
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
PETER JAN VAN LEEUWEN

Particle Filters for nonlinear data assimilation in high-dimensional systems

Tome XXVI, no 4 (2017), p. 1051-1085.

<http://afst.cedram.org/item?id=AFST_2017_6_26_4_1051_0>

© Université Paul Sabatier, Toulouse, 2017, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2017_6_26_4_1051_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Annales de la faculté des sciences de Toulouse Volume XXVI, no 4, 2017
pp. 1051-1085

Particle Filters for nonlinear data assimilation in
high-dimensional systems

Peter Jan van Leeuwen (1)

ABSTRACT. — Particle Filters are Monte-Carlo methods used for
Bayesian Inference. Bayesian Inference is based on Bayes Theorem that
states how prior information about a system, encoded in a probability
density function, is updated when new information in the form of ob-
servations of that system become available. This process is called data
assimilation in the geosciences. This contribution discusses what particle
filters are and what the main issue is when trying to use them in the
geosciences, in which the data-assimilation problem is typically very high
dimensional. An example is numerical weather forecasting, with a state-
space size of a billion or more. Then it discusses recent progress made in
trying to beat the so-called “curse of dimensionality”, such as localisation
and clever ways to slightly change the model equations to obtain better
approximations to the posterior probability density via so-called proposal
densities. This culminates in a new class of particle filters that is indeed
able to provide estimates of the posterior probability density. The empha-
sis is not on mathematical rigour but on conveying the main new ideas in
this rapidly growing field.

RÉSUMÉ. — Les filtres particulaires sont des méthodes de Monte-
Carlo pour l’inférence bayésienne. Cette dernière s’appuie sur le théorème
de Bayes qui exprime de quelle manière la connaissance a priori d’un sys-
tème, représentée par une fonction de densité de probabilité, doit être
modifiée lorsque de nouvelles informations provenant d’observations de
ce système deviennent disponibles. Ce procédé est appelé assimilation de
données dans les sciences de la Terre. Ces notes introduisent les filtres par-
ticulaires et se concentrent sur les problèmes spécifiques à leur utilisation
dans les sciences de la Terre, où les problèmes d’assimilation sont généra-
lement posés en très grande dimension. Un exemple est le problème de la
prévision météorologique, dont la taille de l’espace d’état peut dépasser le
milliard. Nous discutons ensuite les récents progrès et outils développés en
vue de gérer ce fameux « fléau de la dimension », tels que la localisation ou
la méthode des « proposal densities », dans laquelle on modifie légèrement
le modèle étudié en vue d’améliorer la densité de probabilité a posteriori.
Toutes ces considérations amènent à une nouvelle classe de filtres particu-
laires qui est effectivement capable d’estimer les densités de probabilité a

(1) Department of Meteorology, University of Reading, Reading RG6 6BB, UK —
p.j.vanleeuwen@reading.ac.uk

– 1051 –

mailto:p.j.vanleeuwen@reading.ac.uk

Peter Jan van Leeuwen

posteriori. Notre exposition privilégie la présentation des idées principales
de cette direction de recherche en pleine expansion, parfois au détriment
de la rigueur mathématique.

1. Introduction

In this chapter we will discuss particle filters and their use in the geo-
sciences. A general review on the application and usefulness of particle filters
in geosciences in given in [14], and a general overview of particle filtering is
given by the excellent book by Doucet et al. [9]. The book by provides an
excellent introduction in the mathematical background of particle filters.
Several problems are encountered when trying to apply particle filters to
high-dimensional problems, summarised with the so-called “curse of dimen-
sionality”. However, a lot of progress has been made the last couple of years,
and this chapter will discuss some of these new developments, with an em-
phasis on the geosciences. Because of space limitations the presentation will
be focussed on the general ideas and not on mathematical rigour. Excel-
lent text books like those of Del Moral [8] and Bain and Crisan [3] can be
consulted for that rigour.

First the basic idea behind particle filters is presented, followed by why
this basic formulation can never work for large-dimensional systems. We
discuss resampling as a way to increase the efficiency of particle filters. Then
we will discuss proposal densities, which form the major contribution in
this paper. Specifically, we will discuss a wider class of proposal densities
than commonly used, which will allow us to avoid the otherwise inevitable
filter degeneracy that plagues even the so-called optimal proposal density.
We show that this new class allows us an enormous amount of freedom
to build particle filters for very high dimensional systems, and present an
example of a successful approach that works in systems of any dimension by
construction. This is the first example of undoubtately an enormous growth
in useful methods for extremely high dimensional systems encountered in
the geosciences. To keep the text fluent I kept the literature references to
a minimum; a more comprehensive, but slightly outdated, literature list for
application of particle filters in the geosciences can be found in [14].

We discuss the basic particle filter as an importance sampler, and show
why straightforward implementation will lead to so-called degeneracy, in
which the effective ensemble size reduces to a very small number of particles,
and the method fails. At the same time the strength of particle filters will
be investigated, namely that particle filters are completely nonlinear, have

– 1052 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

no problems with model balances after updates (at least not the simple
versions), and their performance is not reliant on a good representation of
the error covariance of the model state. The latter point has been overlooked
by geoscientists in the past, but is actually a major selling point.

While perhaps less obvious to a mathematician, this balance issue is a
crucial ingredient in geoscience applications. In short, it means that different
model variables are coupled to each other by closely, but not exactly, follow-
ing so-called “balance relations”. These relations are closely related to the
model attractor. So different model variables are not independent from each
other, and a too large random perturbation to a model field will result in
breaking these balance relations, pushing the system off the attractor, and
resulting in strong adaptation of the system back to the attractor. The real
world does only react this way if there is an physical (chemical, biological,...)
process that pushes the system away from the attractor, while the filtering
process might introduce large pushes to the system that have nothing to
do with the physics (chemistry, biology,...). As an example, a strongly un-
balanced update of an atmospheric model tends to introduce strong gravity
waves in the adjustment to balance that lead to spurious rain generation.

As real-world examples show us again and again, the data-assimilation
problem is typically a nonlinear one, especially in the geosciences. The mod-
els we use to simulate are almost never linear, and the observation operator
that relates model states to observations is quite often nonlinear too. While
linearisations have been shown to be very useful to tackle real-world prob-
lems, there are several problems that are so nonlinear that these linearisa-
tions are just not good enough.

As is well known, Kalman filters either assume that the update is a linear
combination between observations and prior estimate, the BLUE, or they
assume that both the prior and the likelihood are Gaussian distributed in
the model state. Of course, when the system is weakly nonlinear the Kalman
filter can be used quite efficiently, and even iterations of the Kalman filter
update can be performed. But when the system is highly nonlinear these
iterations are unlikely to converge, and if they do, it is unclear to what. Also
the interpretation of the ensemble as a measure for the posterior covariance
becomes questionable. It is important to realise that the (Ensemble) Kalman
filter is not variance minimising for a non-Gaussian posterior probability
density function!

Variational methods like 4DVar and the Representer method look for
the maximum of the posterior probability density function (pdf), or to the
minimum of minus the logarithm of this pdf, which amounts to the same
state. When the system is linear or Gaussian it is easy to prove that there is

– 1053 –

Peter Jan van Leeuwen

indeed one maximum. Also for a weakly nonlinear system variational meth-
ods are very useful, and the variational problem can be solved by iteration,
sometimes called “incremental 4DVar”. However, when the problem is highly
nonlinear it can be expected that the posterior pdf has several local max-
ima, and the variational methods will converge to one of them. This is not
necessarily the global maximum. Another issue is the lack of covariance in-
formation. Even if the inverse of the Hessian, the local curvature of the pdf
at the maximum, could be calculated it does not represent the covariance of
the full posterior pdf. This means that no estimate of the accuracy (width
of posterior pdf) of the maximum is available.

Nonlinear data assimilation is a whole new ball game, especially when the
posterior pdf is multi modal. What does the “best estimate” mean? Is it the
mean of the posterior pdf? Well, definitely not when the posterior is bimodal
and the two modes have equal probability mass and are of equal shape. In
that case the mean will fall between the two peaks. Is the global maximum
the best estimate? If the posterior pdf has multiple maxima of equal size
the answer is no. Also, when the maximum is related to a relatively small
probability mass, it is also not that useful. It becomes clear that the notion
of “best estimate” depends very strongly on the application, and is perhaps
not a very useful concept in nonlinear data assimilation.

The solution to the data-assimilation problem is not a best estimate, but
the posterior pdf itself. That is exactly what Bayes Theorem tells us, given
the prior pdf and the likelihood, we can calculate the posterior pdf, and that
is the answer. And the calculation is extremely simple, just a multiplication.
So, this little excursion into nonlinear data assimilation learns us that data
assimilation is not an inverse problem, but a multiplication problem. That
is the starting point for this chapter on Particle Filters.

