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KAWA lecture notes on the Kahler—Ricci flow

VALENTINO TosATTI ()

ABSTRACT. — These lecture notes provide an introduction to the study of the
Kaéahler—Ricci flow on compact Kahler manifolds, and a detailed exposition of some
recent developments.

RESUME. — Ces notes de cours fournissent une introduction a I’étude du flot de
Kaéhler—Ricci sur une variété kdhlérienne compacte, et un exposé détaillé de certains
développements récents.

1. Introduction

The Ricci flow on a compact Kahler manifold X, starting at a Kéhler
metric wy, preserves the Kéhler condition in the sense that the evolved met-
rics are still Kdhler. It is then customary to call this flow the Kéhler—Ricci
flow, and to write it as an evolution equation of Kéahler forms as

9
ot
w(0) = wo.

(t) = — Ric(w(t)) (1.1)

The theory of the Kéhler—Ricci flow is rather well-developed, and the key
feature is that the behavior of the flow deeply reflects the complex structure
of the manifold X.

In particular, there is a conjectural picture of the behavior of the Kahler—
Ricci flow for any initial data (X,wg). Furthermore, as advocated by the
work of Song-Tian [63, 64, 66, 60], in the case when X is projective and
the class [wg] is rational, the behavior is intimately related to the Minimal
Model Program in algebraic geometry [43]. This is in stark contrast with
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the general Ricci flow on compact Riemannian manifolds, where formulating
such a conjectural picture seems completely hopeless in (real) dimensions
larger than 3.

In these lecture notes we will explain this conjectural picture in detail, and
prove several results which go some way towards achieving this picture. After
reviewing some preliminary notions and setting up notation in Section 2,
the first result that we consider is a cohomological characterization of the
maximal existence time of the flow from [6, 73, 84, 85], which we prove in
Section 3. Next, in Section 4 we discuss finite time singularities, both volume
noncollapsed and volume collapsed, in particular giving a characterization of
the singularity formation set, due to Collins and the author [10]. In Section 5
we study the case when the flow exists for all positive time, and we investigate
the convergence properties at infinity, giving a detailed exposition of the
collapsing results proved in [22, 38, 63, 64, 81, 82]. Lastly, in Section 6 we
collect some well-known open problems on the Kéhler—Ricci flow.

There are already two excellent set of lecture notes on the Kéahler—Ricci
flow, by Song—Weinkove [68] and Weinkove [87]. While preparing these notes,
I have benefitted greatly from these references, and in fact the exposition in
Section 3 follows [68, 87] rather closely (I decided to keep this material here
because many similar arguments are used in later sections). On the other
hand, in Sections 4 and 5, which form the bulk of these notes, I have decided
to focus on rather recent results which are not contained in [68, 87].

It is not possible to cover the complete theory of the Kéahler—Ricci flow in
a short set of lecture notes, so I had to make a selection of which material to
present, based on my own limited knowledge, and many important results
on the Kéhler—Ricci flow are not covered here. In particular, nothing is said
about the convergence properties of the normalized Kéhler—Ricci flow on
Fano manifolds, which is a vast research area by itself (see e.g. [8, 54] and
references therein). I also do not mention weak solutions of the Kéhler—Ricci
flow [13, 18, 66], the Kahler-Ricci flow for conical metrics [9, 15, 57], the
Kéhler-Ricci flow on noncompact Kéhler manifolds [7, 59], or the Chern—
Ricci flow [27, 79, 78, 80] (a generalization of the K&dhler—Ricci flow to pos-
sibly non-Kéhler complex manifolds). Still, my hope is that these notes will
somewhat complement [68, 87] by providing a view of some more recent
developments in this field.

Acknowledgments. These lecture notes are an expanded version of the
mini-course “The Kéhler-Ricci flow”, given by the author at the 6" KAWA
Winter School on March 23-26, 2015 at the Centro De Giorgi of Scuola Nor-
male Superiore in Pisa. The author is very grateful to M. Abate, J. Marzo,
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J. Raissy, P. Thomas and A. Zeriahi for the kind invitation to give a mini-
course at KAWA, and to prepare these lecture notes. Many thanks also to
M. Alexis, G. Edwards, B. Weinkove, X. Yang, Y. Zhang and to the refer-
ees for useful comments on a preliminary version. These notes were mostly
written while the author was visiting the Yau Mathematical Sciences Cen-
ter of Tsinghua University in Beijing, which he would like to thank for the
hospitality.

2. Preliminaries

In these notes we assume that the reader is already familiar with the
basic theory of compact Kéhler manifolds, and we will not review all the
necessary basic material. The reader can consult [30, 41] for comprehensive
introductions, or [68, 87] for a quick introduction which is tailored to the
Kéhler—Ricci flow.

2.1. (1,1) classes and the Kihler cone

Let X™ be a compact complex manifold, of complex dimension n. A closed
real (1,1) form w on X is called a Kahler metric if it is positive definite, in
the sense that if we write

w=+v-1 Z 97 dzi A dzj,

i,j=1
in local holomorphic coordinates {z;} on X, then for each point € X the
n X n Hermitian matrix

973(95),
is positive definite. We will write w > 0, and we will say that X (or (X,w))
is a Ké&hler manifold.

In this case, w defines a cohomology class [w] inside
HU(X,R) = {closed real (E, 1) forms on X'}
V—100C>(X,R)

If o is a closed real (1,1) form on X we will write [o] for its class in
HY(X,R).

Recall that when X admits a Kéhler metric then the following 00-Lemma
holds (see e.g. [30]):
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LEMMA 2.1. — Let X be a compact Kihler manifold, and o an ezact real
(1,1) form on X. Then there exists ¢ € C°(X,R), unique up to addition of

a constant, such that
a=+/—100¢.

Thanks to the 99-Lemma, we can identify H!(X,R) with the subspace
of H?(X,R) of de Rham classes which have a representative which is a real
(1,1) form. In particular, H'! (X, R) is a finite-dimensional real vector space.

Then we define the Kahler cone of X to be
Cx = {[a] € H"'(X,R) | there exists w Kihler metric on X with [w] = [a]}.

This is an open, convex cone inside H''!(X,R). Indeed Cx being a cone
means that if we are given [a] € Cx and A € Ry then Ao] € Cx, which is
obvious. The convexity of Cx follows immediately from the fact that if w
and we are Kéhler metrics on X and 0 < A < 1, then Awy + (1 — A)ws is
also a Kahler metric. To show that Cx is open, we fix closed real (1, 1) forms
{a1,..., a1} on X such that {[a1],...,[ax]} is a basis of H1(X, R). Given
a Kéahler class [a] € Cx we can write [a] = Zle Aiay], for some \; € R.
Since [a] € Cx, there exists a function ¢ such that

k
> A + V=109 > 0.
i=1
Since X is compact, it follows that

k
> X + V=100 > 0,
i=1

for all \; sufficiently close to A\; (1 < i < k), and so all (1,1) classes in a
neighborhood of [a] contain a Kéhler metric.

Furthermore we have that Cx N (—Cx) = 0. Indeed if w is a Kéhler
metric on X and the class —[w] is also K&hler, then there is a Kéhler metric
O = —w + /—180yp for some function ¢, and so /—199¢ = w + & > 0,
everywhere on X. This is impossible, since /=109y < 0 at a maximum
point of .

A class [a] € Cx is called nef. In other words, a nef class is a limit of
Kahler classes.

LEMMA 2.2. — Let (X,w) be a compact Kihler manifold. Then a class
[a] € HYY(X,R) is nef if and only if for every € > 0 there ewists p. €
C>*(X,R) such that

a+V—=100¢p. > —cw. (2.1)
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Proof. — Condition (2.1) is equivalent to [ + ew] € Cx, for all £ > 0,
which certainly implies that [a] € Cx. Conversely, if o] is nef then there is
a sequence {3;} of closed real (1,1) forms such that o+ 3; > 0 for all 4, and
[3:] — 0 in HY(X,R). As before we fix closed real (1,1) forms {ay,...,ax}

on X such that {[a1], ..., [az]} is a basis of H1'1(X,R), and for each i write
k
[Bi] = Z Aijloyl,
j=1
with X;; € R. Since [§;] — 0, and {[ou],...,[ow]} is a basis, we conclude

that \;; — 0 as i — oo, for each fixed j. If we let

k
Bi=> Aijoy,
=1

then the forms 3 converge smoothly to zero, as i — oo, and we can find
functions ¢; such that 8; = 3; + v/—190¢;. For every € > 0 we choose i
sufficiently large so that §; < ew on X, and so

a+ew+V—100p; > o+ B; + V—100¢; = o+ B; > 0,
which proves (2.1). O

COROLLARY 2.3. — Let X be a compact Kdhler manifold and two real
(1,1) classes [a] € Cx and [5] € Cx. Then [a] + [f] € Cx.

Proof. — We may suppose that § > 0 is a Kédhler metric, and so § > 2ew
for some ¢ small enough. Since [a] is nef, Lemma 2.2 gives us a function ¢
such that o + +/—190¢. > —ew, and so

a+ B+ V—=190p. > ew > 0. O

A nef class [« is called nef and big if

/a”>0.
X

2.2. Ricci curvature and first Chern class

Given a Kahler metric w = /—1 ZZ;‘:1 gﬁdzi A dz; on X, we define the
Christoffel symbols of the Chern connection of w to be
Iy = gkeaigjz,
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which satisfy that T'}; = T'}; because w is closed. Using these, we can de-
fine the covariant derivative V with the usual formulae (see e.g. [68]). The
Riemann curvature tensor Rm of w is the tensor with components

Jj J
Rikz - azrki’
and we will also consider the tensor where we lower one index
- - = - P _
Rz = 9,58,

and a direct calculation gives

Rz = —0k0p9;5 + 9710k gig0g9,5-

If £, € T*YX are (1,0) tangent vectors, we define the bisectional curvature
in the direction of £, 7 to be
Rm(¢,&,1,7m) = R3¢ ¢ n’ € R.
The Ricci curvature tensor is defined to be
R R k0

ij — “Weiz9d

and another direct calculation gives the crucial formula

Rz = —0;07log det(gyyg). (2.2)
The scalar curvature R is then defined to be

R=g"R.
We define the Ricci form of w to be
Ric(w) = V=1 Y  Rzdz Adz;,
i,j=1

which by (2.2) is locally equal to —v/—198log det(g,7). Therefore Ric(w) is

a closed real (1,1) form. If @ is another Kéhler metric then

__ detg
Ric(w) — Ric(w) = v—190log (;;Ti’

where log Szgg is the globally defined smooth function which equals
1og det(gpa)
det(gpg)

in any local holomorphic coordinate chart. If we use the Kéhler volume
element w”, then we also have that
det g @
log—= =1 .
©8 det g o8 wn
Therefore the cohomology class

[Ric(w)] € H*'(X,R),
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is independent of w, and we set
1.

&(X) = o [Ric(w)),
the first Chern class of X. Also, if we denote by

Kx = A"(TH°X)*,
the canonical bundle of X, then the first Chern class of Kx satisfies ¢1(Kx) =
—C1 (X) .

If © is a smooth positive volume form on X, then in local holomorphic
coordinates we can write
Q= f(\/ —1)”(12’1 ANdzZy A - ANdz, AdZ,,
where f is a smooth positive locally defined function, and we let
Ric(2) = —v/—1001og f.
It is easy to see that Ric(£2) gives a well-defined global closed real (1,1) form,
and that its cohomology class in H'!(X,R) does not depend on the choice
of Q. Taking Q) = w™ for some Kéhler metric w, we immediately see that
Ric(w™) = Ric(w),

and so [Ric(Q)] = 2me;1 (X) for any smooth positive volume form 2. Some-
times we may also write Ric(Q2) = —/—1001log .

2.3. Some more notation

If o is a real (1,1) form on X, and w a Kéahler metric, we will write

e
troa =g Jaﬁ,

and it is easy to see that

1 n

na Aw" " = (trya)w™.
In particular, if f € C*°(X,R),
tr,(V=109f) = g7 9,0-f = Af,

where A is the complex Laplacian of the metric w (if we want to emphasize
the metric, we will also write A,). At a maximum point of f, we have that

V=100 f <0, and so also Af < 0.
We also have
e, (V=10f ADf) = g0, f05f = 0f

where g denotes the Hermitian metric defined by the Kéhler metric w.
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Next, we define the C* norms on smooth functions (k > 0), with respect
to w, by

Iflerxgy = Y, sup|VPVSf],,
p+q<k,0<p<q
where

|Vpﬁq]0|§ _ gi1F1 .. gfqﬂvil .. Vipva. .. szva .. VEVZI R quf.

We only sum on p < ¢ to avoid repetition of terms (since |VIVPf|, =
|VPVef|, because f is real-valued). We will also abbreviate

. IVVIflg= Y [Vifls (23)
p+q<k,0<p<q 0<j<k

Similarly we can define the C* norms on tensors (if the tensor is not real,
we sum over all p,qg > 0,p+ g < k).

