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Markov loops, coverings and fields
Yves Le Jan (1)

ABSTRACT. — We investigate the relations between the Poissonnian
loop ensembles, their occupation fields, non ramified Galois coverings of
a graph, the associated gauge fields, and random Eulerian networks.

RÉSUMÉ. — Notre étude montre les relations existant entre les en-
sembles poissoniens de lacets, les champs qu’ils définissent, les circuits
euleriens, les revêtements galoisiens des graphes et les champs de jauges
associés.

1. Introduction

Relations between occupation fields of Markov processes and Gaussian
processes have been the object of many investigations since the seminal work
of Symanzik [13] in which Poisson ensembles of Brownian loops were implic-
itly used. Since the work of Lawler and Werner [4] on “loop soups”, these
ensembles have also been the object of many investigations. Their proper-
ties can be studied in the context of rather general Markov processes. The
purpose of the present work is to explore new directions in this context, in
particular the relation with gauge fields.

2. Discrete Topology

2.1. Graphs and fundamental groups

In this first section, we will briefly present the topological background of
our study.
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Our basic object will be a graph G, i.e. a set of vertices X together with a
set of non oriented edges E. We assume it is connected, and that there is no
loop-edges nor multiple edges (though this is not really necessary). The set
of oriented edges is denoted Eo. It will always be viewed as a subset of X2,
without reference to any imbedding. An oriented edge (x, y) is defined by the
choice of an ordering in an edge. We set −(x, y) = (y, x) and if e = (x, y),
we denote it also (e−, e+). The degree dx of a vertex x is by definition the
number of non oriented edges incident at x.

A n-tuple of elements of X, say (x0, x1, . . . , xn) is called a path on X iff
{xi, xi+1} ∈ E (path segment on the graph) for all i and a geodesic arc if
moreover xi−1 6= xi+1 (no backtracking). Geodesic arcs starting at x0 form
a marked tree Tx0 rooted in x0 (if we identify x0 with the path (x0). The
marks belong to X: they are the endpoints of the geodesic arcs, thus we have
a canonical projection p from Tx0 onto X. Oriented edges of Tx0 are defined
by pairs of geodesic arcs of the form: ((x0, x1, . . . , xn), (x0, x1, . . . , xn, xn+1))
(the orientation is defined in reference to the root). Tx0 is a universal covering
of X [10].

A (discrete) loop based at x0 ∈X is by definition a path ξ = (ξ1, . . . , ξp(ξ)),
with ξ1 = x0, and {ξi, ξi+1} ∈ E, for all 1 6 i 6 p with the convention that
ξp+1 = ξ1. On the space of geodesic loops based at some point x0, we can
define an operation (by concatenation and cancellation of two inverse sub-
arcs) which yields a group structure (the neutral element is the empty loop)
Γx0 . Note that the fiber of the universal covering Tx0 at x0 is Γx0 .

There is a natural left action of Γx0 on Tx0 . It can be interpreted as a
change of root in the tree (the new root having the same mark x0). Note
that X = Γx0\Tx0 (here we use of the quotient on the left corresponding
to the left action). Besides, any geodesic arc between x0 and another point
y0 of X defines an isomorphism between Tx0 and Ty0 (change of root, with
different root marks).

The groups Γx0 , x0 ∈ X are conjugated in a non canonical way. The
structure of Γx0 does not depend on the base point and this isomorphism
class defines the fundamental group Γ of the graph (as the graph is connected:
see for example [10]).

A spanning tree T is by definition a subgraph of G which is a tree and
covers all points in X. It has necessarily |X| − 1 edges. The inverse images
of a spanning tree by the canonical projection from a universal cover Tx0

onto X form a tesselation on Tx0 , i.e. a partition of Tx0 in identical subtrees,
which are fundamental domains for the action of Γx0 . Conversely, a section
of the canonical projection from the universal cover with connected image
defines a spanning tree.

– 402 –



Markov loops, coverings and fields

Fixing a spanning tree determines a unique geodesic between two points
of X. Therefore, it determines the conjugation isomorphisms between the
various groups Γx0 .

