefficients mod p has also
been studied in a series of papers. In this work, the emphasis is on large n
and fixed p behavior but some of the results specialize well to n = 3. We refer
to the definitive paper by Peres and Sly [36] which surveys earlier literature.
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Curiously none of the papers cited above carries out the program at-
tempted here: a direct use of Fourier analysis. All we can say is, having
pushed it through, we now see why.

There has also been work on a random walk on the Heisenberg group
H(R). This can be developed as a special case of a random walk on Lie
groups. (See Breuillard [7] for a useful survey.) The paper [8] focuses on
H(R) and proves a local limit theorem using Fourier analysis. Of course,
this is close in spirit to the present effort. Alexopoulos [1] had remarkable
decay rates for general discrete groups of polynomial growth.

A natural problem (open to our knowledge) interpolating between the
finite and and infinite case would be to study the simple random walk on
H(Z) with generating set S of (1). Although Breuillard allows discrete mea-
sures on H(R), he must rule out measures supported on subgroups. Indeed,
as far as we know, the irreducible unitary representations of H(Z) have not
been classified (and seem to give rise to a “wild” problem).

If Q is the measure supported on S (considered on H(Z)), the associated
random walk is transient. It is natural to study the decay rate of Q∗k. In [15]
it is shown that

Q∗k(id) ∼ c

k2 with c = 25
16 . (2.1)

Notice that (2.1) could be studied by consideringQ from (1.2) onH(n) for
n � k2 (when there is no possibility of the walk wrapping around.) Indeed
H(nZ) is a normal subgroup of H(Z) and all of the irreducible unitary
representations of H(Z/nZ) described in 3.2 give rise to irreducible unitary
representations of H(Z) via

H(Z)→ H(Z)/H(nZ) = H(Z/nZ)→ GL(V )
where V is the vector space underlying the representation ofH(Z/nZ). Those
quotients are all of the finite dimensional simple representations of H(Z).
(See [35].) The usual infinite dimensional irreducible unitary representations
of H(R) restricted to H(Z) are also irreducible but alas there are others
which do not seem to be known at this writing.

2.2. The Discrete Fourier Connection

For f : Z/nZ → C, the discrete Fourier transform (DFT) takes f → f̂
with

f̂(k) = 1√
n

n−1∑
ξ=0

f(ξ)e
2πiξk
n .
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This is a mainstay of scientific computing because of the fast algorithms
(FFT). There is a close connection between the discrete Heisenberg groups
H(n) and these transforms. This is charmingly exposited in Auslander and
Tolimieri ([3]). Let the matrix associated with the DFT be Fn, with (Fn)j,k =
e

2πijk
n√
n

. Recall the matrix of the Fourier transform M(1) at (1.3). It is
straightforward to see that Fn commutes with M(1):

F−1
n M(1)Fn = M(1).

This implies that these Hermitian matrices can be simultaneously diagonal-
ized. As explained in [21] and [34], there is engineering interest in diagonal-
izing Fn. We are interested in diagonalizing M(1) and hoped information
about Fn would help.

Alas, Fn4 = id, so the eigenvalues are ±1,±i. It is known that the as-
sociated eigenspaces have dimension (within one of) n

4 ([21]). This does not
give a useful reduction for our problem. Going the other way, Dickinson and
Steiglitz [21] looked for matrices commuting with Fn and suggestedM(1)(!).
Mehta [34] found a basis for eigenfunctions of Fn as “periodicized Hermite
functions”. These are tantalizingly close to the approximate eigenfunctions
for M(1) that we find in [11]. We are sure there is more to understand on
this front.

2.3. Harpers Operator

In trying to understand the band structure of the x-ray diffraction pat-
terns of various solids (particularly metals), a variety of model problems in-
volving Schrödinger operators with periodic potentials have been introduced
and studied. Perhaps the most widely studied model is Harper’s model on
`2(Z) with Hamiltonian

Hθ,φξ(n) = ξ(n+ 1) + ξ(n− 1) + 2 cos(2π(nθ + φ))ξ(n),

n ∈ Z, θ, φ ∈ [0, 1]. The spectrum ofHθ,φ is pictured as “Hofstadter’s Butter-
fly” with its own Wikipedia page. With 2 cos replaced by A cos, the operator
is often called the almost Mathieu operator (with its own Wikipedia page).
For θ irrational, the norm of Hθ,φ is known not to depend on φ. Our operator
M(ξ) is a discretized version of H ξ

n ,0
which is often used to get numerical

approximations to the spectrum. It has also been used to prove things, see
the beautiful account in Section 3 of Béguin–Valette–Zuk [5]. They give
bounds on the largest and smallest eigenvalues of M(ξ) which we are able
to sharpen considerably in some cases. Study of the extreme eigenvalues of
Harper’s operator is also carried out in [6].
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Any periodic Schrödinger operator has band structure in its spectrum
because of Bloch’s Theorem [23]. Determining the fine structure of the spec-
trum of Hθ,ψ has generated a large literature well surveyed in [29]. One of
the signature problems here was dubbed the “Ten Martini’s problem” by
Barry Simon. It has recently been completely resolved by work of Last [29],
and Avila and Jitomirskaya [4].

