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Hypercontractivity for local states of the quantized
electromagnetic field.

Leonard Gross (1)

ABSTRACT. — The quantized free electromagnetic field provides a
good example of the structures that arise in the theory of quantized fields.
There is a Gaussian measure on an infinite dimensional linear space along
with a Dirichlet form on this space. Both are uniquely determined by
special relativity. These will be described, along with the operators that
represent the quantized electromagnetic field. Hypercontractivity of the
operator associated to the Dirichlet form will be proved under the condi-
tion that observations made of the field take place in a bounded region of
space.

RÉSUMÉ. — Le champ électromagnétique libre quantifié est un bon
exemple des structures qui apparaissent dans la théorie des champs quan-
tifiés. On considère un espace vectoriel de dimension infinie équipé d’une
mesure gaussienne et d’une forme de Dirichlet qui sont determinées par
la théorie de la relativité restreinte. Nous décrivons ces objets ainsi que
l’opérateur qui représente le champ électromagnétique quantifié. L’hyper-
contractivité de l’opérateur associé à cette forme de Dirichlet est obtenue
sous la condition que les observations du champ sont effectuées dans une
region bornée de l’espace.

1. Introduction

This note describes a Gaussian probability space occurring naturally in
the quantum theory of the free electromagnetic field. Nominally, I intend to
show how a Dirichlet form operator over this space with no spectral gap near
zero can nevertheless generate a hypercontractive semigroup if one makes ob-
servations of the initial and final states of the field only in a fixed bounded
region of space. This is distinct from, but related to, the fact that the Lapla-
cian (on R3, say) has a discrete spectrum when restricted to bounded sets
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(with appropriate boundary conditions). Actually, I intend to use this exam-
ple to explain structures which are prototypes of those for quantized Yang–
Mills fields. There is evidence that some of these Gaussian structures will go
over to the highly non-Gaussian setting associated with Yang–Mills fields.
The corresponding hypercontractivity and logarithmic Sobolev inequality
will undoubtedly require use of Dominique Bakry’s Γ2 techniques for proof.

Section 3 contains a more or less self contained exposition of the quantized
free electromagnetic field. On the one hand, the computations in this section
can be found in almost any book on quantum field theory. On the other hand,
it is written in a form that emphasizes the concepts and structures familiar
to participants in Dominique’s 60th birthday conference. One could say that
it is simply a translation from a standard part of the physics literature to a
standard part of the mathematics literature. Dirichlet forms are well known
to all of us.

Section 5 is aimed at sketching the changes that must be made in re-
placing the electromagnetic, linear configuration space by the corresponding
Yang–Mills (infinite dimensional) Riemannian manifold. At the time of this
writing there is significant progress (my opinion) on the construction of this
manifold. But the construction of the non-Gaussian measure is still far off.

2. The classical electromagnetic field

The electromagnetic field is specified by a time dependent 1-form
E(x, t) =

∑3
j=1Ej(x, t) dxj on R3 and a time dependent 2-form B(x, t) =∑

Bi(x, t) dxj ∧dxk on R3. The sum runs over the three cyclic permutations
of (1, 2, 3). The force on a particle of charge q located at x at time t and
moving with a velocity v is given by qE(x, t) + qvyB(x, t), where y denotes
interior product. Identify R3 with (R3)∗ to get the force. This is a velocity de-
pendent force field, leading to all kinds of interesting problems in differential
geometry. The time evolution of the electromagnetic field is most concisely
expressed in terms of the 2-form F = E∧dt+B on R4. Denote byD the exte-
rior derivative operator for forms over R4 and by D∗ its adjoint with respect
to the Lorentz invariant metric

∑3
j=1 dxj ⊗ dxj − dt⊗ dt. In the presence

of a charge and current given by a 1-form J = ρ(x, t) dt +
∑3
i=1 Ji dxi the

equation of evolution of the fields is given by Maxwell’s equations,
DF = 0, D∗F = J. (2.1)

To identify this with the form of Maxwell’s equations most commonly seen
on T-shirts on engineering campuses just write Dω = dω+dt∧(∂/∂t)ω for a
form ω on R4, where d is the exterior derivative operator for forms over R3.
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The identities DF = (dE)∧dt+dB+dt∧Ḃ and D∗F = (d∗E) dt− Ė+d∗B
show that the equations (2.1) are equivalent to the four equations

dE + Ḃ = 0, (2.2.a)
dB = 0, (2.2.b)
d∗E = ρ, (2.2.c)

−Ė + d∗B = J. (2.2.d)

Of course one must identify the 2-form B with a 1-form β via the Hodge
star operator for engineers and use curl β = d∗(∗β) on 1-forms β.

We are interested in the free electromagnetic field, which is specified by
taking J = 0. Since D∗D + DD∗ is the d’Alembertian, �, the free electro-
magnetic field satisfies � F = 0. Hence each component of E and B satisfies
the wave equation. Under very mild technical conditions the pair {E,B} is
determined for all time by its values at t = 0 because the time derivative of
one is plus or minus the curl of the other, in accordance with the Maxwell
equations (2.2.a) and (2.2.d).

