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Convergence to equilibrium for a directed
(1 4+ d)—dimensional polymer

PIETRO CAPUTO () AND JULIEN SOHIER (?)

ABSTRACT. — We consider a flip dynamics for directed (1+d)—dimen-
sional lattice paths with length L. The model can be interpreted as a
higher dimensional version of the simple exclusion process, the latter cor-
responding to the case d = 1. We prove that the mixing time of the
associated Markov chain scales like L?log L up to a d-dependent multi-
plicative constant. The key step in the proof of the upper bound is to show
that the system satisfies a logarithmic Sobolev inequality on the diffusive
scale L? for every fixed d, which we achieve by a suitable induction over
the dimension together with an estimate for adjacent transpositions. The
lower bound is obtained with a version of Wilson’s argument [13] for the
one-dimensional case.

RESUME. — Nous considérons une dynamique de flips pour des che-
mins de longueur L sur le réseau Z?. Il est naturel d’interpréter ce modeéle
comme une généralisation multidimensionnelle du processus d’exclusion
simple, qui correspond au cas d = 1. Nous montrons que le temps de mé-
lange de la chaine de Markov associée se comporte comme L2 log L & des
constantes multiplicatives prés, qui dépendent de la dimension d. L’idée
clef de la preuve pour la borne supérieure est de montrer une inégalité
de Sobolev logarithmique pour une constante d’ordre L?; pour ce faire,
nous combinons une récurrence sur la dimension et une estimée pour des
transpositions adjacentes. Nous montrons la borne inférieure en utilisant
une version de l'inégalité de Wilson [13] pour le cas unidimensionnel.
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1. Introduction

Consider the set Qy, of all Z¢ paths which start and end at the origin
after L steps, where L is an even integer. That is, the set of vectors n =
(N0, - .,n1), with n, € Z, ny = nr, = 0, with |, — n.41| = 1. Alternatively,
we can look at Qp as the set of all directed paths in (1 + d) dimensions
which start at (0,0) and end at (o, L) where o stands for the origin of Z.
We interpret a configuration n € Qp as a directed (1 + d)—dimensional
polymer.

Consider the Markov chain where independently, at the arrival times of a
Poisson clock with intensity 1, each site x € {1,..., L—1} updates the value
of 7, with a random 7, chosen uniformly among all possible values of the
polymer at that site given the values of the polymer n, at all sites y # x. To
define this process formally, let © denote the uniform probability measure
on 2y, and write

Qof(m) = p(f | ny,y # ),

for the conditional expectation of a function f : Q7 — R at x given the
values 7, at all vertices y # x. Then, the process introduced above is the
continuous-time Markov chain with infinitesimal generator

L—1
Lf=>[Quf— 1), (1.1)
z=1
for all functions f : €y — R. Note that £ defines a bounded self-adjoint
operator on L?(Qy, u). Indeed, £ is a symmetric |Qz,| x |27,| matrix. For any
o € Qp, let nf denote the polymer configuration at time ¢ when the initial
condition is o € €y, so that, for any t > 0, 0,£ € Q, the matrix element
pi(0,€) = et* (0, &) represents the probability of the event n? = . Since L is
irreducible and symmetric, one sees that u is the unique invariant measure
and

tli)rgopt(0-7 6) = ,LL(f),
for any o,& € Qp. The mixing time Ty,ix is defined by

Tonixe = inf {t >0 max [po(e, ) = plry < 1/4}, (1.2)
oelly
where || - ||y denotes the total variation distance:
lv =+ lev =3 > [v(n) = v ()], (1.3)
neQyr

for probabilities v, on Q. We refer to [11] for more background on this
standard notion of mixing time.
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Dynamics of a directed (1 + d)—dimensional polymer

The one-dimensional case d = 1 has been extensively studied in the past.
This model is equivalent to the simple exclusion process on the segment
{1,...,L} with L/2 particles. It was shown by D.B. Wilson [13] that the
mixing time scales like L2log L up to a multiplicative constant. More re-
cently, a finer analysis of the mixing time was obtained by H. Lacoin [§],
who showed that that the process exhibits a cutoff phenomenon with

Tmix = (525 +0(1))L?log L, (1.4)

as L — oo. Below, we will consider the higher dimensional case d > 1,
where apparently no estimates of this type have been obtained before. As
explained later on, one may interpret this as a suitable exclusion process
with d different types of particles. Our main result is as follows.

THEOREM 1.1. — For any d > 2, there exist constants ¢,C > 0 such
that the inequality
cL?log L < Tmix < CL?log L (1.5)
holds for all L.

We remark that in the special case d = 2 one can obtain the above result
by using a simple product representation. Indeed, after a rotation by 45
degrees of the lattice Z2 one sees that a directed (1+2)-dimensional polymer
is represented as two directed (14 1)—dimensional polymers, the equilibrium
measure i being the product of the two one-dimensional polymer measures.
Moreover, the dynamics is seen to coincide with the Markov chain where
the two polymers are independently updated at the same random times and
same random positions. These facts can be used to provide a simple proof
of (1.5) by comparison with the one-dimensional case.

The general case d > 3 cannot be represented in product form and thus
new arguments are needed. The lower bound in (1.5) will be obtained in Sec-
tion 3 below by a suitable modification of the lower bound from D.B. Wil-
son [13] for the one-dimensional case. The upper bound requires more work.
A direct coupling argument does not seem to be available when d > 3. An
important difference with respect to the case d = 1 is the lack of standard
monotonicity tools.

The main step in the proof of the upper bound is to show that the process
satisfies the logarithmic Sobolev inequality with constants scaling like L2.
To be more precise, let

E(f,g) = —plfLygl, (1.6)

for f,g : Qp — R, denote the Dirichlet form of the process, and define the
entropy functional

Ent(f) = p[f log f] — p[f]log u[f], (1.7)
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for f: Qp — R4. In Section 2 we show that for any d, for any f : Qp — R,
for any L € 2N, one has the inequality

Ent(f) < ¢ LE(V/F. /) (1.8)

where ¢ = ¢(d) is a positive constant. Once the bound (1.8) is available, the
upper bound in Theorem 1.1 is obtained by an application of the standard
estimates relating the constant in the log-Sobolev inequality and the mixing
time.

Diffusive scaling of the constants in the log-Sobolev inequality as in (1.8)
is well known to hold for the simple exclusion process and for various gener-
alizations of it; see in particular [14] and [1]. However, the higher dimensional
case considered here is not covered by these works. One of the main differ-
ences is that the model here has d conservation laws rather than just one.
We note that if one is after the weaker Poincaré inequality, or spectral gap,
then the diffusive estimate could be obtained by adapting the arguments
in [2]. However, this would not suffice to prove the desired upper bound
on the mixing time. To prove (1.8) instead, we exploit a recursion over the
dimension such that at each step the number of particles of a new type is
fixed. At the final stage of the recursion, the numbers of all particle types
have been assigned, and the problem is reduced to the proof of diffusive scal-
ing for the log-Sobolev constant in the setting of card shuffling by adjacent
transpositions. The latter is established in Section 2.8 below. A high-level
description of the whole argument is given in Section 2.2. We remark that
the same argument actually proves the upper bound Ty < CL?log L for
the more general problem where the end point 77, of the polymer is fixed at
an arbitrary value in Z¢, not necessarily the origin, with constant C' indepen-
dent of the value of ny,. For simplicity of notation we have chosen to restrict
ourselves to the case nz, = 0. On the other hand it should be remarked that
our argument provides a constant C' = C(d) that is presumably far from
optimal, especially for d large.

