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On the hypergroup property
Laurent Miclo (1)

ABSTRACT. — The hypergroup property satisfied by certain reversible
Markov chains can be seen as a generalization of the convolution re-
lated features enjoyed by random walks on groups. Carlen, Geronimo
and Loss [4] developed a method for checking this property in the context
of Jacobi eigen-polynomials. A probabilistic extension of their approach
is proposed here, enabling to recover the discrete example of the biased
Ehrenfest model due to Eagleson [9]. Next a spectral characterization is
provided for finite birth and death chains enjoying the hypergroup prop-
erty with respect to one of the boundary points.

RÉSUMÉ. — La propriété d’hypergroupe satisfaite par certaines
chaînes de Markov réversibles peut être vue comme une généralisation des
avantages de la convolution pour les marches aléatoires sur les groupes.
Carlen, Geronimo and Loss [4] ont développé une méthode pour vérifier
cette propriété dans le contexte des polynômes de Jacobi. Une extension
discrète et markovienne de leur approche est proposée ici, pour retrouver
l’exemple du modèle d’Ehrenfest biaisé, dû à Eagleson [9]. Une caracté-
risation spectrale est ensuite obtenue des chaînes finies de vie et de mort
satisfaisant la propriété d’hypergroupe par rapport à l’un des points du
bord.

1. A theoretical result

There are several definitions of the hypergroup property for a reversible
Markov kernel P . One of them, recalled in (1.4) below, is the non-negativity
of certain sums of products of quantities related to the eigenfunctions as-
sociated to P . In the context of Jacobi polynomials, Carlen, Geronimo and
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Loss [4] developed a method in order to check this property (see Remark 1.7
below). Here we begin by extending it, giving it a general probabilistic flavor
by replacing in their criterion some mappings by Markov kernels. Next we
will see how the resulting abstract condition can be applied to recover the
first instance of the hypergroup property, namely the example of the biased
Ehrenfest model due to Eagleson [9]. We will investigate further the hyper-
group property for birth and death Markov chains, by providing a spectral
criterion in the last section. For general motivations relative to the notion of
the hypergroup property, see for instance Diaconis and Griffiths [5] or Bakry
and Huet [3].

Let (S̄, S̄, µ̄, P̄ ) be a reversible Markov framework: (S̄, S̄) is a measurable
space endowed with a probability measure µ̄ and P̄ is a self-adjoint Mar-
kovian operator on L2(µ̄). Recall that the Markov property consists in two
assumptions: on the one hand, for any non-negative function f ∈ L2(µ̄), P̄ [f ]
is non-negative, and on the other hand, P̄ [1] = 1, where 1 ∈ L2(µ̄) is the
constant function taking the value 1 (µ̄-a.s.).

Consider another measurable space (S,S), as well as a Markov kernel Q
from (S̄, S̄) to (S,S): it is a mapping from S̄ × S to [0, 1] such that for any
x̄ ∈ S̄, Q(x̄, ·) is a probability distribution and for any A ∈ S, Q(·, A) is a
measurable mapping (for our purpose, the requirements with respect to the
first variable only need to be satisfied µ̄-a.s.). The kernel Q can be seen as
a Markov operator from B(S), the space of bounded measurable functions
defined on (S,S), to B(S̄), via the formula

∀ f ∈ B(S), ∀ x̄ ∈ S̄, Q[f ](x̄) :=
∫
f(x)Q(x̄, dx)

Denote by µ the image of µ̄ by Q:

∀ A ∈ S, µ(A) :=
∫
Q(x̄, A) µ̄(dx̄)

Then we have
∀ f ∈ B(S), µ[f ] = µ̄[Q[f ]]

and since by Cauchy–Schwarz inequality, (Q[f ])2 6 Q[f2], it appears that Q
can be extended into an operator of norm 1 from L2(µ) to L2(µ̄). Denote by
Q∗ the adjoint operator of Q, it is in particular an operator of norm 1 from
L2(µ̄) to L2(µ). In fact we have a little better:

Lemma 1.1. — The operator Q∗ is Markovian.

Proof. — To check the preservation of non-negativeness, it is sufficient
to see that for any non-negative f ∈ L2(µ̄) and g ∈ L2(µ), 〈Q∗[f ], g〉µ > 0,
where 〈 · , · 〉µ stands for the scalar product in L2(µ). This property is an
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immediate consequence of
〈Q∗[f ], g〉µ = 〈f,Q[g]〉µ̄ > 0

For the computation of Q∗[1], note that for any f ∈ L2(µ),
〈Q∗[1], f〉µ = 〈1, Q[f ]〉µ̄ = µ̄[Q[f ]] = µ[f ] = 〈1, f〉µ

Since this is valid for all f ∈ L2(µ), we conclude that Q∗[1] = 1. �

Define
P := Q∗P̄Q (1.1)

By composition, P is a Markov operator from L2(µ) to L2(µ), which is clearly
self-adjoint, by self-adjointness of P̄ . To get a more interesting property of
P , we need to introduce the following notion. A Markov operator G from
L2(µ̄) to itself is said to be Q-compatible if we have

QQ∗GQ = GQ (1.2)