The three dimensional Laplacian on forms is given by −∆ = d∗d + dd∗.
It is a non-negative self-adjoint operator on k-forms in L2(R3; Λk) when the
domain is chosen in the natural way (its closure on C∞c ). The Laplacian has
a zero nullspace in L2(R3; Λk). This allows us to define Sobolev spaces of
forms easily. The H−1/2 norm of a k-form ω on R3 is by definition

‖ω‖−1/2 = ‖(−∆)−1/4ω‖L2(R3;Λk). (2.3)
For a 1-form E and a 2-form B on R3 define a norm of this pair by

‖B,E‖2 = ‖B‖2−1/2 + ‖E‖2−1/2. (2.4)

Theorem 2.1 (Bargmann and Wigner, 1948 [1]). — Suppose that
E(x, t), B(x, t) is a solution to Maxwell’s equations with zero charge and
current. Then

(1) ‖B( · , t), E( · , t)‖ is independent of t.
(2) It is also independent of which Lorentz frame one uses to define the

t = 0 hyperplane used in the definition (2.4).

Equivalently, if L is a linear transformation on R4 which preserves the
Lorentz metric and if F = E ∧ dt + B then L∗F is another solution to
Maxwell’s equations and the pair B̂, Ê, defined by L∗F = Ê ∧ dt + B̂, has
the same norm.

One has thereby a representation of the Lorentz group, including space-
time translations, in the group of orthogonal transformations on the Hilbert
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space consisting of those solutions of Maxwell’s equations for which the ini-
tial data norm (2.4) is finite. This was first proved in the classic paper by
Bargmann and Wigner [1]. In that paper they classified all linear Lorentz
invariant wave equations and established a one-to-one correspondence with
certain unitary representations of the Lorentz group. Their description of
these spaces is based on plane wave decompositions of solutions (i.e. Fourier
transforms) and shows, in particular, that the real space of initial data
{B( · , 0), E( · , 0)} described above actually has a complex structure which
commutes with the action of the Lorentz group and induces thereby a unitary
representation of the Lorentz group. Most importantly, the representation is
irreducible. This implies that there is no other inner product which is invari-
ant under the Lorentz group. Thus, as soon as one says “special relativity”
one is stuck with the H−1/2 norm, as in (2.4), for better or worse. Many of
the troubles and joys in relativistic quantum field theory can be traced back
precisely to the central role of this norm. I have described the fundamental
role of this norm because it dominates the rest of this note, not to mention
all of relativistic quantum field theory.

Before turning to quantization we have to describe the Lorentz invariant
norm in a more complicated way. One of the two Maxwell’s equations (2.1)
is DF = 0. Thus F is a closed 2-form on R4. Since R4 is cohomologically
trivial there exists a (non-unique) 1-form A on R4 such that

F = DA. (2.5)

If DA = 0 then A is itself closed, hence exact. There exists, then, a real
valued function λ on R4 such that A = dλ. Thus the set of 2−forms F for
which DF = 0 is in one-to-one correspondence with the quotient space {1-
forms} / {exact 1-forms}. It is useful and customary in various contexts to
simplify this representation by choosing a subspace of {1-forms} which is, at
least in part, complementary to {exact 1-forms}. Such a choice of subspace
is called a gauge choice. For our purposes, and by way of example, consider
the space of 1-forms whose fourth component is zero. For an arbitrary 1-form
A ≡

∑3
j=1Aj dxj + A4 dt choose a real valued function λ on R4 such that

A4(x, y, z, t) + ∂λ/∂t = 0 on all of R4. Then, clearly, (A + dλ)4 = 0 on R4.
Thus every 1-form is “gauge equivalent” i.e. equivalent mod exact 1-forms to
a 1-form with fourth component zero. There are lots of such functions λ. One
could choose λ(x, y, z, 0) arbitrarily and solve the preceding ordinary differ-
ential equation for each x, y, z to find such a function λ. Hence {1-forms}/
{exact 1-forms} = {1-forms withA4 = 0}/{t-independent functions λ}. A
1-form A with A4 = 0 is said to be in the temporal gauge. For such a 1-form
A(x, t) ≡

∑3
j=1Aj(x, t) dxj the definition (2.5) gives E(x, t) = −Ȧ(x, t) and

B(x, t) = dA(x, t) on all of R4. Aside from being in temporal gauge there
is still more gauge fixing that can be done. The equation d∗(A + dλ) = 0
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has a solution given by λ = −(d∗d)−1d∗A, where the Laplacian −d∗d that
appears here is the ordinary Laplacian on scalar functions. At the informal
level that we are operating at right now we need not worry about things like
regularity or behavior at infinity of any of the quantities in the last equation
or in this paragraph. The argument shows that we can choose A to be not
only in temporal gauge (A4 = 0) but also in the so-called Coulomb gauge de-
fined by d∗A = 0. Here are two neat consequences of use of the intersection
of the temporal gauge and Coulomb gauge.

(1) If B = dA and E = −Ȧ and d∗A = 0 on all of R4 then the first
three of the four Maxwell equations in line (2.2) are automatically
satisfied. The fourth one may by written Ä + d∗dA = 0 (since
J = 0), and since dd∗A = 0 we find

Ä = ∆A on all of R4. (2.6)
Maxwell’s equations are thereby reduced to the wave equation for a
divergence free, time dependent, 1-form on R3.