We end this introduction by mentioning an interesting open question.
Consider the above defined polymer model in the presence of a pinning po-
tential, that is when g is modified by assigning the weight AN to each
configuration n € Q,, where N(n) = 25;11 1,, -, stands for the number of
contacts of the polymer with the origin o € Z¢, and A > 0 is a parameter
determining the strength of repulsion (A < 1) or attraction (A > 1) to the ori-
gin. It is well known that the polymer undergoes a localization/delocalization
phase transition, with critical point A.(d) =1 for d = 1,2 and \.(d) > 1 for
d > 2; see [7, Chapter 3]. The mixing time of the polymer in the presence of
pinning was studied in depth in [5] and [3] in the case d = 1, where it was
shown among other things that there is a slowdown in the relaxation, with
subdiffusive behavior, in the delocalized regime A < 1. We conjecture that
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this phenomenon should disappear as soon as d > 1 and that the mixing
time should stay bounded by O(L?1log L) for any A > 0.

2. Proof of the upper bound.
2.1. Representation as a particle system

Recall that Q7 is the set of Z? paths of length L that start and end at
the origin. For any n € Qp, let { = Vn denote the vector

C:(C17"'aCL), Cz:nx_nz—L (21)
Through this map the set 2 will be identified with the set of vectors

{C c{er,...,eaq}t : Zle ¢ = 0},

where e, j = 1,...,d, denotes the canonical basis of Z%, and for notational
convenience we define ejyq := —e;. For j = 1,...,d, and z = 1,... L, we
say that site = is occupied by a particle of type j if (, = e;, and by an
anti-particle of type j if (; = —e;. At each site there is either a particle or
an anti-particle. Because of the constraint n;, = o, for every type j = 1,...,d
the number of particles equals the number of anti-particles. The dynamics
defined by (1.1) is then interpreted naturally as a particle exchange process
with creation-annihiliation of particle/anti-particle pairs as follows. Fix a
polymer configuration 1 and let ¢ denote the corresponding gradient vector.
Fix a site x to be updated. If 79,1 # 1341, then one has (; =7, —1z—1 =¢;
and (z41 = Ngt1—"Nz = e, forsome 7,0 € {1,...,2d} with e, # —e;. Thus, in
this case there are two possibilities for the new value of 7,,, one corresponding
to the current configuration 7, and one corresponding to the configuration
7* obtained by swapping the increments (;,(;+1. On the other hand, if the
polymer is such that 7,_1 = 741, then one must have ({;, (z+1) = (e;, —¢;),
for some j € {1,...,2d}. Thus, in this case there are 2d possibilities for the
new value of 7,,. We call n®*J the polymer configuration that coincides with
n at all sites y # « and such that ({, (z+1) = (ej, —e;). Thus, in this process
adjacent particles exchange their positions, and when a particle/anti-particle
pair occupies adjacent sites it can be deleted to produce a new particle/anti-
particle pair of a different type. With this notation, the generator (1.1) takes
the form

L1 L-1 2d
LEm) =Y e ") = F+ DY ™) = fm), (2:2)
r=1 r=1 j=1
where 4
cz(n) = %]177147577“1’ eyl (n) = 271d Ly, i=neis-
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The Dirichlet form (1.6) of this process becomes

L-1 L—-1 2d
EF0) =13 ple (V) + 1S i (VI P, (23)
z=1 z=1 j=1

where we use the notation V. f(n) = f(n®)—f(n), and VI f(n) = f(n**7)—
f(n). Notice that when d = 1 only the last term in the right hand side of (2.3)
survives and we obtain the symmetric simple exclusion process; see e.g. [5].

2.2. Overview of the proof

Let us describe the strategy for the upper bound of Theorem 1.1. Recall
the definition of the Dirichlet form (1.6) and define the log-Sobolev constant

- EWVF V)
a(Ll) =inf ————==
() f Ent(f)
where f ranges over all functions f: Qp — R,.

(2.4)

We refer to [6] for the following classical inequality relating (L) to Thix:
T 4 +log(log(1/7*))
mix ZQ(L) i

with 7* 1= mingeq, p(z) = [Qn| 7L Since |Q7| < (2d)%, it suffices to prove
the following estimate.

(2.5)

THEOREM 2.1. — For any d > 1, there exist a constant ¢ = ¢(d) > 0:
(L) = cL™2 (2.6)
It is worth remarking that the estimate (2.6) is sharp up to a constant
factor, as one sees using (2.5) and the lower bound on Ty, from Theorem 1.1.
In the special case d = 1, corresponding to the exclusion process, the above

theorem was known before; see [14]. We now illustrate the main steps of the
proof.

Let N; denote the number of particles of type :

L
m=> l¢=, (2.7)
r=1

where as above (, = 7, — 7z—1. The law of the vector (Ny,..., Ng) under
the uniform distribution p is given by

=M= = (BN P2 Yy
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where (n1,...,nq) is a vector of non negative integers satisfying 2?21 n; =
L/2, and (mL“/?nd) is the associated multinomial coefficient. Indeed, (2.8)

follows easily by counting all possible choices of positions of n; particles of
type ¢ and n; anti-particles of type ¢, for: =1,...,d.

We denote by 9, i = 1,...,d, the measure u(-|Ny, ..., N;) obtained by
conditioning p on a given value of the numbers of particles of type 1,...,1,
and we write u(®) = p. Notice that p(=D = ;{9 because of the global
constraint Z;l:l N; = L/2. We write

Ent;(f) = u[f log f] — V[ f]log n[f],

for the entropy with respect to the measure (). Thus, Ent;(f) is a function
of the variables Ny,..., N;.

Roughly speaking, the proof proceeds by induction from ¢ = d to ¢ = 0.
In the base case ¢ = d, all numbers NN, are fixed and the only degree of
freedom is the position of the particles. In this case the dynamics reduces to
adjacent swaps, which can be analyzed in terms of the interchange process;
see Theorem 2.3 below. To move from i+1 to ¢ we first decompose the entropy
Ent,(f) along the random variable N;;1. We then estimate the log-Sobolev
constant of a birth and death dynamics for the variable N;;;. Finally, a
delicate comparison argument allows one to recast the estimate for the birth
and death chain in terms of the Dirichlet form of the original process plus
an error term that can be absorbed in the recursion; see Theorem 2.2 below.

We turn to the details. By adding and subtracting p[f log p1(f|X)] in the
expression (1.7) one obtains the following standard decomposition of entropy
via conditioning on a random variable X:

Ent(f) = Ent(u(f]X)) + p(Ent(f] X)), (2.9)

where Ent(f|X) is the entropy of f with respect to the measure conditioned
on the value of X and p(f|X) is the X—measurable function defined by
conditional expectation. Applied to the measure u() with X = Nit1, and
noting that u (f|Nyy1) = p0TY(f), (2.9) gives that for any 0 <i <d — 1,

Ent; (f) = Ent; (1 (f)) + 19 [Entyp1(f)]. (2.10)

Since (41 = ;{49 we note that Enty_; (19 (f)) = 0. A crucial step in our
proof will be the following estimate.

