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Quantum expanders and growth of group
representations
Gilles Pisier (1)

ABSTRACT. — Let π be a finite dimensional unitary representation
of a group G with a generating symmetric n-element set S ⊂ G. Fix
ε > 0. Assume that the spectrum of |S|−1

∑
s∈S

π(s) ⊗ π(s) is included
in [−1, 1 − ε] (so there is a spectral gap > ε). Let r′N (π) be the number
of distinct irreducible representations of dimension 6 N that appear in
π. Then let R′n,ε(N) = sup r′N (π) where the supremum runs over all π
with n, ε fixed. We prove that there are positive constants δε and cε such
that, for all sufficiently large integer n (i.e. n > n0 with n0 depending
on ε) and for all N > 1, we have exp δεnN2 6 R′n,ε(N) 6 exp cεnN2.
The same bounds hold if, in r′N (π), we count only the number of distinct
irreducible representations of dimension exactly = N .

RÉSUMÉ. — Soit π une représentation unitaire de dimension finie
d’un groupe G munie d’un ensemble générateur symétrique S ⊂ G à n-
éléments. Fixons ε > 0 et supposons que le spectre de |S|−1

∑
s∈S

π(s)⊗
π(s) est inclus dans [−1, 1−ε] (il y a donc un trou spectral > ε). Soit r′N (π)
le nombre de représentations irréductibles distinctes de dimension 6 N qui
apparaissent dans la décomposition de π. Soit alors R′n,ε(N) = sup r′N (π)
où le sup court sur toutes les π possibles avec n, ε fixés. Nous démontrons
l’existence de constantes positives δε et cε telles que, pour tout entier n
suffisamment grand (i.e. n > n0 ou n0 peut dépendre de ε) et pour tout
N > 1, on a exp δεnN2 6 R′n,ε(N) 6 exp cεnN2. Les mêmes bornes sont
valables si, dans r′N (π), on compte seulement le nombre de représentations
irréductibles distinctes de dimension exactement = N .

1. Introduction

We wish to formulate and answer a natural extension of a question raised
explicitly by Wigderson in several lectures (see e.g. [23, p. 59]) and also
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implicitly in [18]. Although the variant that we answer seems to be much
easier, it may shed some light on the original question. Wigderson’s question
concerns the growth of the number rN (G) of distinct irreducible represen-
tations of dimension 6 N that may appear on a finite group G when the
order of G is arbitrarily large and all that one knows is that G admits a gen-
erating set S of n elements for which the Cayley graph forms an expander
with a fixed spectral gap ε > 0. The problem is to find the best bound of
the form rN (G) 6 R(N) with R(N) independent of the order of G (but
depending on n, ε). We consider a more general framework: the finite group
G is replaced by a finite dimensional representation π (playing the role of
the regular representation λG for finite groups) such that the representation
π ⊗ π̄ admits a spectral gap, meaning that the trivial representation is iso-
lated with a gap > ε from the other irreducible components of π⊗ π̄. When
π = λG we recover the previous notion of spectral gap. Let then r′N (π) be
the number of distinct irreducible representations of dimension 6 N appear-
ing in π (note that rN (G) = r′N (λG)), and let R′(N) denote the least upper
bound r′N (π) 6 R′(N) when the only restriction on π is that n, ε remain
fixed (but the dimension of π is arbitrary). We observe that the previously
known bound for R(N) namely R(N) = eO(nN2) is also valid for R′(N) and
also that R(N) 6 R′(N). Our main result, which follows from the metric
entropy estimate for quantum expanders in [20], is that this bound for R′(N)
is sharp: there is δ > 0 such that for all n large enough (i.e. ∀n > n0(ε)) we
have R′(N) > eδnN2 for all N .

The term “quantum expander” was coined in [2, 3, 8] to which we refer
for background (see also [7, 9]).

2. Main result

Let G be any group with a finite generating set S ⊂ G with |S| = n. For
any unitary representation π : G→ Hπ we set

λ(π, S) = n−1 sup{< 〈
∑
s∈S

π(s)ξ, ξ〉 | ξ ∈ H inv
π
⊥
, ‖ξ‖Hπ = 1}.

where H inv
π ⊂ Hπ denotes the subspace of all π-invariant vectors. When S is

symmetric,
∑
s∈S π(s) being selfadjoint, the real part sign < can be omitted.

