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Harmonic Measures on the Sphere via
Curvature-Dimension

Warmly dedicated to Dominique R. Bakry with great
admiration

Emanuel Milman (1)

ABSTRACT. — We show that the family of probability measures on
the n-dimensional unit sphere, having density proportional to:

Sn 3 y 7→
1

|y − x|n+α ,

satisfies the Curvature-Dimension condition CD(n−1− n+α
4 ,−α), for all

|x| < 1, α > −n and n > 2. The case α = 1 corresponds to the hitting
distribution of the sphere by Brownian motion started at x (so-called
“harmonic measure” on the sphere). Applications involving isoperimetric,
spectral-gap and concentration estimates, as well as potential extensions,
are discussed.

RÉSUMÉ. — On montre que la famille de mesures de probabilités sur
la sphère n-dimensionelle, dont les densités sont proportionnelles a:

Sn 3 y 7→
1

|y − x|n+α ,

satisfait la condition de Courbure-Dimension CD(n−1− n+α
4 ,−α), pour

tout |x| < 1, α > −n et n > 2. Le cas α = 1 correspond à la distribution
de probabilité qu’un mouvement Brownian partant de x atteigne la sphère
(aussi appelee la “mesure harmonique” sur la sphère). En guise d’appli-
cations, des inegalités isopérimetriques et de trou spectral, ainsi que des
estimées de concentration seront presentées. Nous discuterons aussi de
possibles extensions de nos resultats.
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1. Introduction

In this note, we consider the following family of probability measures on
the unit sphere Sn in Euclidean space (Rn+1, | · |):

µn,αx = cn,αx
|y − x|n+α dσ

n(y), (1.1)

where n > 2, |x| < 1, α ∈ R, σn denotes the Haar probability measure on Sn
and cn,αx > 0 is a normalization constant. In the case α = 1 we have cn,1x =
1 − |x|2, and it is well known (e.g. [31]) that µn,1x is precisely the harmonic
measure on Sn, characterized as the hitting distribution of Sn by standard
Brownian motion started at x, or equivalently, as the measure whose density
is the Poisson kernel for the Laplace equation in Bn+1 =

{
x ∈ Rn+1; |x| < 1

}
with Dirichlet boundary conditions on Sn = ∂Bn+1. Denoting by g the
canonical Riemannian metric on Sn, the triplet (Sn, g, µn,αx ) constitutes a
weighted Riemannian manifold.

Clearly, given n, α and |x|, the density of such measures on y ∈ Sn

only depends on the angle θ(y) ∈ [0, π] given by cos(θ(y)) = 〈y, x/|x|〉, and
so various functional and concentration properties of these measures may be
reduced to the study of the one-dimensional measure θ∗(µn,αx ), whose density
on [0, π] is proportional to:

sinn−1(θ)
(1− 2 cos(θ)|x|+ |x|2)n+α

2
. (1.2)

This is essentially the approach taken by G. Schechtman and M. Schmuck-
enschläger [31] and F. Barthe, Y. Ma and Z. Zhang [5] in their study of the
harmonic case α = 1 (further details to be provided momentarily).

While such an approach will certainly yield the most precise results, it is
very specialized to the case of having a weighted manifold invariant under
a huge symmetry group. Furthermore, the calculations involving the precise
density (1.2) may be at times tedious, or alternatively rely on the Brownian
motion interpretation of the harmonic case α = 1. In this note we would like
to take a different path, which while yielding somewhat less precise estimates,
is essentially effortless, and may be applied in far greater generality. Our main
observation is the following:

Theorem 1.1. — For all n > 2, |x| < 1 and α > −n, the weighted
manifold (Sn, g, µn,αx ) satisfies the Curvature-Dimension condition CD(n −
1− n+α

4 ,−α).

