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Data assimilation for geophysical fluids
Didier Auroux (1)

ABSTRACT. — Data assimilation is the domain at the interface be-
tween observations and models, which makes it possible to identify the
global structure of a geophysical system from a set of discrete space-time
data. After recalling state-of-the-art data assimilation methods, the vari-
ational 4D-VAR algorithm and the dual variational 4D-PSAS algorithm,
and sequential Kalman filters, we will present the Back and Forth Nudg-
ing (BFN) algorithm, and the Diffusive Back and Forth Nudging (DBFN)
algorithm, which is a natural extension of the BFN to some particular dif-
fusive models.

RÉSUMÉ. — L’assimilation de données est l’ensemble des techniques
qui permettent de combiner un modèle et des observations. Le but est ici
d’identifier l’état d’un système géophysique à partir de données discrètes
en temps et en espace. Après un rappel de l’état de l’art en assimilation
de données (méthode variationnelle 4D-VAR et approche duale 4D-PSAS,
filtres séquentiels de type Kalman), nous présentons l’algorithme du nud-
ging direct et rétrograde, ainsi que son extension naturelle (le nudging
direct et rétrograde diffusif) à certains modèles géophysiques contenant
un terme de diffusion.

1. Introduction

It is well established that the quality of weather and ocean circulation
forecasts is highly dependent on the quality of the initial conditions. Geo-
physical fluids (air, atmospheric, oceanic, surface or underground water) are
governed by the general equations of fluid dynamics. Geophysical processes
are hence nonlinear because of their fluid component. Such nonlinearities im-
pose a huge sensitivity to the initial conditions, and then an ultimate limit
to deterministic prediction (estimated to be about two weeks for weather
prediction for example). This limit is still far from being reached, and sub-
stantial gain can still be obtained in the quality of forecasts. This can be ob-
tained through improvement of the observing system itself, but also through
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improvement of the models used to simulate the geophysical processes. For
example, a major problem comes from the fact that sub-scaled processes
could be associated with extremely large fluxes of energy. Seeking a nu-
merical solution to the equations requires discretizing the equations, and
therefore cutting off in the scales. It will be crucial to represent the fluxes of
energy associated with sub-grid processes by some additional terms in the
equations [38, 55].

Over the past twenty years, observations of ocean and atmosphere cir-
culation have become much more readily available [14], as a result of new
satellite techniques and international field programs (MERCATOR, CLIP-
PER, GODAE, ARGO, . . . ). In the case of the ocean modelling, the use of
altimeter measurements has provided extremely valuable information about
the sea-surface height, and then has allowed the oceanographic community
to study more precisely both the general circulation of the ocean and the
local dynamics of some particular regions (the Gulf Stream area, for exam-
ple, but also the Kuroshio extension, the Antarctic circumpolar current and
the tropical oceans). Geostationnary satellites also provide information on
the wind by estimating the shifting of clouds considered as Lagrangian trac-
ers. Polar orbiting satellites are used for the estimation of the atmospheric
vertical temperature profiles. Generally, radiances are measured and then
temperatures are estimated as the solution of an inverse problem.

Meteorologic and oceanographic data are currently extremely heteroge-
neous, both in nature, density and quality, but their number is still smaller
than the degree of freedom of the models. The growth of the available com-
puting ressources indeed allows refinements of the grid size of general circu-
lation models.

Environmental scientists are increasingly turning to inverse methods for
combining in an optimal manner all the sources of information coming from
theory, numerical models and data. Data assimilation (DA) is precisely the
domain at the interface between observations and models which makes it
possible to identify the global structure of a system from a set of discrete
space-time data. DA covers all the mathematical and numerical techniques
in which the observed information is accumulated into the model state by
taking advantage of consistency constraints with laws of time evolution and
physical properties, and which allow us to blend as optimally as possible all
the sources of information coming from theory, models and other types of
data.

There are two main categories of data assimilation techniques [63]: varia-
tional methods based on the optimal control theory [45] and statistical meth-
ods based on the theory of optimal statistical estimation (see, for example,
[13, 14, 41] for an overview of inverse methods, both for oceanography and
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meteorology). The first class of methods (3D-VAR, 4D-VAR, 4D-PSAS, . . . )
was first introduced in meteorology [42, 44, 64] and more recently for oceanic
data [50, 53, 54, 59, 60, 65]. The statistical (or sequential) methods (optimal
interpolation, Kalman filter, SEEK filter, . . . ) were introduced in oceanog-
raphy roughly fifteen years ago [31, 33]. The Kalman filter was extended to
nonlinear cases [30, 40] but it has been mostly applied in oceanography to
quasi-linear situations, in particular tropical oceans [17, 27, 28, 35, 67].

In practice, all data assimilation techniques encounter major difficulties
due to computational reasons. The full Kalman filter would, in principle,
require the manipulation of matrices with a dimension of typically 107 or 108

in an oceanic problem. The optimal control adjoint method often requires
several hundred iterations of the minimization process to converge, thus
implying an equivalent number of model runs. In this context, it is important
to find new data assimilation algorithms allowing in particular a reduction
of the problem dimension.

In this paper, we focus our interest on various data assimilation algo-
rithms in order to identify the initial condition of a geophysical system and
reconstruct its evolution in time and space.