We then set
ε(π, S) = 1− λ(π, S).

It will be useful to record here the elementary observation that if π is unitar-
ily equivalent to the direct sum ⊕i∈Iπi of a family of unitary representations,
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then λ(π, S) = supi∈I λ(πi, S) and hence
ε(π, S) = inf

i∈I
ε(πi, S). (2.1)

In particular, if π1 is contained in π2, then ε(π1, S) > ε(π2, S).

We denote
ε(G,S) = inf{ε(π, S)}

where the infimum runs over all unitary representations π : G→ Hπ. Thus
the condition

ε(G,S) > 0
means that G has Kazhdan’s “property (T)”, (or in otherwords is a Kazhdan-
group), see [1] for more background.

We start by the following result somewhat implicitly due to S. Wasser-
mann [22] and explicitly proved in detail in [6].

Proposition 2.1 ([22, 6]). — For any ε > 0 there is a constant cε
such that for any n, any group G and any S ⊂ G with |S| = n such that
ε(G,S) > ε, the number rN (G) of distinct irreducible unitary representations
σ : G→ B(Hσ) with dim(Hσ) 6 N is majorized as follows:

rN (G) 6 exp (cεnN2). (2.2)
Of course, here distinct means up to unitary equivalence.

Remark 2.2. — Note that it suffices to prove a bound of the same form
for the number of distinct irreducible unitary representations σ : G→ B(Hσ)
with dim(Hσ) = N . Indeed, if the latter number is denoted by sN (G), we
have rN (G) =

∑N
d=1 sd(G), so that it suffices to have a bound of the form

sd(G) 6 exp (c′εnd2) to obtain (2.2). See [14, 15] for some examples of esti-
mates of the growth of rN (G).

We note that it was originally proved by Wang [21] that for any Kazhdan-
group G this number rN (G) is finite for any N . There is an indication of
proof of (2.2) in [22], and detailed proofs appear in [6] (see also [18]). We
will prove a simple extension of this bound below.

Recall that a sequence (Gk, Sk) of finite groups equipped with generating
sets Sk ⊂ Gk such that

sup
k
|Sk| <∞, |Gk| → ∞ and inf

k
ε(Gk, Sk) > 0

is called an expander or an expanding family. This corresponds to the usual
notion among Cayley graphs to which we restrict the entire discussion. Let
Ĝ denote as usual the (finite) set of all irreducible unitary representations
of a finite group G (up to unitary equivalence). We note in passing that it
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is well known (and this also can be derived from Proposition 2.1) that any
expander satisfies

lim
k→∞

max{dim(Hσ) | σ ∈ Ĝk} =∞. (2.3)

We refer the reader to the surveys [10, 17] for more information on ex-
panders.

The question raised by Wigderson in this context can be formulated as
follows:

Let
Rn,ε(N) = sup{rN (G)}

where the supremum runs over all finite groups G admitting a subset S with
|S| = n such that ε(G,S) > ε. Actually the question is just as interesting
for arbitrary (Kazhdan) groups G, but it is more natural to restrict to finite
groups, because there are infinite Kazhdan groups without any (nontrivial)
finite dimensional representations.

Moreover, since, for a finite group G, all representations are weakly con-
tained in the left regular representation λG, we have clearly by (2.1)

ε(G,S) = ε(λG, S). (2.4)

By (2.2), we have
Rn,ε(N) 6 exp (cεnN2). (2.5)

and a fortiori simply Rn,ε(N) = expO(N2). Wigderson asked whether this
upper bound can be improved. More explicitly, what is the precise order of
growth of logRn,ε(N) when N → ∞. Does it grow like N rather than like
N2? The motivation for this question can be summarized like this: In [18,
Th. 1.4] an exponential bound expO(N) is proved for a special class of groups
G (namely monomial groups), admitting a fixed spectral gap with generating
sets of very slowly growing size (but not bounded) and it is asked whether
the same exponential bound holds in general for Rn,ε(N). Moreover, in a
remark following the proof of [18, Th. 1.4], Meshulam and Wigderson observe
that for any prime number p > 2, there is a group Gp with a generating
set of (unbounded) size log p admitting a fixed spectral gap and such that
rp(G) ≈ 2p/p.