(2) Claim. — If B = dA and d∗A = 0 then
‖B‖−1/2 = ‖A‖1/2. (2.7)

Proof of the Claim. — The identity d∗(d∗d + dd∗) = (d∗d + dd∗)d∗
applied to 2-forms shows, by the functional calculus for the pair of self-adjoint
operators (d∗d + dd∗) on 2-forms and 1-forms respectively, that d∗(d∗d +
dd∗)−1/2 = (d∗d + dd∗)−1/2d∗ and therefore

‖B‖2−1/2 = ((d∗d + dd∗)−1/2B,B)L2(R3)

= ((d∗d + dd∗)−1/2dA,dA)

= (d∗(d∗d + dd∗)−1/2dA,A)

= ((d∗d + dd∗)−1/2d∗dA,A)

= ((d∗d + dd∗)−1/2(d∗d + dd∗)A,A)

= ‖(d∗d + dd∗)1/4A‖L2 . �

Therefore the Lorentz invariant norm, expressed in terms of A is given by
‖B‖2−1/2 + ‖E‖2−1/2 = ‖A‖21/2 + ‖Ȧ‖2−1/2 (2.8)

if B = dA, E = −Ȧ and d∗A = 0. (2.9)

The heuristics in passing from a classical field to a quantized field in-
volves some artistic devices which we are not accustomed to seeing in the
mathematics literature. The wave equation (2.6) resembles the Newtonian
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equations for an assembly of infinitely many harmonic oscillators. In Re-
mark 3.6 it will be superficially explained how this leads to Gaussian mea-
sures with the Lorentz invariant covariance. But first let us have some precise
statements.

3. Quantization

Let H be the real Hilbert space defined by
H = {A ∈ H1/2(R3; Λ1) : d∗A = 0}. (3.1)

We will identify the dual space as
H∗ = {j ∈ H−1/2(R3; Λ1) : d∗j = 0}. (3.2)

H∗ consists of divergence free currents, which we will use to measure the
potential A. H and H∗ are dual in the pairing

〈A, j〉 ≡ 〈A, j〉L2(R3;Λ1). (3.3)
We want to consider the Gaussian measure γ “on” H given informally by

dγ(A) = Z−1e
−(1/2)‖A‖2

H1/2 DA, (3.4)
where DA is infinite dimensional Lebesque measure and Z is a normalization
constant. We all understand that this expression must be interpreted as a
measure on some considerably larger space than H itself. For example one
could interpret it as a genuine Gaussian probability measure on the very big
space S ′(R3; Λ1), or on some Banach space W for which (H,W, γ) consti-
tutes an abstract Wiener space. I will describe a Dirichlet form operator H
on “L2(H, γ)” which implements the Schrodinger equation for the quantized
electromagnetic field. We will then be ready to consider whether the semi-
group e−tH is hypercontractive or not. This, of course, is the connection with
some of the subject matter of this conference. It is the reason for discussing
the quantized electromagnetic field in these conference notes. I will some-
times write L2(Ω, γ) to emphasize that γ is really a measure on some large
space Ω and sometimes write L2(H, γ) to emphasize that a computation in
progress, e.g. an integration by parts, can be legally made using the infor-
mal expression (3.4). All of the computations in this paper will be made on
polynomials over H. These are dense in L2(Ω, γ) and constitute a core for all
of the operators of interest for us. The computations can therefore be made
without technical concerns and identities extend automatically to the entire
domain of the relevant closed operator.

First I want to use this Gaussian measure space to describe the quantized
electromagnetic field itself. Let j ∈ H∗. Define

qj(A) = 〈A, j〉, A ∈ H, j ∈ H∗. (3.5)
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The pairing 〈 · , · 〉 is again the L2 pairing, usually between an element in
H1/2 and an element in H−1/2. qj is a continuous linear functional on H and
extends to a Gaussian random variable on Ω. We denote the extension by qj
also.

Define

Aj = multiplication by qj on L2(Ω, γ), j ∈ H∗ (3.6)

Let g ∈ H. Define

(∂gψ)(A) = (d/ds)|s=0ψ(A+ sg). (3.7)

The product rule shows that

[∂g,Aj ]ψ = 〈g, j〉ψ, j ∈ H∗, g ∈ H. (3.8)

Since Aj is self-adjoint we also have −[∂∗g ,Aj ] = 〈j, g〉Id on polynomial
functions in L2(H, γ). Define an operator

Eg =
√
−1(∂g − ∂∗g ). (3.9)

Then
[Eg,Aj ] = 2i〈g, j〉. (3.10)

For h ∈ H1/2(R3; Λ2) we have d∗h ∈ H∗ and we can therefore define an
operator

Bh = Ad∗h. (3.11)
Then we have the commutation relations

[Eg,Bh] = 2i〈g,d∗h〉. (3.12)

These are the standard commutation relations for the quantized electromag-
netic field, [2, p. 72].

Why does a Gaussian measure appear in a theory that starts from a
hyperbolic wave equation? And where did Maxwell’s equations go? For a
heuristic discussion explaining the appearance of the Gaussian measure, see
Remark 3.6. Concerning Maxwell’s equations, we will recover them now.
Time evolution in quantum theories is determined by a Hamiltonian. For
us, the Hamiltonian will be the operator associated to a Dirichlet form on
L2(H, γ).