We will also briefly use Holder space C*%(X, g), where k € N and 0 <
a < 1. This is composed of functions f : X — R such that the norm
p [VE7 ) = VET W),
rAyeX d(l’, y)a

[fllerax,g) = Z VR fllcox.q) +
i<k
is finite (we assume of course that f is sufficiently differentiable so that these
derivatives make sense), where Vp is the real covariant derivative of g, d(z, y)
is the g-distance between z,y € X, and in the expression |VE f(z)—VE f(y),
we are using parallel transport with respect to g to compare the values of
these two tensors, which are at different points in X.

2.4. Analytic subvarieties

We now quickly cover the basics about analytic subvarieties of a compact
complex manifold, see [30, p. 12-14] for more details. A closed subset V' C X
is called an analytic subvariety of X if for every point € V we can find an
open neighborhood x € U C X and holomorphic functions {f1,..., fv} on
U such that

VnU={yeU]| fily) == fn(y) =0}

A point x € V is called regular, or smooth, if near x the subvariety V is a
complex submanifold of X. A point which is not regular is called singular.
The set of regular points is denoted by V.., and its complement by Vg =
V\V;eg. The singular locus Vying is itself an analytic subvariety of X, and it
is properly contained in V. A subvariety V is called irreducible if we cannot
write V = V3 UV, where Vi, V5 are analytic subvarieties which are not equal
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to V. In this case, V4 is connected, and so it is a complex submanifold of
X of a well-defined dimension, which we call dim V.

If V is not irreducible, then we can write V' = V; U---UVy where the V;
are irreducible analytic subvarieties of X, called the irreducible components
of V. In this case, we set dim V' to be the maximum of dim V;. With these
definitions, we have that dim V' = 0 if and only if V' is a finite set of point.

A fundamental result of Lelong (see [30, p. 32]) shows that if V is an
irreducible analytic subvariety of X of dimension k£ > 0, and « is a smooth
real (k, k) form on X, then the integral

[, -

reg

is finite. Furthermore, for any smooth real (k — 1,k — 1) form 8 on X we
have

/V V1688 = 0,

see [30, p. 33]. Therefore if [a] is a real (1, 1) class on X, we may unambigu-

ously write
/ ot
1%

Furthermore, if [a] € Cx, and we fix a Kahler metric w € [a], then

/ak:/wk:k!Vol(V,w)>O,
1% 1%

see [30, p. 31], where Vol(V,w) denotes the real 2k-dimensional volume of
Vreg with respect to w (which is finite). Passing to the limit, we obtain that
if [a] € Cx, and V C X is any irreducible positive-dimensional analytic

subvariety, then
/ adimV 2 0.
v

For a nef (1,1) class [a] € Cx we then define its null locus to be

Nullla)= |J W, (2.4)
fv Qdim V—q
where the union is over all irreducible positive-dimensional analytic subva-
rieties V' C X with [, o™V = 0. The set Null(a) is in fact an analytic
subvariety of X (in general not irreducible), as follows for example from [10,
Theorem 1.1]. We have that Null(e) = X if and only if [, o™ = 0, and
otherwise Null(«) is a proper analytic subvariety of X.
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2.5. Kodaira dimension

Let X be a compact complex manifold. We consider the space of global
pluricanonical forms, namely

HO(X, K),
where ¢ > 1. If HO(X, K??z) =0 for all £ > 1, then we say that the Kodaira
dimension of X is —oo, and we write k(X ) = —oo. If this is not the case,

then we let

log dim H®(X, K§*
k(X) = limsup og dim H7(X, X).
£—00 logg
It can be proved that either kK(X) = —oo or otherwise 0 < k(X) < n, and in

fact we have
O~ < dim HO(X, K94 < 00,

for some constant C' > 0 and all £ such that H°(X, K¢) # 0 (see [50,
Corollary 2.1.38]). Furthermore, we have that x(X) = 0 if and only if
dim HO(X, K}‘?[) < 1 for all £ > 1, and it equals 1 for at least one value
of /.

Two compact complex manifolds X,Y are called bimeromorphic if we
can find proper analytic subvarieties V3 C X, V5 C Y and a biholomorphism
¢ : X\V; — Y\Va. If two compact complex manifolds are bimeromorphic,
then they have the same Kodaira dimension.

A compact Kéahler manifold is called uniruled if for every point z € X
there exists a rational curve z € C' C X, i.e. a non-constant holomorphic
map f : CP! — X with image C containing . Uniruled manifolds have
k(X) = —o0, and the converse is also conjectured to be true.

2.6. Gromov—Hausdorff convergence

Let (X,dx),(Y,dy) be compact metric spaces. Given € > 0 we say that
their Gromov—Hausdorff distance is less than or equal to ¢ if there are two
maps F': X - Y and G: Y — X (not necessarily continuous) such that

|dx (w1, 22) — dy (F (1), F(22))| <, (2.5)

for all z1,z5 € X,
ldy (y1,42) — dx (G(y1), G(y2))| <&, (2.6)

for all y1,y2 €Y,
dx(z,G(F(x))) < &, (2.7)
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for all x € X, and

dy (y, F(G(y))) <, (2.8)
for all y € Y. We then say that a family (X;, d;), t € [0, 00), of compact metric
spaces converge to a compact metric space (Y, dy) in the Gromov—Hausdorff
topology if for all € > 0 there is T > 0 such that the Gromov-Hausdorff
distance between (X3, d;) and (Y, dy) is at most ¢ for all ¢ > T'. We refer the
reader to [55] for more about this notion.

3. Maximal existence time
3.1. The maximal existence time of the Kdhler—Ricci flow

Let w(t) be a solution of the Kédhler-Ricci flow (1.1) on a compact Kéhler
manifold X, with ¢ € [0,7),0 < T < co. Taking the cohomology class of (1.1)
we see that 5

5w (®)] = —[Ric(w(?))] = —2me1 (X)),
where the right-hand side is independent of ¢. It follows that
[w(®)] = [wo] — 27tes (X),
and so
[wo] — 2’7th1 (X) S CX,
for t € [0,T). The converse is the content of the following theorem proved
in [6, 73, 84, 85].

THEOREM 3.1. — Let (X™,wp) be a compact Kahler manifold. Then the
Kdhler—Ricci flow (1.1) has a unique smooth solution w(t) defined on the
mazimal time interval [0,T),0 < T < oo, where T is given by

T =sup{t > 0 | [wo] — 27tc1(X) € Cx }. (3.1)

Here and in the rest of these notes, when we say that [0,7") is maximal
we really mean forward maximal. It may be possible that the flow (1.1) has
a solution also for some negative time, but this is in general not the case,
and we will not discuss backwards solvability in these notes.

This theorem has the following useful corollary.
COROLLARY 3.2. — Under the same assumptions as in Theorem 5.1, we
have that T = oo if and only if —c1(X) € Cx.

Note that the condition —¢p (X) € Cx is independent of the initial metric
wp. It is equivalent to the fact that Kx is nef, and this is also sometimes
stated by saying that X is a smooth minimal model.
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Proof. — If —c1(X) € Cx then —2mtc;(X) € Cx too, for all £ > 0. Since
[wo] € Cx, we conclude from Corollary 2.3 that [wy] — 27te1 (X) € Cx, and
so T' = oo thanks to Theorem 3.1.

If conversely T' = oo, then for all ¢ > 0 we have
1 1

o wol —a(X) = o

and letting ¢t — co we immediately obtain that —¢;(X) € Cx. O

[w(t)] € CX7

3.2. Reduction to a parabolic complex Monge—Ampére equation

We now start the proof of Theorem 3.1. We set T' = sup{t > 0 | [wo] —
27te1(X) € Cx }. As we discussed earlier, it is clear that no solution of (1.1)
can exist for ¢ > T, and so it is enough to show that (1.1) has a unique
smooth solution defined on [0,T). Fix any 0 < 77 < T (so in particular
T’ < 00). By definition we have that [wo] — 277"c1(X) € Cx, so we can
choose a Kéahler metric  in this class. We define

1
X = F(n - w0)7 (32)
so x is a closed real (1,1) form cohomologous to —27ey (X)), and
N 1
Wp =wo +tx = F((T/ — t)wo + tn), (3.3)

which is a Kéhler metric for all ¢ € [0,7']. Fix ' any smooth positive
volume form on X. Then Ric(€?') is a closed real (1,1) form cohomologous
to 2meq (X)), and so there is a smooth function F' such that x = — Ric(') +
V/—109F. We then define
Q=elY,
which is a smooth positive volume form with
Ric(Q) = —x. (3.4)

LEMMA 3.3. — A smooth family w(t) of Kaihler metrics on [0,T") solves
the Kahler—Ricci flow (1.1) if and only if there is a smooth family of smooth
functions o(t),t € [0,T") such that w(t) = &y + /—100¢(t) and we have

(@ + V=10dp(t))"
Q

%w(t) = log
2(0) =0 (3:5)

Equation (3.5) is called a parabolic complex Monge-Ampére equation.
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Proof. — For the “if” direction, we set w(t) = &; ++/—199¢(t) and com-
pute

aw(t) =x+v—199log # = x + Ric(Q) — Ric(w(t)) = — Ric(w(t)),

and since clearly w(0) = &g = wp, we conclude that w(t) solves (1.1).

For the “only if” direction, given a solution w(t) of (1.1) on [0,7"), we

define
t n
o0 = [ 1052 as,
0 Q

for t € [0,7"). We clearly have that

2o =100 )=,

‘We compute

% ( (t) — & — V—100¢p(t )) = — Ric(w(t)) — x + Ric(w(t)) — Ric(2) =0,

and so w(t) — & — v/—109p(t) is a smooth family of real (1, 1) forms which
satisfy

0

5( w(t) — &y — V—199¢(t)) = (w(t) — @ — V=100¢(t)) |1=0 = 0,
and so we must have w(t) —@; —/—199¢(t) = 0 on X x [0,7"), and so (3.5)
holds. ]

We can now prove the uniqueness in Theorem 3.1.

THEOREM 3.4. — Suppose w1 (t) and wa(t) are two solutions of (1.1) on
the same time interval [0,T"). Then w1 (t) = wa(t) for allt € [0,T).

Proof. — Thanks to Lemma 3.3 we can write
w1 (t) = (:Jt =+ 71(95901 (t), LLJQ(t) = C:Jt —+ 7185@2(15),

where ¢1(t), p2(t) both solve (3.5) for ¢ € [0,7"). Our goal is to show that
©1(t) = @a(t) for all t € [0,T7).

If we write ©(t) = @a(t) — ¢1(t) then we have
(@i(t) + V=109%(1)" = wa(t)" = e = PO (1),

using (3.5). Here and in the following we write
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In other words, the function v (¢) satisfies

9 pt) = 1og (wi(t) + V=199 ()"

wi ()"
$(0) =0
wi(t) + =100 (t) > 0.
Then, for every e > 0, the function t(t) = 9 (t) — et satisfies

0 - (wit) +/=109%(t)"
&1/)(15) = log MOR - &

and we can now apply the maximum principle. Fix any 0 < 7" < 7", and
let the maximum of ¢(¢) on X x [0,7"] be achieved at (x,t). If ¢ > 0 then
at (z,t) we have

0 < wi(t) + V=109 (t) < wi(t),
and so
(wi(t) + V=180 (1)) < wi(t)",

and

9 -« (wit) +/=199P(t)"
az/}(t) = log NOR _

a contradiction. Therefore we must have t = 0, and so 9(z, ) = 1(z,0) = 0.
Since (z,t) was a maximum point, we conclude that

d(t) <0

on X x [0,7"], or in other words

N

0<

€ < —¢,

Y(t) et

on X x [0,T7"], and since T” < T’ was arbitrary, the same holds on [0,7T").
Letting € — 0 we conclude that

¥(t) <0,
on X x [0,T"). Applying the same argument to ¢ (t) + et, and looking at its
minimum point, we conclude that v (¢) is identically zero. O

3.3. Existence for a short positive time

We are now ready to prove a short-time existence theorem, originally
due to Hamilton [35] for the Ricci flow on general compact Riemannian
manifolds. The Kéhler setting allows for a much simpler proof.

THEOREM 3.5. — Let (X", wg) be a compact Kdhler manifold. Then
there exists € > 0 and a unique smooth solution w(t) of the Kdhler—Ricci
flow (1.1) defined on [0,¢).
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Proof. — Let T' > 0 be defined as in (3.1), fix any 0 < T" < T, fix a
Kahler metric 7 in [wg] — 277" ¢1(X), and define x, & and 2 as in (3.2), (3.3)
and (3.4). Since we have already proved uniqueness in Theorem 3.4, our goal
is to produce a solution ¢(t) of (3.5) defined on [0, €) for some & > 0 (thanks
to Lemma 3.3). Up to rescaling the time parameter, we may assume that
T > 1.

