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Resurgence and highest level’s connection-to-Stokes
formula for some linear meromorphic differential
systems *)

Pascar REmy D

ABSTRACT. — In this article, we consider a linear meromorphic dif-
ferential system with several levels. We prove that the Borel transforms
of its highest level’s reduced formal solutions are summable-resurgent and
we give the general form of all their singularities. This one is then precised
in restriction to some convenient hypotheses on the geometric configura-
tion of singular points. Next, under the same hypotheses, we state exact
formulee to express some highest level’s Stokes multipliers of the initial
system in terms of connection constants in the Borel plane, generalizing
thus formulee already displayed by M. Loday-Richaud and the author for
systems with a single level. As an illustration, we develop one example.

RESUME. — Dans cet article, nous considérons un systéme différentiel
linéaire méromorphe & multiples niveaux. Nous démontrons que les trans-
formées de Borel de ses solutions formelles réduites de plus haut niveau
sont résurgentes-sommables et nous donnons la forme générale de toutes
leurs singularités. Celle-ci est ensuite précisée pour certaines configura-
tions géométriques des points singuliers. Pour ces mémes configurations,
nous énongons également des formules exactes permettant d’exprimer les
multiplicateurs de Stokes de plus haut niveau du systéme initial a l'aide
de constantes de connexion dans le plan de Borel, généralisant ainsi les
formules déja données par M. Loday-Richaud et I’auteur pour les systemes
de niveau unique. Ces formules sont illustrées par un exemple.
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1. Introduction

All along the article, we are given a positive integer r > 1 and a linear
differential system (in short, a differential system or a system) of dimen-
sion n > 2 with meromorphic coefficients of order r + 1 at the origin 0 € C
of the form

xr—}—lg

dx

Using a finite algebraic extension x —— z¥ of the variable x with v € N,
v = 1, and a meromorphic gauge transformation ¥ — T'(z)Y with a suit-
able polynomial matrix T'(z) in z and 1/x if needed, we can always assume
(see [5]) that system (A) admits for formal fundamental solution at 0 a

matrix Y (z) of the form Y (z) = F(z)zLe@1/*) and normalized as follows:

=A(x)Y, A(zx)e M,(C{z}), A(0) # 0. (4)

(Ny): F(x) € M,(C[[z])) is a formal power series in z satisfying F'(z) =
I, + O(z"), where I,, denotes the identity matrix of size n,
(N2): the matrix L € M, (C) of exponents of formal monodromy reads
J

in a Jordan form L = (—B (AjIn; + Jn;), where J is an integer > 2,
j=1
the eigenvalues \; satisfy 0 < Re()\;) < 1 and where

Tn, =
ifnj>2
: 1

is an irreductible Jordan block of size n;,

1 J 1
(N3): Q <> = @qj <> I,,; is a diagonal matrix of polynomials
T < T
j=1

g;(1/z) in 1/x of degree < r and without constant term which com-
mutes with L.

Recall that normalizations (N7) — (N,) guarantee the unicity of F(z) as
formal series solutions of the homological system associated with system (A)
(cf. [5]).

The effective calculation of the Stokes multipliers of F(z) (= the non-
trivial entries of the Stokes—Ramis matrices associated with }7(33), see Def-
inition 5.1) is crucial in a large number of theoretical and practical prob-
lems (calculation of differential Galois groups [24, 25], integrability of some
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Hamiltonian systems [26, 27], etc.). Thereby, in the last decades of the twen-
tieth century, several approaches, issuing from the summability and multi-
summability theories and essentially based on integral methods such that
Cauchy—Heine integral and Laplace transformations, were given by many
authors under more or less generic assumptions on system (A) (see for in-
stance [2, 4, 6, 7, 8, 9, 11, 12, 15, 20]).

More recently, in a 2011 article [19], M. Loday-Richaud and the author
combined, in the case where system (A) has the unique level 1 (see Defini-
tion 2.3 for the exact definition of levels) this “summation” approach with
the “resurgence” approach due to J. Ecalle. Doing that, they derlved from
a full description of the resurgent structure of the Borel transform F of F
explicit formulee relating the Stokes multipliers of F to connection constants
given by some analytic continuations of F' at its various singular points,
providing thus a new efficient tool for the effective calculation of the Stokes
multipliers of F.

Afterwards, these so-called connection-to-Stokes formule were general-
ized by the author to systems with an arbitrary single level r [32] and to the
lowest level of systems with multi-levels [31] by respectively replacing, via
the classical method of rank reduction, the initial system by its r-reduced
and its lowest level’s reduced system. One knows indeed perfectly relate the
Stokes—Ramis matrices of the initial system with those of its reduced sys-
tem [17].

In the present article, we assume that system (A) has multi-levels, say
ry < --- <7, with p > 2, and we propose to extend these connection-to-
Stokes formulee to the highest level r,. To do that, the organization of the
paper is as follows. In Section 2, we first recall some definitions and ba-
sic properties about levels and about the r,-reduced system (A) associated
with system (A). In Section 3, we describe the complete resurgent structure
of the Borel transforms of the formal solutions of system (A). In particular,
we show that these functions are summable-resurgent (Theorem 3.3) and we
give the general form of all their singularities (Theorem 3.6). These two the-
orems are then proved in Section 4 by reducing system (A) into a convenient
scalar linear differential equation with polynomial coefficients and by apply-
ing a method similar to the one of [32]. In Section 5, we restrict our study to
the case where the Borel transforms we consider have “good” singularities.
In this case, we define their connection constants at their various singular
points and we relate these ones to the highest level’s Stokes multipliers of F
throughout explicit highest level’s connection-to-Stokes formule, generaliz-
ing thus formulee already obtained in [19, 31, 32] . We illustrate this result
with a numerical example.
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2. Preliminaries

In this section, we recall some definitions we are needed in the sequel and
we introduce the highest level’s reduced system associated with system (A)
which will play a central role all along the article.

2.1. Levels, Stokes values and anti-Stokes directions

Split the matrix F'(z) into J column-blocks fitting to the Jordan block
structure of L (for £ = 1,...,J, the matrix F**(z) has n, columns):

Flo) = |[Fol@) F2@) o B ().
DEFINITION 2.1. — Let j,£ e {1,...,J} be such that q; # qo. We denote

1 Q5 1
- (5) =2+ ()

with oj ¢ # 0 and rj o € N* = N\{0}. Then,

o the degree 1; 0 is called a level of Ft(z),

o the coefficient ;0 s called a Stokes value of level r; o of Fol(z),

e the directions of mazimal decay of e(%—1)/*) i e the r;0 direc-
tions arg(aj¢)/rje mod (2m/r;,) along which —aje/x"* is real
negative, are called anti-Stokes directions of level r;, of ﬁ';e(x).

Note that a Stokes value (resp. an anti-Stokes direction) of F'*¥(z) may
be with several levels. Note also that the term “anti-Stokes direction” is not
universal; sometimes, one calls such a direction “Stokes direction”.

Notation 2.2. — Forall £ e {1,...,J}, we denote by Ry := {pp1 <--- <
Pe:p, } With py > 1 the set of all the levels of F'*(x).

Note that, according to normalization (N3), all the levels pg of all the
F*!(x) are integer; one refers sometimes this case as the unramified case.

Note also that, for all ¢, we have py,p, < r the rank of system (A).
Actually, if there exists £y such that pe,;p, < r, then pgp, < 7 for all £
and polynomials g; have the same degree r and the same terms of highest
degree. One then reduces to the case pg,, = r by means of a change of
unknown vector of the form Y = Ze?(/*) with a convenient polynomial
q(1/z) € z71C[z71]. Recall that such a change does not affect levels, Stokes
values, anti-Stokes directions nor Stokes-Ramis matrices (see Section 5.1 for
their exact definition) of system (A).
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DEFINITION 2.3. — One calls

e level of F(z) (or of system (A)) any level of the F**(z)’s,

e Stokes value of F(xz) (or of system (A)) any Stokes value of the
F(xz)s,

e anti-Stokes direction of F(z) (or of system (A)) any anti-Stokes
direction of the F**(x)’s.

Notation 2.4. — We denote by R := {r; <--- <r,} with p > 1 the set
of all the levels of F(z) (or of system (A)). We have R = R; u---UR; and
rp = 1 the rank of system (A).

Since the case p = 1 was already investigated in great details in [19]
(case 7 = 1) and [32] (case r > 2), we suppose from now on p > 2, that is
system (A) has at least two levels. Note however that some column-blocks

F*(z) may have the unique level 7, i.e. p; = 1 and Ry = {r}.