We defer the definition of the Bakry–Émery Curvature-Dimension
CD(ρ,N) condition to Section 2, and presently only remark that ρ ∈ R
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represents a lower bound on the generalized Ricci curvature of the given
weighted manifold, whereas N ∈ R represents an upper bound on its gen-
eralized dimension. Indeed, when α = −n, corresponding (for all x) to the
case of the canonical n-sphere equipped with its uniform Haar measure, our
estimate becomes CD(n − 1, n), in precise agreement with the n-sphere’s
usual constant Ricci curvature of (n − 1)g. Let us also remark that the
Curvature-Dimension definition we employ only coincides with the original
Bakry–Émery definition [2] in the range N ∈ (−∞, 0) ∪ [n,∞], but not for
N ∈ [0, n) (see Section 2 for more information).

Properties of weighted manifolds (and more generally, Markov diffusion
processes) satisfying the CD(ρ,N) condition have been intensively studied
in the past three decades, and in the last decade the scope has been extended
to include very general geodesic metric-measure spaces satisfying a synthetic
version of the CD(ρ,N) condition (see e.g. [1, 2, 3, 4, 10, 11, 14, 15, 16, 17,
22, 25, 26, 28, 29, 30, 32, 33, 34, 35] and the references therein for a very non-
comprehensive excerpt). In the study of n-dimensional weighted-manifolds
satisfying CD(ρ,N), the range of admissible values for N has traditionally
been N ∈ [n,∞]. However, returning to the family of measures (1.1), note
that this traditional range excludes the harmonic case N = −α = −1.
Fortunately, in recent years, this range has been extended to also include
N ∈ (−∞, 1) (see e.g. [23] for a recent account).

While in the weighted manifold setting this extended range constitutes a
recent development, in the Euclidean setting with ρ = 0 and N ∈ (−∞, 0)∪
[n,∞], the class of CD(0, N) spaces (Rn, | · |, µ) coincides with the class of
convex measures (of full-dimensional convex support and C2 density Ψ), in-
troduced by Borell [8] in the 70’s (cf. Brascamp–Lieb [9]) and studied by
S. Bobkov and M. Ledoux [6, 7]. In this latter setting, the case N ∈ (−∞, 0)
corresponds to “heavy-tailed” measures, characterized by the requirement
that 1/Ψ1/(n−N) be convex. A prototypical example is the Cauchy probabil-
ity measure on (Rn, | · |):

νn,α = cn,α

(1 + |y|2)n+α
2
dy , α > 0,

which satisfies CD(0,−α). Note that our measures (1.1) may be thought of as
spherical analogues of these Euclidean Cauchy measures, and so in hindsight
it is not so surprising that they also satisfy a Curvature-Dimension condition
with negative dimension (albeit with positive curvature contributed by the
sphere).

While Theorem 1.1 boils down to an elementary calculation, our main
incentive for writing this note is to demonstrate and advocate the useful-
ness of the CD(ρ,N) condition in the less established range N ∈ (−∞, 1).
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As immediate corollaries of Theorem 1.1, we apply the recently available
isoperimetric, spectral and concentration results for that range. The case
N = −α ∈ [1, n) is excluded from the ensuing discussion, since in general
none of the above good properties hold in that range (as explained in [23]).

We henceforth assume that α ∈ (−1, 3n− 4), and set:

ρn,α := n− 1− n+ α

4 > 0.

First, we apply the isoperimetric comparison theorems obtained in our previ-
ous work [23, Corollary 1.4, Theorem 6.1], to deduce the strongest form of in-
formation regarding the measures (1.1). Given a metric space (Ω, d) endowed
with a Borel measure µ, recall that the Minkowski (exterior) boundary mea-
sure µ+(A) of a Borel set A ⊂ Ω is defined as µ+(A) := lim infε→0

µ(Adε\A)
ε ,

where Aε = Adε := {x ∈ Ω;∃ y ∈ A d(x, y) < ε} denotes the ε extension of
A with respect to the metric d. In our context, the metric d is given by the
standard geodesic distance on (Sn, g).