Fix an integer £ > 2 and a real number 0 < o < 1, and let U; C
Ck2(X, go) be the open set given by all functions ¢ € C*%(X, go) such that
@ + /=190y > 0 everywhere on X. This is an open set which contains
the origin, and for every ¢ € [0,7'] we can define an operator E; : Uy —
CF=22(X, go) by

(1) = log 1 F VIO

To take care of the dependence on ¢t we consider the parabolic Holder space
Ck2(X x [0,1],g0) of functions u : X x [0,1] — R such that the norm

||u||C’Cv‘1(X><[0,1],gO) = Z ||Vﬁ§3§u||CO(Xx[o71]7go)
i+25<k
+ Z sup |v]§ai7u($7 t) B vﬁkagu(% 8)‘90
. . TzH#YEX, (d(x,y)2—|—|t—s|)%
”23*’%;?6[0,1]

is finite (we assume of course that w is sufficiently differentiable in X and ¢ so
that these derivatives make sense), where Vg is the real covariant derivative
of go (see (2.3)), d(z,y) is the go-distance between x,y € X, and in the
expression |V u(z, t) — Vid u(y, s)|4, we are using parallel transport with
respect to go to compare the values of these two tensors, which are at different
points in X (see e.g. [47, 51] for more on these spaces).

These are Banach spaces, and we let U C C*<(X x[0,1], go) be the subset
of all functions ¢ € C*(X x [0,1],go) such that &, + /=199 (t) > 0 on
X x [0,1], which is again an open set containing the origin. We then define
an operator E : U — C*~29(X x [0,1],g0) by

(& + /=100 (t))™
a )

E(y)(t) = log

If we can find ¢ > 0 and a function p € U C C*(X x [0, 1], go) such that
0
—pt)=F t
5:°(t) = E(#)(t)
¢(0) =0,
on X x [0,¢) then standard parabolic PDE theory (differentiating (3.6) and
applying e.g. [47, Chapter 8]) implies that ¢ is smooth on X X [0,¢), and so
is our desired solution of (3.5).

(3.6)
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To achieve this, we first note that if we have such a solution ¢(t) (suppose
that it is smooth) then its time derivatives
aé
w@(o)a
for all £ > 0 are equal to certain smooth functions Fj, which are expressible

purely in terms of the given data wy, x, §2. For example
n

Fy=0, F|=log wﬁo, Fy = —try,,Ric(wp) = —R(wop),

and so on. The case of general ¢ follows easily by differentiating the flow
equation (3.5), noting that all time derivatives of &; and /—199p(t) are so
expressible. We choose a function ¢ € C*+1(X x [0,1],go) (so in particular
in C*) such that

ot .

w@(o) = Fy,
forall 0 < /¢ < LgJ + 1, and such that ¢ lies inside U. In other words, the
Taylor series of ¢ in t at t = 0 matches the one of a solution ¢ (if it exists)
up to order L%J +1. Let h = %cﬁ — E(@), for t € [0,1], so that h is by
construction a function in C*~2(X x [0, 1], go), whose Taylor series in ¢ at
t = 0 vanishes up to order LgJ For a given € > 0 let h.(t) be equal to 0 for
0 <t < e and equal to h(t —¢) for e <t < 1. Then by construction we have
that h. € C*=2:%(X x [0,1], go) and

|he = hllcr-2.0(xx[0,11,90) = 05 a5 € =0, (3.7)

because h € Ck=22(X x [0,1],g0). We then wish to perturb ¢ to another
function ¢ € U € C**(X x [0,1], go) which solves

0
7.9 = E(@)(t) + he(t)
¢(0) =0,
on X x [0,1], for some small ¢ > 0, because if we can do this then ¢
solves (3.6) on X x [0,¢) since ho(t) = 0 for 0 < ¢t < e. This is a standard

application of the Inverse Function Theorem in Banach spaces together with
the theory of linear parabolic PDEs. Indeed consider the operator

E:U— CkiQ}a(X X [07 1])90) X Ck}a(Xv 90)7

£0) = (- B0L00).

Then & defines a Fréchet differentiable map between Banach spaces, and its
Gateaux derivative at ¢ € U in the direction n € C**(X x [0, 1], go) = Ty U
is given by

(3.8)

Deslo) = (g1 DoB1(0) ) (3.9
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where D, E(n) is given by

o _
DyE(mn) = 5 _OE(¢ +8m) =1ty omew (V—1001(1))

=By y=Tomp (),
for all t € [0, 1]. Given any point (h, 1) € C¥~2%(X x[0,1], go) x C**(X, go),
the condition that Dy,E(n) = (h, no) is equivalent to the linear parabolic PDE
D00) = s, vz + h) 510)
1(0) = no,
for ¢t € [0, 1]. Tt follows that the map
Dy : CH(X % [0,1],90) = C*~2(X x [0,1], go) x C**(X, go),

is an isomorphism of Banach spaces thanks to the existence, uniqueness and
continuous dependence on the initial data for the linear parabolic PDE (3.10)
(see e.g. [47, Chapter 8]). The Inverse Function Theorem in Banach spaces
then implies that £ is a local isomorphism, near any point in U. Since our
function ¢ solves

2 a(1) = B@)0) + A1) )
$(0) =0,
on X x [0,1], and recalling (3.7), we see that there exists ¢ > 0 small enough
and ¢ € U solving (3.6), as desired. O

3.4. A priori estimates and completion of proof of Theorem 3.1

Thanks to Theorem 3.5 we now have a solution w(t) of (1.1) for some
short time [0,¢),e > 0. We may take then the largest possible e, and call it
Tinax, which satisfies 0 < Tiax < 00, and depends only on wg. Recall that to
prove Theorem 3.1 we have to show that in fact we have a solution on [0, T)
where T is given by (3.1), and that earlier we have fixed 0 < T" < T'. If we
have that Tyyax > T’ then we are done, since T’ < T is arbitrary, so the goal
is to show that if Tihax < 77 (in particular, Tihax < 00) then we obtain a
contradiction.

The key to deriving the contradiction are the following a priori estimates.

THEOREM 3.6. — For every k > 0 there is a constant C, which depends
only on k,wq, such that

leller(x,g0) < Chks (3.12)
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w(t) = Cy two, (3.13)

forallt € [0, Thaz)-

Indeed, assuming Theorem 3.6 we can now complete the proof of Theo-
rem 3.1.

Proof of Theorem 3.1. — Observe that the flow equation (3.5) together
with (3.12), (3.13) implies that

a[

| e < G, (3.14)

C*(X,g90)

for all k,¢ > 0 and for some uniform constants Cj ;.

The Ascoli-Arzeld Theorem implies that for every & > 0 the embedding
CkY(X, go) — C*(X, go) is compact. Therefore the bounds (3.12), together
with a diagonal argument, show that given any sequence t; — Tiax there
exists a subsequence t;, and a smooth function ¢, such that ¢(t;, ) con-

verges to o7, in C*(X, go) for all £ > 0 (at this point the function ¢,

may depend on the chosen sequence). Now (3.14) in particular implies that
supy |¢(t)| < C for all t € [0, Tnax), for some constant C' which depends

only on the initial data, and so

oe(t) ~ Ct) <0, (3.15)
ot

on X X [0,Timax). The functions ¢(t) — Ct are therefore nonincreasing in ¢
and uniformly bounded below (by (3.12) and the fact that Tiax < 00), and
so they have a unique pointwise limit as ¢ — Ti,ax, Which is necessarily equal
to @7, since this is the C* (in particular uniform) limit of the sequence
©(tj, ). Therefore the limit ¢r, . is unique, and an elementary argument
implies that p(t) — @1, . as t — Tax in CY(X, go) for all £ > 0. Indeed, if
this was not the case then we could find a sequence t; — Tiax and an £ > 0
such that the functions ¢(t;) do not converge to o7, . in C*(X,go), but we

have shown that we can then extract a subsequence t;, so that ¢(¢;, ) does
converge to o7, in C*(X,gg), a contradiction.

Therefore the metrics w(t) = &; + v/—199p(t) converge smoothly to the
(1,1) form w(Typax) = &1, + V—199¢7,,, ., which is positive definite (i.e.
a Kéahler metric) thanks to (3.13).
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We can then use Theorem 3.5 to solve the parabolic complex Monge—-
Ampere equation

%w(t) —log &t \/jéaa‘p(t))n

©(Tmax) = PTmax
Qp + v/ —100¢(t) > 0,

(3.16)

for t € [Tmax; Tmax + €), and for some € > 0 (note that in that proof we
had the initial value of ¢ equal to zero, while now it is ¢, but the proof
there works for this case as well). Therefore w(t) := & + /—199¢(t) for
t € [Tmax; Tmax + €) defines a solution of (1.1) on this time interval, with
initial metric equal to w(Tmax)

Lastly, we remark that (3.14) together with a similar argument as before
(using Ascoli-Arzela, a diagonal argument, and the analog of (3.15) to show
uniqueness of the limit) shows that for every ¢ > 0 we have that as t — Tinax
the function g—;@(t) converges smoothly to the same function that one gets
from differentiating (3.16) and setting t = Ti,ax. This means that if we define
o(t) for all t € [0, Tmax + €) by piecing together the flow (3.5) on [0, Tiax)
together with the flow (3.16) for ¢ € [Twmax, Tmax + €), then the resulting
function ¢(t) is smooth in all variables, and gives a solution of the Ké&hler—
Ricci flow (3.5) on [0, Tmax + €). This is a contradiction to the maximality
of Tinax- O

We now start the proof of the a priori estimates in Theorem 3.6. First,
we prove (3.12) for k = 0.

Here and in the following, we denote by C a generic positive constant
which is allowed to depend only on the initial metric wy, and may change
from line to line. All such constants C' can in principle be made completely
explicit.

LEMMA 3.7. — There is a constant C' > 0, which depends only on wy,
such that

sup [o(t)] < C, (3.17)
X
for allt € [0, Thaz)-

Proof. — Let ¢(t) = ¢(t)— At, for some constant A > 0 to be determined.
We have

b

% B(1) = log @t \/Téa&ﬁ(t))” 4
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for t € [0,Timax)- Fix any 0 < 7 < Tax and let the maximum of ¢(¢) on
X x [0, 7] be achieved at (z,t). If t > 0 then at (x,t) we have

A /1 9, n AN

using that
0 < @ +vV—100¢(t) < &,

at (x,t). But recall that @&; are Kéhler metrics for all ¢ € [0, Tiyax], which
vary smoothly in ¢, and so

a}n
A=1+ sup log—,
X X[0,Tmax] Q

is a finite, uniform constant, and with this choice of A we obtain a contra-
diction. Therefore we must have that the maximum of ¢(t) is achieved at
t = 0, where this function is zero. This shows that

sup p(t) < At < AT ax,
X

for all ¢ € [0, Tinax), which gives half of the estimate (3.17).

For the other half, one looks at the function ¢(t) + Bt, where
”
B=1- inf log—*t
Xx0. L] 0 Q2

and argues similarly. O

Having given all the details on how to apply the maximum principle in
this case, from now on we will be more brief on this point (in particular,
when applying the maximum principle we will always restrict to a compact
time subinterval without mention).

LEMMA 3.8. — There is a constant C' > 0, which depends only on wy,
such that

sup [¢(t)] < C, (3.18)
X

for allt € [0, Thaz)-

Proof. — We compute
(gt - A) p(t) = (1) = tro (W(t) — @) = G(t) = n+ trom@r,
) ) nw(t)" 1A (x +V—100¢(t))

- A(p(t) = trw(t)Xv
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where here and from now on we will always write A = A,,;). Combining
these, we obtain the useful equations

(gt - A) (tp(t) = p(t) — nt) =ty (Ex — D) = —tru@wo <0,  (3.19)
(gt - A) (T" = t)p(t) +@(t) +nt) =try@ (T —t)x +@¢) = tre, @ > 0.
(3.20)

We won’t need (3.19) right now, but we record it here for later use. The
maximum principle applied to (3.20) gives that the minimum of (T"—t)(t)+
©(t) + nt is achieved at ¢ = 0, and so

(T = H)(t) + (t) +nt > T'5(0) > T'inflog 2 > —C,
and since 77 —t > T" — Tyax > 0, this implies that
e S
lgl{fgﬁ(t) = Oa
for all ¢ € [0,Tinax), using Lemma 3.7. For the upper bound on ¢(t), we
observe that
9] nw(t)" "t A (Zw(t))

5i9(t) = "I I = b (- Rie(w(t) = —R(),

and since locally

R(t) = 9" R = —g" 9,0 log det(g,7),

we obtain

- _ 0 _
S R(t) = g " Ryg Rz — 91 0;0- <gpqatgpq> = |R1c(w(t))|i(t) + AR(t),
and so (% — A) R(t) 2 0, and the minimum principle implies that
i&f R(t) > i&f R(0) > —C, (3.21)

for all t € [0, Tiax). Since Tihax < 00, we can integrate this bound in ¢ and
obtain supy ¢(t) < C for all t € [0, Tinax)- O