After finishing our work on the present paper, the authors of [6] pointed
us to their careful study of the eigenvalues of the almost Mathieu operator.
By elementary, detialed, clever arguments they get sharp bounds on the top
eigenvalues of the matrices in (1.3) and some generalizations. We review
their work in Section 4. There is considerable interest in a variety of similar
operators, e.g. in M(ξ), replace cos

(
2πθj
n

)
with cos

(
2πθj
n

)
+ cos

(
2πξj
n

)
.

See Zhang et al. [46] and their references. We have tried to develop our
bounds on the spectrum of M(ξ) (in Section 4) so that it applies to these
generalizations.

2.4. Lévy Area Heuristics

The random walk on H(Z) with generating set S = {(1, 0, 0), (−1, 0, 0),
(0, 1, 0), (0,−1, 0)} leads to interesting probability theory which gives a useful
heuristic picture of the behavior on H(n) as well. This section gives the
heuristics; mathematical details will appear in a later publication.

Let the successive steps of the walk be
(ε1, δ1, 0), (ε2, δ2, 0), . . . , (εn, δn, 0), · · · ∈ S.

By a simple direct computation, (εn, δn, 0) . . . (ε1, δ1, 0) = (Xn, Yn, Zn) with
Xn = ε1 + . . . εn, Yn = δ1 + · · ·+ δn,

Zn = ε2δ1 + ε3(δ1 + δ2) + · · ·+ εn(δ1 + · · ·+ δn−1).
Thus the Xn and Yn coordinates perform simple random walks on
Z
(
P (εi = 1) = P (εi = −1) = 1

4
)
and

(
P (εi = 0) = 1

2
)
. The Local Central

Limit Theorem (see [30]) shows

P{Xn = j} ∼ e
− 1

2

(
j

σ
√
n

)2

√
2πσ2n

with σ2 = 1
2 .

The same result holds for Yn and indeed (Xn, Yn) have independent
Gaussian approximations. In particular,

P{(Xn, Yn) = (0, 0)} ∼ 1
πn

.
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Next consider Zn. This is a martingale and a straightforward application
of the martingale central limit theorem (see [24]) shows that

P

{
Zn
n
6 ξ

}
→ F (ξ)

with F (ξ) the distribution function of
1
2

∫ 1

0
B1(s)dB2(s)

with Bi standard Brownian motion. We note that
∫ 1

0 B1(t)dB2(t) −∫ 1
0 B2(t)dB1(t) is Lévy’s area integral, the distribution of the signed area
between Brownian motion and its chord at time 1.

In turn, ∫ 1

0
B1(s)dB2(s)

can be shown to have the density

f(ξ) = 1
π

3
2

Γ
(

1
2

)
2 3

2 Γ
(

1
4 + iξ

2

)
Γ
(

1
4 −

iξ

2

)
, −∞ < ξ <∞

See Harkness and Harkness [25] for background and details.

If Xn√
n
, Yn√

n
, Zn√

n
are asymptotically independent, this would suggest that

P{(Xn, Yn, Zn) = (0, 0, 0)} ∼ c

n2 , c =
4Γ2 ( 1

4
)

π2 .

Note that Breuillard [8] has a local limit theorem of a similar sort for a
non-lattice walk on H(R) with a less well identified constant. A further
heuristic conclusion which this paper makes rigorous: the walk on H(Z)
can be mapped to the walk on H(m) by considering the coordinates mod
m. This familiar trick works, for example, for Xn(mod m), showing that
the simple random walk mod (m) requires order m2 steps to get close to
uniform. The same argument works for the joint distribution of (Xn, Yn).
The proof for these cases requires something like the Berry–Esseen Theorem.
See Diaconis [13] for details for Xn(mod m) and [1] for details on H(n). The
limit theorem for Znn suggests that orderm steps are necessary and sufficient.
This suggest that order m2 steps are necessary and sufficient for the central
coordinate to get random. A weaker result along these lines is in Section 3.4.
Sharp results are in [15].

This aspect of “features” of a Markov chain getting to their stationary
distribution at different rates is important in practice. A simulation is often
run with just a few features of interest and the relaxation time for the whole
state space may be deceptive. See [2] for references to a handful of cases
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where this can be carefully proved. Generalizing, if Un(m) is the group of
n × n uni-uppertriangular matrices with coefficients mod m, let a simple
random walk be determined by picking one of the n − 1 coordinates just
above the diagonal and placing ±1 there (with the rest zero.) We conjecture
that coordinates in the first diagonal require order m2 step; in the second
diagonal, order m steps; in the third diagonal, order m 2

3 steps; with order
m2/k steps for the kth diagonal. Here n is fixed, 1 6 k 6 n− 1 and m large
are the cases of interest. This conjecture is proved in [15].

2.5. Future Developments

The present paper has two companion papers. The first [10] abstracts
the present results to a larger class of walks and groups. The second gets
much more precise bounds on the extreme eigenvalues of the matricesM(ξ).
Since essentially these matrices come up for the generalizations, present tech-
niques and the refinements can be used to give satisfactory analyses of the
generalizations.