Notation 3.1 (Differential). — The differential of a function ψ : H → R
at a point A is the linear functional

g 7→ (Dψ)(A)〈g〉 ≡ (∂gψ)(A), g ∈ H. (3.13)

In order to assign a norm to the differential we have to identify it as an
element of the appropriate Hilbert space. Physicists tell us that it must
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be done as follows. Suppose that there is an element v ∈ L2(R3; Λ1) with
d∗v = 0 such that

(Dψ)(A)〈g〉 = 〈g, v〉L2 . (3.14)

Then we define

|(Dψ)(A)|L2(R3;Λ1) = ‖v‖L2(R3;Λ1). (3.15)

Given that the Hilbert space on which ψ is defined is H1/2 and not L2, you
may be wondering why we are using the L2 norm in (3.15) instead of the
H−1/2 norm. At a conceptual level this issue goes back to the question of
what exactly is the configuration space for the classical electromagnetic field.
For the Yang–Mills theory this will become a serious technical issue. But for
us, it suffices to know that this is the one that works for producing Maxwell’s
equations as per below. The norm of the differential that equals the Hilbert
space gradient is |(Dψ)(A)|−1/2 = ‖v‖H−1/2 , when v is given by (3.14). The
logarithmic Sobolev inequality that I want to prove hinges on the relation
between these two norms of the differential.

Notation 3.2 (Q and H). — The quadratic form for the Hamiltonian of
the free electromagnetic field is defined by

Q(ψ) =
∫

Ω
|Dψ(A)|2L2(R3;Λ1) dγ(A). (3.16)

Since H1/2(R3) neither contains nor is contained in L2(R3) the integrand
could be infinite at some points even if ψ is just polynomial. But, when
defined on polynomial functions ψ for which Q is finite, Q has a closed
extension and its closure defines in the usual way a non-negative self-adjoint
operator H on L2(H, γ) such that

〈Hψ,ψ〉L2(H,γ) = Q(ψ). (3.17)

H is the Hamiltonian for the free electromagnetic field.

Unlike in the classical case, where time propagation is determined by
solving a partial differential equation for the fields, in the quantum case
propagation is determined by the Hamiltonian H. Define

Aj(t) = eitHAje−itH (3.18)
Bh(t) = eitHBhe−itH (3.19)
Eg(t) = eitHEge−itH. (3.20)
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These should be regarded as defining operator valued distributions A(x, t),
B(x, t) and E(x, t) by

3∑
i=1

∫
R3
Ai(x, t)ji(x) dx = Aj(t) ∀ j ∈ H∗, (3.21)

∑
ik

∫
R3

Bik(x, t)hik(x) dx = Bh(t) ∀ h ∈ H1/2(R3; Λ2), (3.22)

3∑
i=1

∫
R3

Ei(x, t)gi(x) dx = Eg(t) ∀ g ∈ H. (3.23)

Since the test functions j and g are limited to be divergence free, the operator
valued distributions must be interpreted to be divergence free distributions.
This, of course, goes with our use of the Coulomb gauge for A and charge
zero for E.

Theorem 3.3. — The operator valued distributions E,B,A on R4 satisfy
Maxwell’s equations (2.2) with zero charge and current. Furthermore E =
−Ȧ, B = dA and d∗A = 0.

We will need some Gaussian integration by parts formulas to prove this.

Lemma 3.4 (Integration by parts identities). — Let g ∈ H. Define

u = (d∗d)1/2g. (3.24)

Then ∫
H

(∂gf)(A) dγ(A) =
∫
H
qu(A)f(A) dγ(A), (3.25)

(∂g)∗ = −∂g + Au, (3.26)

[H,Ag] = −2∂g + Au, (3.27)

[H, ∂g] = −∂u (3.28)

and [H, ∂g − (∂g)∗] = −Ad∗dg. (3.29)

In (3.25) the function f is an arbitrary polynomial on H.
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Proof. — Using the informal expression (3.4) for the Gaussian measure
γ, we can compute∫

H
(∂gf)(A) dγ(A) =

∫
H

(∂gf)(A)e−(1/2)‖A‖2
H1/2DA Z−1

=
∫
H

(
(1/2)∂g‖A‖2H1/2

)
f(A) dγ(A).

But

(1/2)∂g‖A‖2H1/2
= 〈A, g〉H1/2

= 〈A, (d∗d)1/2g〉L2 .

This proves (3.25). Integration by parts and (3.25) show that

((∂g)∗ψ, φ)L2(γ) =
∫
H
ψ(∂gφ) dγ(A)

=
∫
H

(
− ∂gψ + quψ

)
φdγ,

for polynomials ψ and φ. The identity (3.26) now follows because polynomials
constitute a core for all the operators in this identity. Further,

([H,Ag]ψ, φ)L2(γ) = (HAgψ, φ)L2(γ) − (Hψ,Agφ)L2(γ)

=
∫
H

(
〈D(qgψ), Dφ〉L2(R3) − 〈Dψ,D(qgφ)〉L2(R3)

)
dγ(A).