We first study in Section 2 the four dimensional variational adjoint
method (named 4D-VAR), using a strong constraint hypothesis (the ocean
circulation model is assumed to be exact). The use of a cost function, mea-
suring the mean-square difference between the observations and the corre-
sponding model variables, allows us to carry out the assimilation process by
an identification of the initial state of the ocean which minimizes the cost
function. We present then a generalization to nonlinear models of the four
dimensional variational dual method, the 4D-PSAS algorithm. The idea of
4D-PSAS (Physical Space Analysis System) is to perform the minimization
in the space of the observations, rather than in the model space as in the
primal 4D-VAR scheme. Despite the formal equivalence between 4D-VAR
and 4D-PSAS in a linear situation (both for model equations and obser-
vation operators), the dual method has several important advantages: in
oceanographic cases, the observation space is smaller than the model space,
which should improve the minimization process; for no additional cost, it
provides an estimation of the model error; and finally, it does not have any
singularities when the covariance error matrices tend to zero.

Sequential methods are mostly based on the Kalman filtering theory,
which consists in a forecast step and an analysis (or correction) step. In Sec-
tion 3, we present the extended Kalman filter (EKF), for nonlinear models.
A main drawback of the (extended) Kalman filter is the computational cost
of propagating in time the error covariance matrices, and we present then the
SEEK (Singular Evolutive Extended Kalman) filter, in which the dimension

– 769 –



Didier Auroux

of the problem is reduced. Finally, we present the ensemble Kalman filter
(EnKF), for which an ensemble of states (members) is used to compute ac-
tual covariance matrices at a lower computational cost.

We recall in Section 4 the standard nudging algorithm, and then the
Back and Forth Nudging (BFN) algorithm, which is the prototype of a new
class of data assimilation methods, although the standard nudging algorithm
is known for a couple of decades. It consists in adding a feedback term in
the model equations, measuring the difference between the observations and
the corresponding space states. The idea is to apply the standard nudging
algorithm to the backward (in time) nonlinear model in order to stabilize
it. The BFN algorithm is an iterative sequence of forward and backward
resolutions, all of them being performed with an additional nudging feedback
term in the model equations. We also present the Diffusive Back and Forth
Nudging (DBFN) algorithm, which is a natural extension of the BFN to some
particular diffusive models. This section ends with theoretical considerations
on both BFN and DBFN algorithms.

Finally, some concluding remarks and perspectives are given in Section 5.

2. Variational methods

Variational methods consider the equations governing the geophysical
flow as constraints, and the problem is closed by using a variational prin-
ciple, e.g. the minimization of the discrepancy between the model and the
observations. The state-of-the-art variational method is the 4D-VAR, 4D
meaning that it can assimilate observations in space (3D) and time (1D).
The 4D-VAR usually assumes that the model is a strong constraint: at each
iteration, the computed trajectory is a solution of the model equations. How-
ever, it is possible to take into account a model error, but the size of the
control vector usually becomes too large for operational computations. We
will see that the computational cost can be too expensive, and we will present
a reduced order 4D-VAR, in which the dimension of the problem is drasti-
cally reduced. Then, we will see the dual method, called 4D-PSAS, in which
the minimization is performed in the dual space.

2.1. Model and observations

Every DA method needs both a model describing the evolution of the
fluid, basically a system of nonlinear partial differential equations (PDE),
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and a set of discrete observations. Firstly, we assume that the model can be
written, after discretization in space of the set of PDE:

dX
dt = F (X,U), 0 < t < T,

X(0) = V,

(2.1)

where X is the state variable which describes the evolution of the system at
each grid point. X depends on time, and is for operational models of large
dimension (107 to 108). F is a nonlinear differential operator, describing
the dynamics of the system. U generally represents a model error (unknown
terms in the model, due to incomplete modelling of some specific physical
phenomena), but it can also model some internal variables of the model (pa-
rameters or boundary conditions) and it may be time dependent. Finally, V
is the initial condition of the system state, which is unknown. In order to use
optimal control techniques, we have to define a control variable that should
be identified. Most of the time, the control is (U, V ), the initial condition
and the model parameters.

Secondly, we suppose that we have an observation vector Xobs which
gathers all the data we want to assimilate. These observartions are discrete
in time and space, distributed all over the assimilation period [0, T ], and
are not in the same space as the state variable, from a geographical or a
physical point of view. Therefore, we will need an observation operator C
mapping the space of state into the space of observations. This operator can
be nonlinear in some cases.

2.2. Cost function of the 4D-VAR

It is now possible to define a cost function J measuring the discrepancy
of the solution of the model associated with the control vector (U, V ) and
the observations Xobs:

J (U, V ) = 1
2

∫ T

0
〈R−1(CX −Xobs), CX −Xobs〉dt

+ 1
2 〈P

−1
0 V, V 〉+ 1

2

∫ T

0
〈Q−1U,U〉dt (2.2)

where X is the solution of (2.1). P0, R and Q are covariance matrices,
allowing us to introduce some a priori information about the statistics of the
fields Xobs, V and U respectively. 〈 . , . 〉 is most of the time the canonical
real scalar product.
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The first part of the cost function quantifies the difference between the
observations and the system state, and the two others act like a regularization
term in the sense of Tikhonov. It is sometimes replaced by the so-called
background term, which is the quadratic (with respect to the covariance
matrix norm) difference between the initial optimal variable and the last
prediction [42].

The inverse problem which consists in the minimization of the cost func-
tion J is then generally well-posed. The variational formulation of our DA
problem can then be written as:Find (U∗, V ∗) such that

J (U∗, V ∗) = inf
(U,V )

J (U, V ). (2.3)

2.3. Adjoint state and optimality system

In order to minimize the cost function, we need its gradient ∇J . Because
of the large dimension of the model state vector (usually more than 107),
it is not possible to compute directly the gradient by using finite difference
methods. The gradient vector of the functional is then obtained by the ad-
joint method [20, 42]. Let X̂ be the derivative of X with respect to (U, V )
in the direction (u, v). Then X̂ is solution of the following set of discretized
partial differential equations, known as the tangent linear model:

dX̂
dt = ∂F

∂X
X̂ + ∂F

∂U
u,

X̂(0) = v,

(2.4)

where ∂F
∂X and ∂F

∂U represent the Jacobian of the model with respect to the
state variable and the model parameters respectively.