Let G be a finite group with a normal abelian subgroup A and a subgroup
B such that G = BA, B∩A = id. Thus G = BnA is a semi-direct product.
Let a1, . . . , as be a symmetric generating set for A; b1, . . . , bt a symmetric
generating set for B. Then {ai, bj} generate G. Consider the probability
measure (with 0 < θ < 1 fixed):

Q(g) =


θ
s if g ∈ {a1, . . . , as}
1−θ
t if g ∈ {b1, . . . , bt}

0 otherwise.

The representation theory of semi-direct products is well known. See Serre
Chapter 7 ([40]). The irreducible representations are determined by the rep-
resentations of B and by inducing the characters of A up to G. Let χ ∈ Â.
If ρχ(b, a) is the induced representation (a |B| × |B| matrix),

Q̂(ρχ) = θPB + (1− θ)D,

with PB the transition matrix of the B-walk (based on a uniform choice of
bi) and D a diagonal matrix with bth element

D(b, b) = 1
s

s∑
i=1

χ(b−1aib).
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This is in sharp parallel with the present development and we have found
that the techniques of the present Section 4 suffice for successful analyses.
Examples from [10] include:

• The random walk on H(n) generated by (x(i), 0, 0) and (0, y(j), 0)
for (perhaps non symmetric) generating sets 1 6 i 6 I, 1 6 j 6 J
chosen with some (perhaps non-uniform) probabilities.
• The d-dimensional Heisenberg groups G = (x˜, y˜, z), x˜, y˜ ∈ (Z/nZ)d,
z ∈ (Z/nZ).
• The affine groups: G = (a, b), θ ∈ Z/nZ, a ∈ (Z/nZ)∗.

These and further examples are treated in [10]. That paper also develops a
useful supercharacter theory which allows the comparison approach [14, 17]
to be used for this class of examples. The second companion paper gives sharp
bounds on the eigenvalues and eigenvectors of matrices M(ξ), for certian
choices of ξ and dimension m. For ease of exposition, work with M(1). It
is shown that the kth largest eigenvalue of M(1) is equal to 1− µk

2n + o
( 1
n

)
where µk is the kth smallest eigenvalue of the harmonic oscillator

L = −1
2
d2

dx2 + 2π2x2.

on (−∞,∞) (so µk = (2k + 1)π), 0 6 k < ∞ fixed. The corresponding
eigenfunctions of L are well known to be Hermite functions; with a = π,

φ0(x) = e−ax
2

φ1(x) = −4axe−ax
2

...

φn(x) = eax
2 dn

dxn
(e−2ax2

) = eax
2 d

dx
e−ax

2
φn−1(x)

It is also shown that wrapped versions of these are approximate eigenfunc-
tions of M(1). Numerical comparisons, not reported here, show that these
approximate eigenfunctions are very accurate for fixed k and large n.

The present technique gives cruder results which are all that we need and
are available for all ξ.

3. Representation Theory

This section develops the tools needed for representation theory: Fourier
inversion, the Plancherel Theorem, representations of H(n), and a formula
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for the distribution of central elements under convolution powers. Theo-
rem 1.1 is proved when n is prime assuming the eigenvalue bounds in the
following Section 4. For background, see [40] and [13].

3.1. Basic Formulas

Let G be a finite group with Ĝ the irreducible unitary representations.
For Q a probability on G and ρ ∈ Ĝ, define the Fourier Transform:

Q̂(ρ) =
∑
g

Q(g)ρ(g).

As usual, Fourier transforms take convolution into products: Q̂ ∗Q(ρ) =
(Q̂(ρ))2. For the uniform distribution U(g) = 1

|G| , Schur’s lemma implies
that Û(ρ) = 0 for all nontrivial ρ ∈ Ĝ. The Fourier Inversion Theorem
shows how to reconstruct Q from Q̂(ρ):

Q(g) = 1
|G|

∑
ρ∈Ĝ

dρ tr(Q̂(ρ)ρ(g)∗).

The basic Upper Bound Lemma (see [14, p. 24]) gives a bound on the distance
to stationary using the Fourier Transform:

4‖Q∗k − U‖2
TV 6

∑
ρ∈Ĝ
ρ6=1

dρ‖Q̂k(ρ)‖2.

In these sums, dρ is the dimension of ρ, ‖M‖2 = tr(MM∗) and ρ = 1 is the
trivial representation.

3.2. Representation Theory of H(n)

A neat elementary description of the representations of H(n) appears
in [22]. We find the following self contained derivation more useful for our
application. For every divisor m of n, 1 6 m 6 n , there are

(
n
m

)2
φ(m)

distinct irreducible representations of degree m, where φ(m) is the Euler phi
function. Since ∑

m|n

( n
m

)2
φ(m)m2 = n3,

this is a complete set.

For the construction, fix m|n. Let
V = {f : Z/mZ→ C} .
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Now fix a, b ∈ Z/( nmZ) and c ∈ Z/mZ with (c,m) = 1. Let qm = e2πi/m,
qn = e2πi/n. Define ρa,b,c(x, y, z) : V → V by

ρa,b,c(x, y, z)f(j) = qax+by
n qc(yj+z)

m f(j + x).