Lemma 1.2. — If P̄ is Q-compatible, then the operators P̄ and P are
intertwined through Q:

QP = P̄Q

Proof. — By definition, we have
QP = QQ∗P̄Q = P̄Q

by Q-compatibility. �

From now on, P̄ is assumed to be Q-compatible. It seems that an im-
portant tool to investigate the Markov operator P intertwined with P̄ is the
set G of Markov operators G from L2(µ̄) to itself which commute with P̄ ,
GP̄ = P̄G, and which are Q-compatible. This set G has the structure of a
semigroup: for all G,G′ ∈ G, GG′ ∈ G. Indeed, GG′ clearly commutes with
P̄ if both G and G′ commute with P̄ . If (1.2) is satisfied by G and G′, then
the same is true for GG′, since

QQ∗GG′Q = QQ∗GQQ∗G′Q = GQQ∗G′Q = GG′Q

In particular G contains {P̄n : n ∈ Z+}, the semigroup generated by P̄ , but
as it can be observed on the example of the next section, G can be larger than
a temporal evolution semigroup. Under the above setting, to each G ∈ G, we
can associate a Markov operator KG on L2(µ), via

KG := Q∗GQ

Proposition 1.3. — For all G ∈ G, KG and P commute.

Proof. — The argument is similar to the one used in the proof of
Lemma 1.2: using Lemma 1.5 and Assumption (1.2), it appears that

KGP = Q∗GQQ∗P̄Q = Q∗GP̄Q = Q∗P̄GQ = Q∗P̄QQ∗GQ = PKG �

– 419 –



Laurent Miclo

It is time to come to the main application of the above considerations.
Assume that S is a finite set of cardinal N ∈ N (then up to lumping some
of its elements together, there is no loss of generality in taking for S the σ-
algebra consisting of all the subsets of S and up to removing the µ-negligible
points from S, we furthermore assume that µ gives a positive weight to
all the points of S). By symmetry, P is diagonalizable, let (ϕl)l∈[[N ]] be
an orthonormal basis of L2(µ) consisting of its eigenvectors. We make the
hypothesis that all the eigenvalues of P are of multiplicity 1 and that there
exists x0 ∈ S such that for all x1 ∈ S, there exists G ∈ G such that

KG(x0, · ) = δx1 (1.3)

Theorem 1.4. — Under the above conditions, P satisfies the hypergroup
property with respect to x0, namely we have ϕl(x0) 6= 0 for all l ∈ [[N ]] and

∀ x, y, z ∈ S,
∑
l∈[[N ]]

ϕl(x)ϕl(y)ϕl(z)
ϕl(x0) > 0 (1.4)

Proof. — Fix l ∈ [[N ]] and denote θl the eigenvalue associated to the
eigenvector ϕl. From P [ϕl] = θlϕl and Proposition 1.3, we deduce that for
any G ∈ G,

P [KG[ϕl]] = KG[P [ϕl]] = θlKG[ϕ]

namely, either KG[ϕl] = 0 or KG[ϕl] is an eigenvector of P associated
to the eigenvalue θl. Due the multiplicity 1 of this eigenvalue, we deduce
that KG[ϕl] is proportional to ϕl (this being also true if KG[ϕl] = 0), say
KG[ϕl] = λ(G, l)ϕl. Since this is true for all l ∈ [[N ]], the spectral decompo-
sition of KG is given by (λ(G, l), ϕl)l∈[[N ]] and we have

∀ y, z ∈ S, KG(y, z) =
∑
l∈[[N ]]

λ(G, l)ϕl(y)ϕl(z)µ(z) (1.5)

Fix x1 ∈ S and let G ∈ G be as in (1.3). We get from this equation that

λ(G, l)ϕl(x0) = KG[ϕl](x0) = ϕl(x1)

If ϕl(x0) was to vanish, the same would be true of ϕl(x1), for all x1 ∈ S,
contradicting that ϕ is a vector of norm 1. Thus ϕl(x0) 6= 0 and λ(G, l) =
ϕ(x1)/ϕ(x0). It follows from (1.5) that for all y, z ∈ S,∑

l∈[[N ]]

ϕl(x1)ϕl(y)ϕl(z)
ϕl(x0) =

∑
l∈[[N ]]

λ(G, l)ϕl(y)ϕl(z) = KG(y, z)
µ(z) > 0

since KG is a Markovian matrix. This is the expected hypergroup property,
since x1 was chosen arbitrarily. �
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To put more flesh on the notion of Q-compatibility, let us present a tra-
ditional instance of the above setting. Instead of a Markov kernel Q, assume
that we are given a measurable mapping q from (S̄, S̄) to (S,S). It can also
be seen as a “deterministic” Markov kernel from (S̄, S̄) to (S,S), via

∀ x ∈ S̄, Q(x̄, · ) := δq(x̄)( · ) (1.6)

so that the above development applies.

Let T be the σ-field generated by q. In this context, the operator Q is
an isometry from L2(µ) to L2(µ̄), since for all f ∈ B(S), (Q[f ])2 = Q[f2]
(this identity is in fact a characterization of the µ̄-a.s. determinism of Q). A
convenient property of Q∗ is:

Lemma 1.5. — The Markov operator QQ∗ corresponds to the conditional
expectation with respect to T .