2. A simple Particle filter based on Importance Sampling

The particle filters we will discuss here are based on Importance Sam-
pling. The most straight-forward implementation is what is called Basic
Importance Sampling here. (In the statistical literature one usually finds
Importance Sampling described with a proposal density different from the
prior model pdf. However, for pedagogical reasons we present Importance
Sampling in the following way.) Basic Importance sampling is straightfor-
ward implementation of Bayes Theorem as we will show below.

– 1054 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

2.1. Basic Importance Sampling

The basic data assimilation problem is to infer the probability density
function (pdf) of a state x ∈ <Nx given a set of observations y ∈ <Ny . We
have prior information in terms of a prior pdf p(x), and the observations are
obtained by measuring the true state of the system via

y = H(xtrue) + ε (2.1)

in which H(·) maps model state x to observation space. ε is a measurement
error, as all real observations of a real system have these errors.

The idea is to represent the prior pdf by a set of particles xi ∈ <Nx ,
which are delta functions centred around state vectors xi, and from which
all statistical measures of interest can be calculated, like mean, covariance
etc. If one represents the prior pdf by a number of particles, or ensemble
members, like in the Ensemble Kalman Filter, so

p(x) =
N∑
i=1

1
N
δxi

(2.2)

and we use this in Bayes Theorem:

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x) dx

. (2.3)

We find

p(x|y) =
N∑
i=1

wiδxi (2.4)

in which the weights wi are given by:

wi = p(y|xi)∑N
j=1 p(y|xj)

. (2.5)

The density p(y|xi) is the probability density of the observations given the
model state xi, which is often taken as a Gaussian:

p(y|xi) = A exp
[
− (y −H(xi))2

2σ2

]
(2.6)

in which H(xi) is the measurement operator, which is the model equivalent
of the observation y, and σ is the standard deviation of the observation error.
When more measurements are available, which might have correlated errors,
the above should be the joint pdf of all these measurements.

Weighting the particles just means that their relative importance in the
probability density changes. For instance, if we want to know the mean of

– 1055 –

Peter Jan van Leeuwen

the function f(x) we now have:

f(x) =
∫
f(x)p(x) dx ≈

N∑
i=1

wif(xi). (2.7)

Common examples for f(x) are x itself, giving the mean of the pdf, and the
squared deviation from the mean, giving the covariance.

Up to now, we haven’t specified what x is. It can be a state vector xn
at a certain time n, or x can be a model trajectory over some time win-
dow (0, n∆t), so x = x0:n = (x0, x1, . . . , xn) over n time steps. Here the
superscript is the time index, and the subscript is the sample, or particle.

A practical way to implement the particle filter is to calculate the tra-
jectory sequentially over time, which is where the name “filter” comes from.
The idea is to write the prior density as

p(x0:n) = p(xn|x0:n−1)p(x0:n−1). (2.8)

Using that the state vector evolution is Markov, i.e. to predict the future we
only need the present, not the past, we can write:

p(x0:n) = p(xn|xn−1)p(xn−1|p(xn−2) . . . p(x1|x0)p(x0). (2.9)

Before we continue it is good to realise what the so-called transition densities
p(xn|xn−1) actually mean. Consider a model evolution equation given by:

xn = f(xn−1) + βn (2.10)

in which βn ∈ <Nx is a random term or factor in the model equation that
describes the error in the model equation. The idea is that the model is
not perfect, i.e. any numerical model used in the geosciences to simulate
the real world has errors (and they tend to be significant!). These errors
are unknown (otherwise we would include them as deterministic terms in
the equations) but we assume we are able to say something about their
statistics, e.g. their mean, covariance, etc. Typically one assumes the errors
in the model equations are Gaussian distributed with zero mean and known
covariance, but that is not always the case. To draw from such a transition
density p(xn|xn−1) means to draw βn from its density and evaluate the
model equation given above. In fact, for normal, or Gaussian, distributed
model errors βn with mean zero and covariance Q, we can write:

p(xn|xn−1) = N(f(xn−1), Q). (2.11)

Note that we assume the model errors are additive in this chapter. Multi-
plicative model errors in which the size of the random forcing is dependent
on the state x can be accounted for too, but we use additive model errors
here for simplicity.

– 1056 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

Let us now continue with Importance Sampling. If we also assume that
the observations at different times, conditional on the states at those times,
are independent, which is not necessary for the formulation of the theory,
but keeps the notation so much simpler, we have for the likelihood:

p(y1:n|x0:n) = p(yn|xn) . . . p(y1|x1) (2.12)
where we used that yj is not dependent on xk with j 6= k when xj is known.
The posterior density can now be written as:

p(x0:n|y1:n) = p(y1:n|x0:n)p(x0:n)
p(y1:n)

= p(yn|xn) . . . p(y1|x1)p(xn|xn−1) . . . p(x1|x0)p(x0)
p(yn) . . . p(y1)

= p(yn|xn)p(xn|xn−1)
p(yn) . . .

p(y1|x1)p(x1|x0)p(x0)
p(y1)

(2.13)

Realising that the last ratio in this equation is actually equal to p(x0:1|y1)
we find the following sequential relation:

p(x0:n|y0:n) = p(yn|xn)p(xn|xn−1)
p(yn) p(x0:n−1|y1:n−1). (2.14)

This expression allows us to find the full posterior with the following sequen-
tial scheme (see Figure 2.1):

(1) Sample N particles xi from the initial model probability density
p(x0), in which the superscript 0 denotes the time index.

(2) Integrate all particles forward in time up to the measurement time.
In probabilistic language we denote this as: sample from p(xn|xn−1

i)
for each i, that is for each particle xi run the model forward from
time n− 1 to time n using the nonlinear model equations. The sto-
chastic nature of the forward evolution is implemented by sampling
from the density that describes the random forcing of the model.

(3) Calculate the weights according to (2.5), normalise them so that
their sum is equal to 1, and attach these weights to each corre-
sponding particle. Note that the particles are not modified, only
their relative weight is changed!

(4) Increase n by one and repeat (2) and (3) until all observations have
been processed.

2.2. Why particle filters are so attractive

Despite the problems discussed just now, their advantages compared to
traditional methods should not be underestimated. First of all, they do solve

– 1057 –

Peter Jan van Leeuwen

t=0 t=10 t=20

weighting weighting

Figure 2.1. The standard particle filter with Importance Sampling.
The model variable runs along the vertical axis, the weight of each
particle corresponds to the size of the bullets on this axis. The hor-
izontal axis denotes time, with observations at a time interval of 10
time units. All particles have equal weight at time 0. At time 10 the
likelihood is displayed together with the new weights of each particle.
At time 20 only 2 members have weights different from zero: the filter
has become degenerate.

the complete nonlinear data assimilation problem, see the discussion at the
beginning of this chapter.

Furthermore, the good thing about importance sampling is that the par-
ticles are not modified, so that dynamical balances are not destroyed by the
analysis. The bad thing about importance sampling is that the particles are
not modified, so that when all particles move away from the observations
they are not pulled back to the observations. Only their relative weights are
changed.

And finally it is stressed how simple this scheme is compared to tradi-
tional methods like 3- or 4DVar and (Ensemble) Kalman filters. The success
of these schemes depends heavily on the accuracy and error covariances of
the model state vector. In 3- and 4DVar this leads to complicated covariance

– 1058 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

structures to ensure balances etc. In Ensemble Kalman filters artificial tricks
like covariance inflation and localisation are needed to get good results in
high dimensional systems. Particle filters do not have these difficulties.

However, there is (of course) a drawback. Even if the particles manage
to follow the observations in time, the weights will differ more and more.
Application to even very low-dimensional systems shows that after a few
analysis steps one particle gets all the weight, while all other particles have
very low weights (see Figure 2.1, at t = 20). That means that the statisti-
cal information in the ensemble becomes too low to be meaningful. This is
called filter degeneracy. It has given importance sampling a low profile until
resampling was invented, see the next section.

3. Reducing the variance in the weights

Several methods exist to reduce the variance in the weights, and we dis-
cuss Sequential Importance Resampling here. See [14] for other methods. In
resampling methods the posterior ensemble is resampled so that the weights
become more equal (Gordon et al. [10]). In the next section, methods are
discussed that do change the positions of the prior particles in state space
to improve the likelihood of the particles, i.e. to bring them closer to the
observations before the weighting with the likelihood is applied.

3.1. Resampling

The idea of resampling is simply that particles with very low weights
are abandoned, while multiple copies of particles with high weight are kept
for the posterior pdf in the sequential implementation. In order to restore
the total number of particles N , identical copies of high-weight particles are
formed. The higher the weight of a particle the more copies are generated, so
that the total number of particles becomes N again. Sequential Importance
Resampling (SIR) does the above, and makes sure that the weights of all
posterior particles are equal again, to 1/N .