In these formulas, regard Z/( nmZ) and Z/(mZ) as subgroups of Z/nZ by
sending 1 tom (resp. n/m.) Using (x, y, z)(x′y′z′) = (x+x′, y+y′, z+z′+xy′),
it is easy to check that ρa,b,c is a representation:

ρa,b,c(x, y, z)ρa,b,c(x′, y′, z′)f(j)

= ρa,b,c(x, y, z)qax
′+by′

n qc(y
′j+z′)

m f(j + x′)

= qa(x+x′)+b(y+y′)
n qc(y

′(j+x)+z′+yj+z)
m f(j + x+ x′)

= ρa,b,c(x+ x′, y + y′, z + z′ + xy′)f(j).

To compute the character, note that the trace of ρa,b,c(x, y, z) is zero unless
m|x. In this case, the trace is qax+by

n qczm
∑m−1
j=0 qcyjm . This sum is zero unless

m|y (when it is m). Thus:

χa,b,c(x, y, z) =
{

0 unless m|x and m|y
qax+by
n qczmm if m|x, y.

Distinctness and irreducibility can be determined by computing:

〈χa,b,c|χa′,b′,c′〉 = m2

n3

∑
j1,j2,z

qm(a−a′)j1+m(b−b′)j2
n q(c−c′)z

m = δabc,a′b′c′ .

In the sum, j1, j2 run over 0, 1, . . . , n/m− 1 and z runs over 0, 1, . . . , n− 1.
Since a, b can take any values in 0, 1, . . . , nm − 1 and c runs over numbers
relatively prime to m, this makes

(
n
m

)2
φ(m) distinct irreducible characters

of dimensionm. Summing over divisors of n accounts for all of the characters.

Example 3.1. — When m = 1, this gives the n2 one dimensional char-
acters χa,b(x, y, z) = qax+by

n . Note that q1 = 1 so that c doesn’t occur.)

Example 3.2. — When m = 2, set

δ(x) =
{

1 if x is even
0 if x is odd,

with δ(x) = 1− δ(x).

ρa,b,1(x, y, z) = qax+by
n qzm

[
δ(x) δ(x)
δ(x)qym δ(x)qym

]
Note that tr(ρa,b,1(x, y, z)) agrees with χa,b,1 above.
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Example 3.3. — Consider Q̂(a, b, c) for

Q(1, 0, 0) = Q(−1, 0, 0) = Q(0, 1, 0) = Q(0,−1, 0) = 1
4 .

When m = 1, Q̂(a, b) = 1
2 cos

( 2πa
n

)
+ 1

2 cos
( 2πb
n

)
for 0 6 a, b 6 n− 1.

When m = 2 (so n is even)

Q̂(a, b, 1) = 1
2

[
cos
( 2πb
n

)
cos
( 2πa
n

)
cos
( 2πa
n

)
− cos

( 2πb
n

)] .
In general, when m > 3,

Q̂(a, b, c) = 1
4

qan q−an

q−an

q−an qan

qan

qan q−an





qbnq
jc
m + q−bn q−jcm

0 6 j 6 m − 1

Note that conjugating Q̂(a, b, c) by a diagonal matrix with 1, qan, q2a
n , . . .

q
(m−1)a
n on the diagonal results in a matrix with ones on the super and
subdiagonals (and q−man , qman in the two corners).

Example 3.4. — When n is a prime p , there are p2 one-dimensional
representations and p− 1 p-dimensional representations, with Q̂(0, 0, c) con-
jugate to M(c) of the introduction.

3.3. Proof of Theorem 1.1 when n = p is prime

From the Upper Bound Lemma stated in Section 3.1 and the formulas
for Q̂(ρ) in Section 3.2,

4‖Q∗k − U‖2
TV

6
∑

(a,b)6=(0,0)

(
1
2 cos

(
2πa
p

)
+ 1

2 cos
(

2πb
p

))2k
+
p−1∑
ξ=1

p‖M(ξ)k‖2

= I + II
To understand I, first consider a = 0 and b = 1. This term is(

1
2 + 1

2 cos
(

2π
p

))2k
=
(

1− π2

p2 +O

(
1
p4

))2k

.
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This term is of size e−Bη if k = ηp2 with B = 2π2. A standard analysis,
carried out in detail in [14] shows that the other terms in (I ) can be similarly
bounded and that the sum of these terms is at most Ce−4π2η for a universal
constant C, independent of p and k. Consider the next sum (II ). The matrix
M(ξ) is symmetric with real eigenvalues 1 > β1(ξ) > · · · > βp(ξ) > −1. In
Section 4 it is shown that for 0 < ξ < p

log(p) ,

β∗(ξ) = max(β1(ξ),−βp(ξ)) 6 1− θ

p4/3

for a universal constant θ. Also, for p
log(p) 6 ξ <

p
2 , it is shown that

β∗(ξ) 6 1− 3
4

(
ξ

p

)2
.

Furthermore note that
β∗(ξ) = β∗(p− ξ).

Indeed, as mentioned in Section 2.5, much sharper bounds are found. These
are not relevant for this proof. Using these bounds with θ = min{θ, 3

4},

II 6 p3
(

1− θ

p4/3

)2k

+ p3
(

1− θ

log(p)

)2k

.