THEOREM 3.9. — There is a constant C' > 0, which depends only on wy,
such that

sup try,w(t) < C, (3.22)
X
for allt € [0, Thaz)-

Proof. — Calculate

0 .
atrwow(t) = —tr,, Ric(w(?t)),
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and at a point with local holomorphic normal coordinates for wy where w(t)
is diagonal, we have
K€ ij iq _pj k€ ij ke
Atro,w(t) = g% 0096’ 9:7) = 96"96" Ryg,29" 9:7 + 96’ 9™ 0k 0595

n -
= D Riza9™ 05— 9 R + 95 6" 9" 0kgia0a,;
i,k=1
n

0

RO g Ri ij ke pa% Vg -
kgﬁg g“ trwo IC((JJ(t)) +gO 99 k9iq ngj’
i,k=1

where % is the covariant derivative of wy. Note that at our point we have
that

Rggﬁ = Rmo(ak, Ok, 0;, 8l) > —C(Cy,
where —Cj is a lower bound for the bisectional curvature of wg among all
wo-unit vectors (note the vectors 9;, ) are wp-orthonormal at our point).
Therefore

n n n
0__ kk kk kk
k=1 i=1

ik=1 i k=1
= —Co(tfwow(t))(trw(t)wo),

and so
o o7 =0 0
(5 = 2) trae®) < Cotraold) ragsn) = 58" ng7 70,5
(3.23)
It follows that
0
((T)t - A) log try,,w(t)
1 - - 0 0 |Otre,w ()|,
< Cot | g I g Vg - — () )
0 rw(t)wo terW(t) <g() g9 k9ig ggp_] terW(t)

Surprisingly, the term inside the big bracket is nonnegative,

- -0 0 |Otre,w(®)|
<géjgk€gpqvkgiqugm — W(t)w“ >0,
wo

because it is readily verified that it equals the norm squared
96 9" 9" BrigBujp > 0,
of the tensor B with components

Optrow(t)

0
Blrig = Vigig — o w(l)
wo

9ig-
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Indeed,

P O 0 = |Otre,w(®)?
969" 9" BrizBujp = 95 9" 6"V x93V 79,5 + géjgpqﬁa);g)giﬁgpj
wo

5 67 o7 Oktruw(t) 0
— 2R 1]kl _pq wo g -
e (90 g9 troow(t) 9ig Vi9y;
- -0 0 |0t pw(t)]2
— 4 ke PIN/, 0.-NV-q - 0 w(t)
gO g g kgzq égpj + terW(t)
7 w7 Oktr,w(t) O
— 2Re ( g¢f " =22 Vg,
’ <90 P Tty

=~ 0 0 |Otry,w(t)?
_ géjgkégpqvkgiavzgpg . = w(t)w( )
wo

)

0
as claimed, using that g§ V795 = Ogtrw,w(t). This gives

<§t - A) log try,,w(t) < Cotry,wo, (3.24)

and combining this with (3.19) we obtain
<§t - A) (log try,w(t) + Co(tp(t) — ¢(t) —nt)) <0,

and so the maximum principle implies that this quantity achieves its maxi-
mum at ¢t = 0, and so

log try,w(t) < C — Co(tp(t) — p(t) —nt) < C,

on X X [0, Tihax), using Lemmas 3.7, 3.8 and the fact that ¢t < Tyax < 00.
Exponentiating we obtain (3.22). O

COROLLARY 3.10. — There is a constant C' > 0, which depends only on
wo, such that

C™lwy < w(t) < Cuwy, (3.25)
for allt € [0, Thaz)-

Proof. — The bound w(t) < Cwy follows immediately from (3.22). For
the lower bound, note that the flow equation (3.5) together with Lemma 3.8
give

Clwl < w(t)" < Cwh, (3.26)

and if at a point we choose coordinates where wy is the identity and w(t) is
diagonal with eigenvalues \; > 0,1 < j < n, then (3.22) shows that
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for all j, while (3.26) implies

n

[Tr=c"

j=1
and so for any j we have

)\4 _ H?:l)\i 2 C—l
’ [Tz Ax

which exactly says that w(t) > C~1wy. O
Of course (3.25) implies (3.13).

While all the arguments so far used the maximum principle, the higher
order estimates are in fact purely local. For a proof we refer to [58].

THEOREM 3.11. — Let U C X be a nonempty open set, and w(t) solve
the Kihler—Ricci flow (1.1) on U x [0,T), for 0 < T < oo, with initial Kihler
metric wg. Assume that there exists a constant Co > 0 such that

Ci'lw <w(t) < Cow, (3.27)

on U x [0,T), for some Kihler metric w on X. Then given any K C U
compact, and any k > 1 there is a constant C' which depends only on
K, U, k,wy,w and Cy such that

lw®llerxw) < C, (3.28)

for allt € [0,T). Furthermore, for any given 0 < € < T, the estimates (3.28)
hold for t € [e,T) with a constant C that depends also on € but does not
depend on wq.

We can now complete the proof of Theorem 3.6.

Proof of Theorem 3.6. — We have already established (3.13) and (3.12)
for k = 0, so it remains to show (3.12) for k > 1. First note that by a simple
covering argument, (3.25) together with Theorem 3.11 implies that

lw®llor(xwo) < Cr; (3.29)

for all t € [0, Tmax), and all & > 1, where C}, is a uniform constant. But we
have

V=100p(t) = w(t) — @,

and @ is a smoothly varying family of Kéahler metrics for all ¢ € [0, Trax],
and so

Ay p(t) = try,w(t) — try,or,
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where the function on the right-hand-side is uniformly bounded in C* (X, wq)
for all k& > 0 thanks to (3.25) and (3.29). But for any fixed 0 < oo < 1 we
have the elliptic estimates (see e.g. [47])
le(®llex (x,90) < lle@)llore (x,90)
< Cr([[Aw o)l cr-2.0(x,90) + l(B)llcox))
< Cr(l Ao () llor—1(x,90) + ) lco(x))s
for all k > 2, and so (using Lemma 3.7) we obtain (3.12). O

3.5. Examples of calculations of T'

First, we look at the case when n = 1, so X is a compact Riemann surface.
It is well-known that X is diffeomorphic to a surface £, of genus g, for some
g > 0. Since H?(X,R) = R, it follows that H11(X,R) = R as well.

Ezample 8.12. — If ¢ = 0, so X is diffeomorphic to S2, then the uni-
formization theorem implies that X is in fact biholomorphic to CP', so Cx
is generated by [wrs] where wps is the Fubini-Study metric, which in the
standard coordinate system (writing CP* = C U {oo}) is locally given by
wrs = v/—1001log(1 + |z|?). Recall that wrg satisfies

/ wrs = 2T,
X

RiC(wFs> = 2WFsS.
Therefore 27y (X) = 2[wrg] € Cx. If wy is any Kéhler metric on X, then
[wo] = A[wrs] for some A > 0, and the evolved class is
[w(t)] = [wo] — 27ter (X) = (A — 2¢)[wrs],

which is Ké&hler if and only if A — 2t > 0. Therefore by Theorem 3.1 the
maximal existence time of the Kihler-Ricci flow (1.1) is 7 = 3. The limiting
class is

and

[a] = [wo] — 27 Te1(X) =0,
so in particular Vol(X,w(t)) — 0 ast — T.

Ezample 3.13. — 1If g = 1, so X is diffeomorphic to the torus T2, then
the uniformization theorem implies that X is biholomorphic to C/A for some
lattice A C C. In general different lattices give rise to non-biholomorphic
complex tori. In any case, any given Euclidean metric wg,; on C is invariant
under translations by A and so it descends to a Kéhler metric wgas on X
with

Ric(wgat) = 0.
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Therefore ¢1(X) = 0, and the flow starting at any initial metric wy does not
change the Kéhler class [w(t)] = [wo], and so by Theorem 3.1 we get that
T = oo. Clearly, the volume of (X,w(t)) is constant.

Ezample 3.14. — If g > 2, then the uniformization theorem implies that
X is biholomorphic to B/T were B = {z € C | |z| < 1} is the unit disc and T
is some discrete group which acts on B by isometries of the Poincaré metric
Whyp = —V/—1901og(1 — |2]?),
on B. Therefore wyy;, descends to a Kéhler metric on X, which satisfies
Ric(whyp) = —2whyp,
by direct calculation. Therefore, if wy is any Kahler metric on X, then [wg] =
A[whyp) for some A > 0, and the evolved class is
[w(t)] = wo] = 2mter (X) = (A + 2t) [whyp,

which is Kéhler for all ¢ > 0. Therefore by Theorem 3.1 the maximal
existence time of the K&hler—Ricci flow (1.1) is T = oo. The volume of
Vol(X,w(t)) grows like t as t — oo, and the cohomology class of the rescaled
metrics % converges to —2mcy (X).

Ezample 3.15. — Let X = CP! x CP*, with projections 71, 73 to the two
factors. Then HY!(X,R) = R?, generated by a = 7} [wrs] and b = 75 [wrs],
and it is easy to see that a class [a] = Aa + A2b is Kéhler if and only if
A1 > 0and Ay > 0. Also, the product metric wprod = T{wrs + T3wrs satisfies

Ric(wprod) = 2Wproda
and so 2mey (X) = 2(a + b). Therefore the evolved class is
[w(t)] = [wo] — 27ter (X) = (A1 — 2t)a + (A2 — 2t)b,

and so by Theorem 3.1 the maximal existence time is

. (A1 Ae
_ A A2
Z—m1n(2,2)

The limiting class as t — T is either zero, or a multiple of a or b, and so we
always have that Vol(X,w(t)) > 0ast — T.

Ezample 3.16. — Let m: X — CP? be the blowup of CP? at a point p,
with exceptional divisor E = 7~ !(p) = CP'. Then we have that H"(X,R) =

7" [wrs]

R?, generated by a = and b, the Poincaré dual of F, and also
c1(X)=3a—b.

Consider a (1,1) class [a] = Aja + A2b. The Nakai-Moishezon criterion of
Bunchdahl [4, Corollary 15] and Lamari [49] (which was extended to all
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dimensions by Demailly-P&un [12]) in this case says that [«] € Cx if and

only if
/a2>0, /a>0, /a>0, (3.30)
X E H

where H = 7= (L) and L = CP' is a projective line in CP* which does

[wrs]
o

not pass through p. The Poincaré dual of L inside CP? is , and so the

Poincaré dual of H inside X is a, and so (3.30) is equivalent to

/a2>0, /a/\a>0, /a/\b>0. (3.31)
X X X

We also have that
1
/ z= =13 /CP2 wig =1, (3.32)

/b2 /bf (3.33)
/Xa/\b:/Ea:O, (3.34)

where (3.33) is well-known and (3.34) holds because we can represent a by a
smooth form supported in an arbitrarily small neighborhood of H, and since
H is disjoint from E we may choose a representative of a which vanishes
everywhere on E. Using these, we immediately see that (3.31) is equivalent
to

M —=A2>0, A\ >0, —)\2>0, (3.35)
or equivalently

0< =Xy < M. (336)

So if [wg] = Ara + A2b is any Kéhler class on X (so (3.36) holds), then the
evolved class is given by

[w(t)] = [wo] — 2mter(X) = (A — 67t)a — (—Ag — 27t)b.

This class remains Kahler as long as —Ay —27t > 0 and A\; —67t > — Ao —27t,
and so by Theorem 3.1 the maximal existence time is

. ()\1 + A2 —>\2>
T = min ,— .
47 2

We have that
Vol(X,w(t)) = (A — 67mt)2 — (=g — 27t)2.

If \; < =3\, then T'= 24522 and so Vol(X,w(t)) — 0 as t — T. If instead
A1 > —3Ag, then T = j‘f and so

Vol(X, w(t)) = (A1 + 3X2)?
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as t — T. This is the first example that we encounter of a finite time non-
collapsed singularity. We will study these in more detail in the next section.

4. Finite time singularities

4.1. Finite time singularities of the Kihler—Ricci flow

In this section we assume that the Kéhler-Ricci flow (1.1) has a finite
time singularity at time 7" < co. The limiting class of the flow is

[o] = lim [w(t)] = [wo] — 27 Ter(X),

and it is a nef class, since it is a limit of K&hler classes. Not all nef classes
arise in this way, and we have the following elementary observation:

PROPOSITION 4.1. — Let X be a compact Kihler manifold and [o] €
OCx a nef (1,1) class, which is not Kaihler. Then there exists a Kihler metric
wo such that the Kdahler—Ricci flow (1.1) has a finite time singularity with
limiting class (@] if and only if [a] + Ae1(X) € Cx for some A > 0. In this
case the mazimal existence time is T =

—~

Sk

Proof. — 1If there exists a metric wy such that the Kahler-Ricci flow (1.1)
has a finite time singularity at time 7" with limiting class [«], then we know
that

[a] = [wo] — 2nT'er(X),
and so [a] +27T¢;1(X) € Cx.