Corollary 1.2. — Given n > 2 and α ∈ (−1, 3n− 4), set:

δn,α := ρn,α
α+ 1 > 0,

and denote the following functions on R:

ϕn,α(t) := cn,α

cosh(
√
δn,αt)α+1

, Φn,α(t) :=
∫ t

−∞
ϕn,α(s) ds,

where cn,α > 0 is a normalization constant to make ϕn,α a probability den-
sity. Then for any |x| < 1 and Borel set A ⊂ Sn, the following isoperimetric
inequality holds:

(µn,αx )+(A) > ϕn,α ◦ Φ−1
n,α(µn,αx (A)).

In particular, the following Cheeger-type isoperimetric inequality holds:

(µn,αx )+(A) > Dn,α
Che min(µn,αx (A), 1− µn,αx (A))

with:

Dn,α
Che >

√
δn,α

1∫∞
0 cosh(t)−(1+α)dt

> c0
√
ρn,α min(1,

√
1 + α)

and c0 > 0 a numeric constant.

In fact, a slightly more refined version of the above result may be ob-
tained by incorporating information on the diameter of the sphere (see [23]).
As an immediate corollary, we obtain the following two-level concentration
estimate [23, Proposition 6.4]:
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Corollary 1.3. — With the above assumptions and notation, for any
Borel set A ⊂ Sn with µn,αx (A) > 1/2, we have for any r ∈ (0, π):

µn,αx (Sn \Ar) 6
∫ ∞
r

ϕn,α(t) dt

6

C min(1,
√
α+ 1) exp(−cρn,αr2)

1+√ρn,αr r ∈
[
0,
√

α+1
ρn,α

]
C min(1, 1√

α+1 ) exp(−c
√
α+ 1√ρn,αr) otherwise,

where c, C > 0 are numeric constants.

Note that in the harmonic case α = 1, our concentration estimates
only yield exponential tail decay, and are thus inferior to the uniform sub-
Gaussian estimate:

µn,αx (Sn \Ar) 6 C exp(−cnr2), (1.3)

obtained by Schechtman–Schmuckenschläger [31]. However, as soon as an 6
α 6 bn for some 0 < a < b < 3, observe that α+1

ρn,α
> c̃(a, b) > 0, and so our

concentration estimates do in fact become sub-Gaussian of the form (1.3),
with c = c(a, b) and C = C(a, b).

Finally, we apply the Lichnerowicz spectral-gap estimate from our previ-
ous work with A. Kolesnikov [14] (proved for weighted manifolds with convex
boundaries, and also independently obtained by S.-I. Ohta [27] in the case
of closed manifolds); the improvement in the range α ∈ (−1, 1) below is ob-
tained by invoking the Maz’ya–Cheeger inequality as in [23, Theorem 6.1].
Let λn,αx > 0 denote the spectral-gap of (Sn, g, µn,αx ), i.e. the maximal con-
stant λ > 0 so that:∫

Sn
g(∇f,∇f) dµn,αx > λ

∫
Sn
f2 dµn,αx , (1.4)

for all smooth functions f : (Sn, g)→ R with
∫
Sn
f dµn,αx = 0.

Corollary 1.4. — For all |x| < 1 and α ∈ (0, 3n− 4), we have:

λn,αx >
α

α+ 1ρn,α.

When α ∈ (−1, 1), we also have:

λn,αx >
c2

0
4 min(1, 1 + α)ρn,α.

In the harmonic case α = 1, this should be compared with the estimate:

n > λn,1x >
n− 1

2 (1.5)
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obtained by Barthe–Ma–Zhang in [5]. While our estimate yields the inferior
bound:

λn,1x >
3
8(n− 1)− 1

4 (1.6)
it is nevertheless of the correct order. Barthe–Ma–Zhang also showed that
no log-Sobolev inequality which holds uniformly for all |x| < 1 is pos-
sible on (Sn, g, µn,αx ) when α = 1, nevertheless obtaining an essentially
sharp estimate depending on |x|. While we do not pursue a similar di-
rection here, we comment that this indeed agrees with the model space
(R, | · |, ϕn,α(t)dt) from Corollary 1.2, which does not satisfy any log-Sobolev
inequality when N = −α ∈ (−∞, 1). Note that in general, the spectral-gap
estimates (1.5) or (1.6) do not yield the sub-Gaussian concentration (1.3),
but only exponential concentration [13]. It is the CD(ρ,N) condition for
ρ > 0 and N ∈ (−∞, 1) which precisely reconciles between spectral-gap,
lack of log-Sobolev inequality, and sub-Gaussian concentration in the range
r ∈ (0,

√
(1−N)/ρ) (see [23]).