THEOREM 2.2. — For any d > 2, there exist constants c1,co > 0 such
that for alli=0,...,d — 2:
p(Ent; (D () < el L*E(/fV/F) + ca p(Entiga (f)), (2.11)

forall f:Qp — Ry.
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Once this result is available we proceed as follows. For ¢ = 0, (2.10)
and (2.11) give the estimate

Ent(f) < ¢1 L2 \f\[ (14 c2) p(Ent1(f)).

If we iterate this reasoning, we obtain the estimate

Ent(f) < ki L2E(\/f, V/f) + k2 u(Enty(f)), (2.12)
where k& = ¢; Zi:o (1 +¢2)' and ko = (1 4 cp)%. It remains to estimate
p(Entq(f))-

THEOREM 2.3. — There exists a constant C > 0 such that

w(Entq(f)) < CL2EWNF,/F), (2.13)

forall f:Qp — Ry.

Theorem 2.2 and Theorem 2.3 then allow us to conclude that the log-
Sobolev constant in (2.4) satisfies

(L)™' < (Cky + k) LA,

which ends the proof of Theorem 2.1. The following subsections are devoted
to the proof of Theorem 2.2 and Theorem 2.3.

2.3. Log-Sobolev inequality for a birth and death chain

The starting point in the proof of Theorem 2.2 is an application of a
criterion for log-Sobolev inequalities in birth and death chains due to L. Mi-
clo [12]. For this purpose we follow [1]. In the definition below, we con-
sider a generic probability measure v on the finite set of integers S :=
{Nmin, Mmin + 1, - - -, Nmax |, fOr some nmax > Nmin.

DEFINITION 2.4 (Condition Conv(c,n)). — We say that «y satisfies the
convexity hypothesis with parameters ¢ > 0 and n € S, which we denote
by Conv(c,n), if ¢ ' < Nmax — 7 < civ and the same inequality holds for
N — Nmin- Furthermore, for any n > n:

1 n—n
M <ce e, (2.14)
v(n)
and for any n < n,
-1 i—n
=) o emnen (2.15)
v(n)

Finally for any n € S,

1 c(n—n)? n—
L e (2.16)
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The following useful lemma appears in [1]. We use the notation a A b =
min{a, b}.

LEMMA 2.5 ([1, Proposition A.5]). — If v satisfies Conv(c,n), then for
all functions g : S — Ry,
Mmax 2
Ent,(g) <Ca > (w) Av(n=DI(Vol) = Vol —1))", (217)

N=Nmin+1

where the constant C' depends only on ¢ and not on n.

We shall prove that the number of particles of a given type has a distri-
bution with the properties described above. Fix i € {0,...,d — 1}, and
fix nonnegative integers ny,...,n; such that 23;1 n; < L/2. Set § =
{0,..., Liy1/2}, where we define Lty := L — 23", n;. Let 7 denote the
probability on S:

y(n) :=p(Niz1 =n| Ny =n1,...,N; =n;) = u(i)(NZ-+1 =n). (2.18)
As an immediate corollary of Proposition A.1 in the appendix (simply replace
L by L; and d by d — i there), we have that the measure v defined in (2.18)
satisfies Conv(c,n) for some absolute constant ¢ > 0, with n := L;1/2(d —
i). Therefore, for any f : Qp — R4, it follows from Proposition A.1 and
Lemma 2.5 applied to g(n) = u?(f | Niy1 = n), that

Ent; (1™ (f))

CLiyy " l_ i
<39 g () Ay = 1] (O (f ), O (F |0 = 1), (2.19)

where C' > 0 is a constant and we use the notation

pO(f |n) = pD(f| Nig1 =n)
and

pla,b) :== (vVa — \fb)2 , a,b>0. (2.20)

To proceed towards the proof of Theorem 2.2 we now estimate the right
hand side of (2.19).

2.4. Decomposition of p (u(f|n), D (f |n—1)).

We need to introduce some more notation. Suppose u,v € {1,..., L} and
n € Qp, is such that ¢, = —(, = e;, for some j € {1,...,2d}, where { = Vp
as in (2.1). For any ¢ € {1,...,2d}, we define the operator T;:5 by

Tt f(n) = f(nih), (2.21)
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where 7 denotes the configuration 7 € Q, that is equal to 1 except that
the pair (¢y, (») = (e, —e;) has been replaced by the pair (¢}, ¢}) = (e¢, —es).
Notice that this operation is well defined, producing a valid element of €1,
whenever the configuration 7 satisfies (, = —(,. Moreover, for any fixed
u,ve{l,...,L},any i € {0,...,d—2},and £ € A; ;== {i+2,...,d}U{d +
i+2,...,2d}, n € {1,...,L;11/2}, from the uniformity of ;1 we obtain the
change of variable formula:

:u(i) (f 11<u=_<v=ei+1]1Ni+1=") = '“(i) (T577'17;1+1f1<1L=_CU=€Z]lNi+1=n_1)7 (222)

for any function f. Since Zﬁ,v:l Te,—— N2_~_1 one has

Co=eit1 — 4Vq

pD(fn) = ) p D [f N, =n]
1 L
- W Z M( f]]'cu:*Cu—ez+11N1+1_n}
u,v=1
1 *
- Q(dfl -1 n2 Z Z M(Z) T z+1f]1§ :*Cu_ez]leA =n— 1]

u,v=1/4€A;

-1)
= e _71(71 AT Z Z plt (T z+lf T¢y——¢omer | Nign =n —1] .

u,v=1LEA;
(2.23)
We introduce the notation
y(n—1)
w,v,l — ; Te,——¢,=e )
Xu,v,0 2(d i 1)n2,y(n> Cu=—Cv=¢e
L (2.24)
X = Z Z Xu,v,05
u,v=14€A;
so that (2.23) takes the more compact form
D(fIn) =D D (Xuw T fln—1). (2.25)
u,v,l
Considering the constant function f =1 one has the normalization
1D (x| n — Z 1D (Xuwe|m—1) = 1. (2.26)
u,v,
Moreover, using symmetry, for any £ € A; we have
2
u® (N2|n - 1) = 20 (2.27)

y(n—1)
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From (2.25), using the inequality p(a,b) < 2p(a, ¢)+2p(b, ¢), valid for a, b, ¢ >
0, one has

p (KO 1), 1 O(f1n = 1))
<2 (Zw,e 1D (Xt Trs fIn = 1), 5O (x f | — 1))
+20 (B0 0cf In = 1,1 O(f|n = 1))
=: Ai(f’ 7’L) + Bi(f’ n) : (2'28)

The contributions of the two terms above to the expression (2.19) will be
analyzed separately.

2.5. Estimating > [y(n — 1) Ay(n)]Ai(f, n).

Here we prove the following estimate.