2.2. Highest level’s reduced system

The highest level’s reduced system (= r-reduced system) associated
with system (A) is the unique system of the variable ¢ = 2" having mero-
morphic coefficients at 0 € C and the formal solutions [V (z),z 1Y (z),

.., 2~ =DY ()] for a given choice z = t/" of a r-th root of ¢ [17]. Such a
choice being made, we denote from now on j := e~2""/". Then, the r-reduced
system of system (A) reads as

,dY

t?— = AQ)Y A
S = A (A)
with A(t) € M,.,(C{t}) the rn x rn-analytic matrix defined by
[ AP Al tAM @) 7
Al Al () : .
A(t) = : : - P utl,
u=0
: Al Al
| AU () oAl Al gy ]

where the Al“l(¢) e M, (C{t}) are the r-reduced series of A(z) uniquely
determined by the relation

Ax) = A" + 2 Al (@) 4o gt Al g,
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By construction, system (A) has levels < 1. Moreover, it admits as formal
fundamental solution at 0 the matrix

V() Y (utV/7) V(a1

N (tl/r)—ly(tl/r) (Mtl/r)—ly(#tl/r) (Nr—ltl/r)—ly(ur—ltl/r)

Y (t) = . . :
(tl/r)f(r—l)i}(tl/r) (Mtl/r)f(rfl)f/(utl/r) (Mrfltl/r)f(rfl)?(Mrfltl/r)

This one reads more precisely on the form Y (t) = F(¢)Y o(t) with

FlO@)y  tFU—H@) ... e tFU ()
Fl RO :

o F(t) = : : and

: Flol)y  tFl—1()
F[r—l] (t)

I ) Flol(z)
(t%)Aero(ﬂ (Ht%)Aerﬂt) (“rflt%)Aerrq(t)
N (t%)Aler(i) (Mt%)Al e@1() (Hrflt%)/\le@rq@)
® Y (t) =
(tF)Ar=16R0(0) (T )Ar—1eR1() L (T )Aro1 g Qro1(®)

where Qi (t) = Q(1/(1*tY/7)) and Ay, := L — kI, forall k = 0,...,r — 1. The
formal series F[“I(t) € M, (C[[t]) are the r-reduced series of F(x) and are
defined in the same way as the A[*(¢)’s. In particular, the initial condition

F(z) = I, + O(z") (see normalization (Ny)) implies F(t) = I, + O(t).
Let us now split F(t) into r column-blocks F*?(t) of size rn x n:

~

Fo) = [F0) F2) - P,

then, each F*(t) into J column-blocks F***(t) as F(z) (the matrix
F*v4(t) has size rn x ng):

I;.;v(t) _ I:iu;v,l(t) Fo;v,Q(t) ﬁ‘lo;v,](t)] .

Let 6 € R/27Z be a non anti-Stokes direction of system (A) and 0 := r#.
Due to the classical theory of multisummability of linear meromorphic sys-
tems (see for instance [2, 3, 11, 16, 17, 18, 23, 25]), the formal series F*(t)
are p,-summable for all v = 1,...,7 in direction 6 with p, := (p,; < - <
p@;p7= 1) and py, = pe:k/r. In particular, applying BagerfTougeron the-
orem [1] (see also [18, Thm. 7.4.5]), we get the following proposition which
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provides us a first result about the formal Borel transform(?) F*iv:¢ (1) of
Feol(t).

PROPOSITION 2.5. — Letve{l,...,r} and L€ {1,... J}. Then,

e Casepy = 1: 1?“;”’2(7') defines an analytic function on a disc centered
at the origin 0 € C,

e Case py = 2: ﬁ"?”*z(r) is py-summable in direction 0 with pj :=
(plé;l << pz;pz—l) and plé;k = pf,k/(l - pé;k) = pf;k/(r - p&k);
moreover, its sum defines an analytic function on a sector with ver-
tex 0, bisected by @ and opening larger than 7/pj.,, .

We denote below by 1?’(;””[(7') the function thus defined and by 25’6 its cor-
responding domain of analyticity.

In Section 3, we propose to investigate, for any v and ¢, the resurgent
structure of 1?’;;“’6, that is, the analytic continuations of 13,;;1;,@ outside the
domain ng. In particular, we prove that IA"‘(;W’Z is summable-resurgent(®
(Theorem 3.3) and we give the general form of all its singularities (Theo-
rem 3.6), generalizing thus the results already obtained by M. Loday-Richaud

and the author in [19, 32] for systems with a single level.

3. Resurgence and singularities

In this section, we just state the results allowing to describe the resurgent
structure of functions F' ;;U’Z above. These ones will be proved later in Sec-
tion 4. In the sequel, we fix § € R/277Z a non anti-Stokes direction of initial
system (A) and we set 8 = rf as before.

3.1. Summable-resurgence theorem

Recall that a resurgent function is an analytic function near the origin
which can be analytically continued on all a convenient Riemann surface.
More precisely, one has the following.

DEFINITION 3.1 (Resurgent function). — Let Q < C be a finite subset
of C containing 0. A function defined and analytic near 0 is said to be

() Recall that the formal Borel transform of a formal series Yimsoamt™ € C[It]] is
defined by agd + 3,5
(2) See Definition 3.2.

m—1
am 7——7, where § denotes the Dirac distribution at 0.
(m—1)!
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e resurgent with singular support €2, 0 when it can be analytically con-
tinued on the whole Riemann surface Rq defined as (the terminal
end of ) all homotopy classes in C\Q of paths issuing from 0 and by-
passing all points of 0 (only homotopically trivial paths are allowed
to turn back to 0); in particular, such a function is analytic at 0 in
the first sheet,

e resurgent with singular support €2, 0 whfn it can be analytically con-

tinued on the whole Riemann surface Rq := the universal cover of
C\Q.

We denote by Resq o and Resg, i the sets of resurgent functions with singular

support Q,0 and of resurgent functions with singular support €2,0.

Recall that the difference between R and ﬁg just lies in the fact that Rq
has no branch point at 0 in the first sheet. In particular, we have a natural
injection Resqo — Resq . Recall also that the choice of the Riemann

surface R or Ro only depends on the fact that the function we consider
has a singular point or not at the origin 0 € C (i.e. in the first sheet).

DEFINITION 3.2 (Summable-resurgent function). — A resurgent func-
tion of Resqo (resp. Resq ) is said to be summable-resurgent if it grows

at most exponentially on any bounded sector of infinity of Rq (resp. 7%9)
We denote by Resg'y" (resp. Resg“g”) the set of summable-resurgent func-

tions with singular support 9,0 (resp. Q,ﬁ) As before, we have a natural

injection Resgy'(" — Resg’%”.

We are now able to state the main result of this section.

THEOREM 3.3 (Summable-resurgence theorem). — Let v € {1,...,r}
and ¢ € {1,...,J}. Let py = 1 be the number of levels of F**(x). Let Q}

be the set of Stokes values of level v of F**(x) (see Definition 2.1) and
Q= Q) U {0}. Then,

e Case p; = 1: F;;U’Z(T) € Resglh,
o Casepy=2: Fyy"'(1) € Resgm.

In particular, Theorem 3.3 tells us that the only possible singular points
of F;;U’K(T) are 0 and the Stokes values of level r of F*(x). The general

form of the singularities of f’;‘v’z(T) at these various points is precised just
below.
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3.2. General form of singularities

Before stating the structure of the singularities of the ﬁ;;v’Z(T)’S, let
us recall some definitions and notations about the singularities. For more
details, we refer for instance to [14, 21, 22, 33].

3.2.1. Some spaces of singularities

Denote by O the space of holomorphic germs at 0 € C and by O the space
of holomorphic germs at 0 on the Riemann surface C of the logarithm. One
calls any element of the quotient space C := (’3/(’) a singularity at 0. Recall
that C is also denoted by SINGy by J. Ecalle et al. (cf. [33] for instance). Recall
also that the elements of C are called micro-functions by B. Malgrange [21,
22] by analogy with hyper- and micro-functions defined by Sato, Kawai and
Kashiwara in higher dimensions.

v
The elements of C are usually denoted with a nabla, like h , for a singu-

Y4 ~ ~
larity of the function h. A representative of h in O is often denoted by h and
is called a major of h.

It is worth to consider the two natural maps
can: O — C = O/O the canonical map and

var : C — O the variation map,

v o ,
action of a positive turn around 0 defined by varh = h(r) — h(re "),

where E(Tefzi”) is the analytic continuation of \ﬁ(z) along a path turning
once clockwise around 0 and close enough to 0 for & to be defined all along
(the result is independent of the choice of the major 71) The germ varz is
called the minor ofz .

One can not multiply two elements of C, but an element of C and an
element of O: az .= can(ah) = (ozvh) for all & € O and Z € C . On the other

v v
hand, one can define a convolution product ® on C by setting h1 ® hy :=
can(hy #, ho) , where hy #, ho is the truncated convolution product

(i *uFa)(r) = |

u

T—U
~

ha(r —nha(n)dn € O

with u arbitrarily close to 0 satisfying 7 € |0, u[ and arg(r —u) = arg(r) — .

v v
Note that hi ® ho makes sense since it does not depend on w, nor on the
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choice of the majors ile and 7L2. The convolution product & is commutative
and associative on C with unit ¢ := can ( 1 )

2imT

The action of on C is defined by

4y _sen
—h=d®

and satisfies relation

d /v ¥ dv v v dv
— (M ®hy) =|5-hi |®hao=h1®| =—ha ).
dr dr dr

Finally, the multiplication by 7 is an @®-derivation, i.e.

v v v v v v
T<h1®h2> = (Th1>®h2+h1@<7'h2).

In the sequel of this article, we shall use especially the following classical
subspaces of C.

e The subspace CS! of bingularitieb for which the variation defines an
entire function on all C with exponentlal growth of order < 1 on any
bounded sector of infinity®) . Recall that this space is isomorphic
to the space of analytic functlons with subexponential growth at
0eC [14, pp. 46-48]. In particular, any power ¢* and any exponential
P with p > 2 and P(t) polynomial in ¢ of degree < p define
singularities in C st

v
The subspace /\/ igTy® (resp. ’Det;‘%es) of singularities for which there
exists a major of the form

Z hp(T)7%(In 7)P

finite

with o € C, p € N and hq p(7) € Resg'y" (vesp. hap(7) € Res?zugn

holomorphic on a punctured disc at 0 in the first sheet).

v
DEFINITION 3.4. — The elements of./\les o (resp. Det ") are called

summable-resurgent singularities of Nilsson class with singular support 2,0
(resp. of finite determination with singular support €2,0).

For any w € C*, we denote by C|,, the space of singularities at w, i.e. the

space C translated from 0 to w. A function R is then a major of a singularity

at w if E(w + 7) is a major of a singularity at 0. In the same way, we define
the translated space C<1‘W etc...