If we assume that the operator C is linear (otherwise, we have to linearize
it), the derivative of J with respect to (U, V ) in the direction (u, v) is then

〈Ĵ (U, V ), (u, v)〉 =
∫ T

0
〈R−1(CX −Xobs), CX̂〉dt

+ 〈P−1
0 V, v〉+

∫ T

0
〈Q−1U, u〉dt.
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We can introduce the so-called adjoint state P (which lives in the same space
as X), solution of the adjoint model [42]:−

dP
dt =

(
∂F

∂X

)T
P − CTR−1(CX −Xobs),

P (T ) = 0.
(2.5)

We have then:

〈Ĵ (U, V ), (u, v)〉 =
∫ T

0

〈dP
dt +

(
∂F

∂X

)T
P, X̂

〉
dt

+ 〈P−1
0 V, v〉+

∫ T

0
〈Q−1U, u〉dt

and an integration by part shows that, using (2.4):

〈Ĵ (U, V ), (u, v)〉 =
∫ T

0

〈
− P, ∂F

∂U
u
〉

dt− 〈P (0), v〉

+ 〈P−1
0 V, v〉+

∫ T

0
〈Q−1U, u〉dt.

Finally, the gradient of J is given by:

∇J (U, V ) =

 −
(
∂F

∂U

)T
P +Q−1U

−P (0) + P−1
0 V

 . (2.6)

Therefore, the gradient is obtained by a backward integration of the adjoint
model (2.5), which has the same computational cost as one evaluation of J .

The minimization problem (2.3) is then equivalent to the following opti-
mality system:

dX
dt = F (X,U∗),

X(0) = V ∗,−
dP
dt =

(
∂F

∂X

)T
P − CTR−1(CX −Xobs),

P (T ) = 0,(
∂F

∂U

)T
P = Q−1U∗,

P (0) = P−1
0 V ∗.

(2.7)
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2.4. 4D-VAR algorithm computation

The determination of (U∗, V ∗), solution of (2.3) and (2.7), is carried out
by running a descent-type optimization method. We may use as a first guess
(U0, V0) the result of the minimization process at the last prediction. Then,
given the first guess, we use an iterative algorithm [34]:

(Un, Vn) = (Un−1, Vn−1)− ρnDn

where Dn is a descent direction, and ρn is the step size.

The knowledge of (Un−1, Vn−1) allows us to compute the corresponding
solutionXn−1 of the direct model (2.1), and consequently to evaluate the cost
function J (Un−1, Vn−1). Then we solve the adjoint model (2.5) and compute
the adjoint solution Pn−1, and using (2.6), the gradient of the cost function
∇J (Un−1, Vn−1). The computation of the descent direction Dn is usually
performed using conjugate gradient or Newton type methods. Finally, the
step size ρn is chosen to be the step size which minimizes

J ((Un−1, Vn−1)− ρDn)
with respect to ρ. This is a one-dimensional minimization, but in case the
problem is nonlinear, we can get a high computational cost because it will
require several evaluations of J , and hence several integrations of the
model (2.1) [16, 34, 46, 66].

One of the most difficult steps in the 4D-VAR algorithm is the imple-
mentation of the adjoint model. Numerically, the goal is to solve the discrete
optimality system, which gives the solution of the discrete direct problem,
and the discrete gradient is given by the discrete adjoint model, which has
to be derived from the discrete direct model, and not from the continuous
adjoint model. A bad solution would be to derive the adjoint model from
the continuous direct model, and then to discretize it. The good solution
is to first derive the tangent linear model from the direct model. This can
be done by differentiating the direct code line by line. And then one has to
transpose the linear tangent model in order to get the adjoint of the dis-
crete direct model. To carry out the transposition, one should start from
the last statement of the linear tangent code and transpose each statement.
The derivation of the adjoint model can be long. Sometimes, it is possible
to use some automatic differentiation codes (the direct differentiation gives
the tangent linear model, and the inverse differentiation provides the adjoint
model) [36, 51, 58].

Another issue is the relative ill-posedness of the problem when the model
is nonlinear. The cost function J is hence non convex, and may have plenty
of local minima. The optimization algorithm may then converge toward a
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local minimum and not the global minimum. For this reason, the choice of the
initial guess is extremely important, because if it is located in the vicinity
of the global minimum, one can expect a convergence toward the global
minimum. Another solution is to increase the weight of the two last terms of
J in (2.2), which correspond to two regularization terms with respect to the
two control variables. This has to be done carefully because it can generate a
physically incorrect solution: if P0 and Q are too small, the regularization of
J is indeed a penalization. But usually, these regularization terms are used to
force the model to verify some additional physical constraints or/and to take
into account some statistical information on model/observation/background
errors.

2.5. Reduced-order 4D-VAR

If in (2.1) the model parameters U are time dependent, the numerical
implementation of the 4D-VAR algorithm will consist in identifying the con-
trol vector (U, V ), where V has typically a dimension of 107 − 108 and U
might have the same dimension at each time step. If there are one thousand
time steps in the numerical scheme, the size of the control vector can reach
1010−1011. This is not computationally realistic. It is clearly not possible to
take into account the model errors in such a way. Even it can be very costly
to minimize the cost function in the entire space state.

The main idea of the reduced-order 4D-VAR is to find a vector X∗ which
minimizes the cost function J in a smaller space. X∗ is defined as follows:

X∗ = Xbackground +
r∑
i=1

λiLi, (2.8)

where λi are chosen so that J is minimum, and (Li) are orthogonal vectors
of the state space. These vectors are supposed to model as well as possible
the variability of the system. Most of the time, one uses empirical orthogonal
functions (EOFs) for the choice of such vectors. Then, the minimization of
the cost function takes place in a space of dimension r [22].