The fundamental group Γ is a free group with |E|−|X|+1 = r generators.
To construct a set of generators, one considers a spanning tree T of the graph,
and choose an orientation on each of the r remaining links. This defines r
oriented cycles on the graph and a system of r generators for the fundamental
group. (see Massey [10] or Serre [12]) in a more general context).

Given any finite path ω with starting point x0, the reduced path ωR is
defined as the geodesic arc defined by the endpoint of the lift of ω to Tx0 .

Tree-contour-like based loops can be defined as discrete based loops whose
lift to the universal covering are still based loops. Each link is followed the
same number of times in opposite directions (backtracking). The reduced
path ωR can equivalently be obtained by removing all tree-contour-like based
loops imbedded into it. In particular each loop l based at x0 defines an
element lR in Γx0 .

2.2. Geodesic loops and conjugacy classes

Loops are defined as equivalence classes of based loops under the natural
shift θ defined by θξ = (ξ2, . . . , ξp(ξ), ξp(ξ)+1 = ξ1), with ξ = (ξ1, . . . , ξp(ξ)).

Geodesic loops are of particular interest as they are in bijection with
the set of conjugacy classes of the fundamental group. Indeed, if we fix a
reference point x0, a geodesic loop defines the conjugation class formed of
the elements of Γx0 obtained by choosing a base point on the loop and a
geodesic segment linking it to x0. Any non trivial element of Γx0 can be
obtained in this way.

Given a loop, there is a canonical geodesic loop associated with it. It
is obtained by removing recursively all tail edges (i.e. pairs of consecutive
inverse oriented edges of the loop) .

2.3. Galois Coverings and Monodromy

There are various non-ramified coverings, intermediate between G =
(X,E) and the universal covering. Non ramified means that locally, the cov-
ering space is identical to the graph (same incident edges). More precisely,
a graph G̃ = (X̃, Ẽ) is an non-ramified covering of G if there exist a map p
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from X̃ onto X such that, for every vertex u in X̃, the projection p restricts
to a bijection from the set of neighbors of u to the set of neighbors of p(u).
We will consider only non-ramified coverings.

Then each oriented path segment on X can be lifted to the covering in a
unique way, given a lift of its starting point.

Each covering is (up to an isomorphism) associated with a subgroup Γ̃ of
the fundamental group Γ, defined up to conjugation. More precisely, given a
covering G̃, a point x0 of X and a point x̃0 in the fiber above x0, the closed
geodesics based at x0 whose lift to the covering starting at x̃0 are still closed
form a subgroup Γ̃

x̃0
of Γx0 , canonicaly isomorphic to the fundamental group

of G̃ represented by closed geodesics based at x̃0.

Conversely, if Γ̃x0 is a subgroup of Γx0 , the covering is defined as the
quotient graph (Y, F ) with Y = Γ̃x0\Tx0 and F the set of edges defined by
the canonical projection from Tx0 onto Y .

If Γ̃x0 is a normal subgroup, the quotient group (called the covering or the
monodromy group)Mx0 = Γ̃x0\Γx0 acts faithfully on the fiber at x0. We say
the covering is a Galois (or normal) covering. An example is the commutator
subgroup [Γx0 ,Γx0 ]. The associate covering is the maximal Abelian covering
at x0. The monodromy group is the first homology group H1(G,Z) of the
graph. It is an Abelian group with n = |E| − |X| + 1 generators. Another
example is the cube, which, by central symmetry, is a twofold covering of
the tetrahedron associated with the group Z/2Z. Monodromy groups asso-
ciated with different base points are then isomorphic. Any of them will be
denoted M . Every based loop in G defines an element of Γx0 and an element
of the monodromy group Mx0 at the base point whose conjugacy class is in-
dependent of the geodesic linking X0 to the base point and invariant under
a change of base point. It is unchanged if we erase all tail edges so that any
conjugacy class of Γx0 , i.e. any geodesic loop C determines a conjugacy class
of M .

Each spanning tree of G determines a tesselation of X̃, isomorphisms
between the fibers of the covering, between different groups Γx0 as x0 varies
in X, which induce isomorphisms between the groups Γ̃x0 and the quotient
groups Mx0 (which are represented by the fibers). It follows that there is an
action of M on X̃ which preserves the tesselation such that X = M \ X̃.