PROPOSITION 2.6. — There exists a constant C' > 0 such that for all L €
2N, i=0,...,d—1, for all even L;11 € [2,L], all integers n € [1,L;11/2],
and for all functions f : Qp — R4, one has

Lita Z[”Y(” — 1) Ay(n)]Ai(f,n)

L-1 L—-1 2d

SCL Y pDea(Va/ PP+ CLY > (e (Vi V )P (2:29)
r=1 z=1 j=1
Proof. — Since p : [0,00)? — R is convex, by Jensen’s inequality and the
expressions (2.24) and (2.26),
Ai(fim) <2 w® (p (T o f) Xuwe I = 1) (2.30)
u,v,l

We now turn to the estimate of the right hand side of (2.30). We need
to compare the exchanges at positions u,v with local exchanges between

adjacent positions. Fix u,v and assume without loss of generality that v >
u+ 1. Set h = \/f so that

p (T f) = (T h—h)*.

The operation T;:f)*l can be implemented by first transferring ¢, from po-
sition u to position v — 1, through a chain of adjacent swaps, then applying
the operation T;ffll) and then finally transferring back the new value of (,,_1
from position v — 1 to position u via adjacent swaps. This can be formalized
as follows. Let T,, denote the adjacent swap operator that changes (y, Cut1)
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into (Cu+1, Cu), that is T, h(n) = h(n*) for any function h : Qr, — R; see (2.2).
Thus for any function A we can write

TJ,’f}Jrlh =T,0...0T,_0 T*’lfi oT,_ .o T,h.

In terms of the gradient operators V,, = T, — 1, V&l = T+l _ 1 one
has the telescopic sum

Tyith—h
v—u—3
Z Vu+jTu+j+1 O0...0 Tv 2 O T*7l+1 e} T . O Tuh
j=0
+ Vool s oTyz0...0T,h+ Vi T, 0. 0T,h
v—u—2
+ > Vg Turjor0...0Tuh+Vyh. (2.31)
j=1

By the uniformity of u(*), every term in the first sum in (2.31) satisfies

(i) T it ? _
1 VutjTugj—10...0Ty_ 90T " 0Ty s0...0T,h) Xuwe|n—1

= ’y&(ﬁ)l)u(i) |:(vu+jh)2 Xutj—1,0,i+1 \n} (2.32)

The same identity holds for the first term in the second line of (2.31), i.e.

when u 4 j = v — 2. In a similar way, for the terms in the last line of (2.31),
one obtains

Q) [(Vu+jTu+j_1 o...0Tuh)? Xuwe|n — 1}

— 1@ {(Vuﬂ»h)? Xutj—twoe|n—1|. (2.33)

* ’L+1

Finally, for the term involving the gradient V7" one has

. > 2
Iu(z) |:(VZ’H£1TU—2 ©...0 Tuh) Xu,v,l | n— 1:|

. . 2
= pu® {(v:}f{lh) Xo—10.0 |7 — 1} . (2.34)
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From (2.30)—(2.34), using Cauchy—Schwarz inequality we have
L-1 L

o<t 5355 {00 (@07 v i ]

r=1v=1/€A

u [(vxh)g Xo-twe|n—1] }

+6LZ 3 ul [ (V2 0) Xaagre | n — 1} . (2.3)

z=1L€A;

Recalling (2.24), one has that for any x:

N1+1
Z Z Xz—1 0,141 \ 9

v=1(4€EA;

L
n—1)
r—1,v < 7‘[/74 )
Z Z Xz—1,v.¢ n2y(n)

v=1/LEA;

y(n—1)
Z Xz,z+1,6 S 2 o le=—Coia
Pyt n*y(n)

Next, we claim that

Bt 0 1) Av()] < Ot (2.36)
2 J—
L,f;l [y(n = 1) Ary(n)] W < Cy(n—1), (2.37)

for some constant C' > 0. Since n < L;41 it is clear that (2.37) implies (2.36).
On the other hand (2.37) follows from

(1 v(n=1) C
= < )
mm{nz’ n2y(n) } L?,

which is an immediate consequence of the estimate y(n — 1)/(n?vy(n)) <
C(Liy1 — 2n)~2; see Lemma A.2 in the appendix (applied with L replaced
by L;11 and d replaced by d — 7). For the first term in (2.35), using (2.36)
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we then obtain

Lit1/2 L—1 L

Lini 3 O A=) 330 5 O [(Fh) 1001 17
n=1 r=1v=1/4€A;
Lit1/2 ) L—-1
<Y -1 Avm)]) Y u? [0 (0]
Liv1/2L—1 L—1
<c Y [(V.h) [n] < C 30 u |(Vah)?]

For the second term in (2.35), using (2.37) we have

Lit1/2 L-1 L .
L 35 000 A= 1) S 5 3 0 (7. ey 1]
n=1 z=1v=1(cA,
el L, y(n—-1) 4 5
DD I e [(V.n)? 1n—1]
i+1/2 L—1 L1
<C Y Y A= (V) 1] <O ut [(V.h)?]
n=1 z=1 =1

Similarly, the last term in (2.35) satisfies

Liy1/2 L—1

i *,7 2

Lisn Y. () Ay =1) D0 D w0 [(Vah) xewsreln - 1]

n=1 r=1/LcA;
L-1 )
<cy u [(V;‘;’“'lh) ] .
z=1
This ends the proof of Proposition 2.6. ]

2.6. Covariance estimate

Here we estimate the contribution of the second term in (2.28).

PROPOSITION 2.7. — There exists a constant C' > 0 such that for all L €
2N, i=0,...,d— 2, for all even L;11 € [2,L], all integers n € [1,L;11/2],
and for all functions f : Qp — R4, one has

Liy1 Y _[y(n = 1) Ay(n)]Bi(f,n) < C ™ (Entiy(f)). (2.38)
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Proof. — Note that we may assume that ¢ < d — 3 here since otherwise
the function x in (2.24) is deterministically equal to 1 under the measure
p[-|n —1], and therefore B;(f,n) = 0 for all n and f. Using the inequality

(Va- i) < (z —y)° < (w—y)27

zVy Y

valid for x,y > 0, one has
pI(fx=1)[n—1)°
pO(fn—1)
Since by (2.26) x satisfies (¥ (x|n — 1) = 1, one has
HO(f(x=1)In = 1) = Covi(f, x[n = 1),

where Cov;(-|n — 1) denotes covariance with respect to u(”(-|n —1). Let

us define ( )
1 y(n—1

D(n, Liyy) = — (1v 22" 22)

(m, Li+1) Lit1 ( ~(n) )

We are going to prove that for some constant C' > 0 one has

Covi(fox|n—1)> < CD(n, Liy1) p'? (f |0 — 1) Ent;(f |n — 1),  (2.40)

Bi(f,n) <2 (2.39)

where Ent;(-|n — 1) stands for the entropy with respect to u((-|n —1).
If (2.40) holds, then (2.39) implies
Liilyn — 1) A(mIBi(f,m) < 203(n — 1) Enti(f |n - 1),

Using
ny(n — 1) Ent(f|n—1) = M(i)(Enti+1(f))v

we obtain the desired inequality (2.38). Thus, it suffices to prove (2.40).