The same idea is used for the model parameters:

U = Ū +
s∑
i=1

αiui, (2.9)

where Ū is an estimation of the parameters, (αi) are the new scalar control
variables (instead of the vector U) and (ui) are orthogonal vectors.

This allows to take into account the unknown terms of the model for a
reasonable computational cost [22, 69].
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2.6. Duality and 4D-PSAS algorithm

The primal method has many disadvantages. First, the minimization pro-
cess is often stopped before convergence to the minimum, because of the size
of the state vector. Both from a theoretical and numerical point of view, as
the dimension of the control vector can reach several millions, the minimiza-
tion algorithm would need at least thousands of iterations to converge. It is
then necessary (for computational cost reasons) to stop the algorithm after
a fixed (usually a few tens) and small (particularly within an operational
point of view) number of iterations. Moreover, it is also impossible to take
into account a model error: in the previous section, we have supposed that
the model and the equations were perfect. This is obviously not the case (for
example, not all parameters are well known). The only solution to incorpo-
rate the model error into the minimization process is to add corrective terms
to the model, consider them as part of the control vector, and add a third
term to the cost function. This is not computationally realistic because the
size of the control vector would be multiplied by the number of time steps.
Therefore, it is not possible to take into account in a straightforward way
the model error in the primal variational approach.

A new approach to data assimilation problems has been proposed in the
early 90’s [1, 12, 19] in order to overcome these limitations. Rather than
minimizing a cost function on the state space, the dual method works in
the observation space (which is most of the time much smaller than the
state space). This algorithm is called the 4D-PSAS: Physical Space Analysis
System.

This method has been numerically studied in linear (or linearized) sit-
uations (see e.g. [47, 48] for its implementation in the oceanic primitive
equation model MICOM), and then extended to nonlinear cases [3].

Instead of solving first the direct equations and then the adjoint equations
as in the primal variational approach, the dual method consists in solving
first the adjoint equations in order to use the information contained in the
observation vector, and then the direct equations in order to reconstruct a
trajectory. The main issue with the dual method is the nonlinearity of the
model, which makes it necessary to update the reference trajectory used to
linearize the equations and the observation operators for each iteration in
the adjoint state computation.

Contrarily to the previous 4D-VAR formulation, we now consider the
model as a weak constraint. It is then possible to introduce a Lagrange
multiplier for this constraint [1, 12, 13, 19].
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2.7. Weak model constraint formulation

Let us consider a model operator called M defined on the space of the
control vector by

M(U, V ) = X (2.10)
where X is the solution of (2.1). We would like that CX fits with the obser-
vations Xobs. Let us introduce a new variable Y , living in the same space as
the observation vector Xobs, and the idea is to impose (as a weak constraint)
that CM(U, V ) = Y . In some sense, we are looking for Y , a better obser-
vation vector than Xobs, in the sense that it is perfectly matching a model
solutionM(U, V ).

Let m be the Lagrange multiplier for this constraint, m lives in the ob-
servation space, and we can define the following Lagrangian:

L((U, V, Y ),m) = J (U, V, Y ) +
∫ T

0
〈m,CM(U, V )− Y 〉dt, (2.11)

where the observation vector Y is now a variable of the primal cost
function J .

If the modelM and the observation operator C are linear, then we have
the following well known duality result for convex functions:

min
(U,V,Y )

J = min
(U,V,Y )

max
m
L = max

m
min

(U,V,Y )
L

It is then possible to define on the observation space a dual cost function
JD in the following way:

JD(m) = − min
(U,V )

L ((U, V, Y ),m) . (2.12)

We have then the following result:
min

(U,V,Y )
J (U, V, Y ) = max

m
(−JD(m)) = −min

m
JD(m). (2.13)

Mathematically, the minimization of J , and hence the resolution of prob-
lems (2.3) and (2.7), is strictly equivalent to the minimization of the dual
cost function JD. Numerically, the minimization of the dual cost function
should be faster because the size of the observation space is usually 105−106

whereas the state space has a dimension of 107 − 108. The minimization of
JD is then performed on a space of much smaller dimension.

By minimizing the Lagrangian L with respect to (U, V, Y ), it is quite easy
to obtain an explicit definition of JD:

JD(m) = 1
2 〈(D +R)m,m〉 − 〈d,m〉 (2.14)
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where d is the innovation vector: d = Xobs − CXbackground.

By considering that the model is linear, the operatorM acts on (U, V ) as
M(U, V ) = MV +NU, (2.15)

where M and N are linear operators defined on the appropriate spaces.

The matrix D is called the representers’ matrix [12, 13], and has the
following definition:

D = CMP0M
TCT + CNQNTCT (2.16)

where MT and NT represent the adjoint model (adjoint operators of the di-
rect model). The matrix D quantifies the impact of each specific observation
on the others. The minimization of JD can be performed in the same way
as the minimization of J , using an iterative descent algorithm. In each iter-
ation, one has to first compute the solution of the adjoint model, and then
the solution of the direct model in order to evaluate the dual cost function
and its gradient.

2.8. Nonlinear extended 4D-PSAS algorithm computation

When the model (and/or the observation operator) is nonlinear, it is
possible to extend the previous duality results in an empirical way [6]. Let
m be a vector of the observation space, we first have to solve an adjoint
(backward) model:−

dP
dt =

(
∂F

∂X

)T
P − CTR−1(m−Xobs),

P (T ) = 0,
(2.17)

and then the direct model, forced by the adjoint state:
dX
dt = F (X,P ),

X(0) = Xbackground + P (0),
(2.18)

where Xbackground is an approximation of the initial condition and usually
results from a previous prediction.