Given a finite groupM , we can create a Galois covering of G by assigning
to each oriented edge (x, y) an element ofM , U(x,y) in such a way that oppo-
site edges correspond to inverse elements. It is associated with the subgroup
of Γx0 formed by geodesic loops based at x0 such that the ordered product
of the U(x,y) assigned to the edges of the loop is equal to the identity.
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If we fix a base point, the monodromies of the loops based at form a
subgroup M ′x0

of M , and these subgroups are isomorphic by conjugacy if
we change the base point. We can therefore reduce our attention to the case
M ′ = M . The vertex set of the covering is then represented by X ×M .

Note that if we attach an element mx of M to each vertex and replace
U(x,y) bymxU(x,y)m

−1
y , the covering is unchanged. In particular, if we choose

a spanning tree of G, the covering can determined by assigning to the edges
of the spanning tree the identity and to the other edges the monodromies of
the loops they determine. Fixing such aM -assignment can be also expressed
as fixing a gauge field. The gauge group MX acts faithfully by conjugacy on
these assignments and M -coverings are the orbits of this action.

Note thatM -assignments are the counterpart, in discrete geometry, of the
g-valued differential forms defining a connection on a G-principal bundle.

Given a M - assignment U , we define the conjugacy class in M of a loop
l, denoted CU (l) as the image of conjugacy class of any its representatives
in Γ by the canonical projection. This conjugacy class depends only on the
covering defined by U and on the geodesic loop defined by l. It is the conju-
gacy class of the product of the elements of M attached to the edges of the
loop.

3. Markov loops

3.1. The loop ensemble and the free field

We adopt the framework described in [6]. Given a graph G = (X,E), a set
of non negative conductances Cx,y = Cy,x indexed by the set of edges E and
a non negative killing measure κ on the set of vertices X, we can associate to
them an energy (or Dirichlet form) E , we will assume to be positive definite,
which is a transience assumption. For any function f on X, we have:

E(f, f) = 1
2
∑
x,y

Cx,y(f(x)− f(y))2 +
∑
x

κxf(x)2.

There is a duality measure λ defined by λx =
∑
y Cx,y + κx. Let Gx,y be

the symmetric Green’s function associated with E . The associated symmet-
ric continuous time Markov process can be obtained from the Markov chain
defined by the transition matrix Px,y = Cx,y

λy
by adding independent expo-

nential holding times of mean 1 before each jump. If P is submarkovian, the
chain is absorbed at a cemetery point ∆. If X is finite, the transition matrix
is necessarily submarkovian. The complex (respectively real) free field is the
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complex (real) Gaussian field on X whose covariance function is G. We will
denote it by ϕ (respectively ϕR).

We denote by µ the loop measure associated with this symmetric Markov
process. It can also be viewed as a shift invariant measure on based loops.
We can refer to [6] for the general definition in terms of Markovian bridges,
but let us mention that:

• the measure of a non-trivial discrete loop is the product of the transi-
tion probabilities of its edges if it is aperiodic; otherwise this product
should be divided by the multiplicity of the loop.

• the measure on continuous time loops is then obtained by including
exponential holding times, except for one point loops on which the
holding time measure (which has infinite mass) has density e−t

t .
The Poissonian loop ensemble Lα is the Poisson process of loops of in-

tensity αµ. It can be constructed in such a way that the the set of loops
Lα increases with α. We set L = L1 Recall that when G is finite, L can be
sampled by Wilson algorithm (cf. [2, 6]).

3.2. Occupation fields

We denote by L̂α the occupation field associated with Lα i.e. the total
time spent in x by the loops of Lα, normalized by λx. It has been shown
in [5] (see also [6]) that the fields L̂ = L̂1 (L̂ 1

2
) and 1

2ϕ
2 ( 1

2 (ϕR)2) have the
same distribution. Note that this property extends naturally to symmetric
Markov processes in which points are non-polar and in particular to one
dimensional diffusions (see [8]). Generalisations to dimensions 2 and 3 involve
renormalization (Cf [6]).

Note that a natural coupling of the free field with the occupation field of
the loop ensemble of intensity 1

2µ has been recently given by T. Lupu [9],
using loop clusters.

