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Lower bounds for the Dyadic Hilbert transform *)

PuiLipPE JAMING (U, ELoDIE Pozz1 (2 AND BRETT D. WIck )

ABSTRACT. — In this paper, we seek lower bounds of the dyadic
Hilbert transform (Haar shift) of the form |[ILf[| 2 sy = C, )| fll L2y
where I and K are two dyadic intervals and f supported in I. If I C K,
such bounds exist while in the other cases K C I and K NI = @) such
bounds are only available under additional constraints on the derivative
of f. In the later case, we establish a bound of the form [ILf|| 2 k) >
C(I, K)|{f) ;| where (f); is the mean of f over I. This sheds new light on
the similar problem for the usual Hilbert transform.

REsSUME. —  Dans cet article, nous établissons des bornes pour la
transformée de Hilbert dyadique (Haar shift) de la forme ||IILf|| 12k >
c, K)||fHL2(I) ou I et K sont des intervalles dyadiques et f est & sup-
port dans I. Si I C K de telles bornes existent sans condition supplémen-
taire sur f alors que dans les cas K C I et KNI = () une telle borne n’existe
que si on impose une condition sur la dérivée de f. Dans le dernier cas
nous établissons une borne de la forme ||IIf|| 2 5y = C(I, K)|(f);| on
(f); est la moyenne de f sur I. Ce travail permet ainsi une meilleure com-
préhension du probléme similaire pour la transformée de Hilbert sur R.

1. Introduction

The aim of this paper is to establish lower bounds on the dyadic Hilbert
transform (Haar shift) in the spirit of those that are known for the usual
Hilbert transform.
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Philippe Jaming, Elodie Pozzi and Brett D. Wick

The Hilbert transform is one of the most ubiquitous and important op-
erators in harmonic analysis. It can can be defined on L?(R) as the Fourier
multiplier Hf(€) = —isgn(¢)f(¢) which shows that H : L2(R) — L%(R) is
a unitary bijection. Alternatively, the Hilbert transform is defined via

Hf(a:):lp.v. ) dy.
0 RY¥—Y
While boundedness of this operator is by now rather well understood, ob-
taining lower bounds for the truncated Hilbert transform is still an ongoing
task. More precisely, we are looking for bounds of the form ||1x H f]| L2(R) 2
£l z2r) (for some set K C R and f satisfying some additional constraint).
Without additional constraints, such an inequality can of course not hold and
a first restriction one usually imposes is that f is supported in some interval
1. Before describing existing literature, let us first motivate the question.

The most well known application of the Hilbert transform comes from
complex analysis. Indeed, if F' is a reasonably decaying holomorphic function
on the upper half-plane, then its boundary value f satisfies Hf = —if. In
particular, its real and imaginary parts are connected via Im(f) = H Re(f)
and Re(f) = —H Im(f). Conversely, if f is a reasonable real valued function,
say f € L?(R) with supp f C I, I some interval, then f := f + iHf is
the boundary value of a holomorphic function in the upper half-plane. The

question we are asking is whether the knowledge of Im(f) on some interval
K determines f stably. In other words, we are looking for an inequality of

the form ||Im(f)HL2(K) 2 ||Re(f)||L2(1)'

An other instance of the Hilbert transform is in the inversion formula of
the Radon Transform. Recall from [14, Chap. II] that the Radon transform
of a function f € S(R?) is defined by

Rf(e,s):/ f(z)de, geS,seR
(z,0)=s
while the inversion formula reads
1
f@) = 3= [ HO.RF6.))6,(2,6) do(6)
™ Jg1

where the Hilbert transform acts in the s-variable. In practice, Rf(6, s) can
only be measured for s in a given interval K which may differ from the rele-
vant interval for f. This is a second (and main) motivation for establishing
lower bounds on the Hilbert transform which should lead to estimates of
stable invertibility of the restricted view Radon transform. The introduction
of [5] provides nice insight on this issue.