To prove (2.40), by homogeneity, we may assume without loss of gener-
ality that () (f|n — 1) = 1. In Proposition 2.8 below we establish that for
some constant C; > 0 one has the Laplace transform bound

log p®) (et(X_l) | n— 1) <C1t2D(n, Liyy), teR. (2.41)

We remark that (2.40) follows easily from (2.41). Indeed, set for simplicity
v = pu®(-|n —1) and write Ent,(-) for the corresponding entropy. The
variational principle for entropy implies that for any f > 0 with v(f) =1
one has

Ent, (f) = v(flog f) > v(fh) —logv(e"),
for any function h. Therefore

v(f(x—1)) < L Ent,(f)+ Llogv (65("’1)) < § Ent, (f) +CisD,
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for all s > 0, where we write D = D(n, L;11) and we use (2.41) with ¢ = s.
Using also (2.41) with t = —s one concludes that

w(f(x = D) < § Ent,(f) + C1sD,
for all s > 0. Setting s = /D~1 Ent, (f) one obtains
v(f(x —1))* < (1+C1)?D Ent, (f),
which is the desired estimate (2.40). It remains to prove (2.41). O

2.7. Laplace transform estimate

Here we prove (2.41).

PROPOSITION 2.8. — There exists a constant C; > 0 such that (2.41)
holds for all t € R.

Proof. — We use as above the shorthand notation v = u((-|n —1) and
D = D(n, Lit1). From (2.24)—(2.27) we have

Yiisa (N — v[NF])

i )

Define the centered variables N; := N; — v[N,], where
Li+1 - 2(7’L - 1)
2(d—i—1)

Observe that by the conservation laws one has

vIN;] =

Z N, = Liy1—2(n—1)

2
j=14+2

and therefore Z = 0. From these relations we see that

Jj= z+2

d 2 2
1 N7 —o

A= NV, Y=t

X T Y TN

where we define the variance 02 := V[N J2] Using the multi-index Holder’s
inequality:
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where the last identity follows from the fact that all Y; have the same dis-
tribution under v, say Y := Y o. Thus, it is sufficient to prove that there
exists some constant C' > 0 such that for all ¢ € R one has

logv (e") < C#*D. (2.42)

The proof of (2.42) is divided into several steps, corresponding to different
sets of values for the parameters ¢ and n.

For simplicity, we only consider the case ¢ > 0. The case ¢t < 0 follows
with the very same arguments. We often write C,Cq,Cs, ... for positive
constants that are independent of the parameters n, L;y1, L etc. but may
depend on d. Their value may change from line to line.

From Lemma A.3 in the appendix we know that o2 is proportional to
(L;+1 — 2n). Notice that

2
Ll‘ 1—<4(n—

VINZ,] = V[Nii]® = (7;((13(,1)”) , (2.43)

and that N7, < (Li41 — 2(n — 1))2. Therefore
Y <4(d—i—1)>2 (2.44)
Suppose that ¢t > aD~! for a fixed constant a > 0. Then
v (etY) < e4d2t < e4d2t2D/a

which implies (2.42) with C' = 4d?/a.

Next, assume that ¢ < b for some fixed constant b > 0. From (2.43) and
Lemma A.3 applied to the variable X = (N;;2)? — 02 in the system of size
Liy1 —2(n — 1), we have that

Var, (Y) < C(Liy1 — 2n) 2.
From Lemma A.2 applied to the system of size L;11, one has that
D> c(Lipi —2n)7",
for some positive constant ¢. Combining these facts with the well known
inequality
v(e") <exp (3 V[hze‘hl]),
which is valid for any function h with v(h) = 0 (use e® < 1+a+ Sa%el?l and
1+ 2 <e*), we get
v (e™) <exp (t*Ci(Liy1 — 2n)*1e4d2b) < eC20F,

Thus, we have shown that (2.42) holds for all t < b and t > aD ™!, and we
have freedom on the choices of a and b. In particular, we can consider a small
and b large if we wish.
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Next, we observe that (2.42) holds for all ¢t > 0 if (L;11 — 2n) < /Li11.
Indeed, from Lemma A.2, we know that D > ¢ > 0 for some ¢ > 0 in this
case. Therefore, taking suitable constants a,b (that is a small and b large
enough) we cover all ¢t > 0 with the previous argument.

Thus, we are left with the case (L;y1 —2n) = \/L;yq forall t € [b,aD™1].
Since by Lemma A.2 one has D! < C(L;41 — 2n) for some constant C' > 0,
we may actually restrict to t € [b,¢(L;11 — 2n)] where ¢ can be made small
if we wish.

LEMMA 2.9. — There exists a constant ¢ > 0 such that for all n satis-
fying Liy1 — 2n > m, for allt < e(L;y1 — 2n) we have
cv (ety) < 1. (2.45)
Proof. — We compute
v () = Z V(Niy2 = k) exp (t %) (2.46)
k

Using ¢ < ¢(Lip1 — 2n) and v[N2 5] = (Liy1 — 2n)?/4d?, see (2.43), we can

bound
k%2 —o2 4d?c k?
exp (t 71,[1\&;2]2) < exp (Liﬂcfzn)'

From Proposition A.1 we know that

U(Niso = k) < k2 ) (2.47)

C
T o ot

for some constant C' > 0. Thus, taking ¢ small enough, one has that (2.46) is
bounded by a constant. Adjusting the value of constants yields the desired
conclusion (2.45). O

An immediate consequence of Lemma 2.9 is that (2.42) holds for all ¢ €
[(Liy1 —2n)Y2, ¢(Liy1 — 2n)]. Indeed, it suffices to observe that here

log v (ety) < Cy < O1t?)(Lig1 — 2n) < CH?D,
for some new constant C > 0.

Therefore, for the proof of (2.42) we are left with the regime ¢ € [b, (L; 41—
2n)'/2], and (Liy1 — 2n) = \/Li1. Here we use the following two facts.

LEMMA 2.10. — For any 6 > 0, there exists a constant ¢y > 0 such that
for all n satisfying Liv1 — 2n = y/Liv1 and for all t < ¢1(Liy1 — 2n) one
has

— 2 2
Z V(Niyo = k) exp (t ﬁ) < exp (—e1(Lip1 —2n)°)
[k|>(Lit1—2n)1/2+0

(2.48)
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Proof. — This follows immediately from (2.43) and (2.47). O

LEMMA 2.11. — For any 6 € (0, ), there exists a constant Cy > 0 such
that for all n satisfying Liy1 —2n > \/Liy1, for all 0 <t < (Liy1 — 2n)1/2
one has

— 2 2 2
3 V(Niga = k) exp (t JFN%']) < exp ( i 2n). (2.49)

[k|<(Lig1—2n)t/2+2

Proof. — Set yj, = -2=2"_ We observe that if k| < (Lip1 — 2n)Y/?+9,

V[Nip2]?”
§€(0,3), and t < (Ligr — 2n)1/2 then [tys| < 1. Then we can expand

e <1+ ty + 375 + CIPy3),

for some absolute constant C' > 0. Note that ), v(N;y2 = k)yr = v(Y) = 0.
On the other hand, using Lemma A.3, we get