Sequential Importance Resampling is identical to Basic Importance Sam-
pling but for a resampling step after the calculation of the weights. The “flow
chart” reads (see Figure 3.1):

(1) Sample N particles xi from the initial model probability density
p(x0).

– 1059 –

Peter Jan van Leeuwen

(2) Integrate all particles forward in time up to the measurement time
(so, sample from p(xn|xn−1

i) for each i).
(3) Calculate the weights according to (2.5) and attach these weights to

each corresponding particle. Note that the particles are not modi-
fied, only their relative weight is changed!

(4) Re-sample the particles such that the weights are equal to 1/N .
(5) Repeat (2), (3) and (4) sequentially until all observations have been

processed.

t=0 t=10 t=20t=10

resamplingweighting weighting

Figure 3.1. The Particle Filter with Resampling, also called Sequential
Importance Resampling. The model variable runs along the vertical
axis, the weight of each particle corresponds to the size of the bullets
on this axis. The horizontal axis denotes time, with observations at a
time interval of 10 time units. All particles have equal weight at time
zero. At time 10 the particles are weighted according to the likelihood,
and resampled to obtain an equal-weight ensemble.

It is good to realise that the resampling step destroys the smoother char-
acter of the method. All particles that are not chosen in the resampling
scheme are lost, and their evolution is broken. So the smoother estimate is
build of lesser and lesser particles over time, until it consists of only one
particle, loosing again all statistical meaning.

The resampling can be performed in many ways, and we discuss the most
used.

– 1060 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

(1) Probabilistic resampling
Most straightforward is to directly sample randomly from the

density given by the weights. Since this density is discrete and one-
dimensional this is an easy task. However, due to the random char-
acter of the sampling, so-called sampling noise is introduced. Note
that this method is actually generalised Bernoulli for those versed
in sampling techniques.

(2) Residual Sampling
To reduce the sampling noise Residual Sampling can be applied.

In this resampling method all weights are multiplied with the en-
semble size N . Then n copies are taken of each particle i in which n
is the integer part of Nwi. After obtaining these copies of all mem-
bers with Nwi > 1, the integer parts of Nwi are subtracted from
Nwi. The rest of the particles needed to obtain ensemble size N are
than drawn randomly from this resulting distribution.

(3) Stochastic Universal Sampling
While Residual Sampling reduces the sampling noise, it can bee

shown that Stochastic Universal Sampling has lowest sampling noise.
In this method all weights are put after each other on the unit inter-
val [0, 1]. Then a random number is drawn from a uniform density
on [0, 1/N], and N line pieces starting from the random number,
and with interval length 1/N are laid on the line [0, 1]. A particle
is chosen when one of the end points of these line pieces falls in
the weight bin of that particle. Clearly, particles with high weights
span an interval larger than 1/N and will be chosen a number of
times, while small weight particles have a negligible change of being
chosen.

3.2. Is resampling enough?

Snyder et al. [23] prove that resampling will not be enough to avoid filter
collapse, The problem is related to the large number of observations, which
make the likelihood peak in only a very small portion of the observation
space. The conclusion is that more is needed than simple resampling to
solve the degeneracy problem.

3.3. Convergence of particle filters to the target density

Several convergence results for particle filters exist, with varying condi-
tions on the transition probabilities and likelihood functions. A basic result

– 1061 –

Peter Jan van Leeuwen

is due to Del Moral and Guionnet [7], who show that

sup
n>0

E
(∣∣pN (xn|yn)− p(xn|yn)

∣∣) 6 C

Nα/2 (3.1)

for α 6 1. See details on constants C and α in Del Moral and Guionnet [7].
Here pN (· | ·) denotes the particle representation of the full density p(· | ·).
This result essentially shows that the system has limited memory due to
the model noise and the resampling step (so the interaction between the
particles), and approximation errors tend to dissipate.

More can be found in text books like Del Moral [8] and Bain and
Crisan [3]. Recent work (e.g. Van Handel [11], Tong and Van Handel [25])
connected the stability of nonlinear filters to standard concepts in linear fil-
tering, specifically stability, observability, and detectability. Noteworthy is
also the work by Le Gland et al. [12] on the convergence properties of the
Ensemble Kalman Filter, which applies a Gaussian assumption on the prior
each time observations become available.

4. Localisation in Particle Filtering

One way to reduce the number of observations is to allow them to influ-
ence only that part of the model state close to them. Close in this case relates
to the physical distance. The rationale behind this is that there is no direct
instantaneous physical relation between the temperature in say Reading in
the UK, and the temperature in New York. So a temperature observation
in Reading should only influence the model state in the neighbourhood of
Reading.

This is an idea from Ensemble Kalman Filtering, called localisation.
There, it is needed because information between different grid points is en-
coded in the ensemble covariance. Since the number of ensemble members
in high-dimensional systems is low, the covariance estimate is rather noisy.
The true covariance between the temperature in Reading and New York is
zero, but the ensemble estimate will display spurious correlations that have
to be suppressed. That is done in the localisation procedure, of which sev-
eral variants exist, but they all ensure that observations have a finite spatial
influence.

Our basic motivation is different in particle filtering as ensemble-based co-
variance estimates are not needed. In particle filtering it is just used to avoid
filter degeneracy by reducing the number of observations at each grid point.
This idea was first discussed by Bengtsson et al. [4] and Van Leeuwen [13].

– 1062 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

The theoretical justification for localisation needs further work, but im-
portant first steps have been set by Rebeschini and Van Handel [21], who
show that when the system has decaying correlations in space localisation
can keep filter stability. The idea is that the decaying correlations lead to a
limited spatial memory of the system, so that approximation errors tend to
dissipate in space. They proof that localisation can beat the curse of dimen-
sionality for a so-called block particle filter, in which each grid point is part of
a certain block, and only observations inside that block are used for updates
of the prior pdf at that grid point. As noted by the authors, this will lead
to large approximation errors at the boundaries. Furthermore, as pointed
out by the authors and earlier practitioners, like Bengtsson et al. [4] and
Van Leeuwen [13], a fundamental problem is that the discontinuous bound-
aries can lead to unrealistic model states, potentially ruining the model fore-
casts. Another interesting recent work in this area is Beskos et al. [5], who
discuss the convergence rate a particle filter that updates a sequence of ar-
tificial targets, and these targets can be chosen as marginal posterior pdf’s,
making a direct connection with localisation.

On the practical side, several methods have been developed, e.g. by Cotter
and Reich [22], Poterjoy [20], and Penny and Miyoshi [18]. No theoretical
justification of these methods exists, and the algorithms typically rely heavily
on spatial smoothing to ensure realistic model fields, loosing part of the full
nonlinearity. It is encouraging that both practitioners and mathematicians
are both interested in this approach, no doubt leading to rapid progress in
the near future.

Due to space limitations localisation will not be discussed further here,
apart from mentioning that localisation alone is unlike to solve the degener-
acy problem for several geoscience problems with high observational density,
like numerical weather prediction, because the physical decorrelation length-
scale will be larger than the localisation radius needed to avoid too many
observations inside the localisation area. As a rule of thumb, 10 indepen-
dent observations is typically too much to prevent filter degeneracy, and
e.g. high-density radar observations of rain fall intensity are known to cause
problems.

5. The proposal density

In this part we will concentrate on recent developments in using the so-
called proposal transition density in solving the degeneracy problem. Related
to decreasing the variance of the weights is to make sure that all model
integrations end up close to the new observations, or, more precisely, ensuring
that all posterior particles have similar weights.

– 1063 –

Peter Jan van Leeuwen

First, we discuss what a proposal density is in particle filtering, and how
it can be useful. This is then illustrated with using an Ensemble Kalman
Filter as proposal density. This is followed by a discussion of more traditional
methods of which we choose the Auxiliary Particle Filter.

Next, we discuss methods that change the model equations by bringing
information on where the future observations are directly into the model
equations. We start with the so-called Optimal proposal density and show
that that idea doesn’t work in high-dimensional spaces with large numbers
of independent observations. The optimal proposal density is a one-time-
step scheme, assuming observations every time step. The so-called Implicit
Particle Filter extends this to multiple time steps between observations.
It is shown that the implicit particle filter can be interpreted as a weak-
constraint 4DVar on each particle, with fixed initial condition. We will show
that when the number of independent observations is large also this filter
will be problematic.

The major breakthrough in the field is the extension of the class of pro-
posal densities to situations where each new particle is informed not only
by the weights of the other particles as in a resampling scheme, but also
by their relative positions in state space. That will allow us to generate a
method that will not be degenerate by construction, the Equivalent-Weights
Particle filter. Its working is illustrated on a 65,000 dimensional barotropic
vorticity model of atmospheric or oceanic flow, hinting that particle filters
are now mature enough to explore in e.g. operational numerical weather
prediction settings.