It turns out that the relative position of the intervals I and K plays a
central role here and we distinguish four cases:
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Lower bounds for the Dyadic Hilbert transform

e Covering. When K 2 I the inversion is stable and an explicit inver-
sion formula is known [20].

o Interior problem. When K C I, stable reconstruction is no longer
possible. This case, known as the interior problem in tomography
has been extensively studied (see e.g. [5, 11, 12, 13, 21]).

e Gap. When I N K = (), the singular value decomposition of the
underlying operator has been given in [10] and this case was further
studied by Alaifari, Pierce, and Steinerberger in [3]. It turns out
that oscillations of f imply instabilities of the problem. The main
result of [3] is that there exist constants c¢j, 2 depending only on
I, K such that, for every f € H(I),

1 L2 r
||HfHL2(K) 2 €1 exp <_02||f||L2((I)) Hf||L2(1) :

Moreover, the authors conjecture that || f'[| .2 () may be replaced by
1 e

e Overlap. When INK # () and TN (R\ K) # (), a pointwise stability
estimate has been shown in [7] while the spectral properties of the
underlying operator are the subject of [2, 1].

Most proofs go through spectral theory. More precisely, the strategy of
proof is the same as for the similar problem for the Fourier transform. Recall
that in their seminal work on time-band limiting, Landau, Pollak, Slepian
found a differential operator that commutes with the “time-band” limiting
operator (see [19] for an overview of the theory and further references). The
spectral properties of this differential operator are relatively easy to study
and the spectral properties of the “time-band” limiting operator then fol-
low. The counter-part of this strategy is that it relies on a “happy accident”
(as termed by Slepian) that does not shed light on the geometric/analytic
features at play in the Hilbert transform. Therefore, no hint towards lower
bounds for more general Calderén—Zygmund operators, nor towards the con-
jecture in [3] is obtained through that approach.

Our aim here is precisely to shed new light on lower bounds for the
truncated Hilbert transform. To do so, we follow the current paradigm in
harmonic analysis by replacing the Hilbert transform by its dyadic version
(Haar shift) which serves at first as a toy model. We then study the gap,
covering and interior problems for the Haar shift.

To be more precise, let D be the set of dyadic intervals. To a dyadic
interval I, we associate the Haar function hy = [I|71/2(1;, —1;_) where I
are the sons of I and |I| its the length. The dyadic Hilbert transform (Haar
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shift) is defined by

If = (f, ha)TTTAy

1eD

where I1Ih; = 271/2(h;, — h;_) (see the beginning of the next section for
more details). One can define a similar transform for generalized dyadic in-
tervals obtained by dilating and properly translating D. It turns out that
the usual Hilbert transform is the average over a suitable family of general-
ized dyadic intervals of the corresponding Haar shifts, see [18, 17, 8]. This
approach has been very successful for upper bounds but it seems much less
adapted to lower bounds; though we point to two cases in [16, 15] where
lower estimates for the martingale transforms are obtained and provide re-
lated lower estimates for the Hilbert transform.

Nevertheless, the Haar shift shares many common features with the con-
tinuous Hilbert transform, and this is why we here establish lower bounds
for this transform. We hope those lower bounds give some insight on the
problem of establishing lower bounds for the truncated Hilbert transform.
However, our results depend heavily on the particular structure of the Haar
shift we consider. It would be interesting and probably challenging to extend
our computations to general shifts and in particular to Haar multipliers of
fixed sign pattern. Since we are dealing with a very particular Haar shift we
are able to obtain precise formulas and estimates by direct computations,
see e.g. equation (3.3) below. It would be interesting to establish similar
formulas for general dyadic shifts as defined in [9].