But (Dqg)(A)〈v〉 = 〈v, g〉L2(R3). That is, Dqg = g, which is constant, i.e.,
independent of A. Thus the product rule shows that the integrand is

qg(A)〈Dψ,Dφ〉L2(R3) + ψ(A)〈g,Dφ〉 − qg(A)〈Dψ,Dφ〉L2(R3) − 〈Dψ, g〉φ(A)
= ψ(A)〈g,Dφ〉 − 〈Dψ, g〉φ(A)
= ψ(A)(∂gφ)(A)− (∂gψ)(A)φ(A).

Do just one more integration by parts to see that∫
H

(
ψ(A)(∂gφ)(A)− (∂gψ)(A)φ(A)

)
dγ(A)

=
∫
H

(
(−(∂gψ)(A) + qu(A))φ(A)− (∂gψ)(A)φ(A)

)
dγ(A),
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which is (3.27). Now

([H, ∂g]ψ, φ)L2(γ) =
∫
H

(
〈D∂gψ,Dφ〉 − 〈Dψ,D∂∗gφ〉

)
dγ(A)

=
∫
H

(
〈D∂gψ,Dφ〉+ 〈Dψ,D∂gφ〉 − 〈Dψ,D(quφ)〉

)
dγ

=
∫
H

(
∂g〈Dψ,Dφ〉 − 〈Dψ,D(quφ)〉

)
dγ(A)

=
∫
H

(
qu(A)〈Dψ,Dφ〉 − 〈Dψ,D(quφ)〉

)
dγ(A)

=
∫
H

(
− 〈Dψ, u〉φ(A)

)
dγ(A),

which is (3.28). (3.29) now follows from the computation

[H, ∂g − ∂∗g ] = [H, 2∂g −Au] = −2∂u +
(

2∂u − A(d∗d)1/2u

)
. �

Corollary 3.5.
[iH,Ag] = −Eg, g ∈ H (3.30)
[iH,Bh] = −Ed∗h, h ∈ H1/2(R3; Λ2) (3.31)
[iH,Eg] = Bdg, g ∈ H. (3.32)

Proof. — By (3.9) and (3.26) we have Eg = i(∂g+∂g−Au) = i(2∂g−Au)
where u = (d∗d)1/2g. Hence, by (3.27), we have

[iH,Ag] = i(−2∂g + Au) = −Eg, (3.33)

which proves (3.30). From (3.27) we also find

[iH,Bh] = [iH,Ad∗h] = −Ed∗h, (3.34)

which proves (3.31). By (3.29)

[iH,Eg] = −[H, (∂g − ∂∗g )] = Ad∗dg = Bdg, (3.35)

which proves (3.32). �

Proof of Theorem 3.3. — We want to show that

(∂/∂t)E(x, t) = d∗B(x, t) (3.36)
(∂/∂t)B(x, t) = −dE(x, t) (3.37)

as operator valued distributions on R4. These distributions are not as wild
as this description sounds. One needs only to integrate against test functions
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in the spatial variables. Multiply (3.36) by a function g ∈ C∞c (R3; Λ1) with
d∗g = 0 and integrate to find

(∂/∂t)Eg(t) = Bdg(t), (3.38)

wherein we have done an integration by parts on the right. This is the dis-
tributional interpretation of (3.36) which needs to be proven. From the def-
inition (3.20) and commutation relations (3.32) we see that

(∂/∂t)Eg(t) = eitH[iH,Eg]e−itH

= eitHBdge−itH

= Bdg(t).

This proves (3.38) and therefore (3.36).

Multiply (3.37) by a function h ∈ C∞c (R3; Λ2) and integrate over R3 to
find

(∂/∂t)Bh(t) = −Ed∗h(t). (3.39)

This is the distributional interpretation of (3.37). It follows from the defi-
nition (3.19) and the commutation relation (3.31), just as in the preceding
argument. This proves (3.37). Similarly the equation Ȧ(x, t) = −E(x, t) just
amounts to the equation (3.30), while B = dA is just the definition (3.11) �

Fact. — The family of operators {Bh,Eg : h ∈ H1/2(R3; Λ2), g ∈ H} is
irreducible on L2(H, γ). The Hilbert space on which we have constructed the
operator valued distributions B(x, t),E(x, t) satisfying Maxwell’s equations is
therefore not artificially big. One could, after all, take some classical solu-
tion, multiply it by the identity operator on one’s favorite Hilbert space and
claim that one now has operator valued solutions to Maxwell’s equations. Of
course the commutation relations would fail and the objective, quantization
of Maxwell’s equations, would therefore fail.

So we have solutions to Maxwell’s equations in our structures and there-
fore wave theory. But we also have now a structure which lends itself to
an interpretation in terms of particles: Denote by Pn the space of polyno-
mials on H of degree at most n and by Pn the closure of Pn in L2(H, γ).
Let Fn = Pn 	 Pn−1, n = 1, 2, . . . and let F0 = P0 (which consists of
the constant functions.) Then L2(H, γ) is the direct sum of these mutu-
ally orthogonal subspaces. (As you know well, Fn is spanned by Hermite
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polynomials, more precisely, by products of Hermite polynomials of mutu-
ally orthogonal coordinates, of total degree n.) Each field operator Bh and
Eg carries Fn into Fn−1 ⊕Fn+1. Interpretations:

(1) A wave function ψ ∈ Fn represents a state of the field containing
exactly n photons.