Conversely, if [a] + Ac1(X) € Cx for some A > 0, we choose a Kahler
metric wp in this class, and evolve it by the Kéhler-Ricci flow (1.1). The
class of the evolved metric is

27t 27t
[w(t)] = [wo] — 27ter1 (X) = [a] + (A —27t) e (X) = (1 - /\> [wo] + T[a].
For 0 <t < % this is a sum of a Kahler class and a nef class, and so it is
Kihler, while for t = £ this equals [a] which is nef but not Kéhler. It follow

from Theorem 3.1 that the maximal existence time is T' = ﬁ < oo and the
limiting class is [a]. O
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4.2. Noncollapsed finite time singularities

We will say that a finite time singularity at time 7" < oo is noncollapsed
if Vol(X,w(t)) > C~! for all t € [0,T). As we saw, this is equivalent to the
cohomological property

/ (wo — 27T Ric(wp))"™ = / a” > 0.
X b'e

In other words, it is equivalent to requiring that the limiting class [a] be nef
and big. Recall that in this case the null locus Null(«), defined in (2.4), is a
proper analytic subvariety of X.

Ezxample 4.2. — Going back to Example 3.16, if we choose the initial
class to be [wo] = 4a — b, then we have T'= 5- and the limiting class is

[a] =a= L[;TFS].

As shown in (3.34), we have that

/a:O7
E

so certainly £ C Null(a). Since [, a® > 0 (see (3.32)), we have that Null(a)
is not equal to X. If C C X is an irreducible curve which is not equal to
E, then C cannot be contained in E and so its image 7(C) is an irreducible
curve in CP?. We then have

1
/ a = — WFRs > O,
c 21 Jr o)

since fﬂ () WFS equals the volume of 7(C') with respect to the Fubini-Study
metric. Therefore we have shown that Null(a) = E.

The following is the main result of this section:

THEOREM 4.3 (Collins—Tosatti [10]). — Let (X,wp) be a compact Kihler
manifold such that the Kahler—Ricci flow (1.1) starting at wo has a noncol-
lapsed finite time singularity at T < oo. Let o = wy — 27T Ric(wp). Then
there is a Kdhler metric wp on X\ Null(«) such that

w(t) = wr,
in C2(X\Null(e)) ast — T.

When X is projective and [wo] € H2(X, Q) this was known earlier: indeed

in this case the limiting class [a] is the first Chern class of a Q-divisor D,

and it follows from a trick of Tsuji [84] (cf. [73]) that we have uniform Cg%,
estimates on compact sets away from the intersection of the supports of all
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effective Q-divisors E such that D — FE is ample (such divisors exist thanks to
“Kodaira’s Lemma” [50, Proposition 2.2.6]). But this intersection equals the
“augmented base locus” of D, as shown in [16, Remark 1.3], and this in turn
equals Null(ci (D)) thanks to Nakamaye’s Theorem [52]. Our work in [10]
extends Nakamaye’s Theorem to real (1, 1) classes on Kéhler manifolds, and
this is the key new ingredient.

Following [17] we define the singularity formation set of the flow ¥ (which
depends on the initial metric wg) by

Y=X\{zre€X|3U>xopen, IC >0, s.t. |Rm(t)|,¢) <C on Ux[0,T)},
where Rm(¢) denotes the curvature tensor of w(t).
We have the following conjecture:

CONJECTURE 4.4 (Feldman—Ilmanen—Knopf [19], Campana [91]). — For
every finite time singularity of the Kahler—Ricci flow the singularity forma-
tion set 3 is an analytic subvariety.

This conjecture was solved in [10]:

THEOREM 4.5 (Collins—Tosatti [10]). — Congjecture 4.4 is true, and we
have
Y = Null(a),
where [a] = [wo] — 27 Te1(X) is the limiting class. In other words, ¥ is the

union of all irreducible analytic subvarieties whose volume goes to zero as
t—T.

As we will see, this is a simple application of Theorem 4.3.

First, we rewrite the Kdhler—Ricci flow as a parabolic complex Monge—
Ampere equation. This is similar to the setup we had in Section 3, but there
are some key differences. We define o« = wy — 27T Ric(wp), which is a closed
real (1,1) form with no positivity properties in general, and let

1

which are forms cohomologous to w(t), again with no positivity in general.
We also let x = %(a —wyp) so that we can write &, = wg + tx, and we choose

a smooth positive volume form 2 with Ric(Q2) = —x. Then, as in Section 3,
the Kahler—Ricci flow (1.1) is equivalent to

%) D+ /=100 (t))"

ot Q

p(0) =0 (4.1)

&y +V—100p(t) > 0.
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LEMMA 4.6. — There is a constant C > 0 such that
o(t) < C, (4.2)
o(t) < C, (4.3)
on X x [0,T).

Proof. — Recall from (3.21) that we have R(t) > —C on X x[0,T). Since

2 o(t) = R0,

this gives %gb(t) < C. Integrating in ¢ we obtain (4.3), and integrating again
we get (4.2). O

Next, we give two equivalent definitions of 3, following Z. Zhang [90].

PROPOSITION 4.7. — We have that
Y=X\{zeX |3U>3zo0pen, 3C >0, s.t. R(t) <C on U x[0,T)}
=X\{zx € X | 3U 3 x open, 3 wy Kdihler metric on U,
st w(t) > wy in C°(U) ast — T},

where R(t) is the scalar curvature of w(t).

Proof. — Tt is clear that if the metric w(t) converge smoothly to a limit
Kahler metric on some open set U then we have [Rm ()| ) < C on U. It
is also clear that a uniform bound on the curvature tensor implies an upper
bound on the scalar curvature. Therefore we are left to show that if R(t) < C
on U x [0,T), where U is an open set which contains a given point z, then on
a possibly smaller open neighborhood U’ of & we have smooth convergence
of the metrics to a limit Kahler metric on U’.

To see this, first recall from (3.21) that the bound R > —C always holds
on X x [0,T). Therefore on U x [0,T) we have |R| < C, and differentiat-
ing (1.1) we have

0,

57 = R.
We conclude that on U x [0,T) we have |¢| < C, and integrating in time
this gives || + |¢] < C on this set. The quantity t¢ — ¢ — nt is therefore
uniformly bounded on U x [0,T') and satisfies (thanks to (3.19))

Recall that from (3.24) we also have

0
<8t — A) log tr,,,w < Ctry,wo,
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and so

ot

This implies that this quantity achieves its maximum at ¢t = 0, and so

(5 - 2) togtrue + Ot — o —nt) <o

tr,w < Ce~CtotCotCnt « o=Co,
holds on X x [0,T"). In particular, on U x [0,T") we obtain
try,w < C.

From the flow equation w(t)" = e?Q we also have w(t)” > C~'w§ on U x
[0,T), and so we conclude that

C™'wy S wl(t) < Cuwy,

on U x [0,T). The local estimates of [58] then give uniform C*° bounds for
w(t) on U x [0,T), for a smaller neighborhood U’ of x, and from these we
easily obtain smooth convergence to a limit Kéhler metric on U’. g

As a corollary, we see that the scalar curvature blows up at a finite time
singularity [90]:

COROLLARY 4.8. — For every finite time singularity of the Kihler—Ricci
flow the singularity formation set ¥ is nonempty, and furthermore we have
that lim sup,_, - supy R(t) = +00.

Proof. — Thanks to Proposition 4.7, if we had ¥ = @ then the
metrics w(t) would converge in C*°(X) to a limiting K&hler metric in the
class [a], contradicting the fact that [a] is not in the Ké&hler cone. The
blow up of the supremum of the scalar curvature also follows directly from
Proposition 4.7. O

Assuming Theorem 4.3 we can now prove Theorem 4.5.

Proof of Theorem 4.5. — If & Null(«), then by Theorem 4.3 the met-
rics w(t) converge smoothly in a neighborhood of z to a limiting Kéhler
metric. In particular the curvature of w(t) remains uniformly bounded near
x, and therefore x & 3.

On the other hand, given 2 € Null(«), suppose that there exist an open
set U containing z, and a Kéhler metric wr on U such that w(t) converges to
wr in C*®(U) as t — T. Then, by definition of Null(«), there is a positive-
dimensional irreducible analytic subvariety V' C X which contains = and

with
/ ok = 0,
1%
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where k = dim V, and as usual @ = wg — 27T Ric(wg). Then we have that as
t — T the integral
[ v
v

converges to zero, since [w(t)] — [a]. But we also have

k & t—T b
/ w(t)” = / w(t)! —— wp > 0,
v VU VU

which is a contradiction. Therefore, using Proposition 4.7, we see that
T EX. ]

We now turn to the proof of Theorem 4.3. The key ingredient is the
following theorem, which provides a suitable barrier function, and which is
a general statement independent of the K&hler—Ricci flow.

THEOREM 4.9 (Collins-Tosatti [10]). — Let (X, wo) be a compact Kihler
manifold and a a closed real (1,1) form whose class [a] is nef, and with
fX a™ > 0. Then there exists an upper semicontinuous L' function i : X —

R U {—o00}, which equals —oo on Null(et), which is finite and smooth on
X\ Null(«), and such that

a+vV—100y > ewy,
on X\ Null(e), for some e > 0.

Note that we have that v is globally bounded above on X, and so up to
subtracting a constant from it we may assume that ¢ < 0 on X. The proof of
Theorem 4.9 is quite technical and involves very different techniques from the
ones in these notes. Therefore we will skip its proof, referring the interested
reader to the original article [10] or to the survey [77]. For the reader who is
familiar with these concepts (see e.g. [10]), Theorem 4.9 easily implies that
the null locus of a nef and big (1,1) class on a compact Kéahler manifold
equals its non-Kéhler locus, which is also the complement of its ample locus.

On X\ Null(«) we have

& + V/=TO0 = %((T — ) (wo + V=I0T) + Ha + V=1000))

T—1t t
> —5 (wo —a) + w0 (4.4)
> Ew
= 2 0>
ift e [T —6,T+ 4], for some ¢ > 0.
LEMMA 4.10. — There is a constant C' > 0 such that
p=2Cy—-C,
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on X x [0,T). Equivalently, we have
w > C_lecwwg.
Proof. — Let
Q=(T+d—-t)p+¢—1+nt,
which is smooth on (X\ Null(a)) x [0,T'), equal to 400 on Null(«), and is

bounded below on X for each fixed ¢t € [0,T). Therefore @ > —C holds on
X x [0,T — 4], for some uniform constant C.

Our goal is to show that in fact Q@ > —C on X x [0,T). Given T" €
(T'— 9, T) suppose that the minimum of @ on X x [T'—§,T"] is achieved at a
point (z,t), with ¢t € (T — 6, T']. We must have z ¢ Null(«), and so at (z,t)
we have

0> (;_A)Q_trw((T+5_t)X+@t+ﬁ88w)
= try, (Or4s + V—1000)

using (4.4). This contradiction shows that the minimum of @ on X x[T'—4, T”]
is achieved at time T'—§, where we have Q > —C'. Since T' < T was arbitrary,
we conclude that @ > —C on X x [0,7T). This gives

(T+6—-t)p>—p+v—nt—C 29 —C,

. Y —C
Z 2= -0,
$2ris 12 V-0
since T4+0—t>9d and v <O0.

The equivalent estimate for the volume form follows from the flow equa-
tion. U

LEMMA 4.11. — There is a constant C' > 0 such that
try,w < Cefcw,
on X x [0,T).

P700]. i From (324) we have
- — A logtr,,,w < Ctr W
9t glry W X w0,

and from (3.19)

(gt — A) (to —p —nt) = tr,(tx — @) = —tr,wo,
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and so

(gt - A) (log try,w + C(tp — ¢ — nt)) < 0,

and by the maximum principle, the maximum of this quantity on X x [0,T)
is achieved at t = 0. This gives

logtry,w < C(—to+p+nt) +C < C—Cop < C—Cv,

on X x [0,T), where we used Lemma 4.10. Exponentiating gives what we
want. ]

Proof of Theorem 4.3. — Given a compact set K C X\ Null(o) with
nonempty interior, we have infx 1) > —Cx (here and in the following we
denote by Ck a constant which depends on the compact set), and so thanks
to Lemmas 4.10 and 4.11 we see that

Crltwo < w(t)

<
on K x [0,T). The local estimates of [58] then give uniform C* bounds
for w(t) on compact subsets of X\ Null(«), and arguing as in the proof of
Theorem 3.1, we easily obtain a Ké&hler metric wy on X\ Null(a) such that
w(t) converge to wr in C2.(X\ Null(a)) ast — T O

CKwOa

4.3. A conjectural uniform bound for the potential

We now mention a conjecture raised explicitly by Zhang [91, Conjec-
ture 5.1]:

CONJECTURE 4.12. — For every finite time solution of (4.1), there is a
constant C' > 0 such that
on X x [0,T).

Note that we do not necessarily assume that the singularity is non-
collapsed. Consider now the following conjecture, which is not about the
Kéhler-Ricci flow.