The main result we obtain is the following:

MAIN THEOREM. — Let I, K be two dyadic intervals. Then

(1) Covering: If I C K then ||[LxIIf], > %Hf”2 for every f € L*(R)
with supp f C 1.
(2) Gap: If INK =0, then no estimate of the form ||[LxIILf|, 2 || f]l,
holds for every f € L*(R) with supp f C I. But
— either I C [2M~1 2M] and K C [0,2M~2] for some integer M,
then 1gIILf =0 for every f € L*(R) with supp f C I
— or for every 0 < n < 1, there exists C = C(I,K,n) such that
L Lf|, = C| fll, for every f € L3(R) of the form f = fol;
with fo € WH2(R) and T[] foll 2y < 2mnllfoll z2(n)-
(3) Interior problem: If K C I, then no estimate of the form
|LxLf|l, = || fll, holds for every f € L*(R) with supp f C I.
But |LgULf|, = |1k fll, for every f € L*(R) with supp f C 1.
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Note that the fact that we assume that both I, K are dyadic implies
that the overlapping case does not occur here. In the Gap case, we actu-

ally show that 1xIIIf = C(I, K) / f(z)dz. Therefore, if f has zero mean,
I

then its Haar shift is zero outside its support. This is a major difference
with the Hilbert transform which only has extra decay in that case. As a
consequence, one can not recover functions with zero-mean from their Haar
shift outside the support. To avoid this situation, one may use the Poincaré—
Wirtinger inequality to control the mean of f by its L?-norm when f has
small derivative.

In Section 2 we collect basic facts and notation and Sections 3, 4, and 5
are then devoted each to one of the cases that arise in our main theorem.

2. Notations and Computations of Interest

In this paper, all functions will be in L?(R). We write

1fllze = (/le(x)lzdxy/z, (f:9) 1> :/Rf(w)@dz-

For I an interval of finite length |I| and f € L*(R), we write

1
"= / f(x) de

for the mean of f over I.

Let D denote the collection of dyadic intervals on R, namely the intervals
of the form D = {[2¥¢,2%(¢+1)) : k, ¢ € Z}. For I = [2¥¢,2%(¢+1)), we denote
the children of I by I = [2¥¢,2k(¢ + 1/2)) = [2¢12¢,2k-1 (20 + 1)) € D
and I, = [2F(0 +1/2),28(0 + 1)) = [2F71(20 + 1),2F"1(2¢ + 2)) € D. The
parent of I, denoted f, is the unique interval in D such that [ = 1:;( 1y with
e(I) e {£1}.

We will frequently use the following computations: if £ € D, then

1 1 & 1
— =) 27F = 2.1
2wt T 21)

LED,LDL

while for L K €D
> i:i(l—'é'). (2.2)
repcrex 1EL1ELL K]

These results follow from the fact that for every k& > 1 there is a unique
L 2 L with |L| = 2¥|£|.
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For I € D, we denote by h; the corresponding Haar function,
-1y +1p,
VI

Note that, if K € D is such that K C I. then h; is constant on K.

Then, denoting by ¢(K) the center of K, h(K) = hr(c(K)) = 8%) where

e(I,K) € {£1}. Also, h; has mean zero so that (17,hr),» = 0 and, more
generally, if I C J, (15, h1);. =0.

hr =

Recall that {h; : I € D} is an orthonormal basis of L?(R). In particular,
if f € L*(R) and I € D, we write f(I) = (f,hs) . so that

f=>F)hr

1eD

and, for f,g € L?(R),

1eD

Further, when f € L?(R) is supported on an interval I € D, then it is simpler
to write

F=tr+) F(Dhs (2.3)

from which it follows that

1132 = 7 11+ |F0)

JCI

‘2 (2.4)

since 17 and h; are orthogonal when J C I. On the other hand

L= (U he)pehy =Y (U he)pohe = 1Y ho(Dhy (25)

LeD LI L2I
since (17,hr) ;> = /hL(x) dz =0 when L C I.
I
Let III denote the dyadic Hilbert transform (the Haar shift) which is the
bounded linear operator on L?(R) defined by
hi, —h
Mlh; = ==
V2
Note that IITh; is supported on I. It is easily seen that (IIIhr, Ihy) . = 67, s

so that III is a wnitary transform.
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We will now make a few simple observations.

(1) If K is any dyadic interval then the function 1 xIIThy, is supported
on K N L. In particular, if L C K, 1xh;, = IAy.