(3) or, equivalently, for which there exists a major satisfying this same property [14].
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3.2.2. Description of singularities

Givenve {l,...,r} and £ € {1,...,J}, the behavior of ﬁ‘;;”"l at a singu-
lar point w € ) depends, of course, on the “homotopic class” of the path
v of analytic continuation followed from any point a # 0 of EZ’E to a neigh-
borhood of w. Note in particular that “homotopic class” implies that the
behavior of ﬁ’;jv’e does not depend on the choice of a. We denote below by

o ﬁ‘;i{y the analytic continuation of 1?‘3”’2 along the path -,

VY o Ne: . . japey
. F;Z’fv = can(Fe’;Z;’ev) the singularity of FB’”’L] at w defined by
ne;v.l
0w,y

Let us now introduce the key notion of front of a singularity [31, 32] .
DEFINITION 3.5. — Let £ € {1,...,J} and w € Q} a Stokes value of

level v of }N'“?Z(x). We call front of level r of w the set of all the polynomials
(¢j — q0)(1/z) with leading terms —w/x". We denote it by Fre(w) and we

have
1
FT‘@(W) = {_w + qe,wik <) s k= 1:---735,0.1}7
x” x

where Sg., s an integer = 1 and where all the qu.1(1/x) are polynomials
in 1/x of degree < r and without constant term. Moreover, w (hence, its

V .
corresponding singularity F;ZZ’{/ too) is said to be of a good front when

S0 = 1 and with a bad front otherwise.

In the special case where w has a good front, we simply denote g, for

Ge,w;1- Then,
w 1
P = {2 e (1)
T T

and we more precisely say that w (and its corresponding singularity too)
has a good monomial front when q;., = 0 and a good nonmonomial front
otherwise.

We are now able to state the main result of this section.

v
THEOREM 3.6 (General form of F;ZJ{Y) — Letve{l,....,r} and £ €

{1,...,J}. Let w € Qf be a Stokes value of level v of ﬁ"?z(x) and v a path
on C\Qy starting from a point of Zg’é and ending in a neighborhood of w.

(1) Suppose that w has a good front. Let

1
Q[,w = {qf,w (,Uv_ltl/r> ;U= 1,...,7‘}
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with p = €2/ Then,

F .0 c A7-ls—res ® Vg
Q5,7 UQ,—w,0 €7 w-
q€Q0,w

In particular, if w has moreover a monomial front, then

v
0,8 r]s-res
F9 W,y € Nllﬂg—w,o\w'

(2) Suppose that w has a bad front. Let

1
Qrw = {W,w;k (M) s hk=1,...,80w andv—l,...,r}

with p = e=2"/". Then

F RN c Z Dvets—res - ® Zq
05w,y Qp—w,0 |UJ'
9€Q0¢,w

Notation &9 stands for the singularity of CSt defined by e? (see Section 3.2.1).

A more precise description of singularities with good monomial front will
be given later in Section 5. For the moment, let us prove our two main
Theorems 3.3 and 3.6.

4. Proofs of Theorems 3.3 and 3.6

Before starting the proofs, let us first begin by some reminders about the
Borel transformation which shall play a central role.

4.1. Borel transformation

Definition and properties. Let « € R/27Z and let h(t) be a function
defined and holomorphic on a domain containing a sector with vertex 0,
bisected by « and opening larger than 7. Under “good” hypotheses on h
at 0 [24], the Borel transform (of level 1) of h in direction « is given by the
integral
ye—t/m 4t

2’

Bu(h()(r) = halr) 1= 5 | ho
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where T',, denotes the image by ¢ — 1/t of a Hankel contour directed by the
direction o and oriented positively(®) . Using Hankel’s formula for the inverse
of the Gamma function, we obtain B, (t*)(7) = 7271 /T'(\) for all A € C\(—N)
and a € R/277Z; when h(t) = t—™ with m > 1, we get a natural generalization
B (t™™) = 6™ the m-th derivative of the Dirac distribution at 0 (hence,
the coherence with the definition of the formal Borel transformation, see
footnote 1).

The Borel transformation B, changes the derivation tQ% into the multi-
plication by 7 and the multiplication by 1/¢ into the derivation %. In partic-
ular, it changes derivation {% into %(Tk%) for any k > 1. Moreover,
it changes the ordinary product - into the convolution product =:

B(EVK(E) > oo 5 Fra(7) 1= f D — n)a(m)dn

when ﬁa and @a are both integrable at 0 (note that § is the unit of ).
Finally, it changes the multiplication by e/t into the translation by w.

Some classes of functions. Among all the classes of functions on which
one can apply the Borel transformation, we shall actually use in the sequel
of the article only those of one of the following two types:

e h(t) € O has a subexponential growth at the origin (we denote
below h(t) € O<™P) | that is, for all £ > 0, there exists a constant
C. > 0 such that |h(t)] < C.e*/I!l (or, what amounts the same,
lim sup(J¢| In(]k(t)])) = 0) uniformly on any bounded sector of the

t|—0
form 0; < arg(t) < 0. In particular, any analytic function h(t) € O
at 0, any power t* of ¢, any power (Int)™ of the logarithm and

PtY") with a polynomial P(t) in ¢ of degree < p

any exponential e
belong to OSeXP,
e h(t) is the k-sum of a k-summable series h(t) € C[[¢]] in direction «

with k:= (k1 <---<ks=1) and s > 1.

For the first one, the existence of ha is straightaway from the property of h
at 0 and one can show that h defines in this case an entire function on all C
(= the Riemann surface of the logarithm) with exponentlal growth of order
< 1 on any bounded sector at infinity. We denote below fq, (1) € O<Y(C).
In the special case where h(t) € O is analytic at 0, one has more precisely
ha (1) € OSL(C). As for the second one, the existence of hq is due to the

(4) Observe that we need a contour that ends at 0 since the functions we consider are
studied near the origin; if we worked at infinity, we would use a Hankel contour itself.
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continuity of h at 0; furthermore, one can check that ?La coincides with
the function defined from the Balser—Tougeron theorem by the formal Borel
transform of h. In particular, denoting by Fig*(t) the pe-sum of F*v:¢(t)

in direction @ (see p. 650), we have Bg(F 5" [) F;W’Z.

Extended Borel transformation. Since the Borel transform B, (h(t))
of any h(t) € OS™P may be integrable, or not, at 0 (see for instance the
Borel transform of ¢t just above), the convolution product * may not be
defined, as well as the Laplace transform of such functions. To circumvent
this problem, the idea consists then in considering B, (h(t)) not as a function,
but as a singularity whose the variation is lALa (7). More precisely, one has the
following.

PROPOSITION 4.1 (Ecalle, [14, pp. 46-48]). — Let o € R/27Z be a direc-
tion. Then, the Borel transformation B, can be extended to an isomorphism

v
Bewt <O<eXp +,-,t Cclit) N (C<17+’®,7-.) , Bgft(h) = hgy

v ~ ~
of C-differential algebras® so that var(he) = he for all h € O<CXP Its
inverse is the Laplace tmnsformatzon L% defined as follows: given h e Cs!,

i a magjor ofh and h = Var(h) ,

% - 0ete ~
EZzt(h)(t) = f h(T)e*T/th + f h(T)eiT/th,

o, ceta

where Yo, denotes a circle centered at the origin and going from getla—2m)
to ee’®, ¢ > 0 small enough.

v

Note that £%*(h) makes sense since it does not depend on the choice of
e nor on the chosen major h ; in particular, for a choice h € OS1(C) , one
has

LEHR)(#) = f hi(r)e " ltdr,

fe"

where 7, denotes a Hankel path directed by direction o and oriented posi-

~ v
tively. Note also that, if h is integrable at 0, then £%*(h) coincides with the
“classical” Laplace transform

La(W)(t) = fm h(r)etdr.

0

(5) The stability of C<! under the convolution product @ is due to the fact that, for

<1

v ~ ~
any singularity h € CS!, one can always choose a major h in O<!(C) (see footnote 3).
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The following relations are essentially known:

v dpP T)\—l
t*(Int)P), = — _
Pt = (5 (= Fmr))
v ™ lnt v v
m _ _ —m _ s(m)
(t )aca’n<(m_1)!>v 10{*57 (t )(175
for all A € C\Z, p € N, m € N* and o € R/2nZ. More generally, let
C[t*, (Int)P]rec,pen © OSSP denote the space of C-linear combinations of

v
terms of the form ¢*(Int)? with A\ € C and p € N. Let C,[t*, (Int)?]rec,pen

v v
be its image by B*t. Then, for any h € Co[t*, (Int)P]rec pen, there exists a
major h in C[7#, (In7)?],ec, qen. The following result will be useful later.

PROPOSITION 4.2. — Let Q2 < C be a finite subset of C containing 0.
Let p = 2 and let q(l/m) be a polynomzal in l/a: of degree < p. Then, the

four spaces Nzl%%es, Detg’:s, ./\/le T®e 29t gnd Dets T® e galt”

are stable under derivation E and under ®-convolution by an element of

1/11)

v
Ca[t*, (Int)P]rec pen - They are also stable by multiplication by T.

v i v
Proof. — We just prove the stability of J\/’ilfjj{fs@Z‘I(t V%) and Det‘;%es(@
pat™") by the multiplication by 7. The other stabilities are straightforward

\Y v v
and are left to the reader. Let h € Nil§7 (resp. Dets’® ). Since the
multiplication by 7 is a @®-convolution, we have

1/p v D 1/p
(h® a(t” /)>_<Th>@€q /)+h®(7'6qt /))

where, due to the properties of the Borel transformation B&*t,
V(1P d g1y 1/p
re?® ") = Bewt (tZdteQ(t ) P@ 2t

with

1, dq 1 _ _
_ _4p-1)/p24 1/p 1/p
P(t) ot 7 (t ) e tC[t1/7].