We are now to discuss a very interesting property of particle filters that
has received little attention in the geophysical community. We start from
Bayes:

p(x0:n|y0:n) = p(yn|xn)p(xn|xn−1)
p(yn) p(x0:n−1|y1:n−1). (5.1)

To simplify the analysis, and since we concentrate on a filter here, let us first
integrate out the past, to get:

p(xn|y0:n) = p(yn|xn)
p(yn)

∫
p(xn|xn−1)p(xn−1|y1:n−1) dxn−1. (5.2)

This expression does not change when we multiply and divide by a so-
called proposal transition density q(xn|xn−1, yn), so:

p(xn|y0:n)

= p(yn|xn)
p(yn)

∫
p(xn|xn−1)

q(xn|xn−1, yn)q(x
n|xn−1, yn)p(xn−1|y1:n−1) dxn−1. (5.3)

– 1064 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

As long as the support of q(xn|xn−1, yn) is equal to or larger than that of
p(xn|xn−1) we can always do this. This last condition makes sure we don’t
divide by zero. Let us now assume that we have an equal-weight ensemble
of particles from the previous analysis at time n− 1, so

p(xn−1|y1:n−1) =
N∑
i=1

1
N
δxn−1

i
. (5.4)

Using this in the equation above gives:

p(xn|y0:n) =
N∑
i=1

1
N

p(yn|xn)
p(yn)

p(xn|xn−1
i)

q(xn|xn−1
i , yn)

q(xn|xn−1
i , yn). (5.5)

As a last step, we run the particles from time n − 1 to n, i.e. we sample
from the transition density. However, instead of drawing from p(xn|xn−1

i),
so running the original model, we sample from q(xn|xn−1

i , yn), so from a
modified model. Let us write this modified model as

xn = g(xn−1, yn) + β̂n (5.6)

so that we can write for the transition density, assuming β̂n is Gaussian
distributed with covariance Q̂:

q(xn|xn−1, yn) = N(g(xn−1, yn), Q̂). (5.7)

Drawing from this density leads to:

p(xn|y0:n) =
N∑
i=1

1
N

p(yn|xni)
p(yn)

p(xni |xn−1
i)

q(xni |x
n−1
i , yn)

δ(xn − xni) (5.8)

so the posterior pdf at time n can be written as:

p(xn|y1:n) =
N∑
i=1

wiδxn
i

(5.9)

with weights wi given by:

wi = 1
N

p(yn|xni)
p(yn)

p(xni |xn−1
i)

q(xni |x
n−1
i , yn)

. (5.10)

We recognise the first factor in this expression as the likelihood, and the
second as a factor related to using the proposal transition density instead
of the original transition density to propagate from time n− 1 to n, so it is
related to the use of the proposed model instead of the original model. Note
that because the factor 1/N and p(yn) are the same for each particle and we
are only interested in relative weights, we will drop them from now on, so

wi = p(yn|xni) p(xni |xn−1
i)

q(xni |x
n−1
i , yn)

. (5.11)

– 1065 –

Peter Jan van Leeuwen

Finally, let us formulate an expression for the weights when multiple model
time steps are present between observation times. Assume the model needs
m time steps between observations. This means that the ensemble at time
n−m is an equal weight ensemble, so

p(xn−m|y1:n−m) =
N∑
i=1

1
N
δxn−m

i
. (5.12)

We will explore the possibility of a proposal density at each model time
steps, so for the original model we write

p(xn|y0:n)

= p(yn|xn)
p(yn)

∫ n∏
j=n−m+1

p(xj |xj−1)p(xn−m|y1:n−m) dxn−m:n−1 (5.13)

and introducing a proposal transition density at each time step we find:

p(xn|y0:n) = p(yn|xn)
p(yn)

∫ n∏
j=n−m+1

p(xj |xj−1)
q(xj |xj−1, yn)q(x

j |xj−1, yn)

× p(xn−m|y1:n−m) dxn−m:n−1. (5.14)

Using the expression for p(xn−m|y1:n−m) above and choosing randomly from
the transition proposal density q(xj |xj−1, yn) at each time step leads to:

wi = p(yn|xni)
n∏

j=n−m+1

p(xji |x
j−1
i)

q(xji |x
j−1
i , yn)

. (5.15)

5.1. Example: the EnKF as proposal

As an example we will explore this technique with the Gaussian of the
EnKF as the proposal density. First we have to evaluate the prior transition
density. Since we know the starting point of the simulation, xn−1

i , and its
end point, the posterior EnKF sample xni , and we know the model equation,
written formally as:

xni = f(xn−1
i) + βni (5.16)

we can determine βni from this equation directly. We also know the distri-
bution from which this βni is supposed to be drawn, let us say a Gaussian
with zero mean and covariance Q. We then find for the transition density:

p(xni |xn−1
i) ∝ exp

[
−1/2

(
xni − f(xn−1

i)
)
Q−1 (xni − f(xn−1

i)
)]
. (5.17)

This will give us a number for each [xn−1
i , xni] combination.

– 1066 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

Let us now calculate the proposal density q(xni |xn−1
i , yn). This depends

on the ensemble Kalman filter used. For the Ensemble Kalman filter with
perturbed observations the situation is as follows. Each particle in the up-
dated ensemble is connected to those before analysis as:

xni = xn,oldi +Ke
(
y + εi −H(xn,oldi)

)
. (5.18)

in which εi is the random error drawn from N(0, R) that has to be added
to the observations in this variant of the ensemble Kalman filter. Ke is the
ensemble Klman gain, i.e. the Kalman gain using the prior error covariance
calculated from the prior ensemble. The particle prior to the analysis comes
from that of the previous time step through the stochastic model:

xn,oldi = f(xn−1) + βni . (5.19)
Combining these two gives:

xni = f(xn−1
i) + βni +Ke

(
y + εi −H(xn−1

i)−H(βni))
)

(5.20)
or

xni = f(xn−1
i) +Ke

(
y −H(f(xn−1

i))
)

+ (1−KeH)βni +Keεi (5.21)
assuming that H is a linear operator. The right-hand side of this equation
has a deterministic and a stochastic part. The stochastic part provides the
transition density going from xn−1

i to xni . Assuming both model and obser-
vation errors to be Gaussian distributed and independent we find for this
transition density:

q(xni |xn−1
i yn) ∝ exp

[
−1/2 (xni − µni)T Σ−1

i (xni − µni)
]

(5.22)

in which µni is the deterministic “evolution” of x, given by:

µni = f(xn−1
i) +Ke

(
y −H(xn−1

i)
)

(5.23)
and the covariance Σi is given by:

Σi = (1−KeH)Q(1−KeH)T +KeRKeT (5.24)
where we assumed that the model and observation errors are uncorrelated. It
should be realized that xni does depend on all xn,oldj via the Kalman gain, that
involves the error covariance P e. Hence we have calculated q(xni |P e, xn−1

i , yn)
instead of q(xni |xn−1

i , yn), in which P e depends on all other particles. The
reason why we ignore the dependence on P e is that in case of an infinitely
large ensemble P e would be a variable that depends only on the system,
not on specific realizations of that system. This is different from the terms
related to xni , that will depend on the specific realization for βni even when
the ensemble size is “infinite”. (Hence another approximation related to the
finite size of the ensemble comes into play here and at this moment it is
unclear how large this approximation error is.)

– 1067 –

Peter Jan van Leeuwen

The calculation of p(xn|xn−1) and q(xni |xn−1
i yn) look like very expensive

operations. By realizing that Q and R can be obtained from the ensemble
of particles, computationally efficient schemes can easily be derived.

We can now determine the full new weights. Since the normalization
factors for the transition and the posterior densities are the same for all
particles the weights are easily calculated. The procedure now is as follows
(see Figure 5.1):

(1) Run the ensemble up to the observation time.
(2) Perform a (local) EnKF analysis of the particles.
(3) Calculate the proposal weights w∗i = p(xni |xn−1

i)/q(xni |xn−1
i yn).

(4) Calculate the likelihood weights wi = p(yn|xni).
(5) Calculate the full relative weights as wi = wi ∗ w∗i and normalize

them.
(6) Resample.

It is good to realize that the EnKF step is only used to draw the particles
close to the observations. This means that when the weights are still varying
too much, one can do the EnKF step with much smaller observational errors.
This might look like overfitting but it is not since the only thing we do in
probabilistic sense is to generate particles to those positions in state space
where the likelihood is large.