,\ K, L

(2) f L 2 K, then the function 1xIllh; = (K. L)

VI
e(K,L) € {£1}. We will write 1 xIITh;, = IITh(K)1 g where again

AL (K) =1k (c(K)). Indeed, K = I/(\'E(K) C Lthus K.y C L+

1x where

but then
hL hL (K)
1lllhy =+l —= = +—= 1
K L K 2 NG K
which is of the desired form. .
(3) If L = K, then K = L. (k) and 1xIhy = E<\/)§K

When f € L?(R) is supported in I € D, from the decomposition (2.3),
we obtain

LTI = (f); L IL; + ) f(J) 1Ry . (26)
JCI

On the other hand, from the decomposition (2.5), we have that for any
I,K €D:
001, = 1)) hy (DT
LDI
thus
1Ty = 1]y hp()igIhy. (2.7)
LI

We can now prove the following
LEMMA 2.1. — For I € D, 1;11I1; = +/|I|h;.

Proof. — Let K = I.. We want to prove that
1, I1; =41, .

From (2.7), we deduce that

1 = |1 ZhL(I)LHhL(K) 1x.
LI

since L D K for any I C L. Observe that the sign of hp(HMh(K), I C L,

only depends on the position of K regarding I_ or I;. Indeed, if we have

-1 -1
K =1_and I C L_ then hp(IIIh(K) = 1] with hp(I) = m =
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—IThy(K) since K = I_ C (L_)_. On the other hand, if K = I_ and
I C Ly then hy(I)Ihy(K) = — with hy(I) = —— = —IIIhy (K) since
! L] VL]

K c I_ C (L4)—. Similar arguments lead to hr(I)IIhL(K) = 7]
K =1, and I C L_ and when K =1, and I C L. Thus, we obtain

when

1
Il = (K || | Y — |1k

LDI L]
=1
=e(K,I)|I — |1
(K. D)| |[ M] K
k=1
:E(K,I)]l[(
as announced. O

Our aim is to obtain lower bounds of |[LxIIIf|, when f € L*(R) is
supported in I € D. This requires an understanding of 1 xIII1; in the three
cases K CI, I C K and KNI =40.

3. First case: I C K

This is the “easy” and most favorable case:

THEOREM 3.1. — Let [ C K € D. Then, for every f € L*(R) supported
inl,
2 3 2
tntsle > (1- 220) s
Proof. — According to (2.7) we have

LgILf = (f), LTl + Y f(J)Lx A,
JCI

= (f); LxI0; + > F(J)IIh,.
JcI

(3.1)

Indeed, notice that in (3.1), J C I C K so that IITh; is supported in J C K
and ]lKH_Ih] = ]_th
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Now we further have that:
1R TS 172
= (LI f, 1 TLf)

= <<f>1 LTy + Y f(I)hy, (f) LT + ) f(J)IHhJ>
L2

JCI JcI
)R T + <m (z fwm) T (z fu)h])>
JCI JCI L2

+2(f), > (I, TMhy) 2 f(T) . (3.2)
JCI

But, as III is unitary, (IIl17, 1A y), > = (17, hs) > = 0 since J C I. Further,
using again that III is unitary and that the h;’s are orthonormal,

<H1 (Z f(J)hJ> Biil (Z f(J)hJ> > = <Z F(Dhs Y f(J)hJ>

Jcl JcI JcI JcI
=Y 1P
JcI
Therefore (3.2) reduces to

I TIf 72 = ()7 kT |72 + Y 1F(D)P
JCI

As [[14TI ] 22 < |LITL |22 = 1], we get

2
|2, > LI Te <<f>§ 1+ f(J)P)

1] e
_ kT )7

It remains to estimate ||]1K]I[1]||ig from below. Recall form (2.7) that

m]lKHI]lI
=Y hy(Digllhy = ( D>+ D), )hL(I)]lKthL
L2I LOR L[=K K>OL2I
- hi (DAL (K) |15 e+ hi (1A,
( Z ) e(K)hg (1) Z
IOR V2 KDL2I
i (3.4)
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with the three observations made on 1xIITh;. Now notice that the three
terms in (3.4) are orthogonal. Indeed, if L C K then hx and IIhp are
supported in K and have mean 0. Therefore, they are orthogonal to 1.
Further, v2IIlh;, = hp, —hr_ and Ly C K thus hz, is orthogonal to hxk.