Proof. — By composition, QQ∗ is a Markov operator from L2(µ̄) to itself.
To show that it corresponds to the conditional expectation with respect to
T , it is sufficient to prove that

∀ f ∈ L2(µ̄), g ∈ L2(µ) 〈QQ∗[f ], Q[g]〉µ̄ = 〈f,Q[g]〉µ̄ (1.7)

since any T -measurable application G can be written under the form g ◦π =
Q[g] for some function g ∈ L2[µ]. The relation (1.7) comes from the fact that
Q[gh] = Q[g]Q[h] for any g, h ∈ L2[µ], which implies that the l.h.s. is equal
to

µ̄[Q[Q∗[f ]g]] = µ[Q∗[f ]g] = 〈Q∗[f ], g〉µ = 〈f,Q[g]〉µ̄ �

The notion of Q-compatibility (1.2) of a Markov kernel G is then equiv-
alent to

GQ is a Markov operator from L2(µ) to L2(µ̄, T ) (1.8)

where L2(µ̄, T ) is the subspace of L2(µ) consisting of functions measurable
with respect to T .

Thus in the context of a deterministic Q, Lemma 1.2 amounts to the
famous criterion of Dynkin [8] insuring that a function (here the mapping q)
of a Markov chain is itself a Markov chain. Furthermore, Lemma 1.5 leads
to an easy construction of elements of G starting from the Markov kernels
commuting with P̄ (the set of such kernels, called the Markov commutator
of P̄ , is studied in more details in [11]).

Lemma 1.6. — In the deterministic context of Lemma 1.5, for any
Markov kernel K̄ on (S̄, S̄) commuting with P̄ , the Markov kernel QQ∗K̄
belongs to G.
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Proof. — First we note that from P̄Q = QP , P̄ ∗ = P̄ and P ∗ = P , we
get an adjoint relation:

Q∗P̄ = Q∗P̄ ∗ = (P̄Q)∗ = (QP )∗ = P ∗Q∗ = PQ∗

This commutation relation enables us to check thatQQ∗K̄ commutes with P̄ :

QQ∗K̄P̄ = QQ∗P̄ K̄ = QPQ∗K̄ = P̄QQ∗K̄

From Lemma 1.5, the operator QQ∗ is a projection, so that QQ∗QQ∗ = QQ∗

and we get that QQ∗K̄ is Q-compatible. �

The latter lemma helps us to make the link with the inspiring papers of
Bakry and Huet [3] and of Carlen, Geronimo and Loss [4]:

Remark 1.7. — In [4], Carlen, Geronimo and Loss considered the fol-
lowing setting (reinterpreted through the article of Bakry and Huet [3] and
the forthcoming lecture notes by Bakry [2]). Let m,n ∈ N be two integers
with m > 2, n > 3 and denote S̄ = Smn−1 ⊂ Rmn, the sphere of dimension
mn− 1, S = [−1, 1] and q the mapping from S̄ to S given by

∀ x̄ = (x1, . . . , xmn) ∈ S̄, q(x) := 2

 ∑
l∈[[m]]

x2
l

− 1

Let µ̄ be the uniform probability measure on S̄ and µ be the image of µ̄ by
q, it is the given by

∀ u ∈ S, µ(du) = Z−1
m,n(1− u)

m(n−2)−2
2 (1 + u)

m−2
2 du

where Zm,n is the renormalization constant.

Denote by L̄ the usual Laplacian on S̄ and by L the Jacobi operator
acting on functions f ∈ D(L), the space of smooth functions on S with
Neumann conditions at 0 and 1, via

∀ u ∈ S, L := (1− u2)∂2f(u)−
(
m(n− 2)

2 (u+ 1) + m

2 (u− 1)
)
∂f(u)

The Markovian generators L̄ and L are intertwined through q:

∀ f ∈ D(L), L̄[f ◦ q] = L̄[f ] ◦ q

The measures µ̄ and µ are reversible respectively for these generators L̄ and
L. Consider the orthogonal group O(mn), seen as the group of isometries of
S̄. For any x ∈ S, Carlen, Geronimo and Loss [4] have found a γx ∈ O(mn)
such that

q(γx(q−1(1))) = x

and they recover from this fact the hypergroup property of L with respect
to 1.
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This result has inspired Theorem 1.4, where the mappings q and γ are
replaced by Markov kernels (generalizing the deterministic kernels Q and K̄
respectively defined by (1.6) and K̄(x̄, · ) := δγ(x̄), for x̄ ∈ S̄ and γ ∈ O(mn)),
extension needed to treat the biased Ehrenfest model described in the next
section (whereas for the unbiased Ehrenfest model, one can keep working
with mappings, namely deterministic kernels). In the present paper, we re-
stricted our attention to finite state spaces, to avoid technical topological
assumptions on a general state space S with respect to an orthonormal basis
diagonalizing a Markovian generator L. Nevertheless, applying heuristically
Theorem 1.4 to the Markov operators P̄ := exp(tL̄) and P := exp(tL), for
any chosen t > 0, with the kernel G := QQ∗K̄ (belonging to G according to
Lemma 1.6), where K̄ is associated as above to γx, with any chosen x ∈ S,
amounts to the deduction of the hypergroup property of L with respect to
1 by Carlen, Geronimo and Loss [4]. Indeed, one would have remarked that
for any function f defined on S,

KG[f ](1) = Q∗QQ∗K̄Q[f ](1) = Eµ̄[f ◦ q ◦ γx|q−1(1)] = f(x)
namely δ1KG = δx.