Finally, other variants of the EnKF, like the adjusted and the transform
variants can be used too, as detailed in [14]. The efficiency of using the EnKF
as proposal is under debate at the moment. The conclusions so far seem to
be that using the EnKF as proposal in high-dimensional systems does not
work. What has not been tested, however, is to use EnKF proposals with
smaller observation matrix R, and more possibilities are still open, like using
localisation (see later on).

5.2. The Auxiliary Particle Filter

In the auxilary particle filter the ensemble at time n− 1 is weighted with
information of the likelihood at time n, see [19]. In this method one generates
a representation of each particle at the time of the new observation, e.g. by
integrating each particle from time n− 1 to time n using zero model noise.
(Depending on the complexity of the stochastic model integrator this can
save considerable time.) Then the particles are weighted with the observa-
tions, and a new resampled ensemble is integrated from n−1 to arrive closer
to the observations. A flow chart reads (see Figure 5.2):

– 1068 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

t=0 t=10 t=10 t=10 t=10

weighting
proposal

correct
weights resample

Figure 5.1. The particle filter with proposal density. The model vari-
able runs along the vertical axis, the weight of each particle corre-
sponds to the size of the bullets on this axis. The horizontal axis
denotes time, with observations at a time interval of 10 time units.
All particles have equal weight at time zero. At time 10 the particles
are brought closer to the observations by using e.g. the EnKF. Then
they are weighted with the likelihood and these weights are corrected
for the artificial EnKF step.

(1) Integrate each particle from n − 1 to n with simplified dynamics
(e.g. without model noise), producing the a representation of the
proposal density q(xn|xn−1

i , yn).
(2) Weight each particle with the new observations as

βi ∝ p(yn|xni)wn−1
i . (5.25)

These weights are called the “first-stage weights” or the “simulation
weights”.

(3) Resample the particles i at time n − 1 with these weights, and use
this resampled particles ji as a representation of the proposal density
by integrating each forward to n with the full stochastic model, so
choosing from q(xn|xn−1

ji
, yn). Note that ji connects the original

particle i with its new position in state space, that of particle j.

– 1069 –

Peter Jan van Leeuwen

t=0 t=10 t=10t=0

resampling
 at t=0weighting weighting

Figure 5.2. The Auxiliary Particle Filter. The model variable runs
along the vertical axis, the weight of each particle corresponds to the
size of the bullets on this axis. The horizontal axis denotes time, with
observations at a time interval of 10 time units. All particles have equal
weight at time zero. At time 10 the particles are weighted according to
the likelihood. These weights are used at time 0 to rerun the ensemble
up to time 10.

(4) Re-weight the members with weights

wni = 1
A
p(yn|xni)

p(xni |xn−1
ji

)
q(xni |x

n−1
ji

, yn)βji

(5.26)

in which A is the normalization factor. A resampling step can be
done, but is not really necessary because the actual resampling is
done at step (3).

The name “auxiliary” comes from the introduction of the member index ji
in the formulation. This member index keeps track of the relation between
the first-stage weights and the particle sample at n− 1.

It should be noted that 2N integrations have to be performed with this
method, one ensemble integration to find the proposal, and one for the actual
pdf. If adding the stochastic noise is not expensive step (1) can be done with
the stochastic model, which comes down to doing Sequential Importance

– 1070 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

Resampling twice. However, one could also use a simplified model for the
first set of integrations. A geophysical example would be to use a quasi-
geostrophic model for the first set of integrations, and the full model for
the second. One can imagine to do it even more times, zooming in into the
likelihood, but at a cost of performing more and more integrations of the
model. Figure 5.2 displays how the method works.

5.3. Including future observations in the model equations

So far we have discussed proposal density applications in which the model
equations were not changed directly. Of course, in e.g. the auxiliary particle
filter one could use a different model for the first set of integrations to obtain
the first-stage weights, but the future observations were not used directly in
the model equations. However, much more efficient schemes can be derived
that change the model equations such that each particle is pulled towards
the future observations at each time step. By keeping track of the weights
associated with this it can be assured that the correct problem is solved, and
the particles are random samples from the posterior pdf.

As mentioned before, the idea of the proposal transition density is that
we draw samples from that density instead of from the original model. Fur-
thermore, these samples can be dependent on the future observations. To
see how this works, let us write the stochastic model equation as:

xni = f(xn−1
i) + βni . (5.27)

First we have to understand how this equation is related to the transition
density p(xni |xn−1

i). The probability to end up in xni starting from xn−1
i is

related to βni . For instance, if βni = 0, so no model error, a perfect model,
this probability is 1 if the xni , xn−1

i pair fulfils the perfect model equations,
and zero otherwise. So, in this case p(xni |xn−1

i) would be a delta function
centred on f(xn−1

i). However, the more realistic case is that the model error
is nonzero. The transition density will now depend on the distribution of the
stochastic random forcing. Assuming Gaussian random forcing with mean
zero and covariance Q, so βni ∼ N(0, Q), we find

p(xni |xn−1
i) ∝ N(f(xn−1

i), Q). (5.28)

As mentioned above, we will not use the normal model equation for each
particle, but a modified model equation, one that “knows” about future
observations, and actually draws the model to those observations. Perhaps
the simplest example is to add a term that relaxes the model to the future
observation, like

xni = f(xn−1
i) + βni +Kn(yn+m)−H(xn−1

i) (5.29)

– 1071 –

Peter Jan van Leeuwen

in which n + m is the next observation time. Note that the observation
operator H does not contain any model integrations, it is just the evaluation
of xn−1

i in observation space. The reason is simple, we don’t have xn+m
i yet.

Clearly, each particle i will now be pulled towards the future observations,
with relaxation strength related to matrix Kn. In principle, we are free to
choose Kn, but it is reasonable to assume that it is related to the error
covariance of the future observation R, and that of the model equations Q.
We will show possible forms in the examples discussed later.

With the simple relaxation, or other techniques, we have ensured that all
particles end up closer to the observations. But we can’t just alter the model
equations, we have to compensate for this trick. This is why the proposal
density turns up in the weights. Each time step the weight of each particle
changes with

wni = p(xni |xn−1
i)

q(xni |x
n−1
i , yn)

(5.30)

between observation times. This can be calculated in the following way. Using
the modified model equations, we know xn−1

i for each particle, that was our
starting point, and also xni . So, assuming the model errors are Gaussian
distributed, this would become

p(xni |xn−1
i) ∝ exp

[
−1

2
(
xni − f(xn−1

i)
)T
Q−1 (xni − f(xn−1

i)
)]
. (5.31)

The proportionality constant is not of interest since it is the same for each
particle, and drops out when the relative weights of the particles are calcu-
lated. Note that we have all ingredients to calculate this, and p(xni |xn−1

i) is
just a number.

For the proposal transition density we use the same argument, to find:

q(xni |xn−1
i yn) ∝ exp

[
− 1

2
(
xni − f(xn−1

i)−Kn(yn)−H(xn−1))
)T

×Q−1(xni − f(xn−1
i)−Kn(yn)−H(xn−1)

)]
= exp

[
−1

2β
n
i
TQ−1βni

]
(5.32)

Again, since we did choose β to propagate the model state forward in time,
we can calculate this and it is just a number. In this way, any modified
equation can be used, and we know, at least in principle, how to calculate
the appropriate weights.

– 1072 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

5.4. The Optimal proposal density

In the literature the so-called optimal proposal density is described
(e.g. [9]). It is argued that taking q(xn|xn−1, yn) = p(xn|xn−1, yn) results
in optimal weights, although the proof of this has been lacking until recently
([24]). While this is true, in a later section we will extend the class of par-
ticle filters and show that non-degenerate particle filters for systems with
arbitrary large dimensions can be constructed.

The following develops the argument put forward by Ades and
Van Leeuwen [1] that even the optimal proposal density cannot avoid the
curse of dimensionality. Assume observations every time step, and a re-
sampling scheme at every time step, so that an equal-weighted ensemble
of particles is present at time n − 1. Furthermore, assume that model er-
rors are Gaussian distributed N(0, Q) and observation errors are Gaussian
distributed according to N(0, R). First, using the definition of conditional
densities we can write:

p(xn|xn−1, yn) = p(yn|xn)p(xn|xn−1)
p(yn|xn−1) (5.33)

where we used p(yn|xn, xn−1) = p(yn|xn). Using this proposal density gives
posterior weights:

wi = p(yn|xni) p(xni |xn−1
i)

q(xni |x
n−1
i , yn)

= p(yn|xni) p(xni |xn−1
i)

p(xni |x
n−1
i , yn)

= p(yn|xn−1
i). (5.34)

The latter can be expanded as:

wi =
∫
p(yn, xn|xn−1) dxn =

∫
p(yn|xn)p(xn|xn−1) dxn (5.35)

in which we again used p(yn|xn, xn−1) = p(yn|xn). Using the Gaussian as-
sumptions mentioned above (note, the state is never assumed to be Gauss-
ian), we can perform the integration to obtain:

wi ∝ exp
[
−1

2
(
yn−Hf(xn−1

i)
)T (HQHT +R)−1(yn−Hf(xn−1

i)
)]
. (5.36)

Note that we have just calculated the probability density of p(yn|xn−1
i).