Moreover,
e(K)hy(I) 1

1
V2 ’:m:ww

and, as III is unitary, the IIIh;’s are orthonormal. Therefore

2
1 T | 1]
e = K| Z ho(DIhL(K) | + 1K+ 1Y he(DP

] KDLDI
U 1
> + || —.
K] 2 L]

KDLDI
) L1 3 ||
Now this last quantity is i= 1- 11K] when K = I and (2.2) shows that
3|7
itis1— 4||K|| when K D I, which completes the proof. O

4. Second case: INK =10

Suppose that K,I € D are such that K NI = (). First observe that

LIIf = (f), A0, + Y f(J)LIIThy
JCI

= (f); LI,

with the last equality following since IIIh; is supported on J C I and that
INK =0 and so JN K =0 as well. Thus, we have that

LTI |72, 00
I TITf]f72 = TLQ (Hrll-
Remark. — From this, it is obvious that a lower bound of the form

L2
KL > CUAIG: = C T+ X yer | (D] cannot hold without
further assumptions on f. For instance, if f has mean 0 then 1xIIf = 0.
One may also restrict attention to non-negative functions in which case the

L2
mean would not be zero. However, > -, ’ fu )‘ may still be arbitrarily large

compared to ( f)? || so that we would still not obtain a bound of the form
Ik 72 > C 117
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One way to overcome this is to ask for a restriction on the oscillations of
f. For example, when f is in the Sobolev space W'2(I) and f’ its derivative.
We extend both f and f’ by 0 outside the interval I (so that f’ needs not be
the distributional derivative of f over R). Alternatively, f’ may be defined
as the derivative of the Fourier series of f and extended by 0 outside I, see
below. By Poincaré-Wirtinger (see e.g. [6, Chap. 4] or [4, Chap. 5]) we have
that:

10,
17 = U Uelgay < 17 gy (a.1)

Now, suppose that the norm of the derivative is controlled relative to the
norm of the function:

27 || fll pz(r)

— D o<, (4.2)
1]

1 g2y < m
then we will have that:
12y < UF = )y Wl gy + 112 1F)
<0 fll gz + 12 K1

which upon rearrangement will give
2 2
1A = A= f2) -

In other words, functions satisfying (4.1) are small zero-mean perturbations
of constants. For instance, with I = [0,1], let (ax)rez\ {0} be a sequence such
that o? := > k£0 k%ax)? < 400, and ap = 2”70‘ We may then define f(t) =
> pez are®™ ™ on [0,1] where the series converges uniformly, and extend
f by 0 outside [0,1]. On [0,1] the weak derivative of f is given by f'(t) =
> ez 2ikma,e*™ ™ where the sum of the series is taken in the L*([0, 1]) sense
(and needs not be extended outside [0, 1]). It follows that f satisfies (4.2).

One can replace the Poincaré~Wirtinger inequality by versions where one
tests the LP norm of the derivative and the L? norm of the function. For
such inequalities, we refer to [4, Chap. 5].

Txllit|?
We now turn to computing a lower bound of W First, 11 is

supported in I so that 1 xIII1; = 0if K ¢ R* and I ¢ RF. We will therefore
assume that I, K C RT, the case I, K C R~ then follows from the fact that
IITI is “odd”, thus 1T ; = —1 _ g III1_;.