Indeed, 7" € <P (note that the choice of the direction a is arbitrary).
Consequently,

(h ® et ”’”) - <TZ the .73) ® oet™")
v
with Th + h ® P € NZZS "8 (resp. Det;’%es), which completes the proof. [
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Let us now consider a k-summable series iNL( t) € C[[¢]] in direction o with
k=(k < <ks= 1) and s > 1. As before, we denote by h,(t) its k-sum
in direction o and by ha( ) the Borel transform of h,, in direction a. Assume
also that ?LQ(T) € Resgy'y' if s =1 and R (1) € Ressum if s > 2. Then, the

extended Borel transformation B¢** of Proposition 4 1 above can be applied
v v ~
to h, and one thereby defines a unique singularity h,, satisfying var(hy) = hq

A\ ~
and L (hy,) = hg. For example, for s = 1 and h(t) = a + ¢(t) € CO tC[[¢]],
one has R
ha(7) = ad + ¢4 (1) € C6 ® Resd'y"

o ~
b — can ( ‘a N ca(T? 1n7') _

2T A%

and

v v
In particular, hy € N ilg® - More generally, one has the following classical
result.

PROPOSITION 4.3. — With conditions as above.
(1) Case s = 1.
(a) Let Ae C and p e N. Then,
v

(ha®)t*(Int)?),, € /\/z YA

v v
b) Conversely, let h = can(h(m)T*(n7)P) € N5 and write
( Y Q,0
h(7) in a neighborhood of 0 € C as
= Z ho ™
m=0

Then, for any direction o € R/2w7Z such that Qn]0, w0e'*[= &,

P

oty Z ( )hm ko (O (Int)*,

where, for all € =0,...,p, hxra(t) is the 1-sum in direction o
of the formal series

hnelt) = 2im Y &' ( ¢ ) B t™
Aelt) = — | = mt™.
m=0 dz* Il -2) |[z=m+1+A

Moreover, the Borel transform hye.o(7) in direction « of
sum

hxe:a(t) belongs to Resgy'y.

(2) Case s = 2. Let A € C and p € N. Suppose also that ha is of finite
determination at 0. Then
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z v
S-Tes
(ha ()M t)P),, € Detsres.

s

Proof. — The case s = 1 is proved in [19, 21, 33] and the case s > 2 stems
obvious from the properties of variation (see [19, Lem. 3.6] for instance) when
A = p = 0. In the general case, it is sufficient to remark that

\%

(a0 E)?), = b @ (I 1)7),

v v v v
with hy € Detg%es and (t*(Int)?),, € Co[t", (Int)],ec gen - The result fol-
lows then by stability. |

Let us now turn to the proofs of Theorems 3.3 and 3.6.

4.2. Reduction of the proofs

First step. Let us first observe that any of the J column-blocks F *(z),
{ =1,...,J, of ﬁ(m) associated with the Jordan block-structure of the
matrix L of exponents of formal monodromy (see the beginning of Sec-
tion 2.1) can be positioned at the first place by means of a convenient
permutation P on the columns of }7(:1:) Furthermore, acting also by P~!
on the rows of Y (z), one can keep the initial normalizations (N1) — (N3)
of Y (z); precisely, the new formal fundamental solution P~V (z)P reads
P7YY (2)P = P~ F(2)PaP ' LPP ' QU/DP with P~LF(2)P = I, + O(a").
Consequently, due to the block-structure of matrix F(¢) (see p. 650), it is suf-
ficient to prove Theorems 3.3 and 3.6 in restriction to the first column-block
F*L1(t) of F(t). Recall that F*11(t) has size rn x ny.

Moreover, to simplify notations and calculations, we assume also that
polynomial ¢; and eigenvalue \; are zero, conditions which can be always
fulfilled by means of the transformation Y — 2z~ e~ (/)Y on initial
system (A). In particular, writing polynomials ¢;(1/z) in the form

with a; 5 € C, this implies that the set £} of Stokes values of level r of
F*1(z) is the set of all the a;r # 0 (see Definition 2.1).
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Second step.Let us now apply the cyclic vector lemma due to
P. Deligne [13, Lem. II.1.3] and the Birkhoff’s algebraisation theorem [10]
(see also [34, Thm. 3.3.1)): there exists a meromorphic gauge transforma-
tion Y = M (t)Z with M (t) € GL,,(C{t}[t"!]) that changes the r-reduced
system (A) into a system (MA) which is the companion form of a scalar
linear differential equation Dy(t) = 0 with polynomial coefficients, of order
rn and levels < 1 at the origin (the levels of D are the levels of (A)). More-
over, multiplying the formal solutions of this equation by a convenient power
of t if needed, we can always suppose that (MA) admits for formal funda-
mental solution at 0 a matrix Z(t) of the form Z(t) = G(t)Y o(t), where
G(t) := ML (t)F(t) € M,,,(C[[t])) is a formal power series in t. We refer to
p. 650 for the definition of ¥ o(t).

By construction, the two column-blocks F*¥+(¢) and G***(t) are to-
gether p,-summable in direction @ for all v and £ and we have Fjj*"*(t) =

M(t)Gg"” “(t), where, as before, Fg” ‘ and Gy * denote their respective
pe-sums in direction 6. Thereby, ertmg M (t) in the form

M(t) =Y ‘:7’” + M'(t)

with N € N, a,, € M,.,(C) and M'(t) € M,,,(tC{t}), we deduce from the
properties of the Borel transformation (see Section 4.1 above) that the func-
tions F;””e and G'””(g satisfy the relation

ovﬁ Zam o ovi_l_Me*Gov/

where M ; € M,,(O<}(C)) and where G§""* is holomorphic on the same
domain ZZ’E as 1:";;”’[. In particular, for v = ¢ = 1, this relation shows
us that it is sufficient to prove Theorems 3.3 and 3.6 with C:‘;l’l instead
of ﬁ'gl’l.

Third step. This last step is based on the structure of matrix é;l’l. Let
us first begin by giving a basis of the space Sol(D) of solutions of Dy(t) = 0.
It can be built as follows. Let us choose an argument of 6, say its principal
determination 8* € ]—27,0](®) and let us denote by Y.e+(t) the actual
analytic function defined from Yo(t) by the choice of arg(t) close to 8*
(denoted below by arg(t) ~ 6*). Let us also denote by Ge(t) the sum of G(t)

(6) Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 < arg(z = 1/z) < 27 of the principal determination at infinity, we
suggest to choose —2m < arg(z) < 0 as principal determination about 0.
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in direction 6, i.e. the matrix in which all the column-blocks é’?”*z(t) are
replaced by their p,-sum G (t). Then, the matrix Zg(t) := Go(t)Y .0+ (t)
is, for arg(t) ~ 0*, a fundamental solution of the companion form of equation
Dy(t) = 0. Hence, by considering the rn coefficients of the first line of Zg(t),
we obtain the following proposition.

PROPOSITION 4.4 (Basis of Sol(D)). — Let gZ’Z’q(t) denote the entry at
row 1 and column q of Gy (t). Then

Sol(D) = vect(z M’q(t); v=1,....r, £=1,...,J, ¢g=1,...,n),

where zZ’Z’q(t) is defined for all v, £ and q by

25" (8) = Ry (£ /)

]
with
T q Ay —utl IHQ*P( vflt%)
hqu (v 1)( A57u+1)gu,€,p + t%#
g g o (¢ —p)!
and arg(t) ~ 6*. Recall that p = e—2im/T,
o:1.1

The following description of the first column-block Gy~ of Gy is then
straightforward by observing that the g-th column of Zy reads by construc-
tion as

zg ',z v 20

11 @ 11,4 d™ 11,4
) z
T dt

LEMMA 4.5. — Let ¢ € {1,...,n1} and m € {0,...,rn — 1}. Then the
entry at row m + 1 and column q of Gy Y1) reads as

;" & i i )= P(k — g + p)l A" g
Tq ptk—q+p+1 drm—k
p=1 k=q—

with the classical convention (72) =0 if m < k. In particular, the condition

Gy''(t) =, O(1) implies gyt =, 0t) for all g <my — 1.

In particular, Proposition 4.2, Lemma 4.5 and the properties of the Borel

transformation tell us that it is sufficient to prove Theorems 3.3 and 3.6 for
the ny entries ?](19’1"1 of the first line of G;gl’ , i.e. to prove that the g Al Laog
01,1

satisfy the same statements as F . This is the subject of the next Sectlon.
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4.3. Proofs of Theorems 3.3 and 3.6

As we said just above, it is sufficient to prove these two theorems for the
functions @é’l’q Recall that these latter are the Borel transforms in direction
0 of the functions gl’l’q and are defined and holomorphic on the domain 2‘19’1
Before starting the calculations, let us first begin by proving the following

preliminary technical lemma.

LEMMA 4.6. — Let g€ {1,...,n1}. Then, for arg(t) ~ 0%,

In9=P(¢'/m)
(¢ —p)!

1,1
9o p(t)

p=1

€ Sol(D).

Proof. — We shall prove in fact the following more general statement:
forallue {1,...,r} and g € {1,...,n1}, we have, for arg(t) ~ 6%,

Zgw

Let us begin with the simplest case ny = ¢ = 1. According to Proposi-
tion 4.4, we have, for allv = 1,...,r and arg(t) ~ 8*, the following equalities

n?— P(tl/r)
(g —p)

€ Sol(D), gup(t) =gy P(t)

r

20 L1 2 w-D(u=1)g " (4) = 2 a V@D p, (1) € Sol(D)
u=1

which can be rewritten as a van der Monde identity. Thereby, all the h, 1’s
are linear combinations of the zg bhs: hence, hy 1 (t) € Sol(D) for all u =
1,...,r.