To estimate the order of magnitude of the first two moments of the dis-
tribution of y−Hf(xn−1

i) it is expanded to y−Hxnt +H
(
xnt − f(xn−1

i)
)
in

which xnt is the true state at time n. If we now use xnt = f(xn−1
t) + βnt this

– 1073 –

Peter Jan van Leeuwen

can be expanded further as y − Hxnt + H
(
f(xn−1

t)− f(xn−1
i)

)
+ Hβnt . To

proceed we make the following restrictive assumptions that will nevertheless
allow us to obtain useful order-of-magnitude estimates. Let us assume that
both the observation errors R and the observed model errors HQHT are
uncorrelated, with variances Vy and Vβ , respectively, to find:

− log(wi)

= 1
2(Vβ+Vy)

M∑
j=1

[
yj−Hjx

n
t +Hjβ

n
t +Hj

(
f(xn−1

t)−f(xn−1
i)

)]2
. (5.37)

The variance of wi arises from varying ensemble index i. Clearly the first
three terms are given, and we introduce the constant γj = ynj −Hjx

n
t +Hjβ

n
t .

To proceed with our order of magnitude estimate we assume that the model
can be linearised as F (xn−1

i) ≈ Axn−1
i , leading to:

− log(wi) = 1
2(Vβ + Vy)

M∑
j=1

[
γj +HjA(xn−1

t − xn−1
i)

]2
. (5.38)

A following step in our order of magnitude estimate is to assume xn−1
t −xn−1

i

to be Gaussian distributed. In that case the expression above is non-central
χ2
M distributed apart from a constant. This constant comes from the variance

of γj+HjA(xn−1
t −xn−1

i), which is equal to HjAP
n−1ATHT

j = Vx, in which
Pn−1 is the covariance of the model state at time n− 1. Hence we find:

− log(wi) = Vx
2(Vβ + Vy)

M∑
j=1

[
γj +HjA(xn−1

t − xn−1
i)

]2
Vx

. (5.39)

Apart from the constant in front the expression above is non-central χ2
M

distributed with variance a22(M + 2λ) where a = Vx/(2(Vβ + Vy) and
λ = (

∑
j γ

2
j)/Vx.

We can estimate λ by realising that for a large enough number of ob-
servations we expect

∑
j(ynj − Hjx

n
t)2 ≈ MVy, and

∑
j(ynj − Hjx

n
t) ≈ 0.

Furthermore, when the dimension of the system under study is large we
expect

∑
j(Hjβ

n
t)2 ≈ MVβ . Combining all these estimates we find that the

variance of − log(wi) can be estimated as

M

2

(
Vx

Vβ + Vy

)2(
1 + 2

(
Vβ + Vy
Vx

))
. (5.40)

This expression shows that the only way to keep the variance of − log(wi)
low when the number of independent observations M is large is to have
a very small variance in the ensemble: Vx ≈ (Vβ + Vy)/M . Clearly, when
the number of observations is large (10 million in typical meteorological

– 1074 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

applications), this is not very realistic. This expression has been tested in
several applications and holds within a factor 0.1 in all tests ([1]).

It should be mentioned that a large variance of − log(wi) does not nec-
essarily mean that the weights will be degenerate because the large variance
could be due to a few outliers. However, we have shown that − log(wi) is
approximately non-central χ2

M distributed for a linear model, so the large
variance is not due to outliers but intrinsic in the sampling from such a
distribution. Furthermore, there is no reason to assume that this variance
will behave better for nonlinear models, especially because we didn’t make
any assumptions on the divergent or contracting characteristics of the linear
model.

From this analysis we learn two things: it is the number of independent
observations that determines the degeneracy of the filter, and the optimal
proposal density cannot be used in systems with a very large number of
independent accurate observations, as confirmed later by Rebeschini and
Van Handel [21].

Recently, an elegant proof that does not make any of the assumptions
above on the order of magnitude of the estimates has been provided by
Snyder et al. [24]. The importance of this article is that they show that
for this class of particle filters the optimal proposal density does have least
variance in the weights, so is indeed optimal in this sense. As will be discussed
in a later section, fortunately the class of particle filters can be extended such
that the curse of dimensionality does not apply.

5.5. The Implicit Particle Filter

In 2009 Chorin and Tu introduced the implicit particle filter. Although
the paper is not very clear, the theory and the application are intertwined,
discussions with them and later papers (Chorin et al. [6]; Morzfeld et al. [17])
explain the method in more detail. Although they do not formulate their
method in terms of a proposal density, to clarify the relation with the other
particle filters this is the way it is presented here. In fact, as we shall see,
it is closely related to the “optimal proposal density” discussed before when
the observations are available at every time step.

The proposed samples are produced as follows. Assume we have m model
time steps between observations. Draw a random vector ξi of length the size
of the state vector times m. each element of ξi is drawn from N(0, 1). The
actual samples are now constructed by solving

− log(p(yn|xn)p(xn−m+1:n|xn−mi)) = ξTi ξi
2 + φi (5.41)

– 1075 –

Peter Jan van Leeuwen

for each particle xi. The term φi is included to ensure that the equation
above has a solution, so φi > min(− log(p(yn|xn)p(xn−m+1:n|xn−mi))). Note
that this can be written as

p(yn|xn)p(xn−m+1:n|xn−mi) = A exp
(
−ξ

T ξ

2 − φi
)

(5.42)

for later reference. One can view this step as drawing from the proposal
density qx(xn−m+1:n|xn−mi , yn) via the proposal density qξ(ξ), where we in-
troduced the subscript to clarify the shape of the pdf. These two are related
by a transformation of the probability densities as

qx(xn−m+1:n|xn−mi , yn) dxn−m:n = qξ(ξ) dξ (5.43)

so that
qx(xn−m:n|xn−mi , yn) = qξ(ξ)J (5.44)

in which J is the Jacobian of the transformation ξ → x. We can now write
the weights of this scheme as:

wi = p(yn|xni) p(xn−m+1:n
i |xn−mi)

qx(xn−m+1:n
i |xn−mi , yn)

= p(yn|xni)p(x
n−m+1:n|xn−mi)
Jqξ(ξi)

. (5.45)

Using (5.42) we find that the weights are given by:

wi = A
exp(−φ)

J
. (5.46)

To understand better how this works let us consider the case of obser-
vations every model time step, and Gaussian observation errors, Gaussian
model equation errors, and linear observation operator H. In that case we
have

− log(p(yn|xn)p(xn−m+1|xn−mi))

= 1
2 (yn −Hxni))T R−1 (yn −Hxni))

+ 1
2
(
xn − f(xn−1

i)
)T
Q−1 (yn − f(xn−1

i)
)

= 1
2 (xn − x̂ni))T P−1 (xn − x̂ni) + φi (5.47)

in which x̂ni = f(xn−1
i) +K(yn−Hf(xn−1

i)), the maximum of the posterior
pdf, and P = (1−KH)Q, with K = QHT (HQHT +R)−1. Comparing this

– 1076 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

with (5.42) we find xn = x̂ni + P 1/2ξ, so J is a constant, and

φi = min(− log(p(yn|xn)p(xn−m+1:n|xn−mi)))

= 1
2
(
yn −Hf(xn−1

i)
)T (HQHT +R)−1 (yn −Hf(xn−1

i)
)

(5.48)

and finally wi ∝ exp(−φi). Comparing with the optimal proposal density we
see that when observations are present at every time step the implicit particle
filter is equal to the optimal proposal density, with the same degeneracy
problem.

5.6. The Equivalent-Weights Particle Filter

At the beginning of this chapter we discussed a very simple nudging
scheme to pull the particles towards future observations, written as:

xji = f(xj−1
i) + βji +Kj(yn −H(xj−1

i) (5.49)

in which n is the next observation time. Unfortunately, exploring the pro-
posal density by simply nudging will not avoid degeneracy in high-dimen-
sional systems with a large number of observations. Also more complicated
schemes, such as running a 4DVar on each particle, which is essentially what
Chorin et al. [6] propose, is likely to lead to strongly varying weights for the
particles because its close relation to the optimal proposal density. (How-
ever, it must be said that no rigourous proof exist of this statement!) We
can expect to have to do something more optimal.