Let K AT denote the minimal dyadic interval that contains both K and I.
Note that I, K # K A, so that I and K belong to different dyadic children
of K NI, for example if I C (K AI); then K C (K AI)_ and a similar
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statement holdis when replacing the appropriate + and —. Let us now split
the identity (2.7) into three parts

1 mn
K ! = hp(I)1gllny
LDI

< o+ >+ Y )hL(I)ﬂKIHhL

LOKAI  L=KAI KAIDLDI

Z hp(DWhy (K) | 1 + hgar(D1 g hgar
LOKAT

+ Y ho(DigIIhy (4.3)

KAIDLDI

since we have that 1 IIlh; takes a constant value as described above when
L 2 K AT and evaluating the sums over the regions in question.

Let us now notice that LN K = () when I C L C K A I. Indeed, suppose
this were not the case. It is not possible that L C K since I C L C K,
which contradicts that I N K = 0. Thus we have that I, K C L and hence
K AT C L, contradicting that L C K A I, and so L N K = () as claimed. It
follows that the third term in (4.3) vanishes so that

11001
% = Z he (D)IIhy (K) | 1k + har(D 1 Whgas
| LOKAT
h h s
Z hy (DA (K) 1K+5(K)M fKANT=K
) [ LoKAr V2
Z hy (DIhy (K) | 1 if KAIDK
LLOKAI
which follows from the properties of 1 xIIlh;, given above.
Thus, we have that:
2
1] , ~
I||K hp (I)IIIhy( —— HKAI=K
, || X )] gt
([TxIlr7. LKA
1] a 2
K[| > ho()IIh(K) if KAIDK.
LDOKAT
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Remark. — At this stage, we can observe that, when K AT C K ,
[0 I 7 1
1] 4
Indeed, we have that

[0 IO 7

W <SHIKL D [ho(D)] Ik (K)]

LDKAI
2

11
= [I][K] — =
L;K:M VILI VL]

2
1
=Kl Y 1z

LOKAI
_ K1
K AL 4
Here the last inequality follows since I, K C K A1, so |I],|K| < 3 |K Al
~ 1 1
If KAI = K, there is an extra term and we get SR AT < 1 from which

we deduce that )
L7 1

] h

[\]

Note that, if K AT = K, then we write K = K_ UK so that K. Al = K
and 1gIlll; = 1x N7 + 1, 01, is an orthogonal decomposition.

To give an estimation of [}, - 1, hL(I)H_IhL(K)|2 when K AT D K, we
use the following lemma.

LEMMA 4.1. — Let L = £:= KAT and fork > 1, L*) = @ Let
e(K) be equal to 1 if K C L4 and —1 if K C L_. Then, we have

7 K C(Ly)+
. = if K C(Ly)-
i) he(DIIhe(K) = { £
(i) he(Hhe(K) ﬁ K C(L).
g FEC(Lo)-;
_ e(K) .

E
=
3
S

T
3
Bl
\Y

\.[\D
>

o
:

S

E
>

o
E

=

Il

. _ k—1
1 lf [,(k 2) _ £(+ )
if L= = 1)
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Proof. — Tt is enough to deal with the case K C L4 (i.e. ¢(K) = 1). Since
I'NK = and by the definition of £, we have I C £L_ and hy(I) = ﬁ

Now, there are only two cases to consider for K: either K C (£4)+ and

Mhe(K) = \/ﬁ or K C (L) and HTh,(K) = ﬁ It follows that
- K C(L
he(I)UThe (K) = { R L)
m if K C (£+),

Suppose first that £ = E(j). Then, we have I C L = £$) and K C
£, = (£); which implies that hzq, (I)hzq) (K) = with hp (1) =

\Ul)l
Mh,0) (K) = \/IT On the other hand, if £ = £ then we have I € £ =
£Y and K ¢ Ly = (L'( )) . We still obtain that h ) (I)IIh,q) (K) = \Ull)l
with hL(1)(I) IHhL(l)(K) \/\_C%
Let us prove property (i44) for k > 2. Suppose first that £#~2) = Lf_l).