The extended 4D-PSAS algorithm computation is then performed in the
following way: we first need an initial guess m0 (which can be taken equal
to Xobs for example). Then, given the first guess, we use as in the 4D-VAR
algorithm an iterative algorithm:

mn = mn−1 + ρnDn.
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The knowledge of mn−1 allows us to compute the corresponding solution
Pn−1 of (2.17) and then the solution Xn−1 of (2.18). It is then easy to
evaluate JD(mn−1) and its gradient, and given a descent-type algorithm, to
define a descent direction Dn and the corresponding step size ρn.

Once the minimization of the dual cost function JD is achieved, we imme-
diately obtain the corresponding trajectory X(t) in the state space, thanks
to (2.18).

One of the main concerns of this extended algorithm is the loss of equiv-
alence with the 4D-VAR algorithm when the model is not linear. Therefore,
it is difficult to compare theoretically the two algorithms because of the
empirical extension of 4D-PSAS to nonlinear problems.

Hopefully, the extended 4D-PSAS algorithm has numerous advantages.
First of all, it inherently takes into account the unknown model parameters.
The adjoint model provides an estimation of the model parameters with
no additional computational cost. The size of the control vector m is then
exactly the size of the observation space, whereas in the 4D-VAR algorithm,
the size of the control vector (U, V ) is at least a few times the size of the
state space (and in the worst case, with a non reduced order 4D-VAR, the
size of the state space multiplied by the number of time steps, which can be
about 103).

Moreover, the computational cost of one 4D-PSAS iteration is almost
the same as one 4D-VAR iteration, but the minimization of the dual cost
function takes place on a space of smaller dimension. The minimization is
hence generally faster and needs a smaller number of iterations.

3. Sequential methods: Kalman filtering

In this section, we will study data assimilation methods based on the
statistical estimation theory, in which the Kalman filtering theory is the
primary framework. But the application of this theory encounters enormous
difficulties due to the huge dimension of the state vector of the considered
system. A further major difficulty is caused by its nonlinear nature. To deal
with this, one usually linearizes the ordinary Kalman filter (KF) leading to
the so-called extended Kalman filter (EKF) [23, 29, 32, 67]. We will also
present the ensemble Kalman filter (EnKF), which allows one to get rid of
too expensive computations of covariance matrices.
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3.1. The extended Kalman filter

Consider a physical system described by
X(ti) =M(ti−1, ti)X(ti−1) + Ui (3.1)

whereM(ti−1, ti) is an operator describing the system transition from time
ti−1 to ti, usually obtained from the integration of a partial differential sys-
tem, and Ui is an unknown term of the model (it can be a noise term, used
to model the unknown parameters of the model [18]). We suppose that at
each time ti, we have an observation vector Xobs(ti). Let us denote by εi the
observation error, i.e. the difference between the observation vector and the
corresponding state vector:

εi = Xobs(ti)− CiX(ti), (3.2)
where Ci is the observation operator at time ti, mapping the state space into
the space of observations. Qi and Ri will be the covariance matrices of the
model error (Ui) and the observation error (εi) respectively.

The extended Kalman filter operates sequentially: from an analysis state
vector Xa(ti−1) and its error covariance matrix P a(ti−1), it constructs the
next analysis state vector Xa(ti) and P a(ti) in two steps, a forecasting step
and a correction step.

The first step is used to forecast the state at time ti:
Xf (ti) = M(ti−1, ti)Xa(ti−1), (3.3)

whereM(ti−1, ti) is the linearized model aroundXa(ti−1). The forecast error
covariance matrix is then approximately

P f (ti) = M(ti−1, ti)P a(ti−1)M(ti−1, ti)T +Qi. (3.4)

The second step is an analysis step, the newly available observation
Xobs(ti) is used to correct the forecast state vector Xf (ti) in order to define
a new analysis vector:

Xa(ti) = Xf (ti) +Ki(Xobs(ti)− CiXf (ti)), (3.5)
where Ki is a gain matrix, called the Kalman matrix. The optimal gain is
given by

Ki = P f (ti)CTi
(
CiP

f (ti)CTi +Ri
)−1

. (3.6)
The corresponding analysis error covariance matrix is given by

P a(ti) = P f (ti)− P f (ti)CTi
(
CiP

f (ti)CTi +Ri
)−1

CiP
f (ti). (3.7)

One main issue of the EKF is that the covariance matrices Ri, Qi and
P a0 have to be known. Some statistical information can be obtained for ob-
servation error from the knowledge of the instrumental error variances in
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situations such as altimetric observations from satellites over the ocean, for
which the error estimates have become fairly solidly established. But it is
not clear how the correlations of these errors can be obtained. The covari-
ance matrices Qi and P a0 are much more difficult to obtain, because very
little is known concerning the true initial state of the system. These matri-
ces are of very large dimension, and usually have a quite large number of
independent elements. Is it really useful to estimate such a huge number of
parameters? The theory for such equations ((3.4) and (3.7)) states that for
linear autonomous systems, even if P a0 is poorly specified, one may hopefully
still have a good approximation to P ai in the long term. The Kalman filter
is optimal only if the covariance matrices Ri and Qi are correctly specified.
Thus, in practice, the Kalman filter is suboptimal.

3.2. The SEEK (Singular Evolutive Extended Kalman) filter

It seems that a relatively optimal Kalman filter is quite ambitious. One
way to get rid of the issue of dimension is to use singular low rank error co-
variance matrices. The resulting filter, called the singular evolutive extended
Kalman (SEEK) filter, not only solves the practical problem of reducing the
computational cost to an acceptable level, but in addition reduces the prop-
agation of error from one step to the next [17, 56].