In what follows, we will assume for simplicity that G is finite. We will now
define the edge occupation fields associated with the loop ensembles.Given
any oriented edge (x, y) of the graph, denote by Nx,y(l) the total number
of jumps made from x to y by the loop l and by N (α)

x,y the total number of
jumps made from x to y by the loops of Lα. Note that N (α)

x,x = 0. Let Z
be any Hermitian matrix indexed by pairs of vertices and χ a non-negative
measure on X. The content of the following lemma appeared already in [6,
Chapters 5 and 6] (see remarks 11 and 13 for (2) and (3)).
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Lemma 3.1. — Denote by PZx,y the matrix Px,yZx,y.

(1) We have:

E

∏
x6=y

Z
N(α)
x,y

x,y e−
∑

x
χxL̂xα

 =
[

det(I − λ
λ+χP

Z)
det(I − P )

]−α
.

(2) For α = 1,

E

∏
x 6=y

Z
N(1)
x,y

x,y e−
∑

x
χxL̂x1

 = E

(
e

∑
x6=y

( 1
2Cx,y(Zx,y−1)ϕxϕ̄y)

e−
1
2

∑
x
χxϕxϕ̄x

)
.

(3) For α = 1
2 ,

E

∏
x 6=y

Z
N

( 1
2 )

x,y
x,y e

−
∑

x
χxL̂x1

2

 = E

(
e

∑
x 6=y

1
2Cx,y(Zx,y−1)ϕR

xϕ
R
ye−

1
2

∑
x
χx(ϕR

x)2
)
.

3.3. Eulerian networks

We define a network to be a N-valued function defined on oriented edges
of the graph. It is given by a matrix k with N-valued coefficients which
vanishes on the diagonal and on entries (x, y) such that {x, y} is not an edge
of the graph. We say that k is Eulerian if∑

y

kx,y =
∑
y

ky,x.

For any Eulerian network k, we define kx to be
∑
y kx,y =

∑
y ky,x. It is

obvious that the field N (α) defines a random network which verifies the
Eulerian property.

The distribution of the random network defined by Lα was given in [7].
The cases α = 1 is of special interest:

Proposition 3.2.

(1) For any Eulerian network k,

P (N (1) = k) = det(I − P )
∏
x kx!∏

x,y kx,y!
∏
x,y

P kx,yx,y .

(2) For any Eulerian network k, and any nonnegative function ρ on X
P (N (1) = k , L̂1 ∈ (ρ, ρ+ dρ)

= 1
det(G)

∏
x,y

(√ρxCx,y
√
ρy)kx,y

kx,y!
∏
x

1
2e
− 1

2λxρxdρx.

– 407 –



Yves Le Jan

Proof. — (1) was proved in two different ways in [7]. For (2), the first
proof of (1) can be extended as follows: Let N be the additive semigroup of
networks and E be the additive semigroup of Eulerian networks. From the
previous lemma, we get

E

(∏
x 6=y

Z
N(1)
x,y

x,y e−
∑

x
χxL̂x1

)

= E

(
e

∑
x6=y

( 1
2Cx,y(Zx,y−1)ϕxϕ̄y)

e−
1
2

∑
x
χxϕxϕ̄x

)
= 1

(2π)d det(G)

∫
e
− 1

2

(∑
x
(λx+χx)ϕxϕ̄x−

∑
(x,y)∈K×K

Cx,yZx,yϕxϕ̄y

)
×
∏
x

1
2i dϕx ∧ dϕ̄x

= 1
(2π)d det(G)

∫ ∞
0

∫ 2π

0
e
− 1

2

(∑
x
(λx+χx)r2

x−
∑

x,y
Cx,yZx,yrxrye

i(θx−θy)
)

×
∏
x

rx drx dθx

= 1
det(G)

∫ ∞
0

∫ 2π

0
e−

1
2

∑
x
(λx+χx)r2

x

×
∑
n∈N

∏
x,y∈K

1
nx,y!Cx,y

(
1
2Zx,yrxrye

i(θx−θy)
)nx,y∏

x

rx
2π drx dθx.