When n, > 2, we proceed by induction on ¢ and we suppose that, for
a certain ¢ € {1,...,n1 — 1}, hyp(t) € Sol(D) for all v = 1,...,r and
p=1,...,q. We must then prove that h, 4+1(t) € Sol(D) forallu =1,...,r.
To do that, we apply again Proposition 4.4 which says us that

Loty S (v—1)(u—1) I+ 1P (vt
zg a D=y (¢ € Sol(D 4.1
I 0=y € SelD) (1)
forall v =1,...,r and arg(t) ~ 8*. Let us temporarily denote
q+1 +1-p( v—14%
e
» forall we {1,...,
Z Gun( (g+1—p)! ued }

and let us apply Newton’s formula: for all p =1,...,q,
Ind+1=p( v—14r Ind+1—r (%
WG ) W)
(g+1-p)! (g+1-p)! ’
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with
PR SR i B A (i)
ap = :
= s! (g+1—p—3s)!
Then,
In?t P (t7)
u A u
Zgap<q+1_)+ ap | T Guq+1
q q+1-p s -1 +1—p—s/, 1
i) )
,q+1 + Z (gu,p Z
= = s! (g+1—p—s)!
In®(p? )q+1 * In?ti=r- é(t%)
= hu +1 + -, gu, Y]
4 ;( s! pz:ll Plg+1—p—s)!

q _
In®(p"~7)
= hug+1 + Z:l Thu,qﬂ—s
=

and, according to relation (4.1), the following identities

T
,q+1—s> = Z ﬁwil)(ujl)hu,q-&-l
u=1

hold for all v = 1,...,r and arg(t) ~ 6*. The fact that hy 441(t) € Sol(D)
follows then as in the case ¢ = 1 (indeed, the left hand-side of identity above
belongs by assumption to Sol(D)). This completes the proof. O

T

1),1,q+1 Z < (v—1)(u—1) i s

v,

Proof of Theorem 3.3. — Let ﬁ@(T) = 0 denote the Borel transformed
equation of Dy(t) = 0. Recall that, multiplying D by a convenient power
of 1/t if needed, this equation is again a linear differential equation with
polynomial coefficients. Moreover, it has the two following well-known
properties.

(Py): The singular points of D are the elements of £2; = Q¥ U {0}.
(P2): The levels of D at infinity are < 1.

Recall that property (Py) can be proved by using the Newton polygons of D
and D at 0 (adapt, for instance, the proof of [18, Lem. 5.3.18]). It can also
be seen as a consequence of Ecalle-Malgrange’s theorem (see Proposition 4.7
below). As for property (P,), it is a classical result and we refer, for instance,
to [22, Thm. 1.4] or [18, Prop. 3.3.18].

The proof of Theorem 3.3 proceeds by recursion on the column ¢. For

q =1, Lemma 4.6 above says us that gg"' (t) € Sol(D). Therefore, its Borel

transform gy (7) is a solution defined on X" of Dyj(7) = 0 and the result
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follows from the two properties above. Indeed, property (P;) and Cauchy—
Lipschitz’s theorem prove that §(19’1’1 can be analytically continued along any
path in C\$2; starting at any point of 2(1;1; property (P;) and Ramis index

theorems [28] imply the exponential growth of g Al’l’l at infinity.

Let us now suppose that, for a certain ¢ € {1,...,n; — 1}, Theorem 3.3
is valid for any Qé’l’p with p € {1,...,q}. According to Lemmas 4.5 and 4.6,
we have, for arg(t) ~ 6%,

q +1— 1/r
P(t) ¢t TP /
1,1,q+1 Z n ( ') e Sol(D)
P (g+1-p)
with gy (t )/t = O(1) and tIn?"17P(t1/7) € O<™P_ Therefore, applying
the Borel transformatlon in direction 6, the function
1 1,q+1 1 dAl’Lp -,
’\ »q % (tIndti—P(¢l/r
3 e B e

defines an actual solution of the equation D§j() = 0 and the same arguments
as the case ¢ = 1 show it is summable-resurgent. Note that the convolution
products make sense since all the terms are integrable at 0. Indeed, gl’l’p
(hence, its derivative too) admits an asymptotic expansion at 0 in C[[7]]
and (tInt17P(t1/r)), € C[In7] (see Section 4.1). Note also that all these
sum Tndeed, we have gl’l’p € Resy™

Q,,0° ©1,0
for all p < ¢ by hypothesis and the space Res is stable under derivation

convolution products belong to Res
sum

1,0
and convolution by an element of (’)<1((C). In particular, this proves that
§(1,’1’q+1 satisfies Theorem 3.3, which completes the proof. O

Proof of Theorem 3.6. — The proof of Theorem 3.6 we propose here
is based on Ecalle-Malgrange’s theorem [22, Thm. 2.2] which asserts that
the Borel transformation B§** defines an isomorphism(?) (with inverse £g§)

Vo
from the space Sol(D) of solutions of equation Dy(t) = 0 to the space M(D)
of micro-solutions of equation Dy(7) = 0 at its various singular points, that
is at the points of Q4 (see property (Py) above). Recall that a micro-solution

of Datwe ) is a singularity h € C,, satisfying Dh =01in C,.
In our case, this theorem reads as follows.

PROPOSITION 4.7 (Ecalle-Malgrange). — Let v € {1,...,7}, { €
{1,...,J} and g € {1,...,n}. Then, the singularity z” b B”t( whay g

(M In [22], B. Malgrange formulates actually this theorem, not in terms of Borel trans-
formation, but in terms of Fourier (= Laplace) transformation.
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~

~ v
a micro-solution of D at the point ap, € Q1. Moreover, denoting by M, (D)
the space of micro-solutions of D at w € €1, we have

v ~
MM(D)—VGCt(Uzﬂ,’U=1,...,7",q=1,...7n5) .
l;qe(1/z)eFr: (w)

The following lemma precises the structure of singularities ZZ’M .

LEMMA 4.8. — Letve{l,...,r}, Le{l,...,J} and g€ {1,... ,ng}.
Let w = ay,.. According to Definition 3.5, polynomial q;(1/x) reads as

1 w 1
qe () = T, + q1,w;k <)
x x x
with a suitable k in {1,...,s1,,} (indeed, we have qo(1/z) € Fri(w)). Then,

. \% V, \Y v—1,1/7r
o Case w with a good front: zy“? € Nilg!es, o @ ¢dwn (/)

. v v v —141/
e Case w with a bad front: z};’e’q € et ~® edrewk(L/ ("7t T))|w,
L

)

where, as before, we set p = e~ 27/".
Proof of Lemma 4.8. — According to Proposition 4.4, zg’ 49 peads as
2G0I(E) = Ry () et e (/) gt
with
Agzutt In?" (u”flt%)
hv N q m (v=1)(A¢e— u+1)gU,£vP( ) .
-3y @)

u=1p=1

Moreover, due to the definition of the gy’ b s (see Section 4.2), Theorem 3.3

i o
gy "7 are summable-resurgent with sin-

implies that their Borel transforms g,
gular support €2,0 if w has a good front and with singular support Q,,0

\Y v
otherwise. In particular, Proposition 4.3(1a) tells us that hg’e’q e Nilg! s

when w has a good front.

When w has a bad front, we proceed as follows. Let us first observe
that, besides the summable-resurgence, the proof of Theorem 3.3 allows also
to prove that the §‘19’1’q’s are of finite determination at 0 (indeed, D is a
linear differential operator with coefficients in O). Thereby, ﬁ’gl’l (hence,
1:";””1 forallv =1,...,r too) is of finite determination at 0. Using then the
transformation Y — z=*e~%(1/2)Y on initial system (A) and proceeding
as above, we easily check that all the jp;;v,f are of finite determination at

0, so are all the gy“? (recall we have G§*"* = M'Fy"" with M~'(t) e
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GL,,(C{t}[t71])). Consequently, Proposition 4.3(2) applies and implies that

Vot v
ERs) S-res
A

To complete the proof, it is sufficient to apply Bg* on zg’é’q and to
remark, on one hand, that €, = £y — w and, on the other hand, that

Bg¥ (e=*/t) is the translation by w. O

In particular, Proposition 4.7 and Lemma 4.8 allow us to make explicit
the general form of all the micro-solutions of D. More precisely, due to the
definition of the front Fri(w) of w € 5 (see Definition 3.5), we have the
following.

v v o ~
LEMMA 4.9. — Let w € 2 and h € M, (D) a micro-solution of D at w.

(1) Suppose that w has a good front. Let

1
Qw = {qu (’uv_ltl/r> P U= 1,...,r}

with p = e~ 2"/". Then

v v o
-15-1€8
he 2 NilGr %, 0 ® e

q€Q1,w

(2) Suppose that w has a bad front. Let

1
Ql,w = {(]1,w;k (u”‘ltl/r) s k=1,...,510 andv—l,...ﬂ“}

with p = e~2™/" . Then

Y Y s-res Vg
he Z DetQﬁMa ®el),.
q€Q1,w

We are now able to prove Theorem 3.6. Recall that it is sufficient to prove
that the §é’1’q with ¢ = 1,...,n; satisfy the same statement as IA’;;M. To
do that, we shall proceed, as in the proof of Theorem 3.3, by induction on
q. Let w € Q1 and let v be a path in C\Q; starting at a point of E}g’l and

ending in a neighborhood of w. As before, we denote by §éi} ', the analytic

continuation of §(1,’1’q along v and by Zéﬁf% = can(@},’_i"l/) the singularity at

w defined by gg,/? .
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For ¢ = 1, we saw in the proof of Theorem 3.3 that Q(l,’l’l is a solution of

ZA)@( ) = 0 defined and holomorphic on 21’1. Thereby, its analytic continu-

tion il 1d lution L.l
ation gg' . yields a micro-solution 900~

from Lemma 4.9.

of D at w and the result follows

Let us now suppose that, for a certain g € {1,...,n; — 1}, Theorem 3.6 is
valid for any §(1,’1’p with p e {1,...,¢}. As in the case ¢ = 1, we first derive
from the proof of Theorem 3.3 that the function

~1,1,p

dgg.
q+1 6w, 1— r
gG o.)q'y + Z q+ 1— | dr L% (t lnq+ p(tl/ ))9

yields a micro-solution of D at w. Moreover, due to our hypothesis and
Lemma 4.9, this micro-solution has the same general structure as all

the singularities ge’ ’p for p = 1,...,q (which is, of course, of one of the
two forms given in Lemma 4.9). Applying then Proposition 4.2 (indeed,

(tI?™ P (11/r)) g € C[7Y, (In7)*]ec,sen), e easily check that this common

structure is transmitted to the singularity g L ’q+1 . Hence, our result, which

completes the proof of Theorem 3.6. O

5. Application to the effective calculation of some highest level’s
Stokes multipliers

In this section, we propose to apply the results of Section 3 to the ef-
fective calculation of highest level’s Stokes multipliers of initial system (A)
(see Definition 5.3 below for their exact definition). More precisely, we pro-
pose to make explicit highest level’s connection-to-Stokes formule for some
geometric configurations of highest level’s Stokes values of 15(33), general-
izing thus formulee already displayed by M. Loday-Richaud and the author
in [19, 31, 32] for systems with a single level or for the lowest level of systems
with multi-levels.