2. An example

Eagleson [9] proved that the biased Ehrenfest model satisfies the hyper-
group property, let us show how Theorem 1.4 enables us to recover this
result.

We begin by recalling the underlying birth and death Markov transition
kernel P on S := [[0, N ]], with N ∈ N∗ (so there is a slight modification of
the notations of Theorem 1.4: the cardinal of S is now N + 1), parametrized
by p ∈ (0, 1):

∀ x, y ∈ [[0, N ]], P (x, y) :=


N−x
N p if y = x+ 1
x
N (1− p) if y = x− 1
1− p− (1− 2p) xN if y = x

0 otherwise

(2.1)

This birth and death kernel is irreducible and its unique reversible proba-
bility measure µ is the binomial distribution (with Krawtchouck orthogonal
polynomials) given by

∀ x ∈ [[0, N ]], µ(x) =
(
N

x

)
px(1− p)N−x (2.2)

This can be computed directly or deduced, as in the previous section, from
the existence of a simple reversible Markov framework (S̄, S̄, µ̄, P̄ ) “above”
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P . Indeed, take S̄ = {0, 1}N , endowed with the σ-field S̄ of all its subsets,
and consider the mapping q going from S̄ to S defined by

∀ x̄ := (x̄l)l∈[[0,N ]] ∈ S̄, q(x̄) :=
∑
l∈[[N ]]

x̄l

The probability measure µ̄ is given by

∀ x̄ ∈ S̄, µ̄(x̄) := pq(x̄)(1− p)q(x̄)

For any l ∈ [[0, N ]], consider the Markov transition matrix P̄l defined by

∀ x := (x̄k)k∈[[0,N ]], y := (ȳk)k∈[[0,N ]] ∈ S̄,

P̄l(x̄, ȳ) :=


p if ȳl = 1 and ȳk = x̄k, for k 6= l

1− p if ȳl = 0 and ȳk = x̄k, for k 6= l

0 otherwise

The measure µ̄ is clearly reversible for P̄l, as well as for

P̄ := 1
N

∑
l∈[[N ]]

P̄l

As in the end of last section, we reinterpret the mapping q as the Markov
kernel from (S̄, S̄) to (S,S) given in (1.6). The associated σ-field T ⊂ S
consists of the events which are left invariant by all the permutations of
the indices. In particular, Assumption (1.2) is satisfied, P̄Q being clearly a
Markov operator from L2(µ) to L2(µ̄, T ). Furthermore the Markovian matrix
P defined in (1.1) is given by (2.1) and the image of µ̄ by q coincides with µ
described in (2.2). Thus µ is necessarily reversible with respect to P .

But the interest of the above construction is that it enables us to recover
the hypergroup property of P via Theorem 1.4. From now on, assume that
p ∈ (0, 1/2] (if p ∈ (1/2, 1), reverse the order of the segment [[0, N ]] to come
back to the situation where p ∈ (0, 1/2)). For l ∈ [[N ]], consider the Markov
transition matrix Hl defined by

∀ x := (x̄k)k∈[[N ]], y := (ȳk)k∈[[N ]] ∈ S̄,

Hl(x̄, ȳ) :=


1 if x̄l = 1, ȳl = 0 and ȳk = x̄k, for k 6= l

p/(1− p) if x̄l = 0, ȳl = 1 and ȳk = x̄k, for k 6= l

(1− 2p)/(1− p) if x̄l = 0, ȳl = 0 and ȳk = x̄k, for k 6= l

0 otherwise

It is immediate to check that

P̄l = pI + (1− p)Hl
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where I is the identity matrix (seen as the Markov kernel without motion). In
particular, Hl commutes with P̄l and with P̄ . More generally, for A ⊂ [[N ]],
let HA be given by

HA :=
∏
l∈A

Hl

(in r.h.s. the order of the compositions of the Markov kernels does not mat-
ter, since they commute among themselves). Again, HA is a Markov kernel
commuting with P̄ . Nevertheless, it lacks symmetry to belong to G. So for
any l ∈ [[N ]], consider

Gl := 1(
N
l

) ∑
A⊂[[N ]] : card(A)=l

HA

which is easily seen to belong to G.

This leads to consider the Markov kernel KGl
on [[0, N ]]. It appears with-

out difficulty that

∀ l ∈ [[N ]], KGl
(N, ·) = δN−l(·)

This observation enables us to apply Theorem 1.4 to get that P satisfies the
hypergroup property with respect to the point N (if p > 1/2, P satisfies the
hypergroup property with respect to the point 0).

To investigate the extent of the applicability of the approach of the
previous section, it would be interesting to study the multidimensional
Krawtchouk polynomials, which are a multidimensional extension of the
above example, cf. Diaconis and Griffiths [5, 6]. Nevertheless, to general-
ize the result of this section, staying in the one-dimensional setting of finite
birth and death chains, already presents surprising challenges, as we are now
going to see.