We still need to impose that the filtering error should remain bounded.
The propragation of the filter error is given by

Xa(ti)−Xt(ti) = (I −KiCi)M(ti−1, ti)
(
Xa(ti−1 −Xt(ti−1)

)
−Kiεi − (I −KiCi)Ui. (3.8)

This clearly shows that the stability of the filter depends essentially on the
matrices (I−KiCi)M(ti−1, ti). Therefore, it is necessary that all eigenvalues
of these matrices have modulus smaller than 1.

But for computational reasons, it is also crucial to use low rank error
covariance matrices P ai . Hence, the initialization of the SEEK filter is per-
formed with matrices of the form LULT : one may first choose an initial
analysis state Xa(t0), and a low rank error covariance matrix

P a0 = L0U0L
T
0

where L0 is a low rank matrix (with only several column vectors) and U0 is
a positive definite matrix with dimension equal to the rank of P a0 , this being
low in practical applications.

The forecasting step is then given by
Xf (ti) = M(ti−1, ti)Xa(ti−1) (3.9)
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and
Li = M(ti−1, ti)Li−1. (3.10)

The correction step is the following: compute Ui by the following way

U−1
i =

(
Ui−1 + (LTi Li)−1LTi QiLi(LTi Li)−1)−1 + LTi C

T
i R
−1
i CiLi (3.11)

and then compute the new analysis vector
Xa(ti) = Xf (ti) + (LiUiLTi )CTi R−1

i

(
Xobs(ti)− CiXf (ti)

)
. (3.12)

Finally, there is an additional step, the renormalization. One can change
Li to NLi and Ui to (NT )−1UiN

−1 without changing the algorithm. This
should be done periodically to avoid the column of Li from becoming large
and nearly parallel, and Ui becoming ill conditioned. One usually takes N
to be the Cholesky factor of U−1

i , so as to change Ui to the identity matrix.

From these equations, one sees that corrections are made parallel to the
space spanned by the columns of Li. Moreover, it is possible to prove that
this filter is stable.

The initialization of the filter is one of the largest issues of this algorithm.
To initialize the SEEK filter (but also any other Kalman filter), one needs
an initial analysis state vector Xa(t0) and its error covariance matrix P a0 .
The most frequent way to choose them is the EOFs (Empirical Orthogonal
Functions) technique. The initial state may be set arbitrarily if one has
taken care to wait until the model has been settled into a stable regime.
It is quite easy to generate long sequences of state vectors from the model
equation (3.1). Then, it is possible to take as Xa(t0) the average of the
simulated state vectors, and as P a0 the low rank approximation of the sample
covariance matrix P0 of these vectors. The EOFs technique provides such
an estimation. Let Vi be the eigenvectors of P0, ordered according to their
eigenvalues λi (where λ1 is the largest). One has then to choose the rank r
of the covariance matrix approximation, and then set

L0 = [V1, . . . , Vr]
and

U0 = diag(λ1, . . . , λr).
The ratio ∑

j>r λj

Tr(P0)
represents the relative error and can be used to assess the accuracy of the
approximation for choosing the appropriate value of r [56].

One also needs to specify the matrices Ri and Qi in order to apply the
SEEK filter. These matrices are generally unknown, and Ri can be taken
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as σ2 times a constant matrix, often an identity matrix (for computational
reasons). Then, using such matrices Ri in the SEEK equations, one can
easily see that only Ui

σ2 has to be known, and hence, using equation (3.11),
it is enough to specify U0

σ2 . Consequently, if U0 is carefully choosen, it is no
more necessary to know σ2. Usually, σ2 is very small with respect to U0, and
then, it is safe to take U0 very large for stability reasons.

3.3. Ensemble Kalman filter

A main issue of the (extended) Kalman filter is the computational cost of
propagating the covariance matrices in time. The dimension of P f and P a
matrices is usually too large in geophysical problems, and there are several
ways to avoid this point. One interesting approach is the ensemble Kalman
filter (EnKF). The EnKF can be seen as a Monte Carlo approximation of the
KF, avoiding evolving the full covariance matrix of the probability density
function of the state vector [14, 24, 25, 26, 39].

As error statistics of background errors are not very well known, the idea
is to generate a set of perturbed background states, with small perturbations
around the background state with the same probability distribution. For
1 6 j 6 M , M being the size of the ensemble, we define the background
ensemble members:

Xj(t0) = Xb(t0) + εj , (3.13)
where Xb is the background state, and εj is the statistical perturbation, with
a probability distribution consistent with the background error covariance
matrix.

Then, we obtain an ensemble of forecast states with
Xf
j (ti) =M(ti−1, ti)Xa

j (ti−1), (3.14)
where we use the nonlinear modelM(ti−1, ti). The correlation between these
states gives some information about the forecast error statistics. The forecast
error covariance matrix is then the actual covariance of the ensemble of
states.

Then, the analysis state step is similar to the standard Kalman filter, with
the computation of the Kalman gain matrix, and the correction is applied
to each member:

Xa
j (ti) = Xf

j (ti) +Ki(Xobs(ti)− CiXf
j (ti)), (3.15)

where Ki is the Kalman gain matrix computed with the actual covariance
matrices of the ensemble. Then, the analysis error covariance matrix is com-
puted from the ensemble of analysis states.
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The EnKF is then simply a Kalman filter, applied to a discrete set (en-
semble) of states (members). The covariance matrices are computed from
this set, without using the linear or adjoint model. There are two main ad-
vantages: first, the computational cost is much lower, as there are no costly
computations for the covariance matrices; and second, the covariance matri-
ces represent the actual covariance statistics of the members in the ensemble.