(2) The role of the field operators is to create and annihilate photons.

The two hundred year long dispute as to whether light is a wave phenom-
enon or a particle phenomenon has now a resolution in this structure: The
mathematical structure is big enough to allow both interpretations.

Remark 3.6 (Heuristics on the origin of Gauss measure). — In the inter-
est of greater consistency in the motivation of this example I feel obliged to
say a word of “explanation” as to where the Gaussian measure γ comes from
as well as the Dirichlet form operator H. I put “explanation” in quotations
because the standard reasoning in the physics literature, from its beginnings
in 1929 through standard textbooks on quantum field theory today, proceed
on this issue by heuristic arguments involving “harmless” subtractions of in-
finity and meaningless infinite dimensional Lebesque measure in a way that
readers of the physics literature can and do simply get used to. Why not
us? The argument goes like this. The classical equations of motion of the
electromagnetic field (2.6) resemble the Newtonian equations of motion of a
system of harmonic oscillators: Both have the form ü = Lu for some linear
operator L. For N harmonic oscillators u(t) takes its values in RN and L,
after diagonalization, has the negative square natural frequencies −ω2

j on its
diagonal. For the electromagnetic field, u(t) lies in the infinite dimensional
Hilbert space K ≡ {ω ∈ L2(R3; Λ1, dx) : d∗ω = 0} and L = ∆. For N
harmonic oscillators one quantizes by taking the quantum Hilbert space to
be L2(RN ;Lebesgue measure), while its Hamiltonian is a well known sum
of N second order differential operators of the form −∂2/∂x2

j + ω2
jx

2
j . So

to quantize the electromagnetic field just replace RN by K and relax about
the infinite dimensional Lebesgue measure. For the Hamiltonian just replace
the finite sum by the corresponding infinite sum. Surprise: The infinite sum
diverges in any reasonable sense. But that doesn’t matter because the in-
finite dimensional Lebesgue measure over K that we just considered using
was meaningless anyway. Resolution:

(1) For N harmonic oscillators subtract off the bottom of the spectrum
of the Hamiltonian. (This will be infinite in the electromagnetic
case.)

(2) Change the representing measure for the quantum Hilbert space for
N harmonic oscillators from Lebesgue measure to the ground state
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measure associated to the lowest eigenfunction. Then proceed as
before, letting N → ∞. The result is the Gaussian measure and
Dirichlet form operator stated in the previous paragraph. A reader
interested in seeing this argument carried out in more, but still un-
avoidably heuristic, detail could look in my notes [6].

4. Logarithmic Sobolev inequality for local states

Notation 4.1. — Suppose that M is the closure of a bounded open set
in R3. Let

H−1/2(M) = {j ∈ H∗ : support j ⊂M}. (4.1)
Support refers to support as a distribution. Clearly H−1/2(M) is a closed
subspace of H∗. Define also

FM = closure in L2(H, γ) of the linear span of the products
qj1 · · · qjn

, ji ∈ H−1/2(M), i = 1, . . . , n, n = 0, 1, 2, . . . (4.2)

If the support of j is contained in M , then the function qj(A) is sensitive
only to the values of A in the set M , as we see from the definition (3.5).
Thus a measurement of A using the current j will give information about A
only in M . The subspace FM consists of states of the field dependent only
on the behavior of A in M . We refer to FM as the local subspace of L2(H, γ)
associated to M .

This space can be described also in terms of the actual measure space Ω, γ.
The linear functionals qj on H extend to measurable functions on Ω. Let ΣM
be the σ field in Ω generated by the coordinate functions {qj ; j ∈ H−1/2(M)}.
Then

FM = L2(Ω,ΣM , γ). (4.3)
Note: There is no space H1/2(M). The definition of such a space would
require choosing boundary conditions. It is not needed. The closest space to
this is H	 (H−1/2(M))0.

Theorem 4.2. — Let M be the closure of a bounded open subset of R3.
Let ΣM denote the σ field defined in Notation 4.1 There is a constant cM
such that ∫

Ω
ψ2 log |ψ|dγ 6 cMQ(ψ) + ‖ψ‖22 log ‖ψ‖2

for all ψ ∈ FM (equivalently, for all ψ ∈ L2(Ω; ΣM , γ)).
(4.4)
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Lemma 4.3 (Poincaré like lemma). — Suppose that M is the closure of
a bounded open set in R3. Then there is a constant cM > 0, depending only
on the volume of M , such that

‖j‖2H−1/2
6 cM‖j‖2L2(R3) for all j ∈ H−1/2(M). (4.5)

Proof. — Define ĵ(ξ) = (2π)−3/2 ∫
R3 j(x)eix·ξ dx. Then

‖j‖2H−1/2
=
∫
R3
|ξ|−1|ĵ(ξ)|2 dξ

6 ε−1
∫
|ξ|>ε

|ĵ(ξ)|2 dξ + ( sup
ξ∈R3
|ĵ(ξ)|2)

∫
|ξ|<ε

|ξ|−1 dξ

6 ε−1‖j‖2L2 + 2πε2( sup
ξ∈R3
|ĵ(ξ)|2).