3. On birth and death chains

Instead of working with a “covering Markov framework” (S̄, S̄, µ̄, P̄ ),
where hidden symmetries in the initial model (S,S, µ, P ) are more obvi-
ous, one can also try to find directly the commuting Markov kernels. We
investigate here the situation of finite birth and death chains, by providing a
spectral characterization of the hypergroup property with respect to the left
boundary point. This enables us to construct a practical algorithm for check-
ing this property. Next we conjecture two seemingly natural discrete versions
of the Achour–Trimèche theorem [1] (see also Bakry and Huet [3]), asserting
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the hypergroup property under certain log-concavity of the reversible mea-
sure. Using numerical implementations of the proposed algorithm, it appears
they are both wrong.

We begin by recalling the framework of finite birth and death chains. For
some N ∈ N, we take S := [[0, N ]] endowed with its total σ-field S and an
irreducible birth and death Markov kernel P , i.e. whose permitted transitions
are those to the nearest neighbors, S being given its usual discrete line graph
structure (with self-connecting loop at each vertex, to allow for non-zero
diagonal entries for P ). Then there exists a unique invariant probability
measure µ for P and it is reversible. Our purpose is to investigate the set of
Markov kernels commuting with P , namely the set

K := {K ∈M : KP = PK}

whereM is the set Markov kernels on S. Note that the elements of K admit
µ as invariant probability. Indeed, we have

µKP = µPK = µK

This shows that µK is invariant by P , so that µK = µ.

We are looking for conditions on P which ensure that for any probability
distribution µ0, there exists a Markov kernel Kµ0 ∈ K such that Kµ0(0, ·) =
µ0, namely we are trying to check the hypergroup property with respect to
0. By convexity of K, this amounts to find, for any given x1 ∈ S, Kx1 ∈ K
such that Kx1(0, ·) = δx1(·), since we can next take for any probability
distribution µ0,

Kµ0 =
∑
x1∈S

µ0(x1)Kx1 (3.1)

Remark 3.1. — The commutation relation KP = PK can be seen as a
discrete wave equation in K, by interpreting the first (respectively, second)
variable in the matrix K as a time (resp., space) variable. More precisely,
denote k the density kernel associated to K:

∀ t, x ∈ [[0, N ]], k(t, x) := K(t, x)
µ(x)

Using that for all x, y ∈ [[0, N ]], µ(x)P (x, y) = µ(y)P (y, x), we can transform
the equality

∀ t, x ∈ [[0, N ]],
∑
y∈S

K(t, y)P (y, x) =
∑
y∈S

P (t, y)K(y, x)

into

∀ t, x ∈ [[0, N ]], µ(x)
∑
y∈S

P (x, y)k(t, y) = µ(x)
∑
y∈S

P (t, y)k(y, x)

– 426 –



On the hypergroup property

Dividing by µ(x) and considering the generator matrix L = P − I, we get

∀ t, x ∈ [[0, N ]], L(1)[k](t, x) = L(2)[k](t, x)
where for i ∈ {1, 2}, L(i) stands for the generator acting on the i-th variable
as L. A least formally, one recognizes a wave equation. Thus our objective is
to see when a wave equation starting from a non-negative initial condition
remains non-negative.

The biased Ehrenfest birth and death processes of the previous section
with p ∈ [1/2, 1) provide examples of the Markov kernels we want to char-
acterize. We will denote by Mp the Markov matrix defined in (2.1) with
p ∈ [1/2, 1). Here is a simpler example where the discrete wave interpreta-
tion is particularly obvious:

Example 3.2. — Consider the birth and death random walk on [[0, N ]]: its
Markov kernelM0 (not to be confused with the notationMp, for p ∈ [1/2, 1),
defined above) is given by

∀ x, y ∈ [[0, N ]], M0(x, y) =


1 if (x, y) = (0, 1) or (x, y) = (N,N − 1)
1/2 if |x− y| = 1 and x 6∈ {0, N}
0 otherwise

For any x0 ∈ [[0, N ]] and ε ∈ {−1, 1}, let (ψx0,ε(x))x∈Z+ the deterministic and
discrete time evolution in [[0, N ]] constructed in the following way: ψx0,ε(0) =
x0 and if x0 ∈ [[1, N − 1]], then we take ψx0,ε(1) to be x0 + ε. If x0 = 0
(respectively x0 = N), we take ψx0,ε(1) = 1 (resp. ψx0,ε(1) = N − 1). Next
for x ∈ N, if ψx0,ε(x−1) and ψx0,ε(x) have been constructed with dx0,ε(x) :=
ψx0,ε(x) − ψx0,ε(x − 1) ∈ {−1, 1}, then we take ψx0,ε(x + 1) = ψx0,ε(x) +
dx0,ε(x), except if it is not possible (i.e. ψx0,ε(x) ∈ {0, N}), in which case
we consider ψx0,ε(x+ 1) = ψx0,ε(x)− dx0,ε(x). Visually, it corresponds to a
trajectory of a particle issued from x0, starting to go to x0 +ε and keeping in
the same direction until it is reflected on one of the “walls at −1 and N +1”.