Remark 2.3. — By classical results, originating in the works of Kazhdan
and Margulis (see e.g. [16] or [17, Cor. 2.4]), for any fixed m > 3, the family
{SLm(Zp) | p prime} is an expander, so that we have (for suitable `, δ)

R`,δ(N) > supp rN (SLm(Zp)).
Similarly, let Gk denote the symmetric group of all permutations of a k
element set. Kassabov [11] proved that the family {Gk | k > 1} forms an
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expanding family with respect to subsets Sk ⊂ Gk of a fixed size ` and a
fixed spectral gap δ > 0. Thus we find a lower bound

R`,δ(N) > supk rN (Gk).
Quite remarkably, it is proved in [13] that the family itself of all non-
commutative finite simple groups forms an expander (for some suitable n, ε).

Remark 2.4. — However, it seems the resulting lower bounds are still far
from being exponential in N . Actually, in many important cases (see e.g. [4]),
the proof that certain finite groups G give rise to expanders uses the fact
that the smallest dimension of a (non-trivial) irreducible representation on
G is > c|G|a for some a > 0. Then since |G| =

∑
π∈Ĝ dim(π)2 the cardinal

of Ĝ is bounded above by |G|1−2a/c2. Therefore, for any N > c|G|a we have
rN (G) 6 |G|1−2a/c2 6 c′N (1/a)−2, so that the resulting growth implied for
Rn,ε(N) is at most polynomial in N . (I am grateful to N. Ozawa for drawing
my attention to this point).

Nevertheless, we have:

Remark 2.5 (Communicated by Martin Kassabov). — For suitable n, ε
the numbers Rn,ε(N) grow faster than any power of N . In fact, we will prove
the

Claim. — There is an expanding family of Cayley graphs (Gk) of groups
generated by 3 elements with a positive spectral gap ε and such that for
Nk = 23k−2, Gk admits 2k2 distinct irreducible representations of dimension
Nk.

From this claim follows that R3,ε(Nk) > 2k2
> 2(log(Nk))2 , say for all k

large enough, and hence

Rn,ε(N) > 2(log(N))2
for infinitely many N ’s.

To prove the claim we use the ideas from [12]. Let Rk denote the (finite)
ring Mk(F2) of k × k matrices with entries in the field with 2 elements. It
is known that the cartesian product Πk = R2k

2

k of |Rk| = 2k2 copies of Rk
is generated by 3 elements. Indeed, Rk itself is generated as a ring by two
elements, e.g. a = e12 and the shift b = e12 + e23 + · · · + ek−1k + ek1, then
Πk is generated as a ring by {A,B,C} where A (resp. B) is the element
with all coordinates equal to a (resp. b), and C is such that its coordinates
are in one to one correspondence with the elements of Rk. To check this,
let R ⊂ Πk be the ring generated by {A,B,C}. Note, by the choice of C,
the following easy observation: for any coordinate i, there is x ∈ R such
that xi = 0 but xj 6= 0 for all j 6= i. For any subset I of the index set let
pI : R→ RIk be the coordinate projection. One can then prove by induction
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on m = |I| that pI(R) = RIk for all I. Indeed, assume the fact established
for m − 1. For any I with |I| = m we pick i ∈ I and we consider the set
I = {y ∈ RI\ik | (0, y) ∈ pI(R)}. By the induction hypothesis, I is an ideal in
RI\ik , but, since Rk is simple, the above observation implies that I = RI\ik ,
and since a, b generate Rk we have p{i}(R) = Rk, so we obtain pI(R) = RIk.

This implies that the free associative ring Z〈x, y, z〉 (in 3 non-commutative
variables) can be mapped onto the product Πk. Consider now the group
EL3(Z〈x, y, z〉) generated by the elementary matrices in GL3(Z〈x, y, z〉).
This is a noncommutative universal lattice in the terminology of [5, 12].
First observe that EL3(Z〈x, y, z〉) is generated by 3 elements. Indeed, let
α, β generate SL3(Z). Then α, β, γ will generate EL3(Z〈x, y, z〉) where

γ =

1 x y
0 1 z
0 0 1

 .

Moreover, by [5, Th. 1.1] EL3(Z〈x, y, z〉) has Kazhdan’s property T. It fol-
lows that the groups

Gk = EL3(Πk)
have expanding generating sets with 3 elements. But it turns out that Gk
can be identified with the product

SL3k(F2)2k
2

.