Integrating in the θx variables and using the definition of Eulerian net-
works, it equals

1
det(G)

∫ ∞
0

e−
1
2

∑
x
(λx+χx)r2

x

×
∑
n∈E

∏
(x,y)∈K×K

1
nx,y!

(
1
2Cx,yZx,yrxry

)nx,y∏
x

rx drx.

It follows that for any functional F of a field on X,

E

(∏
x 6=y

Z
N(1)
x,y

x,y F (L̂1)
)

= 1
det(G)

∫ ∞
0

e−
1
2

∑
x
(λx)r2

x

×
∑
n∈E

∏
(x,y)∈K×K

1
nx,y!

(
1
2Cx,yZx,yrxry

)nx,y
F (r2)

∏
x

rx drx.
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We conclude the proof of the proposition by letting F be an infinitesimal
indicator function and by identifying the coefficients of

∏
x,y Z

kx,y
x,y . �

Note that given N (1) = k, all
∏
x kx! /

∏
x,y kx,y! discrete loops con-

figurations are equally likely. Note also that from this proposition follows
the Markov property extending the reflection positivity property proved
in [6, Chapter 9]: If X is the disjoint union of X1 and X2 and we con-
dition Nx,y and Ny,x to take certain values for x ∈ X1 and y ∈ X2, the
restrictions of N to X1 ×X1 and X2 ×X2 are independent.

For α = 1
2 , denote N ( 1

2 )
{} the field N

( 1
2 )
{x,y} = N

( 1
2 )

x,y + N
( 1

2 )
y,x . Note that∑

y N
( 1

2 )
{x,y} is always even. We call even networks the sets of numbers attached

to non oriented edges such that kx = 1
2
∑
y k{x,y} is an integer. Similarly, we

have the following

Proposition 3.3.

(1) For any even network k,

P
(
N

( 1
2 )
{} = k

)
=
√

det(I − P )
∏
x 2kx!∏

x 2kxkx!
∏
x,y k{x,y}!

∏
x,y

P kx,yx,y .

(2) For any even network k, and any nonnegative function ρ on X

P
(
N

( 1
2 )
{} = k , L̂ 1

2
∈ (ρ, ρ+ dρ)

)
= 1√

det(G)

∏
x,y

(√ρxCx,y
√
ρy)kx,y

kx,y!
∏
x

1√
2πρ

e−
1
2λxρxdρx.

Proof. — Let F be the additive semigroup of even networks. To prove (1)
note that on one hand, for any symmetric matrix S

E

( ∏
{x,y}

S
N

( 1
2 )
{x,y}

x,y

)
=
∑
k∈F

P

(
N

( 1
2 )
{} = k

) ∏
{x,y}

S
k{x,y}
x,y .

On the other hand, from the previous lemma:

E

( ∏
{x,y}

S
N

( 1
2 )
{x,y}

x,y

)
= E

(
e

∑
x,y

(
1
2Cx,y(Sx,y−1)ϕR

xϕ
R
y

))

= 1
(2π)d/2

√
det(G)

∫
e
− 1

2

(∑
x
λx(ϕR

x)2−
∑

(x,y)∈K×K
Cx,ySx,yϕ

R
xϕ

R
y

)∏
x

dϕR
x

and we conclude as before by expanding the exponential of the double sum
and the expression of the moments of the normal distribution. Then (2)
follows in the same way as in the proof of the previous proposition. �
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We can deduce from (2) that the symetrized N ( 1
2 ) field conditionned by

the vertex occupation field is, as it was observed by Werner in [14], a random
current model.

A Markov property also holds (see [14] and also [1] in the context of non
backtracking loops).

4. Fields and coverings

4.1. Decompositions

Given a covering G̃ = (X̃, Ẽ), the killing measure and the conductances
are naturally defined on it so that they are invariant under the action of
the monodromy group and they project on C and κ. The Dirichlet form and
the associated Markov process can be naturally lifted to any non ramified
covering.

The Green functions of the covering denoted G̃ is related to G by the
following identity:

G(p(u), p(v)) =
∑
m∈M

G̃(u,m · v).

Let I be the identity element in M . If we fix a section of p, the previous
identity can be rewritten as follows:

G(x, y) =
∑
m∈M

G̃((x, I), (y,m).