We leave to the reader as an exercise to check that for any x0 ∈ [[0, N ]],
the Markov kernel Kx0 defined by

∀ x, y ∈ [[0, N ]], Kx0(x, y) = 1
2

(
δψx0,1(y) + δψx0,−1(y)

)
does commute with M0.

We come back to the situation of a general irreducible birth and death
Markov kernel P . To describe the main theoretical result of this section, we
need some further notations. For n ∈ [[0, N ]], denote by −1 < θn,0 < θn,1 <
· · · < θn,n−1 < 1 the n eigenvalues of the minor of P corresponding to the
rows and columns indexed by [[0, n− 1]].
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Proposition 3.3. — The Markov kernel P satisfies the hypergroup
property with respect to 0 if and only if for all n ∈ [[0, N ]], the matrix

(P − θn,0)(P − θn,1) · · · (P − θn,n−1)

has non-negative entries.

In the case n = N + 1, the corresponding product matrix vanishes by the
Hamilton–Cayley theorem.

Remark 3.4. — Markov kernels usually refer to discrete time processes.
Continuous time processes rather use Markov generators. A matrix L is
called a Markov generator if its off-diagonal entries are non-negative and
if the raw-sums all vanish. It is equivalent to the fact that we can find a
positive number l > 0 and a Markov kernel P such that L = l(P − I), where
I is the corresponding identity matrix. A technical advantage of Markov
generators over Markov kernels is that it is straightforward to perturb them
(in addition to the fact that continuous time is often easier to manage than
discrete time). It is convenient for them to rewrite the above result under
the following form.

Consider an irreducible birth and death Markov L generator on [[0, N ]].
For n ∈ [[0, N − 1]], denote by −1 < λn,0 < λn,1 < · · · < λn,n−1 < 1 the
eigenvalues of the minor of L corresponding to the rows and columns indexed
by [[0, n]]. The Markov generator L satisfies the hypergroup property (1.4)
with respect to x0 = 0 (and N replaced by N + 1) if and only if for all
n ∈ [[0, N − 1]], the matrix

(L− λn,0)(L− λn,1) · · · (L− λn,n−1)

has non-negative entries.

At the end of this section, we will explain how Proposition 3.3 enables us
to construct a relatively efficient algorithm to check the hypergroup property.
First we prove Proposition 3.3 through a sequence of intermediate results.

We begin by showing that it is always possible to solve the commutation
equation Kµ0P = PKµ0 explicitly in terms of P and µ0. It will remain to
see if the obtained solution is non-negative, but the condition Kµ01 = 1 will
be automatically satisfied. Indeed, for any matrix K commuting with P , we
have

K1 = KP1 = PK1

so that K1 is an eigenfunction associated to the eigenvalue 1 and thus must
be constant by irreducibility of P . The first component of Kµ01 is equal to
δ0Kµ01 = µ0(1) = 1, so that we get Kµ01 = 1.
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Define
∀ n,m ∈ [[0, N ]], a(n,m) := Pn(0,m)

(note that a(n, n) > 0 for n ∈ [[0, N ]]) and for n ∈ [[0, N ]], the polynomial
Rn(X) given by

Rn(X) := 1
a(n, n)X

n − 1
a(n, n)

∑
n1∈[[0,n−1]]

a(n, n1) 1
a(n1, n1)X

n1

+ 1
a(n, n)

∑
n1∈[[0,n−1]]

∑
n2∈[[0,n1−1]]

a(n, n1) 1
a(n1, n1)a(n1, n2) 1

a(n2, n2)X
n2 + · · ·

+ (−1)n 1
a(n, n)

∑
n1∈[[0,n−1]]

∑
n2∈[[0,n1−1]]

· · ·
∑

nn∈[[0,nn−1−1]]

a(n, n1) 1
a(n1, n1)a(n1, n2) 1

a(n2, n2)

· · · a(nn−1, nn) 1
a(nn, nn)X

nn

This polynomial has degree n and the last sum over nn is empty except if
nn−1 = 1, since for any l ∈ [[0, n]], nl 6 n− l. The interest of Rn comes from

Lemma 3.5. — For any probability distribution µ0, there exists a unique
matrix Kµ0 commuting with P and whose first line coincides with µ0. It is
given by

∀ n ∈ [[0, N ]], Kµ0(n, · ) = µ0Rn(P )( · ) (3.2)

Proof. — We begin by showing that a solution K satisfying the two re-
quirements of this proposition is necessarily given by the above formula. To
simplify the notations, we consider the case where µ0 = δx1 , with x1 ∈ [[0, N ]]
given. Fix some n ∈ [[1, N ]]. From the commutation relation, we get that
PnK = KPn. The first line of this matrix identity reads∑

m∈[[0,n]]

Pn(0,m)K(m, · ) = Pn(x1, · )

since Pn(0,m) = 0 for m ∈ [[n+ 1, N ]]. It follows that

K(n, · ) = 1
a(n, n)

Pn(x1, · )−
∑

m∈[[0,n−1]]

a(n,m)K(m, · )


which provides an iteration formula for the computations of K(n, · ), starting
from K(0, · ) = δx1 . It leads without difficulty to the announced expression,
K(n, · ) = δx1Rn(P )( · ). These arguments extend to the situation of a general
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probability measure µ0. Conversely, the matrix defined by (3.2) satisfies on
one hand, Kµ0(0, · ) = µ0( · ) and on the other hand, for all n ∈ [[0, N ]],