Indeed, firstly one easily checks the natural isomorphism EL3(R2k
2

k ) '
EL3(Rk)2k

2

, secondly it is well known that, since F2 is a field, ELn(F2) =
SLn(F2) for any n, and hence (taking n = 3k) we have a natural isomorphism
EL3(Rk) = SL3k(F2); this yields the identification Gk = SL3k(F2)2k

2

.

To conclude, we will use the fact that SL3k(F2) admits a nontrivial ir-
reducible representation π with dimension Nk = 23k − 2. (Just consider its
action by permutation on the projective space, which has 23k − 1 elements;
the action is transitive and doubly transitive, therefore the associated Koop-
man representation π is irreducible and of dimension 23k − 2). This imme-
diately produces 2k2 distinct irreducible representations of dimension Nk on
SL3k(F2)2k

2

. Indeed, it is an elementary fact that if Γ = Γ1 × · · · × Γm is
a product group, and if π1, . . . , πm are arbitrary nontrivial irreducible rep-
resentations on the factor groups Γ1, . . . ,Γm, then the representations π̃j
defined on Γ by π̃j(g) = πj(gj) are distinct (meaning not unitarily equiva-
lent), irreducible on Γ and dim(π̃j) = dim(πj) for any j. So taking all Γj ’s
equal to SL3k(F2), with πj = π and m = 2k2 , we obtain the announced
claim.
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In any case, the problem of finding the correct behaviour of logRn,ε(N)
(or of Rn,ε(N) itself) when N →∞ appears to be still wide open.

In this paper we consider a modified version of this question involving
“quantum expanders” and show that for this (much easier) modified version,
N2 is the correct order of growth.

The term “quantum expander” was introduced in [8] and [2, 3], inde-
pendently, to designate a sort of non-commutative, or matricial, analogue of
expanders, as follows.

Fix an integer n. Consider an n tuple of N × N unitary matrices, say
u = (uj) ∈ U(N)n. We view each of them uj as a linear operator on the
N -dimensional Hilbert space H. Then uj ⊗ uj is naturally viewed as a lin-
ear operator on the (Hilbert space sense) tensor product H ⊗ H̄. Using the
(canonical) identificationH∗ ' H̄, the tensor productH⊗H̄ can be isometri-
cally identified with the space of linear operators from H to H equipped with
the Hilbert–Schmidt norm denoted by ‖ ‖2 (sometimes called the Frobenius
norm in the present finite dimensional context). Then, the identity operator
IdH : H → H defines a distinguished element of H ⊗ H̄ that we denote
by I.

We set

λ(u) = n−1 sup
{
<

〈( n∑
1
uj ⊗ ūj

)
ξ, ξ

〉∣∣∣∣∣ ξ ∈H⊗H̄, ξ ⊥ I, ‖ξ‖H⊗H̄ = 1
}
,

and
ε(u) = 1− λ(u).

In other words, with the preceding identifications, the condition ε(u) > ε
means that for any x ∈MN with tr(x) = 0 we have

<
∑

tr(ujxu∗jx∗) 6 (1− ε)‖x‖2,

where ‖x‖2 = (tr(x∗x))1/2. When T =
∑n

1 uj⊗ūj is self adjoint (in particular
when the set {u1, · · · , un} is selfadjoint) the real part < can be omitted in
the two preceding lines.

In group theoretic language, if π : Fn → U(N) is the group repre-
sentation on the free group Fn, equipped with a set of n free generators
S = {g1, · · · , gn}, such that π(gj) = uj (1 6 j 6 n), then we have

ε(u) = ε(π ⊗ π, S).

Definition 2.6. — A sequence {u(k) | k ∈ N} with each u(k) ∈ U(Nk)n
such that Nk →∞ (with n remaining fixed) and infk{ε(u(k))} > 0 is called
a quantum expander. We say that n is its degree and infk{ε(u(k))} > 0 its
spectral gap.
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Remark 2.7. — The existence of quantum expanders can be deduced as
follows from that of expanders. Recalling (2.4), assume given a finite group
G and S ⊂ G as before such that ε(G,S) = ε(λG, S) > ε > 0. Recall that
each σ ∈ Ĝ is contained in λG. Let π ∈ Ĝ. Since any representation on G
without invariant vectors, being a direct sum of non trivial irreps, is weakly
contained in λG, the representation ρ = π ⊗ π restricted to H inv

ρ
⊥ is weakly

contained in the non trivial part of λG. In particular, we have by (2.1)
λ(ρ, S) 6 λ(λG, S).