But |ĵ(ξ)| 6 (2π)−3/2 ∫
M
|j(x)|dx 6 (2π)−3/2vol(M)1/2‖j‖L2 . Hence

‖j‖2H−1/2
6 ‖j‖2L2

(
ε−1 + (volM/(2π)2)ε2

)
.

Take ε = (volM)−1/3 to find (4.5) with cM = (volM)1/3 · const. This
proves (4.5). �

Notation 4.4. — The unit Dirichlet form for the measure γ is

Q0(ψ) =
∫
H
‖(Dψ)(A)‖2H−1/2(R3) dγ(A) (4.6)

because the gradient of a function on H satisfies

‖∇ψ(A)‖H = ‖Dψ(A)‖H∗ . (4.7)

Consequently, the standard logarithmic Sobolev inequality holds for the
Dirichlet form Q0.

Lemma 4.5. — Suppose that M is the closure of a bounded open set in
R3. Then

Q0(ψ) 6 cMQ(ψ) for all ψ ∈ FM . (4.8)

Proof. — Since polynomials form a core for both Q0 and Q, it suffices to
prove (4.8) when ψ is a polynomial in the qjs. We can do the computation
in this nice smooth category for each A ∈ H. In view of the definitions (4.6)
and (3.16) it suffices to show that

‖(Dψ)(A)‖2H∗ 6 cM‖(Dψ)(A)‖2L2(R3) (4.9)

for all A ∈ H when ψ(A) is a polynomial in the linear functionals qj(A) with
each j ∈ H−1/2(M). But

(Dqj)(A)〈g〉 = (∂gqj)(A) = 〈j, g〉L2 ∀ g ∈ H. (4.10)
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Therefore, by the product rule,
(∂gψ)(A) = 〈jA, g〉L2 , (4.11)

where, for each A ∈ H, jA is a finite linear combination of elements ji ∈
H−1/2(M). Hence jA ∈ H−1/2(M) for each A ∈ H1/2(R3). It now follows
from (4.5) that

‖jA‖H−1/2 6 cM‖jA‖L2 . (4.12)
This proves (4.9). �

Proof of Theorem 4.2. — Since Q0 is the unit Dirichlet form for the
measure γ the standard logarithmic Sobolev inequality assures that∫

Ω
ψ2 log |ψ|dγ 6 Q0(ψ) + ‖ψ‖22 log ‖ψ‖2 ∀ ψ ∈ L2(γ). (4.13)

But the inequality (4.8) shows that, for ψ which are ΣM measurable, Q0 is
dominated by cMQ. (4.4) now follows. �

5. The road to Γ2

In truth, the mathematical content of this note has been merely to es-
tablish the relation between the unit quadratic form Q0, for which we know
the validity of a logarithmic Sobolev inequality, and the form Q, which is
handed to us by the physics of the electromagnetic field. The proof of the
relation (4.8) is just the few lines in the proof of Lemma 4.3. But these as-
pects of the free electromagnetic field form a useful template for what to
look for when constructing the corresponding structures for the Yang–Mills
theory. There are big changes in the structures that will be needed. Some of
these have already been established, [3, 4, 5, 7, 8]. Here I want to sketch the
changes that I anticipate (read “hope”) will be useful for implementing this
program for construction of the quantized Yang–Mills field.

Change 1. — In Maxwell’s theory of electromagnetism the basic fields
were the electric and magnetic fields. The auxiliary field A exists, as we
saw, because one of Maxwell’s equations in (2.1) asserts that the 2-form
F on R4 is closed. But in the Yang–Mills extension of this theory the 1-
form A on R4 is a basic object. It has the geometric interpretation of a
connection form over space-time, R4. Moreover it takes its values in the Lie
algebra k of a compact Lie group K: A =

∑4
i=1Ai dxi with each function

Ai : R4 → k. The correct group K has to be determined by experiment. The
group K = SU(2)× SU(3)× U(1) is currently most in fashion. The 2-form
F described in (2.5) is replaced now by the curvature of the connection form
A. It is given by

F = DA+A ∧A. (5.1)
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Maxwell’s theory corresponds to the choice K = U(1), whose Lie algebra is
iR. The quadratic term is zero in Maxwell’s theory, giving (2.5). But in the
general Yang–Mills case, terms in the wedge product, such as AiAj dxi ∧
dxj + AjAi dxj ∧ dxi = [Ai, Aj ] dxi ∧ dxj , are no longer zero. We therefore
no longer have the nice simple linear relationship (2.5). The resulting theory
is immediately non-linear. The wave equation is replaced by a non-linear
wave equation, whose solution for appropriate initial values in H1/2 is still
not established, in spite of much work, begun in 1979 by I. Segal, [9]. This
is part of the theory of non-linear hyperbolic equations and does not relate
significantly to our present interest in infinite dimensional measures and
logarithmic Sobolev inequalities.

Change 2. — The heuristic arguments leading to the presence of a
Gaussian measure with covariance given by the space H−1/2(R3), as we
used above, are gone: The Yang–Mills theory is in no reasonable sense an
assembly of harmonic oscillators. Instead the Hilbert space H1/2(R3), whose
extension we used to support the measure γ, has to be replaced by some
infinite dimensional differentiable Riemannian manifold which substitutes
for H1/2(R3). Let’s refer to this desired manifold as Y1/2. This non-linear
manifold should also have some kind of big extension that supports the pre-
sumed ground state measure, analogous to γ. Just what H1/2 should mean
for this non-linear manifold and what “the” large extension should be is up
to the beholder to decide. It must be consistent with what we know about
the need for a large support space for measures resembling γ. Underlying all
such constructions is the need to maintain Lorentz invariance.