Kµ0(n, · ) = 1
a(n, n)

µ0P
n( · )−

∑
m∈[[0,n−1]]

a(n,m)Kµ0(m, · )


namely ∑

m∈[[0,n]]

Pn(0,m)Kµ0(m, · ) = µ0P
n( · )

or equivalently, we have the equality of the first line of PnKµ0 and Kµ0P
n:

δ0P
nKµ0 = δ0Kµ0P

n

Since this is true for all n ∈ [[0, N ]], we deduce that

∀ n ∈ [[1, N ]], δ0P
n−1PKµ0 = δ0P

n−1Kµ0P

Note that the support of the measure δ0Pn−1 is exactly [[0, n − 1]], thus by
iteration, it follows that all the lines of PKµ0 coincide with the corresponding
ones of Kµ0P , i.e. Kµ0 commutes with P . �

It is natural to wonder if, for given n ∈ [[0, N ]], the polynomial Rn is
uniquely by the property (3.2). Indeed, assume that R̃n is another polyno-
mial of degree n satisfying the same equation. Since it must be true for all
probability measure µ0, we get that Rn(P ) = R̃n(P ). Thus a priori, Rn is
only determined up to an additional term belonging to the ideal generated
by the unital minimal polynomial Q associated to the matrix P . Since P
is an irreducible birth and death transition kernel, it is diagonalizable and
all its eigenvalues are different.This implies that Q is of degree N . Thus if
n ∈ [[0, N − 1]], Rn is uniquely determined, due to the fact that its degree
is n. But this argument doesn’t seem to work for n = N . There is a more
convenient way to see that Rn is uniquely determined for all n ∈ [[0, N ]],
even under an apparently weaker requirement, as we are to see.

Note that if µ0 = δ0, the identity matrix I is a trivial solution to the
problem corresponding toK0. By the uniqueness statement of Lemma 3.5, we
conclude that K0 = I. In the wave equation interpretation, K0 corresponds
to a wave initially localized at 0 and which travels at speed 1 to the right,
until it reaches N at time N . The polynomial Rn is in fact characterized
by (3.2) with µ0 = δ0:

Lemma 3.6. — For all n ∈ [[0, N ]], there is a unique polynomial Rn of
degree n such that

δn(·) = δ0Rn(P )( · ) (3.3)
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Proof. — Let us fix n ∈ [[0, N ]] and write

Rn(X) =
∑

p∈[[0,n]]

rpX
p

Since the support of the probability measure δ0P p is [[0, p]], for all p ∈ [[0, n]],
we deduce from (3.3) applied at n that 1 = rnP

n(0, n), namely rn =
1/a(n, n). Next applying (3.3) at n − 1, we deduce that 0 = rn−1P

n−1(0,
n− 1) + rnP

n(0, n− 1), i.e. rn−1 = −a(n, n− 1)/(a(n, n)a(n− 1, n− 1)). It
appears that we can deduce iteratively the values of rn−2, rn−3, . . . , r0. �

The previous result gives us an interesting interpretation of Rn, for fixed
n ∈ [[0, N ]], from which Proposition 3.3 follows at once. Consider the matrix
P̃n, indexed by [[0, n]]× [[0, n]] and given by

∀ k, l ∈ [[0, n]], P̃n(k, l) :=
{
P (k, l) if k ∈ [[0, n− 1]]
δn(l) if k = n

It is a Markov transition matrix absorbed at n. Its eigenvalue are θn,n := 1
and the eigenvalues −1 < θn,0 < θn,1 < · · · < θn,n−1 < 1 introduced before
Proposition 3.3 and corresponding to eigenvectors vanishing at n.

Lemma 3.7. — For n ∈ [[0, N ]] fixed as above, we have

Rn(X) = 1
a(n, n) (X − θn,0)(X − θn,1) · · · (X − θn,n−1)

Proof. — Since P is a birth and death transition matrix, we have

∀ x ∈ [[0, n]], δ0Rn(P )(x) = δ0Rn(P̃n)(x)

thus reinterpreting (3.3) on [[0, n]], we get

δn( · ) = δ0Rn(P̃n)( · ) (3.4)

The same arguments as in the proof of Lemma 3.6 show that this equa-
tion determines the polynomial Rn(X), in particular the coefficient of Xn is
1/a(n, n).