> U(Niya = k)yg = Var, (V) < C(Lit1 — 2n) >
k
Moreover, for |k| < (Liy1 — 2n)Y/?%% we have the bound |y|® < (Liy1 —
2n)%=3 and thus, for t < (Liy1 — 2n)/2, one has
|33 | < 2 (Ligy — 2n)%075/2 <t2(Liyy — 2n)73/2,
This and Lemma 2.10 prove that the left hand side of (2.49) is bounded above

by 1+ Ct?(L;y1 —2n)~! for some new C' > 0. Using the bound 1 + z < €%,
this concludes the proof. O

We can now finish the proof of (2.42). Recall that it remained to check
the estimate in the case b <t < (Liy1 — 2n)Y/2, and (Liy 1 — 2n) > /Liy1.
From the two lemmas above we have

v (") <exp (255 ) + exp (~ar(Livs — 2n)")

2 2
= exp (Lfi’i%) (1 + exp (—01(L¢+1 —2n)° — 7Lfit—2n>)

Taking logarithms, using the bounds log(1 + ) < z and ¢ > b one has

2 2 2
o (6) < 5 +exp (~eu(Luss 200"~ p90) < 29
Hence (2.42) follows for all ¢, n, L. This ends the proof of Proposition 2.8. [

We remark that Proposition 2.8 is not necessarily sharp, since in the
regime where L; 11 —2n is of order L;; 1, one has that D behaves as Li]_ll, and
in analogy with Gaussian behavior one should expect t2/L? = t°D? rather
than 2D as in (2.41). However, this bound is sufficient for our purposes and
is weak enough to hold throughout the whole range of values of ¢,n, L that

we are considering.
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2.8. Logarithmic Sobolev inequality for adjacent transpositions

In this subsection we prove Theorem 2.3. It will be convenient to prove
a more general estimate related to the so called interchange process. The
latter is defined as follows. Given a graph G = (V, E), with |V| = n vertices,
the interchange process on G is the continuous-time Markov chain with state
space S, the symmetric group of permutations of n objects, defined by the
infinitesimal generator

£Gf(0) = Z vz,yf(a) ) (250)

{z,y}€FE

where 0 € S,,, f: S, — R, and V, ,f(0) = f(c™¥) — f(0), if c™¥ denotes
the permutation o’ obtained from o after the {x,y}-transposition. If we
think of o as an assignment of n labels to the vertices V', then we interpret
the process as follows: independently, with rate one, each edge e € E swaps
the labels at its end points. The Dirichlet form is given by

Eolf. )= —nlfLogl =5 3 7VeufVansl,  (251)

{z,y}eFE

where 7w denotes the uniform probability distribution on S,, and f, g : S, —
R. The logarithmic Sobolev constant for the interchange process on G is

defined as
. EG(\/fv \/f)
a(G) = 1rflf 7Ent7r(f) (2.52)
where f ranges over all f: S, — Ry, and Ent.(f) = =« [flog(f/=[f])]. We

will need the following result.

THEOREM 2.12. — Let '), be the n—segment, i.e. the graph with V =
{1,2,...,n} and E ={{i,i+1},i=1,...,n — 1}. There exists ¢ > 0 such
that for any n € N :

aln) > 5 (2.53)

Before proving the theorem, let us show that it is indeed sufficient to
establish Theorem 2.3. Given 2d non negative integer numbers ni,...,naq
such that Z?i1 n; = n, and a permutation m € Sy, w(1),...,7m(n), let us
define w(i) = j iff (i) € [n1 +...nj—1,n1 + ...n;]. In words, if we think
of 7(i) as a label at vertex ¢ € V, then we paint labels with 2d colors in
such a way that the first ny labels have color 1, the next ny labels have
color 2 and so on. Thus for a fixed choice of n;’s as above we have a map
Sp = Qnq,...,neq), where Q(nq,...,neq) is the set of w € {1,...,2d}"
such that > | Ly)=; = nj, forall j =1,...,2d.
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Projecting the interchange process along the map described above gives
the continuous time Markov chain on Q(n1,...,ngy) with infinitesimal gen-
erator

Goh(w) = Y Vaeyh(w), (2.54)

{z,y}eF
where h : Q(n1,...,n24) = R, and Vg h(w) = h(w™Y) — h(o), where w™Y
denotes the element w’ € Q(nq, ..., neq) such that w(i) = w'(i) for alli # z,y
and (w'(z),w'(y)) = (w(y),w(x)). The associated Dirichlet form is given by

~ 1 ~
Dg(p, ) = —7lp Gap] = ) Z W[Vx,yspvx,yw] ) (2.55)
{z,y}€FE

where ¢, : Q(nq,...,n24) — R, and 7 denotes the uniform distribution on
Q(ny,...,naq). In the special case d = 1, this is the exclusion process on the
graph G with n; particles and ny = n —n; empty sites. In general, we define
the logarithmic Sobolev constant for the above process as

DG(\/E7 \/E)

Oé(G, ny,... ,TLQd) = lgf W, (256)
where the infimum ranges over h : Q(ng,...,n2q) — R, Note that by con-
traction, one has

a(G) < a(G,nq,...,n2q). (2.57)

We remark that for any graph G, the above described projection is known to
leave the spectral gap of the process invariant [4]. In contrast, the log-Sobolev
constant can be changed by the projection, that is the inequality (2.57) can
be strict. For instance, if G is the complete graph K,,, then Lee and Yau [10]
(see also [6] for some earlier results) prove that

n
K,) =< 2.

where the symbol a,, < b, means that ¢ < (b,/a,) < ¢!, for an absolute
constant ¢ > 0. Moreover, they also prove that for d = 1, any n; € {1,...,
n—1},

n
Kp,ni,n—mny) = : 2.59
N E i) (259

In particular, if ny < n/2 one has a(K,,n1,n —ny) < n.

Consider now the special case n = L € 2N, and n; = n;14, for all ¢ =
1,...,d, Z?zl n; = L/2. Then Q(nq,...,naq) coincides with our set 0, of
74 paths of length L started at the origin which come back to the origin after
L steps. Moreover, the measure p(?) coincides with 7 and Entq(f) = Ent~(f)
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for all f > 0. Therefore, using (2.57) and Theorem 2.12 one finds

L—1
Enty(f) < CL* Y p@ {(vm,m\/})?} . (2.60)

Taking expectation with respect to the measure p one obtains the esti-
mate (2.13). Thus, we have checked that Theorem 2.12 implies Theorem 2.3.

2.9. Proof of Theorem 2.12

For the graph I'), it is well known, see [14], that uniformly in n; €
{1,...,n—1}:
a(ly,ni,n—ny) =n"2. (2.61)
That is, the simple exclusion process on the n—segment has log-Sobolev con-
stant scaling like n~2 independently of the number of particles n;. In par-
ticular, by (2.57), a(T';,) < Cn=2. We want to establish the lower bound
a(T,) = C~'n=2. We could not find an explicit proof of this statement
in the literature. We shall derive this estimate as a consequence of (2.59),
with a suitable recursive argument that might be of interest on its own.
We remark that a simple comparison argument between Dirichlet forms, see
e.g. [6], gives the estimates

Ex, (f, f) <Cn’er, (£, 1), (2.62)

for some constant C' > 0 and all functions f. Thus, (2.58) implies «(T',) >
¢ (n?logn)~!, which is not sufficient for our purpose.