The rest of this work is organized as follows. In Section 2 we recall the
definition of the Curvature-Dimension condition. In Section 3 we provide a
proof of Theorem 1.1. In Section 4 we provide some concluding remarks;
in particular, we comment on how to extend the class (1.1) to measures
involving norms more general than Euclidean (and without assuming any
symmetry).

Acknowledgements

It is a pleasure to thank Dominique Bakry and Michel Ledoux for their
various (already classical) text-books on Concentration of Measure and re-
lated areas. They serve as a never-ending source of ideas, knowledge and
inspiration. I also thank the anonymous referee for useful remarks.

2. Curvature-Dimension Condition

Let (Mn, g) denote an n-dimensional (n > 2) complete connected ori-
ented smooth Riemannian manifold, and let µ denote a measure onM having
density Ψ with respect to the Riemannian volume form volg. For simplicity,
we assume that M is closed, i.e. compact and without boundary, but all
the results we will use equally apply when M is only assumed geodesically
convex. We assume that Ψ is positive and C2 smooth on the entire manifold.
As usual, we denote by Ricg the usual Ricci curvature tensor and by ∇g the
Levi-Civita covariant derivative.
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Definition (Generalized Ricci Tensor). — Given N ∈ (−∞,∞], the
N -dimensional generalized Ricci curvature tensor Ricg,µ,N is defined as:

Ricg,µ,N := Ricg − logHessN−n Ψ, (2.1)
where:

logHessN−n Ψ :=∇2
g log(Ψ) + 1

N − n
∇g log(Ψ)⊗∇g log(Ψ)

= (N − n)
∇2
gΨ

1
N−n

Ψ
1

N−n
.

To make sense of the latter tensor when N−n ∈ {0,∞}, we employ through-
out the convention that 1

∞ = 0, 1
0 = +∞ and ∞ · 0 = 0.

Definition 2.1 (Curvature-Dimension condition). — (Mn, g, µ) satis-
fies the Curvature-Dimension condition CD(ρ,N) (ρ ∈ R and N ∈ (−∞,∞])
if Ricg,µ,N > ρg as symmetric 2-tensors on M .

Note that CD(ρ,N) is satisfied withN = n if and only if Ψ is constant and
Ricg,µ,n = Ricg > ρg (the classical constant density case). The generalized
Ricci tensor (2.1) was introduced with N =∞ by Lichnerowicz [18, 19] and
in general by Bakry [1] (cf. Lott [21]). The Curvature-Dimension condition
was introduced by Bakry and Émery for N ∈ [n,∞] in equivalent form using
Γ-calculus in [2] (in the more abstract framework of diffusion generators).
Its name stems from the fact that the generalized Ricci tensor incorporates
information on curvature and dimension from both the geometry of (M, g)
and the measure µ, and so ρ may be thought of as a generalized-curvature
lower bound, and N as a generalized-dimension upper bound.

Let us give a bit more background on the original definition given by
Bakry and Émery in [2]. Given a generator L of a Markov diffusion process
(see [3] for more details), Bakry–Émery defined the CD(ρ,N) condition as
the requirement that:

Γ2(f) > ρΓ(f) + 1
N

(Lf)2,

for all appropriate test functions f ; in our weighted-manifold setup, Γ(f) =
g(∇f,∇f), Γ2(f) = (Ricg −∇2

g log Ψ)(∇f,∇f) and L = ∆g + ∇g log Ψ de-
notes the generalized Laplacian. The equivalence of the above two defini-
tions was established by Bakry [1] for the traditional range N ∈ [n,∞] and
extended to the range N ∈ (−∞, 0) in [14]. However, as observed in [23, Sec-
tion 7], the two definitions are no longer equivalent in the range N ∈ [0, n),
which includes the case N ∈ [0, 1) relevant to the results in this work. Con-
sequently, we emphasize that we will be using the tensorial Definition 2.1.
In particular, note that our version of the Curvature-Dimension condition
CD(ρ,N) is clearly monotone in ρ and in 1