As we said in Section 4 above, we can restrict ourselves to the highest
level’s Stokes multipliers associated with the first column-block F'**(x) of
f‘(m), which we denote from now on by f(m) Furthermore, for notational
convenience, we assume again ¢ = 0 and A\; = 0, conditions which can be
always fulfilled by means of the transformation ¥ —— z= e 0(1/2)y on
initial system (A).

Finally, we write as before the polynomials g;(1/x) in the form

qj () S A i Gl ith a; i € C for all k.
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Before starting the calculations, let us first begin by some reminders
about the Stokes phenomenon and the Stokes—Ramis matrices.

5.1. Stokes phenomenon and Stokes—Ramis matrices

Let 0 € R/27Z be a direction and 6* its principal determination in
]—27,0] (cf. footnote 6). When 6 is not an anti-Stokes direction of F(z) (see
Definition 2.3), the theory of multisummability [2, 3, 11, 16, 17, 18, 23, 25]
tells us that F'(z) is r-summable in direction 6 with r = (r; < --- < Tp=T)
the p-tuple of all the levels of F(z) (see Notation 2.4). Then, denoting its
sum by Fy(x), one can define the sum Yp(x) of the formal fundamental so-
lution Y (z) in direction 6 by setting Yy(z) := Fy ()Y0,0+ (), where Yo.0+ ()
is the actual analytic function Yp.g«(x) = xLeQ1/%) defined by the choice
arg(z) ~ 0*.

Stokes phenomenon. Let us now suppose that 6 is an anti-Stokes direc-
tion of F(z). For > 0 small enough, F\(z) is r-summable in every direction
of 10 — 1,0 + n[\{#}. One can then define the two lateral sums Fy-(x) and
Fy+ (z) of F(z) in direction 6 as the respective analytic continuations of the
sums Fy (x) and Fy~(z) with any 6’ € |0 —n, 0] and 0” € 10,60 + n[. In partic-
ular, they are defined on a common sector with vertex 0, bisected by 6 and
opening 7/r [25].

The Stokes phenomenon of system (A) stems from the fact that the
sums Fyp- and Fp+ are not analytic continuations from each other in gen-
eral. This defect of analyticity is quantified by the collection of Stokes—
Ramis automorphisms Stg« : Yy+ —— Yy— for all the anti-Stokes directions
0 € R/2n7Z of F(z), where Yy+ denote the lateral sums of Y (z) at 6 defined
by Yo+ (x) = Fyt (2)Y0,0+ () for arg(z) ~ 6.

Stokes—Ramis matrices. The Stokes—Ramis matrices® are then de-
fined as matrix representations of the Stg+’s in GL,,(C). More precisely, one
has the following.

DEFINITION 5.1 (Stokes—Ramis matrix). — One calls Stokes—Ramis ma-
trix associated with Y (x) in direction 0 the matriz of Ste+ in the basis Yo+ .

(8) In the literature, a Stokes matrix has a more general meaning where one allows to
compare any two asymptotic solutions whose domains of definition overlap. According to
the custom initiated by J.-P. Ramis [30] in the spirit of Stokes’ work, we exclude this case
here. We consider only matrices providing the transition between the sums on each side
of a same anti-Stokes direction.
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We still denote it by Stg~; it is uniquely determined by the relation

’Ybf(x) = Yy+(x)Stg~ for arg(z) ~ 6. (5.1)

Let us now split Stg» = [Stglf] into blocks fitting to the Jordan block-
structure of matrix L of exponents of formal monodromy (for j, ¢ =1,...,J,
the matrix Stglé has size n; x ng). Then Stg.lj = I, and Stéiz = 0if 4 is
not a direction of maximal decay of polynomial ¢; — g¢, i.e. is not an anti-
Stokes direction of F'* (x). Otherwise, the entries of S’tg.ie are called Stokes
multipliers of ﬁ"?e(;v) in direction 6.

Factorization of Stokes—Ramis matrices. The factorization of ma-
trices Stg~ by levels was first proved by J.-P. Ramis in [29, 30] by using
the factorization theorem of F (z); a quite different proof based on Stokes
cocycles and mainly algebraic was given later by M. Loday-Richaud in [16].

THEOREM 5.2 (Factorization of Sty«, [16, 29, 30]). — With notations as
above, the Stokes—Ramis matrixz Stg can be written as

Stge = Stryige ... Strpge 5 Stoge =[S

;0%

1e GL,(C)

where, for all k = 1,...,p, Sti;j;e* = I, and Stf;;fe* = 0 if 0 is not a
direction of mazimal decay of ¢; —qe orrj ¢ # 71 (recall that rj, denotes the
degree of polynomial g; — q¢ # 0 , see Definition 2.1).

DEFINITION 5.3 (Stokes multipliers of level 7). — Let k € {1,...,p}.

(1) The matriz Sty .o+ is called Stokes—Ramis matrix of level rj, associ-
ated with Y (z) in direction 6.

(2) When 6 is a direction of mazimal decay of ¢; —qe and rj¢ = 1, the
entries of Stif;e* are called Stokes multipliers of level 7y, of F*¥(x)
in direction 6.

Recall that a relation similar to (5.1) can be written for each Stokes—
Ramis matrix St,, ¢« by replacing the lateral sums Y+ and Y- by suitable

“generalized” sums of Y (z) at 6 [25, Thm. 9, p. 366].

As we said at the beginning of Section 5, we are interested here below
just in the highest level’s Stokes multipliers (= the Stokes multipliers of

level 7, = r) of f(z), that is, in the Stokes multipliers located at the first
column-block St:;é* of St,.g», which we denote below by st,.p«.
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5.2. Highest level’s Stokes multipliers and rank reduction

According to the normalization ¢; = 0 and Definition 2.1, the highest
level’s anti-Stokes directions of f(x) are all the directions of maximal decay
of exponentials e% (1/*) with polynomials g; of degree r, i.e. all the collections
of the r directions g, 61, ..., 0,_1 € R/27xZ regularly distribued around the
origin = 0 which are given by the r-th roots of the highest level’s Stokes
values a;, # 0 of f2).

Let us now choose such a collection (6;) and suppose, to fix ideas, that
their principal determinations 6; € |—2,0] satisfy —27 < 07_; < - <
07 <65 <0.

As before, we denote by Q7 the set of all the highest level’s Sokes values

of f( ). We also denote 6 := 76 and 7. the set of the Stokes values of Q7
with argument 6.

By construction, 8 is a highest level’s anti-Stokes direction (= anti-Stokes
direction of level 1) of F*L1(t) := f(t). Then, applying [17, Prop. 4.2]
and the generalized multisummability theorem due to J. Martinet and J.-
P. Ramis [25, Thm. 9, p. 366], one can relate the highest level’s Stokes—Ramis
matrices (Str;Ol’;)k=O,...,r71 to the highest level’s Stokes—Ramis matrix asso-

ciated with 17(15) in direction 8. More precisely, using the Balser—Tougeron
theorem [1] (see also [18, Thm. 7.4.5]), we have the following.

PROPOSITION 5.4. — Let 1 > 0 be small enough so that

o F(t) is summable in every direction of [0 — 1,6 + n]\{6},
. Eg’fn N [0,00e" @M% & for allve {1,...,r} and L€ {1,...,J}.

Then, for arg(t) ~ 6%,
Lo-(Fg-))Y 00 (t) = Lo+ (Fg-) ()Y 0:6- ( (@ Sty 0*) (52)

where 0% := 0+, Lo+ denotes the Laplace transformation in direction 0+,
1?‘97 = [ﬁ;f’g] and where Y o9+ (t) is the actual analytic function defined

from Y (t) (see page 650) by the choice of arg(t).

Let us now write the Stokes—Ramis matrices St,, or in the form St,. or =
Iy, + Cpx (hence, C]’g.* = 0 and Ci’e* = St]’e* if 7 # £). Then identity (5.2)
has the followmg ‘additive” form:

(Lo — Lo+ )(Fg)(t) = Lo+ (Fg-)(t )Y g0+ (2 (@Cr9’> og*(t)v (5.3)
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where Yoi;%)* (t) is the rn x rn-matrix defined by

(t—%)AoefQo(t) (t—%)Me*Qo(t) (t_%)A'r—le*QO(t)
1 (ﬁt*%)Aoe—QMt) (ﬁt*%)/ue—ch(t) (ﬁt*%)/\rae—ﬂh(t)

(ﬁ"*lt—%)/;oe*@r—ﬁf) (T"’*lt_%)lileerfl(t) (H7'71t_%)A7:7167Q7'71(t)
Recall that p = e=2™/" Q. (t) = Q(1/(u*tY")) and Ay, := L — kI,.