From that, we deduce that if f |M | is finite, the free field of the covering
denoted ϕ̃ is related to ϕ by the following identity:

ϕ ◦ p(u) d= 1√
|M |

∑
m∈M

ϕ̃(m · u).

Define L0
α = {l ∈ Lα, CU (l) = I} Let {L0,m

α , m ∈M} be independent copies
of L0

α. Choose a fundamental domain F in X̃ to lift L0,I
α (the base points

being lifted to F ) and lift each L0,m
α to m(F ). The union of these lifts is

identical to L̃α in distribution.

Given a M -assignment U , and an irreducible unitary representation π of
M , we define a tranfer matrix PU,πon X × Cdim(π):

PU,π(x,i),(y,j) = Px,yπ(Ux,y)ij .

Let GU,π denote the associated Green function, and ϕU,π the associated
vector free field.
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From the decomposition of the regular representation into irreducible
representations, we get the following decomposition of G̃.

G̃((x,m), (y, n)) =
∑
π

dim(π)∑
i,j=1

GU,π(x,i),(y,j)π(n−1m)ij .

Let ϕU,π,j be dim(π) independent copies of ϕU,π. Define them jointly
in π so that they are independent Then we can deduce from the former
decomposition of G̃ that in distribution:

ϕ̃((·,m)) d=
∑
π

dim(π)∑
i,j=1

π(m)ijϕU,π,ji (·).

If we perform a change of gauge, we see that the fields ϕU,π,j are trans-
formed consistently, therefore we see them as representatives in a particular
gauge of intrinsic fields taking values in the sections of vector bundles.

4.2. Random homology

We now recall a result of [7] and provide a simple example. The additive
semigroup of Eulerian networks is naturally mapped on the first homology
group H1(G,Z) of the graph, which is defined as the quotient of the funda-
mental group by the subgroup of commutators. It is an Abelian group with
n = |E| − |X|+ 1 generators. The homology class of the network k is deter-
mined by the antisymmetric part k

ˆ

of the matrix k.The distribution of the
induced random homology N

ˆ

(α) can be computed as a Fourier integral on
the Jacobian torus of the graph Jac(G) = H1(G,R)/H1(G,Z). Here, follow-
ing [3] we denote by H1(G,R) the space of harmonic one-forms, which in our
context is the space of one-forms ωx,y = −ωy,x such that

∑
y Cx,yω

x,y = 0
for all x ∈ X and by H1(G,Z) the space of harmonic one-forms ω such that
for all discrete loops (or equivalently for all non backtracking discrete loops)
γ the holonomy ω(γ) is an integer. Precisely, if we equip H1(G,R) with the
scalar product defined by the set of conductances C:

‖ω‖2 =
∑
x,y

Cx,y(ωx,y)2,

let dω be the associated Lebesgue measure, for all j ∈ H1(G,Z), and denote
by G(2πω) the Green function attached to P e2πiω , we have:

Proposition 4.1.

P
(
N

ˆ

(α) = j
)

= 1
|Jac(G)|

∫
Jac(G)

[
det(G(2πiω))

det(G)

]α
e−2πi〈j,ω〉 dω.
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Proof. — Indeed, by Fourier transform

P
(
N

ˆ

(α) = j
)

= 1
|Jac(G|

∫
Jac(G)

E
(
e2πi〈N

ˆ

(α)−j, ω〉
)
dω

= 1
|Jac(G|

∫
Jac(G)

eα
∑

l
µ(l)(e2πi〈N

ˆ

(l),ω〉−1)e−2πi〈j,ω〉 dω

= 1
|Jac(G)|

∫
Jac(G)

[
det(G(2πiω))

det(G)

]α
e−2πi〈j,ω〉 dω. �

For α = 1, this expression can be written equivalently as

1
|Jac(G)|

∫
Jac(G)

E
(
e

∑
x 6=y

(
1
2Cx,y(e2πiωx,y−1)ϕxϕ̄y

))
e−2πi〈j,ω〉 dω

= 1
|Jac(G)|

∫
Jac(G)

E
(
e

1
2

(
E−E(2πiω)

)
(ϕ,ϕ̄)

)
e−2πi〈j,ω〉 dω

where E(2πiω) denotes the positive energy form defined by :

E(2πiω)(f, g)

= 1
2
∑
x,y

Cx,y(f(x)− e2πiωx,yf(y))(ḡ(x)− e−2πiωx,y ḡ(y)) +
∑
x

κxf
2(x).