This is exponentially smaller than the bound for I, completing the proof of
the upper bound.

A lower bound for the total variation follows from a lower bound for
the total variation convergence of the (1, 2) coordinate Xk to the uniform
distribution on Z/pZ. As explained in Section 2.3, Xk evolves as a simple
random walk on Z/pZ and a lower bound showing that k = θp2 steps is not
sufficient for a fixed θ is well known. See [13] for several different proofs. This
completes the proof.

We will not carry out the details of the proof of Theorem 1.1 in the
case of general n. Bounds for the various transforms Q̂(a, b, c) are derived in
Section 4. No new ideas are needed.

3.4. A Formula for the Center

Let n = p be an odd prime. The center of the Heisenberg group is
{(0, 0, z) : z ∈ Z/pZ}. Let (Xk, Yk, Zk) be the position of the walk after
k steps. Then Zk will be referred to as the central element. A formula for
P{Zk = z} can be derived from the Fourier Inversion Theorem. As a corol-
lary, we show that Zk is close to uniformly distributed after order p steps.
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Proposition 3.5. — For a simple random walk on H(p) with p an odd
prime, all k > 0, and z ∈ Z/pZ,

P{Zk = z} = 1
p

+ 1
p2

p−1∑
ξ=1

e
−2πiξz

p

p∑
j=1

(Q̂(ρξ)k)1,j .

Proof. — From the Fourier Inversion Theorem, for any (x, y, z)

P
(
Xk = x, Yk = y, Zk = z

)
= 1
p3

∑
ρ∈Ĝ

dρ Tr
(

(Q̂(ρ))kρ((x, y, z)−1)
)
.

Sum over x and y and bring this sum inside the trace. The terms for the 1-
dimensional representations are easily seen to vanish except of course for the
trivial representation which contributes p2/p3 = 1/p. For the p dimensional
representations, writing ρξ for ρ0,0,ξ, ρξ((x, y, z)−1) = ρξ(−x,−y,−z + xy).
In the basis of Section 2.3

ρξ(−x,−y,−z + xy)f(j) = e
2πiξ
p (−yj−z+xy)δ(j, x)f(j − x).

Fixing x and summing over y,
∑
y e
−2πiξ
p (j−x)y = pδ(j, x). Then,∑

y

ρξ(−x,−y,−z + xy)f(j) = pe
−2πiξz

p f(0).

Summing over x gives

∑
x,y

ρξ(−x,−y,−z + xy) = pe−
2πiξz
p

1 0 . . . 0
...

...
...

1 0 . . . 0

 .
Multiplying by Q̂(ρξ)k and taking the trace gives the result. �

Corollary 3.6. — Let Zk be the central element after k steps of a
simple random walk on the Heisenberg Group H(p). There exists a universal
θ > 0 such that for all primes p and all k > 1 and all z∣∣∣∣P (Zk = z)− 1

p

∣∣∣∣ 6 e−θk/p

(1− e−θk/p)
.

As a consequence, if Pk = P (Zk = z) and U(z) = 1
p ,

‖Pk − U‖TV 6
pe−θk/p

1− e−θk/p
.

Proof. — From Proposition 3.5, using the symmetry of the walk,

P{Zk = z} = 1
p

+ 1
p2

n−1∑
ξ=1

cos
(

2πξz
p

) p∑
j=1

Q̂(ρξ)k1j . (3.1)
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The matrix Q̂(ρξ)k is symmetric and can be written as

Q̂(ρξ)k = ODkOT

with O an orthogonal and D a diagonal matrix containing the eigenvalues
βl(ξ). The (i, j) entry of Q̂(ρξ)k is thus (with ri,l the (i, l)th element of O
and clj = rjl.)

p∑
l=1

βhl (ξ)rilclj 6
([∑

l

β2k
l (ξ)r2

il

][∑
l

c2
lj

]) 1
2

6 |β∗(ξ)|k.

In [11] we show that the maximum eigenvalue β∗(ξ) satisfies β∗(ξ) = β∗(−a)
for 1 6 ξ 6 p−1

2 and that there is a universal θ > 0 such that

|β∗(ξ)| 6 1− θξ

p
.

Using | cos(x)| 6 1, and 1− x 6 e−x and the given bound for Q̂(ρξ)k gives∣∣∣∣P (Zk = z)− 1
p

∣∣∣∣ 6 e−
θk
p(

1− e−
θk
p

) .
Summing this gives the total variation bound. �

Remark 3.7. — Corollary 3.6 shows that the total variation distance of
the central component to uniform is small after order p log(p) steps. It is not
hard to see that order p steps are required. In [15] a local central limit theo-
rem on H(Z) is used to prove that order p steps suffice. The argument there
works for larger upper triangular groups and shows that for simple random
walks, elements in the kth diagonal take order p 2

k steps to get random for
any fixed k and large p.

4. Eigenvalue Bounds

This section gives upper and lower bounds for the eigenvalues of the
matricesM(ξ) of (1.3). Recall that these are n×n, with 1

4 in the upper right
and lower left corners and 1

2 cos( 2πξj
n ) for 0 6 j 6 n−1 on the main diagonal.