When £k = Lf), we have that T ¢ £+~ = ,C(k) and K C £(k*1) _
(Ef))+ which implies that hym (DIThym (K) = \L<k| with R (1) =
th[l(k)( ) \/W And when ,C(k D= [,( ) , we have that I C ﬁ(k 1) —

L‘_ and K %79 = (£¥), which implis that hpoo (DA o0 (K) =
with A (1 ) Mh,ym (K) = One can easily deduce the case

\E(’“)I \ /|[;<k>
£ = £87Y which leads to bz (Do) (K) = by O

Let us now prove the first sub-case.

LEMMA 4.2. — We suppose that K, [ CRy, KNI =0. Let L=K AT
and assume that L = [0,2V) for some N € Z.

(1) Assume that I C Ly while K C L_. Then

110012
(a) If K C L__ then 1xIlI1; = 0 thus K|I|I” =0;
11|12
(b) If K C L_y then 1511, = —%1;{ thus ”KIIH -
]| K|
4 ,
|L[?

(2) Assume that I C L_ while K C Ly1. Then 111 =+ “ﬂl‘]thhus
|1 IOL | [I]]K]|

] £
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Proof. — Now let again £*) be defined by £ = £ and £F+1) = E(F)
Note that, as £ = [0,2V°), £*) = LEY AS K = £y # £, we want to
estimate

1
m]lKI—HILI = (Z hp(I)OIhg (K )]lK = Zhﬂ(k) Y h i) (K) |1k .
LDOL k>0

Assume first that K C £__ and I C £, . Then, according to the previous
lemma,

-1

1
heoy (DMhpo) (K) = —  while  hym (DT m (K) = W

L]
for k > 1. The result follows immediately.

Assume now that K C (£_); and I C L4 . Then, according to the
previous lemma again,
B (DA £ (K) = !
£ £ = |
for k > 0. The result again follows immediately.

Let us now assume that K C (£4)+ and I C £_. Then, according to the
previous lemma,

+1
hﬁ(o) (I)HULL(O) (K) = m
while
1 -1
hL(l)(I)mhﬁ(l) (K) = m and hﬁ(k) (I)mh[/(k) (K) = W k > 2
and the result again follows immediately. O

Now if I C D, there exists My such that I C [0,2M°] but I ¢ [0,20~1]. In
the case I = [0,2M°], the previous lemma determines II11; on I¢. Otherwise
I C [2Mo=1 2Mo] and the previous lemma determines H1; on [0,2°~1] and
on [2Mo 400).

It remains to consider the case K,I such that K NI = () and K,I C
[2Mo=1 2Mo] We keep the same notation: £ = K A I for the first common

ancestor of K and I, £© = £ and £&) = LD for k > 1. We further
write £* = [0,2M°] the first common ancestor of K, I of the form [0, 2]
so that K A I C L%. Let k* be defined by £* = £*). It follows that
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2Mo — |£*| = 27 || = 2F

K A|. Now

1
mnKHm, =1lg Y hp(I)Ih(K)

LDOL
:]1K<ZhL( Ihy(K)+ Y hp(IIIAL( ))
LDL* LCLCL*

=1k > hy (DI (K).

LCLCL*

Indeed, if L = £+ = L%+ then £'=D < L‘,ﬂf“*) so that, according to
Lemma 4.1,

1
h(I)Mhg(K) = L]
On the other hand, if L = £ for k > k* + 2, then £L*~2) ¢ £%7Y g0 that
1
NIOhy(K) = ————.
hi(I)Ih(K) =y

Therefore, Z hp(IIhg(K) = 0.
Lo

We now distinguish 2 cases. First assume that £ = £% . Then

1
m]lKH_[]l[ = ]lK(hﬁjr (I)H_Ih/[;*+ (K) + hpx (I)I_Hh[:* (K)) .

Applying Lemma 4.1 we get

—ﬁ]lK ifICL_,KC(Ly)s

sl fICL_,KC(L
e, = FEE (£s)-
|I| W]IK 1fIC£+,KC(£ )+

sl HICL K C(Lo)

Let us now assume that £ C £ . Then each L with £ C L C L* is of the
form L = £*) with 0 < k < k* and for each such k, there is an g, = +1
such that hy (I)IIh,(K) = But then

k|£
1 s €0EK
_ K 0%k
=1z (HZ o )

L
k=1

11| =

Zi“
< 2%| L]
e Ix |K AT

27k K
|£| ( Z > |£| 21%0

k=1

i
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so that

L[z (AT [
| ~ o\ 2Mo |L|?