N−n .
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3. Calculation on the Sphere

In this work, we specialize to the canonical n-sphere (Sn, g) endowed with
the probability measure µn,αx given in (1.1). Let us denote its density with
respect to the Haar probability measure dσn(y) by Ψn,α

x (y), i.e.:

Ψn,α
x (y) := cn,αx

|y − x|n+α .

Recall that the classical Ricci tensor of the canonical n-sphere satisfies
Ricg = (n − 1)g. Consequently, Theorem 1.1 will follow once we establish
that for any n > 2, α > −n, |x| < 1, setting:

N = −α,
we have:

− logHessN−n Ψn,α
x = −(N − n)

∇2
g(Ψn,α

x )
1

N−n

(Ψn,α
x )

1
N−n

> −n+ α

4 g. (3.1)

Since −(N − n) = n+α > 0 in the above range, Theorem 1.1 boils down to
showing the following:

Proposition 3.1. — For every |x| < 1:
∇2
Sn | · − x|
| · − x|

> −1
4g,

where ∇Sn = ∇g denotes the covariant derivative on the canonical n-sphere
(Sn, g).

Proof. — First, recall (e.g. [12]) that for any C2 function f defined on a
neighborhood of Sn in Rn+1:

∇2
Snf = ∇2

Rn+1f − fν IIνSn ,
where ∇ = ∇Rn+1 denotes the standard covariant derivative in Euclidean
space (Rn+1, 〈 · , · 〉), ν is the outward unit normal to Sn in its standard
embedding in Rn+1, fν is the derivative of f in the direction of ν, and
II = IIνSn denotes the second-fundamental form of the latter embedding
with respect to ν, i.e. II(X,Y ) = 〈∇Xν, Y 〉 (note our slightly non-standard
convention for the direction of the normal). Trivially, in our case we have
IIνSn = g.

Now fix y ∈ Sn and a unit vector θ in the tangent space TySn. We
identify all tangent spaces with the corresponding subspaces of Rn+1, so
that 〈y, θ〉 = 0. Our task is then to show that:〈

∇2f(y)θ, θ
〉
− 〈∇f(y), y〉

f(y) > −1
4 , (3.2)
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for f(y) = |y − x| and all y and θ as above, where all differentiation is now
with respect to the standard connection on Rn+1. Calculating:

∇f(y) = y − x
|y − x|

, ∇2f(y) = 1
|y − x|

(
IRn+1 − y − x

|y − x|
⊗ y − x
|y − x|

)
,

and so (3.2) boils down to showing:

1
|y − x|2

(
1− 〈y − x, θ〉

2

|y − x|2
− 〈y − x, y〉

)
= 1
|y − x|2

(
〈x, y〉 − 〈x, θ〉

2

|y − x|2

)

> −1
4 .

To this end, denote:
a = 〈x, y〉 , b = 〈x, θ〉 ,

and note that:
|x|2 = a2 + b2 , |y − x|2 = (1− a)2 + b2.

Consequently, we see that our problem reduces to calculating the minimum
of the function:

F (a, b) := a((1− a)2 + b2)− b2

((1− a)2 + b2)2 , (3.3)

on the disc
{
a2 + b2 6 1

}
. Denoting d := (1− a)2 + b2, we have:

F (a, b) = −(1− a)d+ (1− a)2

d2 >
− 1

4d
2

d2 = −1
4 ,

and indeed this minimal value is attained on the disc’s entire boundary{
a2 + b2 = 1

}
where 1− a = d/2. This concludes the proof. �

Remark 3.2. — A-priori there is no reason to use N − n = −(n+ α) in
the above proof, and we could have also proceeded with (N−n)p = −(n+α)
for some parameter p > 0. Repeating the above argument, everything boils
down to calculating the minimum of:

Fp(a, b) := a((1− a)2 + b2) + (p− 2)b2

((1− a)2 + b2)2 (3.4)

on the unit disc. It turns out that when p > 1, this minimum is still − 1
4

(attained at (a, b) = (−1, 0)), yielding:
∇2
Sn | · − x|p

| · − x|p
> −p4g.