CONJECTURE 4.13. — Let X be a compact Kaihler manifold and [o] a
nef (1,1) class such that [a] + Ae1(X) s a Kahler class for some A > 0.
Then a closed positive current with minimal singularities in the class [a] has
bounded potential.

The condition that a closed positive current with minimal singularities in
the class [a] has bounded potential, is equivalent to the following statement

(which does not involve currents, and can be taken as the definition in these
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notes): there is a constant Cy > 0 such that for every ¢ > 0 there exists
ne € C*®(X,R) such that o + /—199n. > —ewy and supy |n:| < Cy. The
equivalence follows immediately from Demailly’s regularization theorem for
closed positive (1,1) currents [11]. In particular this condition holds if the
class [a] has a smooth semipositive representative.

Conjecture 4.13 is a transcendental (weak) version of the base-point-free
theorem [43], which implies that Conjecture 4.13 is true when X is projective
and [a] € (HYY(X,R)NH?(X,Q))®R =: NS (X,R). In fact, in this case the
class [a] even has a smooth semipositive representative, and Tian conjectures
in [72] that this is the case also in the setting of Conjecture 4.13.

Interestingly, these two conjectures are equivalent:
PROPOSITION 4.14. — Conjectures 4.12 and 4.13 are equivalent.

Proof. — Assume Conjecture 4.12. Given [a] a nef class such that [o] +
Acq(X) is a Kéahler class, fix a Kahler metric wp in this class. Since Conjec-
ture 4.13 is trivial if [«] is K&hler, we may assume that [o] is on the boundary
of the Kéhler cone. Then the Kahler-Ricci flow (1.1) starting at wp has a so-
lution defined on the maximal time interval [0,7) where T' = ﬁ We choose
the representative @ = wy — T Ric(wyp) of the class [a], and as before we let
@ = #((T — t)wo + ter) and x = 7 (v — wp). Since we know that o(t) < C
on X x [0,7T), we get a uniform C° bound for ¢(¢), independent of . Then

a+vV—=190p(t) = & +V—100p(t) + (T —t)x = w(t) + (T —t)x > (T —t)x,

and (T — t)x goes to zero smoothly as ¢t — T. This proves that a closed
positive current with minimal singularities in the class [«] has bounded po-
tential.

Conversely, assume a closed positive current with minimal singularities
in the class [a] has bounded potential, and consider a solution of (1.1) with
a singularity at time 7' < co. After writing the flow as (4.1) as before, we
compute for any € > 0

0
(- 2) (o =064 00) 4 lip =t +-n0) — )
= try ) (@ + ewo + V—190n.) > 0,

and so by the minimum principle (together with 1. < C, independent of ¢)
we obtain

((p+ (T —t)p+nt) +e(p—tp+nt) —n) = —C,
or in other words

(L4 e)p+ (T —t—ct)p>n. —C > —C,
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using that 7. > —C, independent of €. We can then let ¢ — 0, and recalling
that ¢ < C, we finally obtain ¢ > —C on X x [0,T)). a

The following can be viewed as partial progress towards Conjecture 4.12
(which would be the same statement with v = 0).

PROPOSITION 4.15. — For every v > 0 there is a constant C,, > 0 such
that
¥ = WP - CIM
on X x [0,T).
Proof. — Since the class [a] is nef, for every v > 0 there is a smooth

function p, such that a+ \/—lﬁgpy > —rewg, where ¢ is as in Theorem 4.9.
Then away from Null(a)) we have

a+V—=100(v + (1 —v)p,) = viewp.

As in (4.4) it follows that

Ve

G +V=100(vp + (1 — v)p,) = 5 wo, (4.5)

on X\ Null(«), provided t € [T — 6, T + §], for some 6 > 0. For simplicity
write ¥, = vi) + (1 — v)p,, and let

Q=p— v, + At
where A > 0 is a constant to be determined. The function @ is smooth on
(X\ Null(a)) x [0,T), equal to +00 on Null(«), and is bounded below on X

for each fixed ¢ € [0,T). Therefore @ > —C holds on X x [0,T — 4], for some
uniform constant C.

Our goal is to show that in fact Q@ > —C on X x [0,T). Given T" €
(T — 4, T) suppose that the minimum of @ on X x [T’ —4§,T"] is achieved at a
point (z,t), with t € (T — 6, T']. We must have z ¢ Null(«), and so at (z,t)
we have, using (4.5),

05 99 _ log (@ + V=109, + V=100Q)"
ot Q
> log (wt + vV ;21381/),,) + A

>log(y2€;0>—|—A>—C+A>O,

provided we choose A > C. This contradiction shows that the minimum of
Q on X x [T — 4,T'] is achieved at time T — §, where we have Q > —C.
Since T < T was arbitrary, we conclude that @ > —C on X x [0,T'), which
is what we wanted to prove. (|
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4.4. Expected behavior at noncollapsed finite time singularities

Next, we discuss what is expected to hold in the case of finite time non-
collapsed singularities. Recall that in this case the limiting class [a] = [wo] —
2nTc1(X) is nef and big (i.e. [y o™ > 0), and that singularities form precisely
along the proper analytic subvariety Null(a) C X, by Theorem 4.5.

CONJECTURE 4.16. — Let X be a compact Kaihler manifold and [o] a
nef and big (1,1) class which is not Kihler and such that [o] + Ac1(X) is a
Kdhler class for some A > 0. Then every irreducible component of Null(«)
is uniruled.

If X is projective and [a] € N.S1(X,R) this follows from the base-point-
free theorem [43] together with [42, Theorem 2]. This conjecture is not hard
to prove when n = 2, see [68, 3.8.3].

An even stronger statement, which is true in the projective case, is this:

CONJECTURE 4.17. — Let X be a compact Kihler manifold and [a] a
nef and big (1,1) class which is not Kdihler and such that [o] + Aep(X) s
a Kdahler class for some A > 0. Then there is a bimeromorphic morphism
m: X =Y onto a normal Kihler space Y such that Exc(n) = Null(«) and
[a] = 7*[wy] for some Kdhler class [wy] on'Y.

If this is the case, then m*wy is a smooth nonnegative representative of
[a]. This conjecture is easy to prove when n = 2 (see again [68, 3.8.3]), and
when n = 3 the recent results in [40] show that this holds in many cases,
but it seems that more work is needed to prove this in general when n = 3.

In general the singularities of Y may be very bad, and it may not be possi-
ble to define a solution of the Kéhler—Ricci flow on Y, even in a weak sense. In
this case it is expected (see [66, 60, 48]) that there is another normal Kéhler
space Y’ bimeromorphic to X, with Kahler metric wy+ and with reason-
able singularities, such that the metric completion of (X\ Null(«),wr) (the
smooth limit provided by Theorem 4.3) is isometric to the metric completion
of (Y., wy), and so that the Kéhler-Ricci flow can be defined starting at
wy- (in a weak sense, cf. [18, 66]), and that the whole process is continuous in
the Gromov—Hausdorff sense. The only case when this has been established
is when n = 2, by Song—Weinkove [67, 69].

4.5. Expected behavior at collapsed finite time singularities

Lastly, we discuss what is expected to hold in the case of finite time
collapsed singularities. In this case the limiting class [a] = [wo] — 27T ¢1(X)
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is nef but not big, ie. [ v a" = 0, and we know that singularities form
everywhere on X, by Theorem 4.5.

We will say that the manifold X admits a Fano fibration if there is a
surjective holomorphic map f : X — Y with connected fibers, where Y is
a compact normal Kéhler space (the reader may wish to assume that Y is
a compact Kéhler manifold) with 0 < dimY < dim X and such that for
every fiber F of f we have that —Kx|r is ample. In this case the generic
fiber of f is a Fano manifold of dimension dim X —dim Y, but there may be
some singular fibers. The simplest example of a Fano fibration is when Y is
a point, and X is a Fano manifold. Other simple examples are obtained by
taking X = F' XY where F is a Fano manifold and Y is any compact Kéahler
manifold.

CONJECTURE 4.18 ([83]). — Let X™ be a compact Kéihler manifold.
Then there exists a Kahler metric wg such that the Kahler—Ricci flow (1.1)
develops a finite time collapsed singularity if and only if X admits a Fano
fibration f: X — Y. In this case, we can write

[OJ()] = )\Cl (X) + f*[wy}, (46)

for some Kdhler metric wy on'Y and some A > 0.

The “if” direction is elementary, thanks to (4.6). Indeed, the evolving
class along the flow is

[w(t)] = [wo] — 27ter (X) = fHlwy] + (A = 27t)er (X)

- <1 - 2)\“) [wo] + ?f*[wyl

For 0 <t < % this is a sum of a Kahler class and a nef class, and so it is
Kéhler, while for ¢t = 2 this equals f*[wy] which is nef but not Kahler. It
follow from Theorem 3.1 that the maximal existence time is T = % < 00
and the limiting class is f*[wy]. Since we have [, (f*wy)™ = 0, it follows

that the flow is collapsed at time 7.

The “only if” direction is known if X is projective and [wo] € NST(X,R),
thanks to the base-point-free theorem and the rationality theorem [43]. It is
also known when n < 3 thanks to [83] (which uses as a key ingredient [39]).

Assuming Conjecture 4.18, it is then expected that the solution w(t) of the
Kéhler-Ricci flow (1.1) will converge to f*wy as t — T, in a suitable sense,
for some Kéhler metric wy on Y. This is proved in [62] when f: X — Y
is a submersion, with fibers projective spaces, but the convergence is rather
weak. The difficulty in attacking this problem is that in general wy will not
be a “canonical” metric on Y (e.g. Kahler—Einstein).
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Lastly we mention a related conjecture, raised by Tian [71, Conjec-
ture 4.4] (see also [61]).

CONJECTURE 4.19. — Let (X™,wp) be a compact Kihler manifold, let
w(t) be the solution of the Kihler—Ricci (1.1), defined on the mazimal time
interval [0,T) with T < co. Then ast — 0 we have

diam(X, w(t)) — 0, (4.7)

if and only if
[wo] = Ac1 (X), (4.8)
for some A > 0.

Condition (4.7) is equivalent to assuming that (X,w(t)) converges to a
point in the Gromov-Hausdorff topology, and is called “finite time extinc-
tion”. Conjecture 4.19 predicts that finite time extinction happens if and only
if the manifold is Fano and the initial class is a positive multiple of the first
Chern class. The “if” direction follows from work of Perelman (see [56]), who
proved the stronger result that diam(X,w(t)) < C(T — t)?, assuming (4.8).
If [wo] € H?*(X,Q) (so X is projective), then Conjecture 4.19 was proved by
Song [61], and when n < 3 it was proved in [83].

Note that if (4.7) holds then the flow exhibits finite time collapsing at
time T'. Indeed, if this was not the case then the limiting class [a] would
be nef with fX a™ > 0, and so Theorem 4.3 shows that on the open set
X\Null(«) we have smooth convergence of w(t) to a limiting Kéhler metric
wr, and so the diameter of (X, w(t)) cannot go to zero. In fact, it is proved
in [83] that in general Conjecture 4.18 implies Conjecture 4.19.

5. Long time behavior
5.1. Kahler—Ricci flows with long time existence

Let (X,wp) be a compact Kéhler manifold and let w(t) be the solution
of the Kéhler-Ricci flow (1.1) starting at wp, defined on the maximal time
interval [0,T). As we saw in Corollary 3.2, we have T' = oo if and only if
—c1(X) is a nef class (i.e. —c;(X) € Cx). Since ¢;(Kx) = —c1(X), in this
case we also say that the canonical bundle K x is nef, or that X is a (smooth)
minimal model. In this section we will always assume that this is the case.

The goal of this section is to analyze the behavior of the flow as t — oo,
and more specifically to investigate the convergence properties of the metrics
w(t)

w(t), or of the rescaled metrics ==, as t — oo.

Chronologically, the first result along these lines is the following.
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THEOREM 5.1 (Cao [6]). — If c1(X) = 0 in H?*(X,R) then as t — oo
the metrics w(t) converge smoothly to the unique Ricci-flat Kdhler metric
Weo @0 the class [wp).

For a detailed exposition of the proof of this result, see for example [68,
Theorem 3.4.4]. In fact the convergence is exponentially fast in all C* norms,
see e.g. [82, Proof of Theorem 1.5] and [54]. Next, we have:

THEOREM 5.2 (Cao [6], Tsuji [84]). — If —c1(X) € Cx then ast — o0
the rescaled metrics @ converge smoothly to the unique Kdhler—Finstein
metric wo, on X which satisfies Ric(weo) = —woo -

More generally, we have:

THEOREM 5.3 (Tsuji [84], Tian-Zhang [73]). — If —c1(X) € Cx and
Jx(=cr(X))* > 0, then there exists a Kihler-Einstein metric wo on
X\ Null(—¢1 (X)) which satisfies Ric(wso) = —weo, such that for any initial
Kdhler metric wq, the rescaled metrics # converge smoothly on compact
subsets of X\ Null(—c¢1 (X)) to wee as t — oo.

Further properties, which we will not discuss, were established in [34, 69,
73, 74, 89].