Notation 5.5. — In the sequel, we shall use the following notations.

e Given a matrix M of size n x m with m > 1, we split M into J row-
blocks M7®, j = 1,...,J, of size nj x m accordlng to the Jordan
block-structure of matrix L of exponents of formal monodromy.

e Given a matrix M of size rn x m with m > 1, we first split M into
r row-blocks M™* u =1,...,r, of size n x m; then, each M™* into
J row-blocks M®“J:* of size n; X m as above.

The following Proposition 5.6 stems from the restriction of identity (5.3)
to the first column-block and allows to relate the highest level’s Stokes mul-
tipliers st, g+ of f(z) to the summable-resurgent function fg- (7).

PROPOSITION 5.6. — Let 1) > 0 be as in Proposition 5.4 and 8% = 6 +1.
Then, for arg(t) ~ 6*,

(Lo~ — Lo+)(Fo-)(t) = Lo+ (Fo-) (1) Mo+ (1), (5.4)
where Mg+ (t) is the rn x ni-matriz defined, for all u and j, by

_ - : . Tne ai (1) (" 3" ]
Mgl]’ Z Ag, lstj (/1* tr ) 12 (1/ (1 ) if aj, € QT;G

= ﬁ\»—l

otherwise
with Aju—1:= (\j —u+ 1)1, + Jn,. Recall that 1 = e~ 2im/T
Note that the left hand-side of (5.4) can be read as the Laplace integral
(Lo~ — Lo+)(fo-)(t) = | Fo-(r)e T dr, (5.5)
Yo
where 7, is a Hankel type path going along the straight line [0, 00e®[ from
infinity to 0 and back to infinity passing positively all singular points of
Q7.9 on both ways. Thereby, using the summable-resurgence of fo-(7) (see
Theorem 3.3), we shall now be able to relate the Stokes multipliers st’'s, of
W
f(x) to the singularities of fq-(7) at its various singular points w € Q7 q.

Let us first begin by introducing the notion of principal singularity of

}97(7)
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Figure 5.1. A path 'va%,w when E;’} is a sector with opening < 27

5.3. Principal singularity

Let we Qio. As we said at the beginning of Section 3.2.2; the singular-

v ~

ity j"@fw’7 of fo-(7) at w depends on the chosen path « for the analytic
continuation of fg-(7) and meanwhile, on the chosen determination of the
argument around w.

Here below, we consider a path ;" « defined as follows:

e 79 is a point of 2‘19’_1 N [0, 00e®[ ) | which is also assumed in the
first sheet of 7%91 when Eé’,l is a sector with opening > 2m,

e 7} . is a path starting at 79, going along the straight line [0,w] to
a point 7 close to w and avoiding all points of Q74 N [0,w] to the
right as shown on Figure 5.1 below, '

e we choose as before the principal determination of the variable 7
around w in |—2m, 0].

The analytic continuation }G_w L= }0"w . is called right analytic
thadt] YWy Vg, w

continuation of }'97 at w. Note that it does not depend on the choice of 7.
The principal singularity of fg- at w is then defined as follows.

DEFINITION 5.7 (Principal singularity). — We call principal singularity
~ v
of fo- at w the singularity fg-.,, 1 defined by the right analytic continuation

~ ~ - v
fo-w+ of fo- atw. A major fo-.,  of fo-.. + i called principal major.

(9) The existence of such a point 79 stems from the choice of n which implies
Z;’j N[0, 0et@+M[£ & and, consequently, Z;f N[0, 0e®[# & (see Proposition 5.4).
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5.4. Highest level’s Stokes multipliers vs principal singularities in
a case of a GG-Configuration

The relations between the highest level’s Stokes multipliers of f(z) and
the principal singularities of }0_(7) at its various singular points of Q’f;@
(and, consequently, the highest level’s connection-to-Stokes formulee in view
in this section; see Section 5.5, Theorem 5.15) strongly depend on the nature
and on the geometric configuration of the elements of QT;B' Henceforth, in
the rest of the article, we restrict ourselves to the following Good Geometric
Configuration (in short, GG-Configuration).

DEFINITION 5.8 (GG-Configuration). — The set 2}.q is said to have a

GG-Configuration when all its elements have a good front.

Note in particular that this condition implies the following property.

(P): For allw € QF g, the front Fri(w) is a singleton

e ()
T + Qlw | —
T x
with a suitable polynomial q1 .,(1/x) in 1/x of degree < r.

Let us now turn to identity (5.4) of Proposition 5.6.

Without changing the value of the integral (5.5) (use the summable-resur-
gence of fg-; see Theorem 3.3), the path v, can be deformed into a union
Yo = Uweﬂ*e vp(w) of Hankel type paths v (w) with asymptotic direction @

1;

around each Stokes value w € Q7,5. Hence, by means of a translation from
w to 0 and by replacing }'97 by one of its principal majors _\fg—;w7+ at each
w € ., the following identity holds

(Lo- — Lo )(Fo ) = 3 eLit (Forwslw+m) (1), (56)

*
“’691;9

where Eem denotes the Laplace transformation in direction 8% defined in
Pr0p081t10n 4.1 and where Theorem 3.6 implies

can (.f@ ot w+ ) ZN’LZS res @elh Lo (1/ ("™ 1t1/T)),

On the other hand, the right hand side of identity (5.4) can be written
in form similar to (5.6):

Lo+(Fg-) ()Mo (t) = > e /" Moy, (t)

*
weﬂl;a
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with .
The;v, 0
Mg« (t) := 2 Z Lot (F5) () S0
v=1 £;q,(1/z)€Fr1(w)
and )
. 1 T kpi\Ag o1 4100 kyiv—J, qlu(l/(#ktl/r))
Swwe == Z(M tr)he Str,e*('u tr) 191, )
" E=o T

Moreover, for any w € Q7.5 and any ¢ such that g¢(1/x) € Fry(w), property
(P) implies that F***(z) has the unique level r. Thereby, due to Theorem 3.3
and Balser—Tougeron theorem, Fewit (t) is 1-summable in direction 8% for
allv=1,...,r and its 1-sum coincides with Lg+ (ﬁ‘;;f’e)(t).

Hence, by applying a method similar to the one of [19, Prop. 4.1] (see
also [32, § 4.3]), we obtain the following result.

PROPOSITION 5.9. — Let n > 0 be as in Proposition 5.4 and 0* = 0+n.
Let w € Q9. Then, the identity
£t (For o+ 7)) () = Morou(t) (5.7)

holds for arg(t) ~ 0*.

Remark 5.10. — When 7. has not a GG-Configuration, that is Q74
has (at least) one Stokes value with a bad front, it seems that Proposition 5.9
above is still valid. Nevertheless, we will not treat this case in this article
because calculations become much more complicated. Indeed, these Stokes
values having no longer a good front, the corresponding singularities are no
longer in the Nilsson class and the corresponding column-blocks Fevt (t)
are no longer 1-summable, but multisummable. This will be studied in great
details in a further article.

We are now able to state the highest level’s connection-to-Stokes formulae
considered this section.

5.5. Highest level’s connection-to-Stokes formulze in a case of a
GG-Configuration

In this section, we fix n > 0 as in Proposition 5.4 and we denote 0+ = 0+n
as before.

Let us now choose a Stokes value w € QF5. According to our assumption
of GG-Configuration, w has a good front. Moreover, applying if needed the
following technical lemma due to M. Loday-Richaud, we can also suppose
that w has actually a good monomial front.
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LEMMA 5.11 (M. Loday-Richaud, [15]). — Let g, (1/x) the unique ele-
ment of the front Fri(w) of w. Then,

(1) there exists a change of the variable x of the form

_ y
S ltay ety

R ()41,...7Oz7n_1€(c (58)

such that the polar part of q,(1/x(y)) reads as —w/y",
(2) the Stokes—Ramis matrices (hence, the highest level’s Stokes—Ramis
matrices) of system (A) are preserved by the change of variable (5.8).

Note that, although Lemma 5.11 is proved in [15] in the case of systems of
dimension 2 (hence, with a single level), it can be extended to any system of
dimension > 3. Indeed, the change of variable (5.8) being tangent to identity,
it “preserves” levels, Stokes values and summation operators.

Let us now introduce the connection constants of }97 (1) at w.

Connection constants. As we saw in Theorem 3.6, the principal singu-

~ A\
larity of fg-(7) at w belongs to the Nilsson class Nilfi:e_swyo‘w. The following
proposition gives us a much more precise description.

PROPOSITION 5.12 (Principal singularity with a good monomial front).
The principal singularity of fo-(7) at w admits a major fo-., , of the form

Aj—u+tl

(w+r)=7""7 "~

Fusgie
0w, +

4 remy 7 J'r (1)

forallu=1,....,7r and j =1,...,J with a remainder

u.jis QP L pusjie
remyl () 1= Z Z Ry’ . (InT)

4;q0(1/z)EFT (W) v=1

where
. K“’J’ denotes a constant nj x ny-matriz such that Ku’]’ =0 as
soon as q;(1/z) ¢ Fri(w),
. R;f;];) o +(X) denotes a n; x ni-polynomial matriz with coefficients
m Resﬁ‘l”jw’o whose the columns are of log-degree
[(n@_m (ng—1)+1 --- (ng—1)+(n1—1)] if A # 0
N[{] =
[ne ng+1 --- ng+(n1—1)] if A\ = 0.
Proof. — 1t is sufficient to apply the Borel transformation Bgﬁt to iden-

tity (5.7) and to observe that normalizations (N7)—(Nz) imply, on one hand,
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Fel(t) = 157 + O(t) and, on the other hand, that the eigenvalues \; of
matrix L of exponents of formal monodromy do not differ from an integer.
Proposition 5.12 follows then from Proposition 4.3(1). Calculations are left
to the reader. |

Remark 5.13. — Like Proposition 5.9 (see Remark 5.10), it seems that
Proposition 5.12 above is also still valid when Qie has Stokes values with a
bad front. As before, we refer to a further article for more details.

The connection constants of }'9— (1) at w are then defined as follows.