To start, let us recall the expression we found for the proposal density
weights in the section on proposal densities:

wi = p(yn|xni)
n∏

j=n−m+1

p(xji |x
j−1
i)

q(xji |x
j−1
i , yn)

. (5.50)

We will use a modified model as explained in Section 5.1 for all but the last
model time step. The last time step will be different, as it explores a new
class of particle filters to avoid filter degeneracy. The essential ingredient is
that we write the proposal density of the last time step before observations
as:

q(xn|xn−1
1:N , y

n) (5.51)

in which xn−1
1:N = (xn−1

1 , . . . , xn−1
N), so we allow a stronger dependence of each

new particle on all previous particles. This dependency is typically present
due to the resampling step, but here we allow for a stronger dependency.

– 1077 –

Peter Jan van Leeuwen

This is allowed as we can write:

p(xn) =
∫
p(xn|xn−1)p(xn−1) dxn−1

≈
N∑
i=1

wn−1
i

p(xni |xn−1
i)

q(xni |x
n−1
1:N , y

n)
q(xni |xn−1

1:N , y
n) (5.52)

in which we assumed an ensemble xn−1
i with weights wn−1

i as representation
of p(xn−1).

This freedom to make the proposal density dependent on all previous
particles allows us to develop particle filters that are not degenerate by
construction. The following gives an example of such an algorithm. A more
recent example can be found in [26].

In this example, the last time step consists of two stages: first perform
a deterministic time step with each particle that ensures that most of the
particles have equal weight, and then add a very small random step to ensure
that Bayes theorem is satisfied, see [15, 16] for details. There are again
infinitely many ways to do this. For the first stage we write down the weight
for each particle using only a deterministic move, so ignoring the proposal
density q for the moment:

− logwi = − logwn−1
i + 1

2(yn −Hxni)TR−1(yn −Hxni)

+ 1
2(xni − f(xn−1

i))TQ−1(xni − f(xn−1
i)) (5.53)

in which wn−1
i is the weight accumulated over the previous time steps be-

tween observations, so the p/q factors from each time step. If H is linear,
which is not essential but as we will assume for simplicity here, this is a
quadratic equation in the unknown xni . All other quantities are given. We
calculate the minimum of this function for each particle i, which is simply
given by

− logwi = − logwn−1
i

+ 1
2
(
yn−Hf(xn−1

i)
)T (HQHT +R)−1(yn−Hf(xn−1

i)
)
. (5.54)

For N particles this given rise to N minima. Next, we determine a target
weight as the weight that 80% of the particles can reach, i.e. 80% of the
minimum − logwi is smaller than the target value. (Note that we choose
another percentage, see e.g. [1], who investigate the sensitivity of the filter
for values between 70% and 100%.) Define a quantity C = − logwtarget, and

– 1078 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

solve for each particle with a minimum weight larger than the target weight

C = − logwn−1
i

+ 1
2
(
yn −Hf(xn−1

i)
)T (HQHT +R)−1 (yn −Hf(xn−1

i)
)
. (5.55)

So now we have found the positions of the new particles xni such that all
have equal weight. The particles that have a larger minimum than C will
come back into the ensemble via a resampling step, to be discussed later.

The equation above has an infinite number of solutions for dimensions
larger than 1. To make a choice we assume

x′i = f(xn−1
i) + αiK[yn −Hf(xn−1

i)] (5.56)

in which K = QHT (HQHT +R)−1, Q is the error covariance of the model
errors, and R is the error covariance of the observations. Clearly, if α = 1
we find the minimum back. We choose the scalar αi such that the weights
are equal, leading to

αi = 1−
√

1− bi/ai (5.57)
in which ai = 0.5xTi R−1HKx and bi = 0.5xTi R−1xi − C − logwn−1

i . Here
x = yn −Hf(xn−1

i), C is the chosen target weight level, and wresti denotes
the relative weights of each particle i up to this time step, related to the
proposal density explained above.

Of course, this last step towards the observations cannot be fully deter-
ministic. A deterministic proposal would mean that the proposal transition
density q can be zero while the target transition density p is non zero, leading
to division by zero, because for a deterministic move the transition density
is a delta function. The proposal transition density could be chosen a Gauss-
ian, but since the weights have q in the denominator a draw from the tail of
a Gaussian would lead to a very high weight for a particle that is perturbed
by a relatively large amount. To avoid this q is chosen in the last step before
the observations as a mixture density

q(xni |x′i) = (1− γ)U(−a, a) + γN(0, a2) (5.58)

in which x′i is the particle before the last random step, and γ and a are
small. By choosing γ small the change of having to choose from N(0, a2) can
be made as small as desired. For instance, it can be made dependent on the
number of particles N .

To conclude, the almost-equal-weight scheme consists of the following
steps:

(1) Use the modified model equations for each particle for all time steps
between observations.

– 1079 –

Peter Jan van Leeuwen

(2) Calculate, for each particle i for each of these time steps

wji = wj−1
i

p(xji |x
j−1
i)

q(xji |x
j−1
i , yn)

. (5.59)

(3) At the last time step before the observations calculate the maximum
weights for each particles and determine C = − logwtarget.

(4) Determine the deterministic moves by solving for αi for each particle
as outlined above.

(5) Choose a random move for each particle from the proposal den-
sity (5.58).

(6) Add these random move to each deterministic move, and calculate
the full posterior weight.

(7) Resample, and include the particles that have been neglected from
step (4) on.

Finally, it is stressed again that we do solve the fully nonlinear data
assimilation problem with this efficient particle filter, and the only approxi-
mation is in the ensemble size. All other steps are completely compensated
for in Bayes Theorem via the proposal density freedom.

5.7. Application to the barotropic vorticity equations

Figure 5.3. Snap shot of the vorticity field of the truth (right) and the
particle filter mean (left) at time 25. Note the highly chaotic state of
the fields, and the close to perfect tracking.

Here a few results using the new particle filter with almost equal weights
are shown, see [1]. Figure 5.3 shows the application of the method to the

– 1080 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

highly chaotic barotropic vorticity equation, governed by:
∂q

∂t
− ∂ψ

∂y

∂q

∂x
+ ∂ψ

∂x

∂q

∂y
= β,

q = ∂2ψ

∂x2 + ∂2ψ

∂y2

(5.60)

in which q is the vorticity field, ψ is the streamfunction, and β is a ran-
dom noise term representing errors in the model equations. It was chosen
from a multivariate Gaussian with mean zero, variance 0.01, and decorrela-
tion lengthscale 4 gridpoints. The equations are implemented on a 256×256
grid, using a semi-Lagrangian scheme with time step ∆t = 0.04, grid spacing
∆x = ∆y = 1/256, leading to a state dimension of close to 65,000. The vor-
ticity field was observed every 50 time steps on every gridpoint. The decor-
relation time scale of this system is about 25 time steps, so, even though the
full state is observed, this is a very hard highly nonlinear data-assimilation
problem. The observations were obtained from a truth run and independent
random measurement noise with standard deviation 0.05 was added to each
observation.

Figure 5.4. Snap shot of the absolute value of the mean-truth misfit
and the standard deviation in the ensemble. The ensemble underesti-
mates the spread at several locations, but averaged over the field it is
slightly higher, 0.074 versus 0.056.

Only 24(!) particles were used to track the posterior pdf. In the applica-
tion of the new particle filter we chose K = 0.1 in the nudging term (except
for the last time step before the new observations, where the “almost equal
weight” scheme was used, as explained above), multiplied by a linear func-
tion that is zero until half way the two updates and growing to one at the

– 1081 –

Peter Jan van Leeuwen

Figure 5.5. Weights distribution of the particles before resampling.
All weights cluster around 0.05, which is close to 1/24 for uniform
weights (using 24 particles). The 5 particles with weights zero will be
resampled. Note that the other particles form the smoother estimate.

new observation time. The random forcing was the same as in the original
model. This allows the ensemble to spread out due to the random forcing,
and pulling harder and harder towards the new observation the closer to the
new update time.

Figure 5.4 shows the difference between the mean and the truth after 50
time steps and the ensemble standard deviation compared to the absolute
value of the mean-truth misfit. Clearly, the truth is well represented by the
mean of the ensemble. Figure 5.1 shows that although the spread around the
truth is underestimated at several locations, it is overestimated elsewhere.

Finally, Figure 5.5 shows that the weights are distributed as they should:
they display small variance around the equal weight value 1/24 for the 24
particles. Note that the particles with zero weight had too small weight to
be included in the almost equal weight scheme, and will be resampled from
the rest.

Because the weights vary so little the weights can be used back in time,
generating a smoother solution for this high-dimensional problem with only
24 particles.

– 1082 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

6. Conclusions

To try to solve strongly nonlinear data-assimilation problems we dis-
cussed particle filters in this chapter. While they have a few strong assets,
i.e. their full nonlinearity, the simplicity of their implementation (although
this tends to be lost in more advanced variants), the fact that balances
are automatically fulfilled (although, again, more advanced methods might
break this), and, quite importantly, that their behaviour does not depend
on a correct specification of the model state covariance matrix.