We now give the proof of Theorem 5.3, which will also give as a special
case Theorem 5.2, where we have that Null(—c; (X)) = 0. The uniqueness
statement in Theorem 5.2 is stronger than the one in Theorem 5.3, but its
proof is much easier, and is left as an exercise.

w(t)

Proof. — Since the convergence is for the rescaled metrics ==, it is con-
venient to renormalize the flow as follows:
0
—w(t)=—Ri t)) —w(t
£r(t) = = Ric(w() — () )
w(O) = Wo
Note that if @(s) solves (1.1) then w(t) = % solves (5.1) with the new

time parameter ¢ = log(l + s), and conversely if w(t) solves (5.1) then
@(s) = e'w(t) solves (1.1) with the new time parameter s = e — 1. It follows
that (5.1) is also solvable on [0,00), and that the goal is now to show that
the solution w(t) of (5.1) satisfies

w(t) = Woo, (5.2)
in C22(X\Null(—¢1(X))) as t — oo, and that the limit wy is Kéhler—

loc
FEinstein and independent of the initial metric wy.

The cohomology class of the solution w(t) of (5.1) is
[w(t)] = e two] — (1 — e )27y (X).
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Fix now any closed real (1, 1) form 1 cohomologous to —27¢y (X), a smooth
positive volume form €2 with Ric(Q2) = —n, and let

O = e two + (1 —e .

These are reference forms (not necessarily positive) cohomologous to w(t).
We claim that (5.1) is equivalent to

2 (1) = tog GEVION _
#(0) =0 (5:3)
& + v/ —109¢(t) > 0

Indeed, if ¢(t) solves (5.3) and we define w(t) = &; + /—199p(t), then

D olt) = @+ T0B(1)
= —&; + 1 — Ric(w(t)) + Ric(Q) — vV=199p(t)
= —Ric(w(t)) — w(?),

and (5.1) holds. Conversely, if w(t) solves (5.1), we define (¢) by solving the
ODE

%cp(t) = log w(é)n —(t), ¢(0)=0,

and compute
%(et(W( t) — @ — V=109p(t))) = €' (~ Ric(w(t)) + Ric(w(t))) = 0,

and since (e'(w(t) — & — v/—1909¢(t)))|t=0 = 0, we conclude that w(t) =
Q¢ +/—100¢(t) for all t, and (5.3) holds.

We now apply Theorem 4.9 and obtain an upper semicontinuous L'
function ¢ : X — R U {—oo}, with supy ¢ = 0, which equals —oco on
Null(—¢; (X)), which is finite and smooth on X\ Null(—¢; (X)), and such
that

1N+ V—100¢ > ewy,
on X\ Null(—¢; (X)), for some € > 0.

We remark that in fact in this case (since [n] = 2meq (Kx)) the result of
Theorem 4.9 was already known before, thanks to [52, 84] (this is known as
“Tsuji’s trick”). Also, in the setting of Theorem 5.2, since —¢1(X) € Cx, we
can choose 7 to be a Kéhler form, and v identically equal to 0, and in this
case the forms @; are all Kéhler.

First, we show that
p(t) < C, (5.4)
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on X x [0,00). This is a simple consequence of the maximum principle since
at any maximum point of ¢ (for ¢ > 0) we have
2 3y 4/ —100¢(t))"
0<—<p:10g(wt+ p)"
ot Q
using that at a maximum point @; > @; +v/—199¢(t) > 0, and we are done.
Next, we show that

djn
o(t) < log ﬁt —o(t) < C — (1),

G(t) < C(1+ 1), (5.5)

on X x [0,00). Indeed we compute

0 . N
(5~ 4) #(0) = pt0) =+ tragoin,
t
0 . ; _ _
(5~ ) 9101 = =9(0) — tragon + e

(5~ ) (6 = D910 = o10) = ) = ~tr0 <0

and so the maximum principle gives

(e" = 1)p(t) — p(t) —nt <0,

which together with (5.4) gives (5.5) for t > 1 (and it is clear that (5.5) holds
for 0 <t <1).

Next, we show that there is a constant C' > 0 such that
o(t) +¢(t) =2 ¢ = C, (5.6)
on X x [0,00). Consider the quantity
Q= p(t) + o(t) — 9.

The function @ is lower semicontinuous (hence bounded below) and it ap-
proaches +oo as we approach Null(—c; (X)), and so it achieves a minimum
at (x,t), for some ¢ > 0 and = ¢ Null(—¢; (X)), and at this point we have

8 p—
0= <6t N A) Q = tro (N + V=100Y) —n > etrymywo — n
1
>n5< -0 ) —nZC_le_M_n7
w(t)"

t
and so ¢(t) + ¢(t) > —C, which implies that @ > —C since 1 < 0, and this
shows (5.6).

Next we show that
tro,w(t) < Ce Y, (5.7)
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on X X [0,00). For this, we compute using (3.24)

0 ;
(5~ 2) Gortrass(t) = Atolt) + 2(0) - 0)
< Ctrywo + An — Atryqy (n + V—1900)
< —trw(t)wo + C,

on X\ Null(—¢; (X)), provided we choose A > 0 large enough. Therefore at
a maximum of this quantity (achieved at (z,t¢) with ¢ > 0, and necessarily
with 2 ¢ Null(—c¢1(X))), we have

try,(wo < C.
We now use the elementary inequality

(trw(t)wo)”_l . w(t)™
(n—1)! wl

tryw(t) <

which can be proved by choosing coordinates so that at a point wq is the
identity and w(t) is diagonal with eigenvalues \; > 0, so that it reduces to

et (2] (1),

which is obvious since each term on the LHS appears in the RHS, and all
other terms on the RHS are positive. We conclude that at our point of
maximum we have

wt)" _ pperem
Wy Wy

using (5.4) and (5.5). Combining this with (5.6) it follows that
log try,,w(t) — A(p(t) + ¢(t) —¢) < C,

at the maximum and hence everywhere, and this (using (5.4), (5.5) again)
implies (5.7). But note that

w(®)™
W

tr,,w(t) < C

<G,

> O lerO+e) > O le¥,

using (5.6), and so given any compact subset K C X\ Null(—c;(X)) there
is a constant Ck such that

Crlwo < w(t) < Crwo, (5.8)
holds on K X [0,00). The higher order estimates in Theorem 3.11 give that

lw(®ller (x,go) < Cr ks
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forallt > 0,k > 0, up to shrinking K slightly. These estimates in turn imply
that the function

Ay p(t) = try,w(t) — try,or,
is uniformly bounded in C*(K,wp) for all k& > 0. But (5.4), (5.5) and (5.6)
imply that ¢(t) is uniformly bounded on K (by a constant that depends
on K but is independent of ¢) and elliptic estimates (as in the proof of
Theorem 3.6) give

||80(t)||ck(1(,wo) < Ckoi, (5.9)

for all ¢ > 0,k > 0, up to shrinking K again. Now for ¢t > 1, (5.5) gives
#l0) < Cte,

and so
0
E(w(t) +Ce (14 1)) = ¢(t) — Cte™" < 0.
The function ¢(t)+Ce*(14t) is thus nonincreasing and uniformly bounded
from below on compact subsets of X\ Null(—¢; (X)), and so as t — oo the
functions ¢(t) converge pointwise on X\ Null(—c;(X)) to a function ¢,
which thanks to (5.9) is smooth and in fact ¢(f) — ¢ in
C2 (X \ Null(—¢1(X))). Also (5.8) shows that we := n + V/—1900¢ is a
smooth Kéhler metric on X\ Null(—¢; (X)). The flow equation (5.3) implies
that $(t) also converges smoothly to some limit function. Now, since ¢(t)
converge smoothly to ¢, on compact subsets of X\ Null(—¢; (X)) it follows
that given any x € X\ Null(—c; (X)) there is a sequence ¢; — oo such that
o(x,t;) — 0. But since p(t) converges smoothly on compact sets to some
limit function, it follows that ¢(t) — 0 in C22,(X\ Null(—c1(X))). Taking
then the limit as t — oo in (5.3) we obtain

n

w
0=log == — 00
%6 ¥
on X\ Null(—¢;(X)). Taking /=193 of this, we finally obtain
Ric(weo) = =1 — V=100p00 = —woo-

Lastly we show that the limit we, is independent of the initial metric wse,
following [73]. The first observation is that since the functions e¥()+%(t) are
uniformly bounded (thanks to (5.4), (5.5)) and converge to e¥> pointwise
a.e. on X, the dominated convergence theorem implies that

im [ ee®+emq — / #=Q),
t—o0 X X

where we extend ¢, by zero on Null(—¢; (X)), but at the same time

lim [ e#OOQ = lim [ wit)" = / (—2mc1(X))" >0,
X X

t—o0 X t—o00
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and so [ + €90 is independent of the initial metric wy. If wy is another
Kéhler metric on X, consider the flow (5.1) starting at wy + wj), which is
equivalent to the parabolic complex Monge-Ampere equation

Oy ++/—100¢' (t) > 0,

where the reference forms are now

O = e Hwg + wy) + (1 — e n=2ad + eftwé.

Therefore the difference p(t) — ¢ (t) satisfies
9 ey e (@ —eTtwy /=109 (1) + V=100((t) — ¢’ (1)))"
57 (P(t) = (t)) = log Gl V1005 (0)"
—(p(t) = ¢'(1))

(o= ¢)(0)=0
@, +V=1909((t) — ¢ (1)) > 0,
and at a maximum of () — ¢’(t), achieved at time ¢ > 0, we obtain
() —¢'(t) <0,
and so p(t) < ¢'(¢) holds for all ¢ > 0. Passing to the limit we obtain
Poo < Pl
on X\ Null(—¢; (X)) and since, as remarked earlier,

/e“"*”OQ:/ e“’:wQ,
X X

this implies that po = ¢, a.e. on X, and therefore everywhere on
X\ Null(—¢; (X)) where these functions are smooth.

This shows that the limits of the flow starting at wy and wy + wy, are the
same, and by symmetry we obtain the same statement for wy and wy. (|

5.2. Semiample canonical bundle

Combining Theorems 5.1, 5.2 and 5.3, we see that the only case left to
study (when T' = 00) is when —¢; (X) € 0Cx, [ (—c1(X))™ = 0, and —c1 (X)
is not the zero class. This is the hardest case, and in general not much
is known. However, a widely-believed conjecture in algebraic geometry (or
rather, its direct generalization to Kéhler manifolds), called the Abundance
Conjecture, predicts that if X is a compact Kéhler manifold with Kx nef,
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then Kx is semiample. This means that there exists ¢ > 1 such that for
every given point x € X we can find a section s € HY(X, Kg?tz) such that
s(z) # 0 (ie. K is base-point free).

From now on, inspired by the Abundance Conjecture, we will make the
assumption that Kx is semiample (which automatically implies Kx nef, see
below). Then it turns out that one can say a lot about the behavior of the
flow. The reason is that using sections of K ??Z we may define a holomorphic
map f : X — CPY, where N = dim H(X, K¥) — 1, by fixing a basis
{s0,-..,8n} of HO(X, Kg?é) and mapping a point € X to the point [so(z) :

-+ sn(z)], which is a well-defined point in CPY because these sections
have empty common zero locus, by assumption. Also by definition of f we
have that f*Ogpy (1) = K$'. In particular, if wpg denotes the Fubini-Study
metric on CPY, then %f*wFS is a smooth semipositive (1,1) form which
represents —c; (X ). We conclude that —c;(X) € Cx, i.e. that Kx is nef.

By the Proper Mapping Theorem (see [30, p. 34]), the image f(X) is an
irreducible analytic subvariety Y of CP" | i.e. an irreducible algebraic variety.
Provided we replace ¢ by a suitably high multiple of it, we have that the
map f: X — Y has connected fibers, Y is normal (see [50, Theorem 2.1.27,
Example 2.1.15]) and the dimension of Y equals the Kodaira dimension x(X)
of X (see [50, Theorem 2.1.33]).

We now split into cases depending on the Kodaira dimension x(X).

5.3. The case k(X) =0

The first case is k(X) = 0, where we need the following well-known
lemma.

LEMMA 5.4. — Let X be a compact Kdihler manifold with Kx semi-
ample. Then the following are equivalent:

(a) w(X) =0
(b) e1(X) =0 in H2(X,R)
(c) There exists k > 1 such that K$* = Ox is holomorphically trivial.

In fact, without the assumption that Kx be semiample, it remains true
that (b) < (¢) = (a), while the implication (a) = (b) is false. In this case,
the only hard implication is (b) = (c), and we refer the interested reader
to [76], for example.

Proof. — The implication (c¢) = (b) is trivial. First we show that (a) =
(c¢). The assumption that x(X) = 0 is equivalent to the fact that
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dim HO(X, K¢¥) < 1 for all k > 1, and is equal to 1 for at least one value
of k. Choose k large enough so that Kg?k is base-point free. Then we must
have dim H(X, K¢*) = 1, and if s € H(X, K¢") is a nontrivial section
then necessarily s is never vanishing. This means that K;e;k = Ox is holo-
morphically trivial.