Therefore, we have
ε(π ⊗ π, S) > ε(λG, S) > ε.

Thus if we are given an expander (Gk, Sk) as above, say with Sk = {s1(k), . . . ,
sn(k)}, we can choose by (2.3) σk ∈ Ĝk such that dim(Hσk)→∞, and if we
set uj(k) = σk(sj(k)) (1 6 j 6 n), then u(k) = {u1(k), . . . , un(k)} forms a
quantum expander.

The next statement is a simple generalization of Proposition 2.1

Proposition 2.8. — For any 0 < ε < 1 there is a constant c′ε > 0 for
which the following holds. Let G be any group and let π : G → B(H) be
any unitary representation on a finite dimensional Hilbert space H. Let us
assume that there is an n-element subset S ⊂ G and ε > 0 such that

ε(π ⊗ π, S) > ε.
In other words, π satisfies the following spectral gap condition:

λ(π ⊗ π, S) 6 1− ε (2.6)
Let π = ⊕t∈Tπt be the decomposition into distinct irreducibles (where each
πt has multiplicity dt > 1), then

|{t ∈ T | dim(πt) 6 N}| 6 exp c′εnN2. (2.7)

Proof. — Let σ = ⊕t∈Tπt be the direct sum where each component is
included with multiplicity equal to 1. We may clearly view σ as a subpresen-
tation of π, acting on a subspace K ⊂ H so that the orthogonal projection
Q : H → K is intertwining, i.e. satisfies Qπ = σQ. Then we also have
(Q⊗ Q̄)(π⊗ π̄) = (σ⊗ σ̄)(Q⊗ Q̄), from which it is easy to derive that if we
denote Vπ = H inv

π⊗π̄, we have (Q ⊗ Q̄)Vπ = Vσ and (Q ⊗ Q̄)V ⊥π = V ⊥σ . This
implies

λ(σ ⊗ σ, S) 6 λ(π ⊗ π, S) 6 1− ε.
Thus, replacing π by σ, we may as well assume that the multiplicities dt are
all equal to 1.

LetH = ⊕t∈THt denote the decomposition corresponding to π = ⊕t∈Tπt.
We have π ⊗ π̄ = ⊕t,r∈Tπt ⊗ πr, with associated decomposition H ⊗ H̄ =
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⊕t,r∈THt ⊗Hr. From this follows that the subspace Vπ ⊂ H ⊗ H̄ of π ⊗ π̄-
invariant vectors is equal to ⊕t,r∈TVt,r where Vt,r ⊂ Ht⊗Hr is the subspace
of invariant vectors of πt ⊗ πr. Since for any t 6= r ∈ T , πt 6' πr, by Schur’s
lemma Vt,r = {0}, and hence Vπ ⊂ ⊕t∈TVt,t. In particular, this shows that

∀t 6= r ∈ T Ht ⊗Hr ⊂ V ⊥π .

Let T ′ = {t ∈ T | dim(πt) = N}. It suffices to show an estimate of the form

|T ′| 6 exp cεnN2. (2.8)

Let H be the Hilbert space obtained by equipping Mn
N with the norm

‖x‖2H = N−1n−1
n∑
1

tr(x∗jxj).

Let S = {s1, · · · , sn}. For any t ∈ T ′ we define x(t) ∈Mn
N by

x(t)j = πt(sj) 1 6 j 6 n.

Note that, by our normalization, ‖x(t)‖H = 1 for any t ∈ T ′. Moreover, since
for any t 6= r ∈ T πt 6' πr, by Schur’s lemma the representation πt ⊗ πr has
no invariant vector, and hence lies inside (π ⊗ π)|V ⊥

π
. Therefore, by (2.1)

λ(πt ⊗ πr, S) 6 λ(π ⊗ π, S),

and hence for any unit vector ξ ∈ Hπt ⊗Hπr we have

n−1<(
∑
s∈S

(πt ⊗ πr)ξ, ξ〉) 6 1− ε.