DEFINITION 5.14 (Connection constants). — We call connection con-
u,j;®

stants of }’97 at w all the nontrivial entries of matrices K i\ .

Note that, in practice, the matrix K 53; can be determined as the coef-

(w+T).

)

ficient of the monomial 7(*~%+1/7=1 in the major }Z_Jw N

Highest level’s connection-to-Stokes formulae. We are now able to
state the main result of this section.

THEOREM 5.15 (Highest level’s connection-to-Stokes formulee). — Let
JjeA{l,...,J} be such that g;(1/x) € Fri(w). Then the data of the high-
est level’s Stokes multipliers (Stiz;;)k=0"“’r71 of f(z) and the data of the

connection constants (KZ*];)U=1T of }'9—(7') at w are equivalent and are
related, for allk =0,...,7 — 1, by the relations

stlip, = 3 MVl S s (5.9)

u=1

where . = e~ 27/, Lj = \jl; + Jy, is the j-th Jordan block of matriz L

and where If:’*j;' is the integral

e Aj7u+1_1 In; w.ie _Ing
IV = 77— T KT e dr (5.10)
Yo

with o a Hankel type path around the nonnegative real axis RT with argu-
ment from —2x to 0.

Theorem 5.15 is derived from Propositions 5.9 and 5.12 and from Propo-
sition 4.3(1b). The proof is similar to the ones detailed in [19, § 4.3] and [32,
§ 4.3] and is left to the reader.

Observe that relation (5.9) is similar to the one obtained in [32] for sys-
tems with a unique level. In particular, an expanded form providing each
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entry of formula (5.9) can be found in [32, Cor. 4.6]. This can be useful for
effective numerical calculations. Here below, we recall this expanded form in
the special case where the matrix L of exponents of formal monodromy is
diagonal: L = diag(A1,...,\n).

In this case, the matrices st’ ;;* and K77 are reduced to just one en-

try which we respectively denote st ror and K “’j . Then, identity (5.10)
becomes

A w41 1 w.j e—lw y wj
- —r ,
T K/ e Tdr=2it——— < K/ ¥ |
Yo

T (1 _ Aj—u-&—l)

and the highest level’s connection-to-Stokes formule (5.9) become

. Aj—u+1
— T —

™
J _ 9 k(u—1—x;) € i u,j
Styge = 20 Zl,u —F (1 - Aj—u+1) K./, (5.11)

forall k =0,...,7 —1.

Effective calculation. Theorem 5.15 above tells us in particular that
the effective calculation of the highest level’s Stokes multipliers of f(z) at
any Stokes value w € Q7. .o can be reduced, after applying Lemma 5.11 if
needed, to the effective calculation of the connection constants at w. We
develop in this sense a numerical example in Section 5.6 below.

Before starting the calculations, let us first recall that, according to initial
normalizations (N1) — (NN2) on initial system (A) (page 646), the matrix f(t)
is uniquely determined by the first n; columns

20 A f 110, (Am)
of the homological system of the r-reduced system (A) jointly with the ini-
tial condition }’(O) = Iy pn, = the first n; columns of the identity matrix of
size rn (see [5]). Thereby, the sum }'97 itself is completely determined by
the convolution system (A%;) deduced from (Ag) by a Borel transforma-
tion. Note however that, in the special case where the matrix A(z) of initial
system (A) has rational coefficients, convolution system (Aj;) can actually
be replaced by a convenient linear differential system.
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5.6. Example

In this section, we consider the system

0 0 0 0

dy gz 0 0
32 = Y 5.12
Tdr T2 0 242 0 (5.12)

x? —z? x2 4

of dimension n = 4 and rank r = 2 together with its formal fundamental
solution Y (z) = F(z)x%e?0/*) where

1 1 2 1
. Q() — diag (0,2,2,2), L = diag (0,0,,0),
T T x T 2

satisfies F'(x) = I, + O(22). More pre-

= o O
— o O O

*

f2(z) = ia? + 223 + O(z") € 22C[[z]
f3(x) =122+ O(2) € 22C[[z%] (5.13)
Fia) = —La? + O(x*) € 2°C[[z] .

As before, we denote by f(z) the first column of F'(z). According to calcula-
tions above, system (5.12) has levels (1,2) and the set of highest level’s Stokes

~

values of f(x) is Q7 = {1,2}. In particular, the highest level’s anti-Stokes
directions of f(x) are given by the unique collection (fy = 0,6; = —7) gener-
ated by 7 = 1 and 7 = 2 and the corresponding highest level’s Stokes—Ramis

matrices St2?92 read as

o = O

0
0
1
StQ-Q; * 0k

Furthermore, using notations as above, we have 8 = 26y = 0 and Qf,, =
Qf = {1,2}. Thereby, QF has a GG-Configuration and 7 = 1 and 7 = 2
have both a good monomial front. Consequently, Theorem 5.15 applies and
tells us that the two highest level’s Stokes multipliers stg;o and stg;_Tr (resp.

sté;o and stg;fﬂ) are expressed in terms of the connection constants K }i
and K%i (resp. Kéi and K%i) of fo-(r) at 7 = 1 (resp. 7 = 2). More
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precisely, since the matrix L is diagonal, identity (5.11) applies and implies
relations

1+i)my/2
sty = %K%:i — (4 —4i)T (i) K1Y,
]_" —
(%)
—1+4)my/2 3 :
sl — ( —s—z)me},i b 44T (2 K%i’ (5.14)
; (3) : 4 ’
F —
4
sthy = 2imKy| —4yaKYh,  sth_ . =2inKy + 47K

(recall indeed that p = e~"" since r = 2). It remains to calculate the con-
nection constants. To do that, we proceed as follows.

Let us first observe that, according to the definition of F/(£) (see page 650)

~

and relations (5.13), f(t) is of the form

1 0

Fo 2 (2O win 7= [£7O] a2 = |20

Ft) = l}g(t)] th f7(t) = I1,3(t) d f2(t) = I2,3(t) ;
£ F24)

the formal series f%(t) € tC[[t] satisfying
~ ~ 1 ~ 1
FRO =it +0@), A1) = —5t+0E), ) = -3t +0#),

2 =2t +0(t%), (1) =0, 24 = o).

Let us now apply relation (Ag). Then }'(t) is uniquely determined by
the system

00 0 0 0 0 0
00 0 0 ¢ it o0 0
t 0 2+t 0 0 0 0 0
df |t —t t 4 0 0 0 0
27:
@ =loo 0 0 -t 0 0 o |f
t i 0 0 0 —t 0 0
00 0 0 ¢t 0 2-%1 0
o0 0 0 ¢t —t t 4-t
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together with the initial condition }'(O) = Ig 1 and, consequently, the fui (t)’s
are uniquely determined as formal series solutions of the following system

dft? N df? ~ ~
2 o 2,2 2 — ;1,2 —_ 2,2
2= — =it f*?, A= =t +if tf

d}l,?) t ~ ~
{ 2t? =t 24— | f13 23 =

o t\2tg) s f 0
d~1’4 N N - d~2’4 ~ ~
2t2 ‘Zt :t—tf1’2+tfl’3+4fl’47 2t2 '(fit :_tf2,2+(4_t)f274

satisfying }'“J (t) = O(t). This brings thereby us, after a Borel transforma-
tion, to the following properties.

e The formal Borel transforms -2 and #22 satisfy relations

}2,2 _ —2@'% (7}172>

d2F12 21,2
e Ft + (147 + 1)d'f

dr? dr

472 +6F12 =0

Therefore, according to the Newton polygon at 0 of (), }‘172 (hence,
}2 *2) is 1-summable in any direction # # 0. In particular functions
fg’Q’s are given, for instance, by the 1-sums of f“ »2’g in direction O.
Moreover, since 0 is the only singular point of (), these functions

can be analytically continued on the whole Riemann surface C of
the loganthm

o 23 = 0 =0 and f13 defines an analytic function at 0 which is
the unique solution of the differential equation
dfl 3 1,3 71,3 1
2(r—1 + =0, ~(0) = —=.
G A R SO
In particular, we have f1% = 3_3 and, for all |7| < 1,
~ 1
1,3 _
$(1) = =51 =7,

e According to calculations above, the functions }'éf and ?3,4 are
uniquely determined by the differential equations

9 9 A(l)fl sS4 31400y = 1
(T_ ) dr 0— +.f077 07()__7

4
22,4
fo_

2(r —2)—C 1 3f2t = —F27 . F240) =0
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(recall indeed that the }5L4’s are continuous at 0 with }'g’f(()) =

}“’4(0)). Then, since the homogeneous equations are analytic at
0 and since the functions on the right hand side are integrable at
0, Lagrange method (= variation of constant) tells us that, for all
7| <2,

Fitn = 5 (g o= g [ Fan)
Fotn) = 5= | Frme—n

where the last integral can be written in the form

L TR - )2y = B+ (2 — 1) Pg(r)

with g € C and ¢(7) analytic at 7 = 2.

Hence, applying Definition 5.14, the connection constants K 1{3); and K gi
are given by

with

P . i3
1,3 2,3 1,4 2,4
K1’+:72ﬁ K17+=0 K =« K’ =

a=-—3 i7 o (m)dn

1 2 2 1 (%~
+£+ \f_f 1,2
2 2 Jo

and, consequently, identities (5.14) imply

T T

SR o N——
r 3 r 3
4 4

St%;() = 27’\/7?(04\/7 - 5) St%;fﬂ' = 2Zﬁ(aﬁ + B)

3 _
stz;o =

Note that, although system (5.12) may seem a little bit involved, it is
actually simple enough to allow ezact calculations. This “simplicity” is due to
the fact that its matrix is triangular. Of course, such a case is anecdotal and,
in a more general situation, i.e. for systems for which the matrices are not
triangular, such exact calculations are not possible anymore. Nevertheless,
it is worth to be treated since it allows to easily illustrate formulee (5.9).
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