Change 3. — One of the big changes from the body of this note, that
one must expect, is illuminating to discuss. The linear functionals qj on
H1/2(R3; Λ1), that were central to the whole discussion above, are no longer
conceptually meaningful when the gauge group K is not commutative. The
relevant substitute for the linear functionals qj is more or less agreed upon in
the physics literature. But solving the technical problems associated with this
substitute is a long way off because the substitute is a much more singular
function of the connection form A than the functions qj are. The differen-
tial geometric significance of these functions (holonomy) is very compelling,
however, and the conventional wisdom is that these singular functions are
here to stay. These are parallel transport operators around closed curves in
R3 with respect to the connection form A. Here is how closed curves relate
to the divergence free currents that we have been using in this paper.

A generalized current on R3 is customarily defined as a linear functional
on C∞c 1-forms ω on R3. If, for example j : R3 → R3, is a locally integrable
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vector field, then the functional

ω 7→
∫
R3
ω(x)〈j(x)〉d3x ≡ 〈ω, j〉 (5.2)

is a nice linear functional on C∞c 1-forms. These do not include all the linear
functionals arising from j ∈ H−1/2 because H−1/2 includes some distribu-
tions which are not functions. But the linear functional (5.2) is well defined
for j ∈ H−1/2 also. Now suppose that C : [0, 1]→ R3 is a piecewise smooth
curve. It defines a linear functional on 1-forms by the definition

ω →
∫ 1

0
ω(C(t))〈Ċ(t)〉dt. (5.3)

This is clearly parametrization independent. In this way a curve defines
a generalized current. The notion of divergence free current can be read-
ily formulated for generalized currents thus: For λ ∈ C∞c (R3), the iden-
tity 〈dλ, j〉 = 〈λ,d∗j〉 shows that d∗j = 0 if and only if 〈ω, j〉 = 0 for all
smooth exact 1-forms ω with compact support. This justifies the definition
that a generalized current is divergence free if it is zero on all smooth ex-
act 1-forms ω with compact support. In the case of the current (5.3), if we
put ω = dλ, then we find

∫ 1
0 (dλ)(C(t))〈Ċ(t)〉dt =

∫ 1
0 (d/dt)λ(C(t)) dt =

λ(C(1)) − λ(C(0)), which is zero for all such λ if and only if C(1) = C(0).
Thus the generalized current induced by a curve has divergence zero if and
only if the curve is closed. To understand how singular such a current is,
write j(x) =

∫ 1
0 δ(x−C(t))Ċ(t) dt, which is the customary representation of

this current in the physics literature. Such a distribution is highly singular,
since it’s supported on a curve. It is not in H−1/2(R3). It is not among the
currents that we have been dealing with in this paper. Yet it is the one that
must be used when dealing with the non-commutative theory. Moreover, the
simple bilinear pairing (3.5) between a current j and a connection form A
over R3 must be replaced by the following holonomy function.

Consider the solution to the parallel transport equation ġ(t)g(t)−1 =
A(C(t))〈Ċ(t)〉, g(0) = eK , where g : [0, 1] → K. Define WC(A) = χ(g(1))
for some character χ on K. This loop dependent function of A, the so-called
Wilson loop function, is widely regarded in the physics literature as a natural
replacement for the functions qj(A) of (3.5). In this sense our divergence
free currents j ∈ H−1/2 will be replaced by closed curves. These holonomy
functions (after suitable regularization, as addressed in [3, 4, 5, 7, 8]) descend
to functions on the configuration space Y1/2 and to the enlargement of this
space on which one should hope to produce the non-Gaussian analog of γ.
Not only must the differential geometry of the manifold Y1/2 be understood,
but also the measure that replaces γ. One can hope that the measure itself
can be produced by the Feynman–Kac formula for an infinite dimensional
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state space by a much explored machinery that goes under the name of
Euclidean quantum field theory. Many efforts in this direction in the 1970’s
and 1980’s failed, largely (in my opinion) because of the unavailability of
regularized versions of the Wilson loop functions A 7→WC(A).

It is the author’s hope that once the Yang–Mills analog, η, of the Gauss-
ian measure is constructed, further analysis of these singular functions will
be facilitated by use of non-Gaussian logarithmic Sobolev inequalities for
the Yang–Mills Hamiltonian acting on L2(Y1/2, η). Of course establishing
non-Gaussian logarithmic Sobolev inequalities is a different ball game from
establishing Gaussian ones. The only techniques on the horizon (my hori-
zon) that seem feasible for attacking the problem of logarithmic Sobolev
inequalities in this highly non-Gaussian context, once the differential geom-
etry (infinite dimensional) and integration theory (infinite dimensional) are
established, are Dominique’s Γ2 methods. A simple calculation shows that
Dominique’s 65th birthday will occur in less than five years. This author
hopes that by then the necessary infinite dimensional differential geometry
and integration theory will be in place and ready.
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