This would have resulted in an inferior Curvature-Dimension condition
CD(ρ,N), with the same curvature ρ = n − 1 − n+α

4 but with a worse
dimension N = n − n+α

p . On the other hand, when p ∈ (0, 1), Fp is not
bounded below on the unit disc, as seen by setting b2 = 1 − a2 and letting
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a→ 1. Consequently, it seems we cannot gain from playing such a game, at
least if our goal is to obtain uniform estimates in |x| < 1.

Remark 3.3. — By using b = 0 in (3.3) or (3.4) and letting a → 1, one
sees that F (a, b) is not bounded from above in

{
a2 + b2 < 1

}
. This prevents

us from applying our results in the range α < −n, when N − n > 0 in (3.1).

4. Concluding Remarks

4.1. Better Understanding of Harmonic Case

It is unfortunate that the harmonic case α = 1 does not satisfy
CD(an,−bn) for some constant a ∈ (0, 1) and b > 0; as explained in the
Introduction, this would have recovered the Schechtman–Schmuckenschläger
sub-Gaussian concentration estimate (1.3). It therefore seems that our cur-
rent understanding is missing some additional subtle curvature property
of the harmonic measure. Perhaps a finer analysis using the forthcoming
Graded Curvature-Dimension condition [24] would enable resolving this
shortcoming.

4.2. Beyond α ∈ (−1, 3n− 4)

We do not know what happens beyond this range for α, and moreover,
we do not have any clear intuition regarding what to expect.

It could be that the negative curvature of the measure overcomes the
positive curvature of the sphere around α ' 3n, resulting in a dimen-
sional degradation or perhaps even phase-transition in the behaviour of
α 7→ inf |x|<1 λ

n,α
x ; this would give credence to the (surprising?) − 1

4 constant
appearing in Theorem 1.1. On the other hand, this could be an artifact of
our proof.

In the vicinity of α = −1 all of our estimates breakdown. We tend to
believe that this is an artifact of our (elementary) proof. Just by interpolating
between the cases α = −n and α = 0, we believe that the spectral-gap
remains of the order of n uniformly in α ∈ [−n, 0] and |x| < 1.

And as for α < −n, we do not know what to expect.
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4.3. Extension to more general norms

Recall that the proof of Theorem 1.1 boiled down to estimating from
below:

∇2
Sn | · − x|
| · − x|

.

Let us check what happens if we replace the Euclidean norm | · | by a more
general (say C2 smooth) one ‖ · ‖. This is interesting enough even for x = 0.
We would like to have:〈

∇2
Sn‖y‖θ, θ

〉
‖y‖

=
〈
∇2

Rn+1‖y‖θ, θ
〉
− 〈∇Rn+1‖y‖, y〉
‖y‖

> −(1− ε),

for all y, θ ∈ Sn with 〈y, θ〉 = 0. But since 〈∇Rn+1‖y‖, y〉 = ‖y‖, we see that
the desired condition is that:

∃ ε > 0
〈
∇2

Rn+1‖y‖θ, θ
〉
> ε‖y‖ ∀ y, θ ∈ Sn 〈y, θ〉 = 0. (4.1)

In such a case, denoting:

ηn,α := cn,α
‖y‖n+α dσ

n(y),

we would have that (Sn, g, ηn,α) satisfies CD(n−1−(1−ε)(n+α),−α) for all
α > −n, implying good concentration properties when α ∈ (−1, n−1

1−ε − n).
The condition (4.1) is reminiscent of the condition for the norm to have
a quadratic modulus of convexity [20], but is not invariant under linear
transformations.
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