We use the short hand notation a(n) for «(T',), &, for &r,. Fix n; €
{1,...,n—1},0 € S, and let X = X (n1, o) denote the vector in {0, 1}" such
that X; = 1 iff label ¢ occupies one of the first n; vertices of V= {1,...,n}.
Clearly, as o spans S,, X spans Q(ni,n — n;). Let mx = x[-| X] denote
the distribution 7 conditioned on the value of X. The entropy of a function
f S, — Ry can be decomposed as

Ent,(f) = 7[Ent,, (f)] + Ent,(z[f | X]). (2.63)

Note that mx is a product measure over the product space S,, X Sp_n,.
Thus, by the well known tensorization property of entropy, see e.g. [6], one
has

Ent,, (f) < (a(n1) A a(n — nl))l{; il mx | (Vi VF)?]

i=1

+ % S TX [(Vz‘,i-H \/?)2} } (2.64)
i=ni+1
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Taking expectation w.r.t. 7 in (2.64), and using 7[rx(g)] = 7[g] for any g,
one has that

m[Entry (f)] < (@(na) Aa(n —m)) " €V F) (2.65)

To estimate the second term in (2.63), note that the marginal of m on X
coincides with the uniform distribution on Q(n;, n—n;), which we will denote
by 7. From (2.59), setting p(X) = n[f | X]| we can estimate

Entr (7[f [ X])

-1
:Ent;(s0)<0( n nl))) > ®(Vijve)?] (2.66)

n
—log(7-(1 - % 1<i<j<n

Observe that if X% denotes the configuration X after the swap of {i,j},
one has

©lf | X5 = x[f7 | X].
Thus,

Vi = Vrlfoi | X] = /=[] X].
Convexity of (0,00)% 3 (a,b) — (v/a — v/b)? implies that

(VigV@)? <m |(VFT = V2| x].
Therefore, using 7 (-| X)] = m:

> AV Y 7 |V -V =, VIV

1<i<j<n 1<i<j<n
Using (2.62) one can estimate (2.66) by
But (a7 | X)) < On® (~log(% (1~ ") £.(VF VD). (267)
Then, from (2.63) and (2.65), one has
an)™ < (a(n) Aa(n —n1)) "'+ Cn® (—log(Z(1 — 21))).
Up to now ny was arbitrary. We may take n; = [n/2] to obtain
a(n)™! < (a([n/2]) Na(n — [n/2])) 7" + Cn?, (2.68)

for a new constant C' > 0. Iterating (2.68) one arrives easily at a(n)~! =
O(n?). O
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3. Proof of the lower bound.

Let h(n) € Z be the projection of a vector n € Qp, on its first coordinate.
Then h(n) € Q}, where
Qp={oeZ": ¢o=0r =0, ¢ — dy—1 € {~1,0,1}}.
Notice that A(7;) is not a Markov chain under the evolution 7, defined

by (1.1). However, the following lemma allows us to describe the evolution
of a linear function of the field h(n). Let A be the discrete Laplace operator

1
(A(b)m = 5((?5171 + ¢z+1) = Oz,
and define g, := sin (%%). For any z = {1,...,L — 1},
(Ag)z = —KLGas (3.1)

where k1 is the principal Dirichlet eigenvalue of A given by kz = 1—cos(F).

Notice that ky, ~ % For any n € Q1,, we define the function

L—1
() =Y goha(n),
=1

where we use the notation h, for the map n — h(n), =7, - 1.
LEMMA 3.1. — Let L be the generator (1.1). Then for all n € Qr:
LO(n) = 1 D(). (3.2)

Proof. — Observe that for any given y € {1,..., L — 1} one has that the
d—dimensional vector 7, satisfies, coordinatewise

Ly = 5(ny—1+ My41) — 1y = (An)y.
By projecting along the first coordinate, the same expression holds for the
function hy : 1 — h(n)y,

Lhy(n) = 5(hy—1(n) + hyt1(1)) = hy(n) = (AR)y(n). (3.3)
Using linearity, summation by parts, and (3.1) conlcudes the proof. O

Let P, = e'* denote the semigroup of the process, so that for any 1y € Qj,,
any function f : 2 — R, one has that the configuration 7, at time ¢ with
initial state ng satisfies Ef(n:) = Pif(no). It follows from Lemma 3.1 that
forallt >0

E[®(n:)] = P:®(no) = e~"*" D (o). (3.4)
As t — oo one has E[®(n;)] — wp[®] = 0. Consider now the evolution with
initial state at the configuration 19 = n* defined by (n*), = ze;, for x €
{0,...,L/2} and (n*), = (L — z)eq, for z € {L/2+1,..., L}, that is the
maximal configuration for the first coordinate. Then the initial value ®(n*)
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is of size L? and therefore for time ¢ < cL?log L, for a suitable constant
¢ >0, (3.4) tells us that E[®(n;)] is much larger than its equilibrium value
0. We can use this fact to lower bound the total variation distance from
equilibrium. However, this only allows us to prove that the mixing time is
at least cL? because the L., norm of ® is also of size L?. Indeed, observing
that |®|, = ®(n*), one has

* — * —K — 2
Ipe(n*, ) = pllrv = 3(1Ple) ! P®(n7) = et > LemOHET

[\

for some constant C' > 0, where we use [[v — /||y = 3 supy., o<1 ((f) =
)

To obtain the extra logarithmic factor in the lower bound we follow Wil-
son’s approach in [13] and compute the variance of the random variable
O := ®(n;) when the initial state is ny = n*.

LEMMA 3.2. — The random variable ®; satisfies
Var(®}) < CoL?, (3.5)

for some constant Cy > 0, for allt > 0.

Before proving the lemma, let us conclude the proof of the lower bound
in Theorem 1.1. From Lemma 3.2 and Chebyshev’s inequality we have

P {|<1>;‘ —E[®!]] > \/L3/5} < Cye. (3.6)

Let E = {ne€Q: ®(n) > +/L3/c}, for some € > 0 to be fixed below. In
the limit ¢ — oo, using E[®;] — p[®] = 0, (3.6) yields the estimate

u(E) =P[2%, > VIP/e| < Coe. (3.7)
Moreover, if T is such that E[®%] > 2,/L3 /¢, then (3.6) implies
pr(n*, B) =P [@ > VIFe| > 1- Cye. (3.8)
Thus, fixing e = 1/(4Cp), one has
lpr(n*,-) = pllrv = pr(n*, B) = p(E) > 3,
so that Tinix = 7. On the other hand, from (3.4),
E[®7] = e T(n") > e L2/,

for some constant ¢; > 0, so that T = cyL?log L for some new constant
¢y suffices. This concludes the proof of the lower bound in Theorem 1.1. It
remains to prove Lemma 3.2.
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3.1. Proof of Lemma 3.2

We start by proving that for any n € Qp:

LD?(n) < —2k,D%(n) + C L. (3.9)
Notice that by (3.3) if © # y, then
Lhzhy = hy(Ah)y + hy(AR),. (3.10)

On the other hand a simple computation shows that
Lh2 =T, | norjpo(AR®) + 21, (3.11)
Then, (3.10) and (3.11)