These matrices have some symmetry properties, noted in Section 4.1, which
simplifies the job. Section 4.2 gives upper bounds for the largest eigenvalue

of the form 1 − θ
(
ξ
n

) 4
3 for θ an absolute positive constant and ξ � n.

The argument makes novel use of bounds for Dirichlet eigenvalues using
geometric path techniques. It is useful for more general diagonal entries and
less structured matrices. A different variant bounds the largest eigenvalues
for larger ξ. Section 4.3 gives lower bounds for the smallest eigenvalues.
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These use quite different ideas: Comparisons with matrices constructed to
have “nice” eigenvalues.

The following series of figures shows numerical examples. Figure 4.1 shows
the top eigenvalues β1(ξ) of M(ξ) when n = 150. As ξ varies from 1, 2, . . .
for small ξ, the top eigenvalues are close to 1 and fall off as ξ increases but
they are not monotone. The evident symmetry β1(c) = β1(n−c) is proved in
Section 4.1. Figure 4.2 shows the smallest eigenvalues of M(ξ). While these
appear as a mirror image of Figure 4.1, a closer look at the numbers shows
this is only an approximation and the same proof method does not work.
Figure 4.3 shows all of the eigenvalues of M(1) for n = 150.

0 20 40 60 80 100 120 140
ξ

0.65

0.7

0.75

0.8

0.85

0.9

0.95

β
1
(ξ

)

The highest eigenvalue of M(ξ) when n=150

Figure 4.1. The top eigenvalues of M(ξ)

Quite sharp bounds for the largest and smallest eigenvalues of the matri-
ces M(ξ) appear in [6]. Specializing their results to our situation, they show
that β∗(ξ) 6 1√

2 for 2ξ
n ∈

[ 1
4 ,

1
2
]
. For 2ξ

n ∈
[
0, 1

4
]
, they show that

β∗(ξ)2 6
1
16

(
8 + 8

(
cos
(

2πξ
n

)
− sin

(
2πξ
n

))
cos
(

2πξ
n

))
.

Taylor expansions show that this second set of bounds gives β∗(ξ) 6 1 −
cξ
n + O

( 1
n2

)
. For an explicit constant c, comparison with the sharp asymp-

totics in [11] show that their bounds are highly accurate. The ideas used
in this section, however, are quite robust to the detailed entries of the ma-
trices. (Indeed, the bounds are quite rough, but more than enough for our
purposes.)
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0 20 40 60 80 100 120 140
ξ

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

β
n
(ξ

)

The lowest eigenvalue of M(ξ) when n=150

Figure 4.2. The lowest eigenvalues of M(ξ)

0 20 40 60 80 100 120 140
i

-1

-0.5

0

0.5

1

β
i(

1
)

The eigenvalues of M(1) when n=150

Figure 4.3. All the eigenvalues of M(1)

4.1. Symmetries and Inclusions

While many of the properties proved in this section are quite robust, the
following more special properties are needed. For positive integers n, ξ and
any real α, let Dn,ξ,α denote the n×n diagonal matrix with diagonal entries:

D
(j)
n,ξ,α = cos

(
2πξ
n

(α+ j)
)

0 6 j 6 n− 1.
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Let Mn,ξ,α = 1
2 (Dn,ξ,α + P)) where P is the transition matrix of a simple

random walk on Z/nZ ( 1
2 on the diagonals just above and below the main

diagonal and 1
2 in the upper right and lower left corners.) Thus Mn,ξ,0 =

M(ξ). Let S(n, ξ, α) be the spectrum of Mn,ξ,α.

Proposition 4.1.
(a) S(n, ξ, 0) = S(n, n− ξ, 0)

(b) For all positive integer k, S(n, ξ, α) ⊆ S(kn, kξ, α)

(c) If n is even, S(n, ξ, α) = −S
(
n, ξ, α+ n

2ξ

)
(d) If n is odd, S(n, ξ, α) ⊆ −S

(
2n, 2ξ, α+ n

2ξ

)
Proof. — For (a),

cos
(

2π(n− ξ)
n

j

)
= cos

(
2πj − 2πξ

n
j

)
= cos

(
2πξ
n
j

)
.

Thus M(n, ξ, 0) = M(n, n − ξ, 0). For (b), if φ is an eigenvector of Mn,ξ,α

then juxtaposing it k times gives an eigenvector of Mkn,kξ,α with the same
eigenvalue because of periodicity. For (c), suppose ψ is an eigenvector of
Mn,ξ,α with associated eigenvalue θ. Thus:

1
4(ψ(j + 1) + ψ(j − 1)) + 1/2 cos

(
2πξ
n

(α+ j)
)
ψ(j) = θψ(j)

Set φ(j) = (−1)jψ(j). Then
1
4(φ(j + 1) + φ(j − 1))− 1

2 cos
(

2πξ
n

(α+ j)
)
φ(j) = −θψ(j)

but − cos( 2πξ
n (α+ j) = cos

(
2πξ
n

(
(α+ j + n

2ξ

))
.