This expression can also be written as

1
|Jac(G)|

1
det(G)

∫
Jac(G)

E(e− 1
2E

(2πiω)(ϕ,ϕ̄)e−2πi〈j,ω〉 dωdϕ ∧ dϕ̄
2i .

There is a similar expression when α is an integer d, with d independent
copies of the free field ϕ.

Example. — Consider the case of the discrete circle withN vertices, con-
ductances equal to 1 and killing rate κ. The homology group is Z. N

ˆ

i,i+1(l)
is constant in i for any loop l and N

ˆ

can therefore be viewed an an inte-
ger. Harmonic form are also constant and the Jacobian torus is R/(Z/N). P
and P e2πiω are circulant matrices and therefore, their determinants can be
computed. If we set u± = 1

2
(
− 1±

√
1− 4

(2+κ)2

)
,

det(I − P ) = uN+ + uN− + 2(−1)N+1

(2 + κ)N

and

det
(
I − P e

2πiω)
= uN+ + uN− + (−1)N+12 cos(2πNω)

(2 + κ)N .
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Hence for any integer j, we get

P
(
N

ˆ

(α) = j
)

= N

∫ 1/N

0

 uN+ + uN− + 2(−1)N+1

(2 + κ)N

uN+ + uN− + (−1)N+12 cos(2πNω)
(2 + κ)N


α

e−2πNjω dω.

Hence we have, with CN (χ) = (−1)N (2 + κ)N (uN+ + uN− )− 2,

P
(
N

ˆ

(α) = j
)

=
∫ 1

0

[
CN (κ)

CN (κ) + 2(1− cos(2πω))

]α
e−2πjω dω.

Note that CN is a polynomial of degree N with leading order coefficient
equal to 1.

Letting N increase to infinity with κ = k
N2 , k > 0, we get that for the

Brownian loop ensemble with killing rate k,

P
(
N

ˆ

(α) = j
)

=
∫ 1

0

[
cosh(

√
k)− 1

cosh(
√
k)− cos(2πω))

]α
e−2πjω dω.

Factorizing the first term in the integrand, it appears that this is the distri-
bution of the difference of two independent variables with the same negative
binomial distribution of parameters (α, e−

√
k).

4.3. Non Abelian holonomies

We now consider the case of a finite, non Abelian monodromy group.
Given any group G and k of its conjugacy classes C1, C2, . . . , Ck, we denote
NG(C1, C2, . . . , Ck) the number of k-uples (γ1, γ2, . . . γk), γi ∈ Ci such that
γ1γ2 . . . γk = I. Note that it is invariant by permutation of the Ci and that
given another class C0, NG(C1, C2, . . . , Ck, C

−1
0 ) is the number of k-uples

whose product is in C0.

Given a covering defined by a M -assignment U , denote by CU (Lα) the
set of monodromy classes defined by the discrete loops of Lα and, for any
representation π of M , by χπ(CU (Lα)) the product

∏
l∈Lα χπ(CU (l)).

The following result can be obtained as a direct generalization of
Lemma 3.1.

Lemma 4.2.

(1) With [Z.U ]x,y = Zx,yUx,y we have:

E

(∏
x 6=y

Z
N(α)
x,y

x,y χπ

(
CU
(
L(α)))) =

[
det(I − PZ.U,π)

I − P

]−α
.
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(2) Moreover, for α = 1,

E

(∏
x 6=y

ZNx,yx,y χπ

(
CU
(
L
)))

= E

(
e

∑
x 6=y
〈 1

2Cx,y(Zx,yUx,y−I)ϕU,πx , ϕ̄U,πy 〉
)
.