Let ¢, := ]1|h1~71—h |#£2 and J, = é]l

z+1 Ne—1=Nx+1"
yield
L—-1
ng ex(AR?), + 6,) +229xgy (Ah)g.
=1 TH#Yy

Now we observe that

> gegyhy (A Zgw (Ah)a > gyhy

TAY Y YyF£T

—<1>ng (Ah), Zg

Summing by parts, from (3.1) we infer that:

L—1
LD = —2k,9° + ) g2 (e2(AR®)y + 6, — 2he(AD),) . (3.12)
=1

Notice that if |hy—1 — hyt1| = 2, then necessarily (Ah), = 0. Therefore we
may replace h;(Ah), by exhy(Ah), in (3.12). For any x:

(Ah?), — 2h,(Ah), = 7(h2+1 +h2_y) = h2 = 2hy (3 (hag1 + hoo1) — hy)
=1 (h2+1 + hf 1) — hahgi1 — hahg 1 + h2

Summarizing
L-1
£0% = ~26.9" + ) g; (32 (VAT + (VA1) + ) -
x=1

Using |Vh| < 1 and §, < 1 one has the desired bound (3.9).
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Next, using %Pt = P,L and (3.9) one has

d

% [GZHLtPt(I)Z] < CLGQHLt.
Therefore I

e?liLtPt(bQ < 07 (62111,15 _ 1) 4 @2.
2/€L
Recalling (3.4), we then obtain:
L L
* 2/ x *\) 2 —2K
Var(®;) = P,®*(n*) — (P®(n*))* < C% (1—e 2 < c%.

Thus, (3.5) holds for a suitable constant Cj. O

Appendix A. On the distribution of the number of particles

In this section we show that for a system of size L the number of particles
of a given type behaves roughly like a gaussian variable with mean L/2d and
variance proportional to L. Recall the definition of the condition Conv(c,n)
from Section 2.3. Fix L € 2N and the dimension d. Define

7(n) = p(Ny = ). (A1)

PROPOSITION A.l. — The measure ~ defined in (A.1) satisfies
Conv(c,n) for some constant ¢ > 0 independent of L, with n := L/2d.

Proof. — We derive the proposition from a local central limit theorem
for sums of independent random variables. Define the partition function

L!
SR SO o ey

d
ni,....,ng€%4, ijl n;=L/2

where the sum is over all nonnegative integers nq, . .., ng such that Zj‘:l n; =
L/2. Notice that Z¢ = |7 | is the number of Z? paths starting and ending
at the origin with length L. Let py, denote the probability that the simple
random walk on Z¢ started at the origin is at the origin after 2n steps. Then

78 = (2d) pr. (A3)
The local central limit theorem, see e.g. [9, Theorem 2.1.3], states that
|D2n — 2Pan| = O(nf(dw)/z) (A.4)
where
Don = (47‘m)7d/2dd/2.
Taking L = 2n, from (A.3),
Zj = (1+0(1/1)Qq (2d)" L™2, (A.5)
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where Qg := 2d%/?(2r)~%/2.
From (2.8), the distribution of N; is given by

L! Z¢

k) = nN = k) = G oz

where 0 < k < L/2. To prove (2.16), we check that for n € [—%, (1 — 3)£],
such that n + Q—Ld is integer, one has
TL2 CTL2
ce L e L
— <qy(n+ &) < : A7
<l ) < S (A7)
Set ¢4 := (1 —1/d). Clearly,
L i1
v(n+ QLTI) = 2 de 2
(n+ £ (cal — 2n)! 43
We use Stirling’s formula, in the form
1
n! = \/27rn"+567”<1+0(%)). (A.8)
From (A.5) and (A.8), we obtain
¥(n + 33)
_ 2d — 1 ch72nLd/2

Qa (2d)(caL — 2n)@=D/2 (n + £)1)? (caL — 2n)!

~ Qde,I 1 " —L—2n—1 ” —cqL+2n—d/2
:(1+R(n,L))%ﬁ(l+%) d (1—de>

)

(A.9)
where both R(n, L) and R(n,L) are O(max {(n+ &)~ (cal — 2n)71}).
Expanding in (A.9) and simplifying one has

~ 2 2 3
)= (1+ R, ) S exp (- 2522 1 0(3)),  (A10)

for some constant C(d) > 0. In particular, (A.10) shows that (A.7) holds for
all n € [~L?/3,L?/3]. Tt remains to check the claim when |n| > L?/3. We
observe that

'y(nJr%

At &) = N —nt S =0)
P(S, =0)
where Sy, is the simple random walk on Z? started at the origin after L steps,
N; is the number of +e; increments, and P is the associated probability
measure. Now, for some constant C; > 0, P(S;, = 0) = py, > (C1L)~%?
from (A.4), so that

Y(n+Z) < CLLY*P(Ny = n + ).
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Under the law P, Ny is a binomial random variable with parameters 1/2d
and L, and therefore, by Hoeffding’s inequality, any n such that |n| > L?/3
satisfies

C”'L2
n+ L C, L% 72n2/L €
,‘Y( Qd) C\/ﬁ
for a suitable constant ¢ > 0. We are left to show that
2
ce L
Y(n+ &)= N (A.11)
for some ¢ > 0 for all |n| > L??. We prove it for n > L?/3) the case
—L?/3 being similar. Notice that, from (A.6) with k = ¢ + L/2d,
'y(k + 1) (CdL 2f)(ch — 20 — 1) ch 2(@4.1) (A 12)
7 .
~(k) (+L/2d +1)2 chLl o
Using (A.5) and simplifying
’y(k+1)>(1_ C )(1_ch)( L)
v(k) = caL—2¢ (1 + 2d(£+1)) ’
for some constant C' > 0. Taking products over £ =0,...,n—1,

Y(n+ 53) = exp (~=Cn®/L),

for some new constant C' > 0, for all ng :=eL >n > L2/3 if ¢ > 0 is a suit-
able small constant. On the other hand, simple computations using (A.12)
show that y(n 4+ &) > y(ng + &) exp (—CL) for all n > ng. This ends the
proof of (A.7).

To prove (2.14) it suffices to show that v(k + 1) < Cvy(k) for all k >
L/2d for some constant C. However, this follows immediately from (A.6)

and (A.5). The same argument proves (2.15). O
LEMMA A.2. — There exists a constant C' > 0 such that for all n €
0,L/2 1]
n? ~v(n) Cn?
< < . A13
C(L—-2n)> " ~v(n+1) = (L—2n)? ( )
Proof. — This follows immediately from (A.6) and (A.3). O

LEMMA A.3. — Set Ny = Ny — L/2d, 0% = Var,(N1) and X = (N1)? —
o2. There exists a constant C > 0 such that

1
— <2< CIL, A.14
cr S s¢ (A-14)
Var, (X) < C L*. (A.15)
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Proof. — From (A.7) it follows that

2e7CL
Zn y n+2d) C’LG—ei < C'L,

for some constants C, C’ > 0, where we use a comparison with integrals for
L large. The lower bound on o2 is obtained in the same way. To prove (A.14)

simply observe that
2

4
Var,(X) < p[(N1)*] = Zn%(n + L)< cor? Z nte O <C'L?,

2 Jp

for some constants C,C’ > 0. O
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