For (d), properties (b) and (c) imply that

S(n, ξ, α) ⊆ S(2n, 2ξ, α) = −S
(

2n, 2ξ, α+ n

2ξ

)
. �

Remark 4.2. — The operator with 1s above and below the diagonal (and
in the corners) and V cos( 2πξ

n (j + α)) with V > 0 a constant is a discrete
version of the “almost Mathieu operator” of solid state physics. See [46]. The
discrete operator corresponds to 4M(n, ξ, α) when V = 2. This is well known
to be the critical case in the theory. The ξ’s of physical interest scale as O(n),
which corresponds to the case when Zn is replaced by Z. When V > 2 the
eigenfunctions are localized. For V < 2, they are spread out. The spectrum
when V = 2 is called “Hofstadter’s Butterfly.” Its spectral properties have
recently been observed in graphene [37]. All our ξ

n ratios are rational. It is
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a fascinating question if the limit as ξ
n tends to an irrational has limiting

spectrum matching the spectrum of Harper’s operator on `2. See [46] for
further discussion.

4.2. Dirichlet Path Arguments

For general n, M(ξ) = Q̂(0, 0, ξ) is an n × n matrix with 1
2 cos

(
2πξj
n

)
on the main diagonal, 1

4 on the super and subdiagonals and in the upper
right and lower left corners. Then 1

2I +M(ξ) has non-negative entries with
row sums in [ 1

2 ,
3
2 ]. Finally, Lξ = 1

3I + 2
3M(ξ) is a substochastic matrix with

1
6 on the super and subdiagonals (and the corners) and 1

3

(
1 + cos

(
2πξj
n

))
on the main diagonal for 0 6 j 6 n − 1. The row sums are between 1

3 and
1. Form an (n + 1) × (n + 1) stochastic matrix Kξ by adding an absorbing
state ∞, with transitions from j to ∞, Kξ(j,∞) = 1

3

(
1− cos

(
2πξj
n

))
. Set

K(∞,∞) = 1. Bounds on the eigenvalues of Lξ (and so M(ξ)) give bounds
on the Dirichlet eigenvalues of Kξ. Use the notation of [16, Section 4.2] with
S = {0, 1, . . . , n− 1}, S = S ∪ {∞}. The Markov chain Kξ restricted to S is
connected. Let U(j) = 1/n, 0 6 j 6 n− 1 with

`2(U) = {f : {0, 1, . . . , n− 1} → R}
having inner product 〈f |g〉U =

∑
j∈S f(j)g(j)U(j). As required, for all

x, y ∈ S, U(x)Kξ(x, y) = U(y)Kξ(y, x). When needed, functions f on S

are extended to S as f(∞) = 0. (Also set U(∞) = 0.) Define a Dirichlet
form E on `2(U) by

E(f |f) = 1
2
∑
x,y∈S

(f(x)− f(y))2U(x)Kξ(x, y).

Let β = β(ξ) be the largest eigenvalue of Lξ. From [16, Lemma 19], if there
is a constant A > 0 such that ‖f‖2

U 6 A‖E(f)‖, for all f ∈ `2(U), then
β 6 1− 1

A . This shows that the largest eigenvalue of M(ξ) is at most 1− 3
2A .

Geometric arguments require a choice of paths γx starting at x ∈ S to
∞, with steps which are possible with respect to Kξ. Thus γx = (x0 =
x, x1, x2, . . . , xd =∞) with Kξ(xi, xi+1) > 0 for 0 6 i 6 d− 1. Let d = |γx|
denote the length of this path. From [16, Proposition 2c],

β 6 1− 1
A

with A = max
x∈S,y∈S

2
Kξ(x, y)

∑
z∈S, (x,y)∈γz

|γz|. (4.1)

The bounds are better if A is “small.” From (4.1) this happens if both
the paths are chosen so that no edge occurs too often and the (x, y) edges
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that appear don’t have small value of Kξ(x, y). With these preliminaries we
next prove:

Proposition 4.3. — There exists a positive constant θ such that for all
n and 1 6 ξ 6 n

logn , the largest eigenvalue β(ξ) of M(ξ) satisfies

β(ξ) 6 1− θ
(
ξ

n

)4/3
.

20 40 60 80 100

-1

-0.5

0.5

1 Group 1 Group 2 Group 3

x ∗
l x ∗

u

Figure 4.4. Splitting points into groups according to the cycles of
cosine. Note the values marked x∗l and x∗u.

Proposition 4.4. — For n
log(n) 6 ξ 6

n
2 ,

β(ξ) 6 1− 3
4

(
ξ

n

)2
.

Proof of Proposition 4.3. — For 1 6 ξ 6 n
logn , let x

∗ =
⌊(

n
ξ

) 2
3
⌋
. Break

the ξ cycles of cos
(

2πξj
n

)
at bnξ c, 2b

n
ξ c, . . . into ξ groups, eg. when ξ = 3

breaking ties to the right. See Figure 4.4. Each group has n
ξ + O(1) points.