Consider the polynomial

Q(X) := (X − θn,0)(X − θn,1) · · · (X − θn,n−1)

Hamilton–Cayley theorem says that Q(P̃n)(P̃n − I) = 0 and in particular
δ0Q(P̃n)(P̃n − I) = 0, which means that δ0Q(P̃n) is an invariant measure
for P̃n. Since the invariant measures of P̃n are proportional to δn, we deduce
that there exists a constant cn ∈ R such that

cnδn( · ) = δ0Q(P̃n)( · )
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Applying this inequality at n, we get that cn = Pn(0, n) = a(n, n) and
the announced result is a consequence of the uniqueness statement of
Lemma 3.6. �

Proposition 3.3 suggests the following algorithm to check for the hy-
pergroup property at 0 of a finite birth and death Markov kernel P : for all
n ∈ [[0, N−1]], one computes the eigenvalues θn,0, θn,1, . . . , θn,n−1 and checks
the non-negativity of its entries (P − θn,0)(P − θn,1) · · · (P − θn,n−1). From
a theoretical point of view, it may seem simpler to compute the normalized
eigenvectors (ϕn)n∈[[0,N ]] and to check directly the hypergroup property as
it stated in (1.4) (with x0 = 0 and the appropriate change of indices of the
eigenvectors). But in practice it is more delicate to compute eigenvectors
than eigenvalues and in the numerical experiments we made (using Scilab),
first just to check the Markov kernels Mp for p ∈ [1/2, 1) and M0 (defined
in Example 3.2) satisfy the hypergroup property, the algorithm based on
Proposition 3.3 is more stable.

Thus we rather used the latter to proceed to the numerical experiments
leading to the disproof of a conjectural discrete extension of the Achour–
Trimèche theorem described below.

Let us recall the Achour–Trimèche theorem [1] in the diffusive setting.
Consider the differential operator L = ∂2 − U ′∂ on [0, 1] with Neumann
boundary conditions, where U : [0, 1] → R is a smooth convex potential,
which is assumed to be either non-increasing or symmetric with respect to
the point 1/2. Then L satisfies the hypergroup property with respect to 0
(the finite sum in (1.4) has to be naturally extended into a denumerable
sum, see for instance Bakry and Huet [3]).

We would like to find an extension of this result to the discrete setting of
finite birth and death processes. The operator ∂2−U ′∂ can be seen as a Me-
tropolis modification of ∂2 with respect to the probability measure admitting
a density proportional to exp(−U) (cf. e.g. [7]). The advantage of this point
of view is that it can be extended to the discrete setting. More precisely,
let U be a convex and non-increasing function on [0, N ] and consider the
probability measure µ defined as

∀ x ∈ [[0, N ]], µ(x) := 1
Z

exp(−U(x))π0(x) (3.5)

where Z is the normalizing constant and π0 is the invariant probability of
M0, namely

∀ x ∈ [[0, N ]], π0(x) =
{

1/N if x ∈ [[1, N − 1]]
1/(2N) if x ∈ {0, N}
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The usual choice for a Markov kernel admitting µ as reversible measure is
the Metropolis perturbation of M0 (initiated in Metropolis et al. [10]) given
here by
∀ x 6= y ∈ [[0, N ]], P (x, y) := M0(x, y) exp(−(U(y)− U(x))+)

=
{
M0(x, y) if x < y

M0(x, y) exp(−(U(y)− U(x))) if x > y

Thus it is natural to conjecture that P satisfy the hypergroup property with
respect to 0. Unfortunately, numerical experiments based on Proposition 3.3
show this statement is wrong. We checked this assertion by taking N = 10
and by sampling the convex function U according to the following proce-
dure: let (V (x))x∈[[0,N−1]] be independent exponential random variables of
parameter 1/N , we take

∀ x ∈ [[1, N ]], U(x− 1)− U(x) :=
∑

n∈[[0,N−x]]

V (n)

(the underlying code is given in the appendix).

Finally, we replaced in the above considerations the exploration kernel
M0 by Mp, for p ∈ [1/2, 1). This should reinforce the log-concavity of the
probability measure µ defined as in (3.5), where π0 is replaced by the in-
variant probability measure πp of the Markov kernel Mp. Nevertheless the
conjecture still seems to be wrong (but less so when p becomes closer to 1).
Of course these experiments suggest that the right notion of log-concavity of
a measure (or rather of a Markov kernel) has yet to be found in the discrete
setting.

A discrete analogue of the Achour–Trimèche theorem was subsequently
obtained in [11].

Appendix A. Numerical code

The following algorithm based on Proposition 3.3 and written in Scilab
provides counter-examples to the above conjecture of a discrete Achour–
Trimèche theorem.

N = input("Size of the segment? : N = ");
A = rand(1,N);
E = -log(A)/(N+1);
S = cumsum(E);
R = exp(-S);
P = zeros(N+1,N+1);
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P(1,2) = 1;
for n = 2:N;

P(n,n-1) = R(N+2-n)/2;
P(n,n) = 1/2-P(n,n-1);
P(n,n+1) = 1/2;

end;
P(N+1,N) = R(1);
P(N+1,N+1) = 1-P(N+1,N);
I = eye(N+1,N+1);
J = zeros(1,N);
for n = 1:N;

L = real(spec(P(1:n,1:n)));
Q = I;
for m = 1:n;

Q = Q*(P-L(m)*I);
end
J(n) = min(Q);

end;
U = [0 cumsum(S)];
U = U($:-1:1);
if clean(min(J))<0 then;

disp("A convex function U disproving the discrete
Achour--Trimèche conjecture:")

else;
disp("A convex function U satisfying the discrete

Achour--Trimèche conjecture:")
end;
clf plot2d((0:N),U);

In most of the experiments, this algorithm provides in the output figure a
convex function U disproving the Achour–Trimèche conjecture. Follows such
an example:
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