4. Nudging schemes

The main issues of data assimilation for geophysical systems are the huge
dimension of the control vectors (and hence of the covariance matrices) and
the nonlinearities (most of the time, one has to linearize the model and/or
some operators). The computation of the adjoint model is for example a
difficult step in the variational algorithms. To get rid of these difficulties,
we have very recently introduced a new algorithm, based on the nudging
technique.

4.1. The nudging algorithm

The standard nudging algorithm consists in adding to the state equations
a feedback term, which is proportional to the difference between the obser-
vation and its equivalent quantity computed by the resolution of the state
equations. The model appears then as a weak constraint, and the nudging
term forces the state variables to fit as well as possible to the observations.

Let us remind the model
dX
dt = F (X,U), 0 < t < T,

X(0) = V.

(4.1)

We still suppose that we have an observation Xobs(t) of the state variable
X(t). The nudging algorithm simply gives

dX
dt = F (X,U) +K(Xobs − CX), 0 < t < T,

X(0) = V,

(4.2)

where C is still the observation operator, and K is the nudging matrix. It
is quite easy to understand that if K is large enough, then the state vector
transposed into the observation space (through the observation operator)
CX(t) will tend towards the observation vector Xobs(t). In the linear case
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(where F and C are linear operators), the forward nudging method is nothing
else than the Luenberger observer, also called asymptotic observer, where the
operator K can be chosen so that the error goes to zero when time goes to
infinity [49].

This algorithm was first used in meteorology [37], and then has been used
with success in oceanography [68] and applied to a mesoscale model of the
atmosphere [62]. Many results have also been carried out on the optimal
determination of the nudging coefficients K [61, 70, 71].

The nudging algorithm is usually considered as a sequential data assimi-
lation method. If one solves equation (4.2) with a numerical scheme, then it
is equivalent with the following algorithm:{

Xf
n = Xn−1 + dt× F (Xn−1, Un−1),

Xn = Xf
n +Kn(Xobs(tn)− CnXf

n),
(4.3)

which is exactly the Kalman filter’s algorithm. Then, if at any time the
nudging matrix K is set in an optimal way, it is quite easy to see that
K will be exactly the Kalman gain matrix. It is also possible to consider
suboptimal K matrices, that still correct all variables, and not only the
observed ones [10].

4.2. Backward nudging

The backward nudging algorithm consists in solving the state equations
of the model backwards in time, starting from the observation of the state
of the system at the final instant. A nudging term, with the opposite sign
compared to the standard nudging algorithm, is added to the state equations,
and the final obtained state is in fact the initial state of the system [2, 7].

We now assume that we have a final condition in (4.1) instead of an initial
condition. This leads to the following backward equation

dX̃
dt = F (X̃, U), T > t > 0,

X̃(T ) = Ṽ .

(4.4)

If we apply nudging to this backward model with the opposite sign of the
feedback term (in order to have a well posed problem), we obtain

dX̃
dt = F (X̃, U)−K(Xobs − CX̃), T > t > 0,

X̃(T ) = Ṽ .

(4.5)
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Once again, it is easy to see that if K is large enough, the state vector X(t)
will tend (through the observation operator) towards the observation vector
Xobs(t).

4.3. The BFN algorithm

The back and forth nudging (BFN) algorithm consists in solving first the
forward (standard) nudging equation, and then the direct system backwards
in time with a feedback term. After resolution of this backward equation,
one obtains an estimate of the initial state of the system. We repeat these
forward and backward resolutions with the feedback terms until convergence
of the algorithm [7].

The BFN algorithm is then the following:
dXk

dt = F (Xk, U) +K(Xobs − CXk),

Xk(0) = X̃k−1(0),
dX̃k

dt = F (X̃k, U)−K(Xobs − CX̃k),

X̃k(T ) = Xk(T ),

(4.6)

with X̃−1(0) = V . Then, X0(0) = V , and a resolution of the direct model
gives X0(T ) and hence X̃0(T ). A resolution of the backward model provides
X̃0(0), which is equal to X1(0), and so on.

This algorithm can be compared to the 4D-VAR algorithm, which also
consists in a sequence of forward and backward resolutions. In the BFN
algorithm, even for nonlinear problems, it is useless to linearize the system
and the backward system is not the adjoint equation but the direct system,
with an extra feedback term that stabilizes the resolution of this ill-posed
backward resolution.

The BFN algorithm has been tested successfully for the system of Lorenz
equations, Burgers equation and a quasi-geostrophic ocean model in [8], for
a shallow-water model in [4] and compared with a variational approach for
all these models. It has been used to assimilate the wind data in a mesoscale
model [15] and for the reconstruction of quantum states in [43].
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4.4. DBFN: Diffusive Back and Forth Nudging algorithm

In the framework of oceanographic and meteorological problems, there is
usually no diffusion in the model equations. However, the numerical equa-
tions that are solved contain some diffusion terms in order to both stabilize
the numerical integration (or the numerical scheme is set to be slightly dif-
fusive) and model some subscale turbulence processes. We can then separate
the diffusion term from the rest of the model terms, and assume that the
partial differential equations read:

dX
dt = F (X) + ν∆X, 0 < t < T, (4.7)

where F has no diffusive terms, ν is the diffusion coefficient, and we assume
that the diffusion is a standard second-order Laplacian (note that it could
be a fourth or sixth order derivative in some oceanographic models, but for
clarity, we assume here that it is a Laplacian operator).

We introduce the D-BFN algorithm in this framework, for k > 1:
dXk

dt = F (Xk) + ν∆Xk +K(Xobs − C(Xk)),

Xk(0) = X̃k−1(0), 0 < t < T,
dX̃k

dt = F (X̃k)− ν∆X̃k −K ′(Xobs − C(X̃k)),

X̃k(T ) = Xk(T ), T > t > 0.