For each group, define a point x∗l by counting x∗ points from the left and x∗u
by counting x∗ from the right of the groups. Each group is treated identically
and we here focus on the first group. From the development above, for any
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j between x∗l and 2x∗l ,

Kξ(j,∞) = 1
3

(
1− cos

(
2πξj
n

))
>

1
3

(
1
2

(
2πξx∗l
n

)2
+O

(
2πξx∗l
n

)4
)

Thus 2
Kξ(j,∞) 6 θ

((
n
ξx∗
l

)2
)

(1+o(1)) for an explicit constant θ, independent

of ξ, j, n. For points r between 1 and x∗l −1, connect r to infinity by horizontal
paths r, r+1, . . . , (r+x∗l +1) going directly from there to∞. See Figure 4.5.

1 2 x∗l x∗l + 1

∞

Figure 4.5. The chosen path from 1 to ∞ is given with solid lines,
while the chosen path from 2 to ∞ is pictured with dashed lines.

Do the symmetric thing with the rightmost x∗ − 1 points at the right
of group 1, (moving leftward). Connect points from x∗l to x∗u directly to ∞
with paths of length 1. Treat each of the other groups in a parallel fashion.

Bounds for A in (4.1) follow from bounds from the edges in Group 1.
For the edge (r− 1, r), order x∗ paths use this edge and each such path has
length x∗. Since 2

Kξ(r−1,r) 6
2

Kξ(x∗
l
−1,x∗

l
) = 12, the contribution from this

edge is at most of order (x∗)2. Next consider edges (j,∞) with j between
x∗l and 2x∗l or between x∗u − x∗ and x∗u. At most two paths use such an
edge, one of length x∗ (and the other of length one.) The contribution here
is of order

(
n
ξx∗

)2
x∗. The exponent 2

3 in our choices of x∗ was chosen to

make (x∗)2 and
(
n
ξ

)2
1
x∗ of the same order. The only other edges used are

(j,∞) with j from 2x∗l to 2x∗u. These are used once for paths of length 1 and
1

K(j,∞) is at most of order
(
n
ξ

)2/3
. Combining bounds completes the proof

of Proposition 4.3. �

Proof of Proposition 4.4. — Proceeding as above, break 0 6 j 6 n − 1
into groups of nξ points (within 1). Again, the groups are treated identically

and we focus on the first group. Let x∗l = 1
4

⌊
n
ξ

⌋
and connect points of

0 6 j < x∗l to points x∗l + j and then to ∞. Since cos
( 2π
n ξ(x

∗
l + j)

)
6 0,

2
Kξ(x∗

l
+j,∞) 6 6. For x∗l to x∗u, connect points directly to∞. For j at the right

of group 1, connect backward to x∗u− j and then to∞ in symmetric fashion.
Now, 2

K(j,∞) 6 6. For all x∗l 6 j 6 x∗u that occur in this choice of paths, these
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edges (from j to ∞) have at most 3 paths through them, the longest path
of length of order n

4ξ . This gives 5nξ as an upper bound for those edges. For
edges (j, j+1), 2

K(j,j+1) = 12. The maximizing such edge is (x∗l −1, x∗l ). This

has x∗l paths using it of length x∗ contributing at most 12(x∗)2 = 3
4

(
n
ξ

)2
.

Combining bounds completes the proof of Proposition 4.4. �

4.3. Lower bounds on Negative Eigenvalues

We derive crude but useful lower bounds on the negative eigenvalues of
M(ξ) by using the upper bounds from Section 4.2 together with the inclusion
from Proposition 4.1. Suppose that n is odd (the case of interest for proving
Theorem 1.1). From Proposition 4.1 (d), the following spectral inclusion
holds:

S(n, ξ, 0) ⊆ −S
(

2n, 2ξ, n2ξ

)
.

Thus bounds on the smallest eigenvalues of M(ξ) follow from bounds on
the largest eigenvalues of 2n × 2n matrices with diagonal cos

(
2πξj
n + π

)
,

0 6 j 6 2n − 1. First consider the case of ξ = 1, the diagonal elements
appear as in Figure 4.6.

10 20 30 40 50 60

-1

-0.5

0.5

1

Figure 4.6. Diagonal elements for ξ = 1
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A cyclic shift of the diagonal doesn’t change the spectrum so we may
consider the 2n × 2n matrix with diagonal entries cos

(
π(2j+1)

n

)
, 0 6 j <

2n− 1, as in Figure 4.7.

10 20 30 40 50 60

-1

-0.5

0.5

1

Figure 4.7. A shift of the diagonal elements for ξ = 1

Now, the same paths and bounds used in Section 4.2 can be used to get
upper bounds. We will not repeat the details but merely state the conclu-
sions.

Proposition 4.5. — There is a positive constant θ such that for all odd
n and 1 6 ξ 6 n

log(n) , the smallest eigenvalue β∗(ξ) of M(ξ) satisfies

β∗(ξ) > −1 +O

(
ξ

n

)4/3
.

Proposition 4.6. — For n
log(n) 6 ξ <

n
2 , β∗(ξ) > −1+ 3

4

(
ξ
n

)2
(1+o(1))

Remark 4.7. — The case of even n arises naturally as well. This may
be treated in parallel fashion using Proposition 4.1 (c) to reduce things to
bound the largest eigenvalues of slightly shifted matrices as above.
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