For any conjugacy class C0 of M , set H(α)
U (C0) = NM (CU (Lα),C−1

0 )∏
l∈Lα

|CU (l)|
. H(α)

U

is a probability on the set of conjugacy classes ofM . It represents the propor-
tion of product of monodromies of loops of Lα which are in this conjugacy
class C0. We can compute the mean value of H(α)

U using Frobenius formula
(see the appendix in [15]). We get that

H
(α)
U (C0) =

∑
π

dim(π)2χπ(CU (Lα))χπ(C0)
|M |

.

Note that if M = Z/nZ, irreducible representations are given by πk(m) =
e2πkm, k = 0, 1, . . . n− 1 and this identity reduces to:

1CU (Lα)=m0 = 1
n

∑
k

e2πk(CU (Lα)−m0),

with CU (Lα) =
∑
x,y N

α
x,yUx,y.

Coming back to the general case, we deduce that:

E
(
H

(α)
U (C0)

)
=
∑
π

dim(π)2χπ(C0)
|M |

E
(
e
∑

l
αµ(l)(χπ(CU (l)−1)

)
.

Equivalently:

E
(
H

(α)
U (C0)

)
=
∑
π

dim(π)2 det(GU,π)αχπ(C0)
|M |det(G)α .

In the case of Z/nZ, if ω is such that Ux,y = ωx,y (n) for all edges (x, y), we
obtain that:

P
(∑
x,y

Nα
x,yUx,y = m0

)
= 1
n

∑
k

e−2πkm0

[
det(G(2πiω))

det(G)

]α
.

Moreover, for α = 1,

E
(
H

(α)
U (C0)

)
=
∑
π

dim(π)2χπ(C0)
|M |

E

(
e

∑
x6=y
〈 1

2Cx,y(Zx,yUx,y−I)ϕU,πx , ϕ̄U,πy 〉
)
.

Using tensor products of representations, we can get similar formulas for
all moments of HU .
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5. Convergence towards Yang-Mills measure

Given a and a loop l0 χπ(CU (l0)) defines a gauge-invariant functional of
the M -assignment U . Recall that given any unitary representation π of M :

E

(∏
x6=y

χπ
(
CU (L(α))

))
=
[

det(I − PU,π)
I − P

]−α
= e
∑

l
αµ(l)(χπ(CU (l))−1).

Denote this quantity by Λαπ(U). We see that Λαπ defines a measure on
M−coverings, as it is a measure on the set ofM -assignments invariant under
the action of the gauge group.

Assume now that all loops with non trivial homotopy contain d edges or
more. In a square or cubic lattice for example, we have d = 4. For a general
graph, let us still call these loops of minimal length plaquettes and denote
by P the set of plaquettes.

For any c > 0, Yang Mills measures can be defined on M -coverings by
the weights Λπ,c(U) = e

−c
∑

l∈P
µ(l)χπ(CU (l)−1) (see [11]).

Let now ε be a parameter converging to 0. If we add λ(1−ε)
ε to κ so that

λ is divided by ε, and take α = cε−d, we see that:

Proposition 5.1. — As ε−→0, the weights Λαπ(U) converge to Λπ,c(U).

Indeed if ε is small enough, the contribution of the loops with length
strictly larger than d can be bounded by a geometric series whose sum is of
order Cε, C being some constant.

This measure on coverings can be extended to the case of compact mon-
odromy groups. The space of coverings can be replaced by the set of connec-
tions, i.e the quotient of the group of M -assignments by the action of the
gauge group (which acts by conjugacy).

If M = U(1) , the set of connections can be identified with the Jacobian
torus Jac(G). We can choose π to be the identical representation ι and then,

Λαι (ω) =
[

det(I − P e2πiω )
det(I − P )

]−α
=
[

det(G(2πiω))
det(G)

]α
.

In the case of our elementary example on the circle, we find that :

Λαι (ω) =
[

CN (κ)
CN (κ) + 2(1− cos(2πω))

]α
and that

Λι,c(ω) = exp
(
−2c (1− cos(2πω))

(2 + κ)N

)
.
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Note finally that we can study in parallel the random spanning tree on the
covering, its projection to G and the associated fermionic fields (see [6]). Any
probability on coverings produces a coupling at the level of loops and trees
and therefore at the level of Gaussian (i.e. bosonic) and fermionic free fields.
We plan to study this in more detail in a forthcoming work.
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