We can now summarize the results of this section:

THEOREM 4.3. — Letn > 0. Let I, K € D be such that I C RT and let
My be the smallest integer such that I C [0,2M°]. Let fo € WY2(I) be such
that |I||| foll 2y < 270l foll 2 (py and let f be the extension of fo by 0. Then

(i) If K C R_ then 1IIIf = 0.
(ii) If K C [2Motk 2Motk+1] 4hep

]| K]
ILRUIF I > (= ) oy 11
(iii) If I C [2Mo—1 2Mo] then

(a) If K C [0,2M0=2] then 1 IIf = 0;
(b) If K C [2Mo=2 2Mo=1] thep
2 K]
H_ﬂI{]—I—[f”L2 2 ( 77) 22 MO 1 ||fHL27
(c) K C [2Mo=1 2Mo] gnd KNI =0 then
2 (Z|IK|[K AI]? o
IR > (1= )2 S e

In all of the above cases, no estimate of the form ||]lKI_Hin2 > C||f||iz can
hold for all functions f € L? with support in I.

5. Third case: K C I

For K C I, we write ¢(K,I) = +1 if K C I} and ¢(K,I) = -1 if
K C I-. According to Lemma 2.1, 1x1I1; = (K, 1)1k, in particular,
Lk ML ]f7. = |K].

From equation (2.6) and Lemma 2.1 we get that
LIl f = (f) Al + Y F()IgIIhy + Y f(I) kI,

KcJcl JCK
= (& D+ Y FOMhy(K)| 1k 5£)A(I?)hx
Kcucr
+ Y f()hy . (5.1)

JCK
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Let us denote by B the subspace span {Il1h;, J C K} and Pg the orthogonal
projection onto B. Observe that for J C K, (1 xIILf IITh;) = (I1f, lh;) =
f(J). Therefore

Ps(lxILf) = > (IxILf,IMIh,)Ih, = Y f(J)IIIA,. (5.2)

JCK JCK

Moreover, the h;’s being orthonormal and IIT being unitary,

IPs(UkcILf)|3: = > [F(J (5.3)

JCK
On the other hand, from (5.1) and (5.2), it follows that

(I — Pg)(1xIIIf)

e(K) =~ =
= e(K,I)+ J)Th( K)h
(f)1 ooF J(K) 7 (K)hi
KcJcl
But hx and 1 are orthogonal so that
(7 = Pg) (1 TILf) |7
)|
K,J) 7
= (K, I) K . 4
DD+ 3 ﬂ K+ 5 (5

C

We can now prove the following;:

THEOREM 5.1. — Let I, K € D be such that K C I. Then, for every
f € L3(R) with supp f C I,

iy (Ka‘])
ILRIILf |30 = | (f)re(K,T) + ()" K|
Kcucl VIl
+ gl LYol 6
5 5.
JCK

In particular,
(i) for every f € L2(R), we have |[LxlIf||2. > |Lxf||2. and

1
1R f 3 > 5 I3

(i) If I 2 K, there exists no constant C = C(K,I) such that, for every
f € L*(R) with supp f C I, [[1xIILf||z2 > C| fl|z2-
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Proof. — As [ LxILf|72 = |[Ps(LxlLf)l|72 + (I = Ps)(LxIILf)||72,
(5.5) is a direct combination of (5.3) and (5.4). The inequalities (i) are direct
consequences of (5.5).

e(K,I)
vau

f € L*(R) is supported in I and f(,]) =0 gif JCTand (f);=

For the last part of the proposition, let f = — 1; + h;. Then

_e(K, 1)

N

Further (5.5) shows that |1 IILf| 72 = 0 while || f||zz = V2. 0
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