We have also seen the weaknesses in terms of efficiency, the filter degen-
eracy problem, that plagues the simpler implementations. However, recent
progress seems to suggest that we are quite close to solving this problem with
developments like the Implicit Particle Filter and the Equivalent-Weights
Particle Filter. Also, the approximations are becoming more advanced too,
and perhaps we don’t need a fully nonlinear data assimilation method for
real applications.

There is a wealth of new approximate particle filters that typically shift
between a full particle filter and an ensemble Kalman filter, depending on the
degeneracy encountered. Especially Gaussian mixture models for the prior
are popular. I have refrained from trying to give an overview here, there is
just too much going on in this area. A brief discussion is given inY [14], again
not completely up to date. In a few years time we will have learned what is
useful and what is not.

Specifically I’d like to mention the Rank Histogram Filter of Anderson [2].
It approximates the prior ensemble in observation space with a histogram,
assuming Gaussian tails at both end members. It then performs Bayes the-
orem and multiplies this prior with the likelihood to form the posterior.
Samples from this posterior are generated as follows. First, the cumulative
probability of the posterior at each prior particle is calculated by integrat-
ing the posterior over the regions between the prior particles. We want the
posterior particles to have equal probability 1/(N + 1), so cumulative prob-
ability n/(N + 1) for ordered particle n. So the position of each new particle
is found by integrating the posterior pdf 1/(N+1) further from the previous
new member. As Anderson shows, this entails solving a simple quadratic
equation for each particle, with special treatment of the tails.

A few comments are in place. First, the prior is not assumed to be Gauss-
ian, and also the likelihood can be highly non-Gaussian, which is good. How-
ever, a potential problem is that the procedure above is performed on each
dimension separately, and it is unclear how to combine these dimensions into

– 1083 –

Peter Jan van Leeuwen

sensible particles. Localisation has to be applied to keep the numerical calcu-
lations manageable, and inflation is also needed to avoid ensemble collapse.
Also, as far as I can see, when the observations are correlated the operations
explained above have to be done in a higher dimensional space, making the
method more complicated. Finally, the method interpolates in state space,
which potentially leads to unbalanced states. Anderson applied the method
to a 28,000 dimensional atmospheric model with very promising results.

A word of caution is needed. The contents of this chapter expresses my
present knowledge of the field, and no doubt misses important contributions.
It is quite heavily biased towards geophysical applications, and the mathe-
matical treatment is consequently poor. A few references have been provided
to partly correct this bias. Also, the field is developing so rapidly that it is
becoming extremely hard to keep track of all interesting work.

Finally, it must be said that the methods discussed above have a strong
bias to state estimation. One could argue that this is fine for prediction
purposes, but for model improvement (and thus indirectly forecasting) pa-
rameter estimation is of more interest (and what about parameterisation
estimation...). Unfortunately no efficient Particle Filter schemes exist for
that problem. This is a growing field that needs much more work, both from
mathematicians and from practitioners.

Bibliography

[1] M. Ades & P. J. van Leeuwen, “An exploration of the equivalent weights particle
filter”, Quart. J. Roy. Meteor. Soc. 139 (2013), no. 672, p. 820-840.

[2] J. L. Anderson & S. L. Anderson, “A Monte-Carlo implementation of the nonlinear
filtering problem to produce ensemble assimilations and forecasts”, Monthly Weather
Rev. 127 (1999), p. 2741-2758.

[3] A. Bain & A. Crisan, Fundamentals of Stochastic Filtering, Stochastic Modelling
and Applied Probability, vol. 60, Springer, 2009.

[4] T. Bengtsson, C. Snyder & D. Nychka, “Toward a nonlinear ensemble filter for
high-dimensional systems”, J. Geophys. Res. 108 (2003), p. 8775-8785.

[5] A. Beskos, D. Crisan & A. Jasra, “On the stability of sequential Monte Carlo
methods in high dimensions”, Ann. Appl. Probab. 24 (2014), no. 4, p. 1396-1445.

[6] A. J. Chorin & X. Tu, “Implicit sampling for particle filters”, PNAS 106 (2009),
no. 41, p. 17249-17254.

[7] P. Del Moral, “On the stability of interacting processes with applications to filtering
and genetic algorithms”, Ann. Inst. Henri Poincaré, Probab. Stat. 37 (2001), no. 2,
p. 155-194.

[8] ———, Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with
Applications, Probability and Its Applications, Springer, 2004, xviii+555 pages.

[9] A. Doucet, N. De Freitas & N. Gordon (eds.), Sequential Monte-Carlo meth-
ods in practice, Statistics for Engineering and Information Science, Springer, 2001,
xiv+581 pages.

– 1084 –

Particle Filters for nonlinear data assimilation in high-dimensional systems

[10] N. J. Gordon, D. J. Salmond & A. F. M. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”, IEE Proceedings F 140 (1993), no. 2, p. 107-
113.

[11] R. van Handel, “When do nonlinear filters achieve maximal accuracy?”, SIAM J.
Control Optim. 48 (2009), no. 5, p. 3151-3168.

[12] F. Le Gland, V. Monbet & V.-D. Tran, “Large sample asymptotics for the ensem-
ble Kalman Filter”, in The Oxford handbook of nonlinear filtering, Oxford University
Press, 2011, p. 598-631.

[13] P. J. van Leeuwen, “Nonlinear ensemble data assimilation for the ocean”, in Recent
developments in data assimilation for atmosphere and ocean, 8-12 September 2003,
ECMWF, 2003, p. 265-286.

[14] ———, “Particle Filtering in Geophysical Systems”, Monthly Weather Rev. 137
(2009), p. 4089-4114.

[15] ———, “Nonlinear Data Assimilation in geosciences: an extremely efficient particle
filter”, Quart. J. Roy. Meteor. Soc. 136 (2010), p. 1991-1996.

[16] ———, “Efficient non-linear Data Assimilation in Geophysical Fluid Dynamics”,
Computers & Fluids 46 (2011), no. 1, p. 52-58.

[17] M. Morzfeld, X. Tu, E. Atkins & A. J. Chorin, “A random map implementation
of implicit filters”, J. Comput. Phys. 231 (2012), no. 4, p. 2049-2066.

[18] S. G. Penny & T. Miyoshi, “A local particle filter for high dimensional geophysical
systems”, Nonlin. Processes Geophys. 23 (2016), p. 391-405.

[19] M. K. Pitt & N. Shephard, “Filtering via simulation: Auxilary particle filters”, J.
Am. Stat. Ass. 94 (1999), no. 446, p. 590-599.

[20] J. Poterjoy, “A localized particle filter for high-dimensional nonlinear systems”,
Monthly Weather Rev. 144 (2016), p. 59-76.

[21] P. Rebeschini & R. van Handel, “Can local particle filters beat the curse of dimen-
sionality?”, Ann. Appl. Probab. 25 (2015), no. 5, p. 2809-2866.

[22] S. Reich & C. Cotter, Probabilistic Forecasting and Bayesian Data Assimilation,
Cambridge University Press, 2015, x+297 pages.

[23] C. Snyder, T. Bengtsson, P. Bickel & J. L. Anderson, “Obstacles to high-
dimensional particle filtering”, Monthly Weather Rev. 136 (2008), p. 4629-4640.

[24] C. Snyder, T. Bengtsson & M. Morzfeld, “Performance bounds for particle filters
using the optimal proposal”, Monthly Weather Rev. 143 (2015), p. 4750-4761.

[25] X. T. Tong & R. van Handel, “Ergodicity and stability of the conditional dis-
tributions of nondegenerate Markov chains”, Ann. Appl. Probab. 22 (2012), no. 4,
p. 1495-1540.

[26] M. Zhu, P. J. van Leeuwen & J. Amezcua, “Implicit equal-weights particle filter”,
Quart. J. Roy. Meteor. Soc. 142 (2016), no. 698, p. 1904-1919.

– 1085 –

	1. Introduction
	2. A simple Particle filter based on Importance Sampling
	2.1. Basic Importance Sampling
	2.2. Why particle filters are so attractive

	3. Reducing the variance in the weights
	3.1. Resampling
	3.2. Is resampling enough?
	3.3. Convergence of particle filters to the target density

	4. Localisation in Particle Filtering
	5. The proposal density
	5.1. Example: the EnKF as proposal
	5.2. The Auxiliary Particle Filter
	5.3. Including future observations in the model equations
	5.4. The Optimal proposal density
	5.5. The Implicit Particle Filter
	5.6. The Equivalent-Weights Particle Filter
	5.7. Application to the barotropic vorticity equations

	6. Conclusions
	Bibliography