In particular, if t 6= r ∈ T ′, we may realize πt, πr as representations on the
same N -dimensional space, so that taking ξ = N−1/2I we find

<〈x(t), x(r)〉H = (nN)−1<

(∑
s∈S

tr(πt(s)∗πr(s))
)
6 1− ε,

which implies
‖x(t)− x(r)‖H >

√
2ε.

Thus we have |T ′| points in the unit sphere of H that are
√

2ε-separated.
Since dim(H) = nN2, (2.8) follows immediately by a well known elementary
volume argument (see e.g. [19, p. 57]). �

Remark 2.9. — To derive Proposition 2.1 from the preceding statement,
consider, in the situation of Proposition 2.1, a finite set {σt | t ∈ T} of
distinct finite dimensional irreducible representations of G, let π be their
direct sum and let ρ = π ⊗ π. By the assumption in Proposition 2.1, we
know ε(ρ, S) > ε, and hence (2.7) implies |T | 6 exp c′εnN2. Applying this to
π = λG, this shows that Proposition 2.8 contains Proposition 2.1.
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For any finite dimensional unitary representation π : G → B(H) on an
arbitrary group, let us denote by r′N (π) the number of distinct irreducible
representations appearing in the decomposition of π of dimension at most
N . Let then

R′n,ε(N) = sup r′N (π)
where the sup runs over all π’s and G’s admitting an n-element generating
set S ⊂ G such that

ε(π ⊗ π̄, S) > ε.
Note that r′N (λG) = rN (G) and hence

Rn,ε(N) 6 R′n,ε(N).
With this notation (2.7) means that

R′n,ε(N) 6 exp c′εnN2.

While it seems very difficult to give a good lower bound for Rn,ε(N),
we can answer the analogous question for R′n,ε(N): Indeed, the main result
of [20] (see [20, Th. 1.3]), which follows, implies the desired lower bound
when reformulated in terms of representations.

Theorem 2.10 ([20]). — For each 0 < ε < 1, there is a constant βε >
0 such that and for all sufficiently large integer n (i.e. n > n0 with n0
depending on ε) and for all N > 1, there is a subset T ⊂ U(N)n with

|T | > expβεnN2

such that
∀u 6= v ∈ T ‖

∑n

1
uj ⊗ vj‖ 6 n(1− ε) (we call these “ε-separated”),

and ε(u) > ε for all u ∈ T (we call these “ε-quantum expanders”). More
precisely, for all u ∈ T we have

‖(
∑

uj ⊗ uj)|I⊥‖ 6 n(1− ε).

Theorem 2.11. — The estimate in Proposition 2.8 is best possible in
the sense that for any 0 < ε < 1 there is a constant βε > 0 such that for
any n large enough (i.e. n > n0(ε)), for any N > 1 there is a group G and
a finite dimensional representation π on G satisfying (2.6) and admitting a
decomposition π = ⊕t∈Tπt, with distinct irreducibles πt each with multiplicity
1 (or any specified value > 1) and acting on an N -dimensional space, with

|T | > expβεnN2.

Proof. — Fix N > 1. Let T ⊂ U(N)n be the subset appearing in Theo-
rem 2.10, i.e. T is such that |T | > expβεnN2 and ∀t 6= r ∈ T we have

‖
∑

tj ⊗ r̄j‖ 6 n(1− ε), (2.9)
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and also
‖(
∑

tj ⊗ t̄j)|I⊥‖ 6 n(1− ε). (2.10)
Let sj = ⊕t∈T tj ∈ U(m) with m = |T |N , and let G ⊂ U(m) be the sub-
group generated by S = {s1, · · · , sn}. Note that π(G) ⊂ ⊕t∈TMN . Let
π : G → U(m) be the inclusion map viewed as a representation on G. Let
Pt : ⊕t∈TMN → MN be the ∗-homomorphism corresponding to the projec-
tion onto the coordinate of index t. For any t ∈ T , let πt : G → U(N)
be the representation defined by πt = Pt(π). Then, by definition, we have
π = ⊕t∈Tπt. By the spectral gap condition (2.10) the commutant of πt(S)
(which is but the commutant of {t1, · · · , tn}) is reduced to the scalars, so πt
is irreducible, and by (2.9) for any t 6= r ∈ T the representations πt and πr
are not unitarily equivalent. �

Remark 2.12. — In particular, this means that ∀n > n0(ε) and ∀N
R′n,ε(N) > expβεnN2.
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