(4.8)

It is straightforward to see that the backward equation can be rewritten,
using t′ = T − t:

dX̃k

dt′ = −F (X̃k)+ν∆X̃k+K ′(Xobs−C(X̃k)), X̃k(t′ = 0) = Xk(T ), (4.9)

where X̃ is evaluated at time t′. Then the backward equation is well-posed,
with an initial condition and the same diffusion operator as in the forward
equation. The diffusion term both takes into account the subscale processes
and stabilizes the numerical backward integrations, and the feedback term
still controls the trajectory with the observations.

The main interest of this new algorithm is that for many geophysical
applications, the non diffusive part of the model is reversible, and the back-
ward model is then stable. Moreover, the forward and backward equations
are now consistent in the sense that they will be both diffusive in the same
way (as if the numerical schemes were the same in forward and backward
integrations), and only the non-diffusive part of the physical model is solved
backwards. Note that in this case, it is reasonable to set K ′ = K.

– 787 –



Didier Auroux

The DBFN algorithm has been tested successfully for a linear transport
equation in [9] and for non-linear Burgers equation in [5].

4.5. Theoretical considerations

The convergence of the BFN algorithm has been proved by Auroux and
Blum in [7] for linear systems of ordinary differential equations and full
observations, by Ramdani et al. [57] for reversible linear partial differential
equations (wave and Schrödinger equations), by Donovan et al. [21] for the
reconstruction of quantum states. In [11], the authors consider the BFN
algorithm on transport equations. They show that for non viscous equations
(both linear transport and Burgers), the convergence of the algorithm holds
under observability conditions. Convergence can also be proven for viscous
linear transport equations under some strong hypothesis, but not for viscous
Burgers’ equation. Moreover, the authors show that the convergence rate
is always exponential in time [11]. In [9], the authors prove the theoretical
convergence of DBFN algorithm for linear transport equations.

Data Assimilation is the ensemble of techniques combining the mathe-
matical information provided by the equations of the model and the physical
information given by the observations in order to retrieve the state of a flow.
In order to show that both BFN and DBFN algorithms achieve this dou-
ble objective, let us give a formal explanation of the way these algorithms
proceed.

If K ′ = K and the forward and backward limit trajectory are equal, i.e.
X̃∞ = X∞, then taking the sum of the two equations in (4.6) shows that
the limit trajectory X∞ satisfies the model equation (4.1) (including possible
model viscosity). Moreover, the difference between the two equations in (4.6)
shows that the limit trajectory is solution of the following equation:

K(Xobs − C(X∞)) = 0. (4.10)
Equation (4.10) shows that the limit trajectory perfectly fits the observations
(through the observation operator, and the gain matrix).

In a similar way, for the DBFN algorithm, taking the sum of the two
equations in (4.8) shows that the limit trajectory X∞ satifies the model
equations without diffusion:

dX∞
dt = F (X∞) (4.11)

while taking the difference between the two same equations shows that X∞
satisfies the Poisson equation:

∆X∞ = −K
ν

(Xobs − C(X∞)) (4.12)
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which represents a smoothing process on the observations for which the
degree of smoothness is given by the ratio ν

K [9]. (4.12) corresponds, in the
case where C is a matrix and K = kCTR−1, to the Euler equation of the
minimization of the following cost function

J(X) = k〈R−1(Xobs − CX), (Xobs − CX)〉+ ν

∫
Ω
‖∇X‖2 (4.13)

where the first term represents the quadratic difference to the observations
and the second one is a first order Tikhonov regularisation term over the
domain of resolution Ω. The vector X∞, solution of (4.12), is the point where
the minimum of this cost function is reached. This is a nice increment to the
BFN algorithm, in which the limit trajectory fits the observations, while in
the DBFN algorithm, the limit trajectory is the result of a smoothing process
on the observations (which are often very noisy).

5. Conclusion

We have presented in this paper several data assimilation methods: vari-
ational methods (4D-VAR and 4D-PSAS), sequential methods (extended
Kalman filter, ensemble Kalman filter), with their reduced-order version,
and back and forth nudging methods (BFN and DBFN).

Variational methods are very powerfull, as they allow us to identify not
only the initial condition of the system, but also model parameters, model
error, . . . However they require the adjoint model, and from a computational
point of view, deriving the adjoint model and computing the adjoint state
can be a tough task. People should think at the adjoint derivation while
writing the direct code (that solves the direct model), so that some automatic
differentiation tools could be used for deriving the adjoint model.

On the other hand, sequential methods are quite easy to implement, as
there is no adjoint model/state. However, the size of the covariance matrices
is usually too large to allow their full storage, and tricky linear algebra might
be necessary to compute their update and matrix-vector computations. Some
recent works have shown that Kalman filters could be used for parameter
estimation as well: some ad hoc equations for the time evolution of the
parameters are added to the system, and a Kalman filter applied to the
coupled system allows one to identify both the system state and the model
parameters (see e.g. [52]).

Finally, back and forth nudging algorithms (BFN and DBFN) are very
easy to implement, as they do not impose any linearization of the model,
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they do not require neither the construction of an adjoint model, nor an opti-
mization procedure as in the 4D-VAR method. Moreover they are very fast,
as they converge in less iterations than variational methods. As the nudg-
ing matrices are much more simple than Kalman gain matrices, the storage,
computation and memory costs are much smaller for BFN and DBFN than
for Kalman filters and variational methods. The progress of the DBFN, com-
pared to the BFN method, is a better smoothing of the noise on the observa-
tions, which results from a more diffusive process (forward and backward).
The distance from the reconstructed solution to the true one is also smaller
with the DBFN algorithm than the one obtained with the BFN method.

Depending on the application, the size of the problem, the amount of ob-
servations, . . . , people should carefully choose the class of data assimilation
algorithms that is more suitable to their own problem.
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