Next, we show that (b) = (a). Fix a smooth metric h on Kx and a
Kéhler metric w on X. The curvature Ry, of h is a closed real (1,1) form
cohomologous to ¢1(Kx) = —c1(X) =0, so

/ try, Rpw" = n/ W PAR, =0,
X X

and so we can find a smooth function u such that A, u = tr,Rj. Therefore
the smooth metric b = e¢“h on Kx has curvature R; = Rj, — /—190u
which satisfies tr,R; = 0. Given any k > 1 and any s € HO(X, Kg¥), let
|s|? be its pointwise length squared with respect to the metric h*. Then a
straightforward calculation gives

A,ls]? = |Vs|* — k|s|*tr, R;, = |Vs]* >0,

where V is the Chern connection of the metric h* on Kg?k . By the strong
maximum principle this implies that |s|? is constant, and so |Vs|? is identi-
cally zero, i.e. the section s is parallel. This implies that dim H°(X, Kg?k) <
1, because if we have two global sections s, s2, given a point x € X there
exists A € C such that s1(x) = As2(z) (up to switching s; and s3), and
since they are both globally parallel we must have s; = Aso globally. We
have therefore shown that x(X) < 0 (without using that Kx is semiample).
Since Kx is semiample, we have H?(X, K}egé) # 0 for some ¢ > 1, and so
k(X)=0. O

So, under our assumption that Kx is semiample, if x(X) = 0 then The-
orem 5.1 applies.

5.4. The case k(X)=n

The second case is when k(X) = n = dim X. Recall that since K x is semi-
ample, we have a holomorphic map f : X — CPY such that f*Ogpn (1) =
K}G?g, for some ¢ > 1.

If, as before, we let Y = f(X), which is an irreducible algebraic variety of
dimension n, then the map f : X — Y has connected fibers and the generic
fiber has dimension 0, i.e. it is a bimeromorphic morphism. It follows that
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we have

ey = [ atom = [ o)

=ﬂ%/IMOWAUWW>m
Y

since the last term is (up to a positive constant) equal to the volume of the
regular part of Y with respect to the restriction of wgg, the Fubini-Study
metric on CP?.

Therefore, either we have —c1(X) € Cx, in which case Theorem 5.2 ap-
plies, or otherwise we have —ci(X) € dCx and [y (—ci(X))™ > 0, and
Theorem 5.3 applies.

5.5. The case 0 < k(X) <n

The third and last case to study is thus 0 < x(X) < n. Let Ysing be
the singular locus of Y, which is a proper analytic subvariety of Y, and
Yieg = Y\Yging its regular locus, so Y,.4 is a connected complex manifold of
dimension (X). Also, f~!(Ysing) is a proper analytic subvariety of X, and so
[ X\f7 (Ysing) — Yreg is a surjective holomorphic map between complex
manifolds, with compact connected fibers. Let S’ C Y be the union of Y5,
together with the critical values of f : X\ f~!(Ysing) = Yrey (i-e. the images
of all points € X\ f~!(Ysing) such that df, is not surjective). Then S’ is a
proper analytic subvariety of Y, S = f~1(S’) is a proper analytic subvariety
of X,and f: X\S — Y\S' is a (surjective) holomorphic submersion between
complex manifolds, and all the fibers X, = f~!(y),y € Y'\S’ are connected
compact complex manifolds of dimension equal to n — k(X). Informally, we
will refer to S as the set of singular fibers of f, and to the fibers X, =
f~Yy),y € Y\S' as the smooth fibers, although this is not strictly speaking
correct.

Recall that the map f has the property that K¢¢ 2 f*Ogpn (1), which
implies that for every y € Y'\\S" we have K§Z| x, = Ox,. However, since f is
a submersion in a neighborhood of X, we have the adjunction-type relation
Kx, = Kx|x, (see Lemma 5.6 below), and so it follows that Kg?f = Ox,,
and so in particular ¢;(X,) = 0 in H%(X,,R). This means that the smooth

fibers are Calabi—Yau manifolds, and so X is a fiber space over Y with generic
fiber a Calabi-Yau (n — x(X))-fold.

So we have seen that assuming that Ky is semiample has provided us with
a fibration structure on X (and in fact, one can also view the existence of this
fibration as being an equivalent statement to the Abundance Conjecture).
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This is a major advantage over the “general” case when one only assumes
that Kx is nef (i.e. T = 00).

Our goal is the following result, which generalizes earlier work of Song—
Tian [63, 64] and Fong—Zhang [22] (see also [75]):

THEOREM 5.5 (Tosatti-Weinkove-Yang [81], Tosatti-Zhang [82]). —
Let (X,wp) be a compact Kihler manifold with Kx semiample and 0 <
K(X) <mn, andlet f : X =Y be the fibration we just described. Let w(t),t €
[0,00) be the solution of the Kihler—Ricci flow (1.1) starting at wo. Then as
t — oo we have

w(t)

in CP _(X\S), where wy is a Kihler metric on Y\S" which satisfies
RiC(wy) = —wy + wwp, (5.12)

and wwp s a smooth semipositive (1,1) form on Y\S’. Furthermore, for
any given y € Y\S" we have

w(t)|x, — wy, (5.13)

in C*(X,), where wy, is the unique Ricci-flat Kdihler metric on X, in the
class [wol|x, -

Lastly, if S =0 (i.e. Y is smooth and f is a submersion) then (X, @)
converge to (Y,wy) in the Gromov—Hausdorff topology, as t — oc.

The Weil-Petersson form wwp measures the variation of the complex
structures of the smooth Calabi—Yau fibers, and it is identically zero when-
ever all the fibers X, are biholomorphic to each other (see Proposition 5.7).

In the setting of Theorem 5.5, Song—Tian [63, 64] had earlier proved
that (5.11) holds in the weak topology of currents, in the C) _ topology of
Kaéhler potentials, and when n = 2 also in the C’ﬁ)’? topology of Kéhler
potentials (for 0 < o < 1). This was then extended to all n in [22] (cf. [75]),
but note that this convergence falls short of the one obtained in Theorem 5.5.
As we will see in Theorem 5.24, if the smooth fibers X, are tori (or finite
quotients of tori) then in fact (5.11) holds in the C2 (X\S) topology thanks

to [22, 28, 31, 38, 82], and this is expected to hold in general.

We also mention that in the setting of Theorem 5.5, it was proved in [65]

that the scalar curvature of @ remains uniformly bounded. It is also con-

jectured that in this same setting, assuming S # (), then (X, @) converge
to the metric completion of (Y\S’,wy) in the Gromov-Hausdorff topol-
ogy, as t — oo. This is completely open even in the simplest case when
n = 2,k(X) = 1, and in fact we do not even know whether these metrics
have uniformly bounded diameter, see Section 6.
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5.6. General facts about holomorphic submersions

Before we begin the proof of Theorem 5.5 we need to discuss a few results
about holomorphic submersions. For simplicity of notation we will write
m = k(X). To avoid excessive technicalities, we will assume that S is empty,
or in other words that Y is a smooth projective manifold and the map
f: X = Y is a submersion. In the general case one argues along the same
lines, but with the extra complication of having to introduce a suitably
chosen cutoff function in essentially all the estimates (see [81] for details).
The only estimates which are substantially harder to obtain are the uniform
C° bounds for ¢ and ¢ (which in general are weaker than those obtained
in Lemma 5.11). Also, by assuming that S = ), we will in fact be able to
conclude that the convergence in (5.11) and (5.13) is exponentially fast.

Note that the fibers X, (which are now all smooth) are all diffeomorphic
to each other (by Ehresmann’s Theorem [46, Theorem 2.4], which implies
that f is a smooth fiber bundle), but in general are different as complex
manifolds, so the term wwp will not be zero in general. In other words, f is in
general not a holomorphic fiber bundle (by the Fischer—Grauert theorem [21],
f is a holomorphic fiber bundle if and only if all fibers X, are biholomorphic
to each other). However, if dim X, = 1, so that the fibers are elliptic curves,
then necessarily f is a holomorphic fiber bundle, since elliptic curves are
classified by their j-invariant, which in our case defines a holomorphic map
j Y — C which must be constant since Y is compact.

A useful fact, which we will use extensively, is that on the total space
of a holomorphic submersion we can always find local holomorphic product
coordinates.

LEMMA 5.6. — Let f: X™ = Y™ be a holomorphic submersion between
complex manifolds. Then given any point x € X we can find an open set
U > z and local holomorphic coordinates (z1,...,2,) on U and (Y1,-.-,Ym)
on f(U) such that in these coordinates the map f is given by (21,...,2,) —
(21, -y 2m). If [ is proper with connected fibers, then the canonical bundle
of every fiber X,, = f~1(y) satisfies Kx, = Kx|x,-

Proof. — The existence of local holomorphic product coordinates is a
simple consequence of the implicit function theorem for holomorphic maps
(see e.g. [46, p. 60]).

If f is proper with connected fibers X, = f~!(y), then the adjunction
formula ([41, Proposition 2.2.17]) gives

Kx, = Kx|x, ®det(Nx, /x),
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where Nx, ,x is the normal bundle of X, inside X. However this normal
bundle is trivial, because its dual is globally trivialized by

Fr(dyr A Adym),

where (y1,...,Ym) are local holomorphic coordinates on Y near y. O
In particular, using these local coordinates, we can view (z1,...,zm) as
“base directions” and (zy41, - - ., 2n) as “fiber directions”, a fact that we will

use very often.

First, we define the Weil-Petersson form wwp. Recall that by construc-
tion of the map f we have K}egf = Ox,. Let ¥ be a local nonvanishing
holomorphic section of f*(Kﬁ?fY), ie. a family ¥, € HO(Xy,Kg?f), for y in
some small open set U in Y, such that each ¥, is never vanishing on X,

and the forms W, vary holomorphically in y. Here Kx/y = Kx ® (f*Ky)*
denotes the relative canonical bundle. On U we then define

wwp = —V/—190log ((ﬁ)“””* / <%A%>%>,

Xy

where (v/—=1)"=™)° (¥, A ¥,)* is a smooth positive volume form on X,
defined as follows: in local holomorphic coordinates (21, ..., Zn—m) on X, we
can write
U, = F(y,2)(dzy A~ Adzy_m)®,
where F' is a nonvanishing holomorphic function, and we have
U, AT, = |F(y,2)2(dz1 A+ Adzym AdZL A - AdZn ) ®,

(W, AT, = |F(y,2)|Tdz A Adzp_m AdZL A~ AdZp_m,

(V=) (0, AT = |y, 2)|F (V1) T dz AdE A
o ANdzp_m ANdZp—m,
and this is well-defined independent of the choice of coordinates. Note also

that the volume form (yv/=1)"=™%(¥, A ¥,)7 on X, is Ricci-flat, in the
sense that

V—108log ((\/f1)<"*m>2(\1/y AE)%) = %\/—laglog IF2=0, (5.14)

because F is a never-vanishing holomorphic function. Furthermore, the Weil-
Petersson form wwp is well-defined globally on Y, because if ¥ is another
lf)cal nonvanishing holomorphic~ section of f*(KE?fYL defined on an open set
U CY, then for all y € UNU (assuming this is nonempty) we have that
¥, and ¥, are both nonvanishing sections of the trivial bundle K}eéf, and so
there is a nonzero constant h, such that \i/y = hy¥, on X,. Since ¥, and \i/y
vary holomorphically in y, then so does hy, i.e. it defines a local nonvanishing
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holomorphic function h on U N U. But we have v/—1901og|h|? = 0, and so
wwp is well-defined globally on Y. Also, we may take £ to be the smallest
positive integer such that Kg?f = Ox,, holds (since if we use multiples of this

£, we obtain the same Weil-Petersson form).

Although we will not use the following proposition, it is a useful fact to
keep in mind.

PROPOSITION 5.7. — Let f: X — Y be a holomorphic submersion be-
tween compact Kahler manifolds, with connected fibers, such that K?;Z > f*L
for some £ > 1, where L — Y is a holomorphic line bundle. Then the Weil-
Petersson form wwp on 'Y is semipositive definite, and identically equal to
zero if and only if f is a holomorphic fiber bundle.

Proof. — The statements we need to prove are local on Y, so we may
assume that Y is a ball in C™, where L is trivial and so Kg?e is also trivial. We
may also assume that ¢ is the smallest positive integer such that this holds.
We can then find an ¢-fold unramified connected covering 7 : X — X such
that K¢ = 7* K" is trivial, see e.g. [26, Lemma 4.6] (connectedness follows
from the fact that we took ¢ minimal). Then composing the map 7 with
f we obtam a holomorphlc submersion f : X — Y. Its Stein factorization
is X 5 Y 4 Y where Y is a connected complex manifold (since X is
connected), p is a holomorphic submersion with connected fibers, and ¢ is a
finite unramified covering of Y (see e.g. [25, Lemma 2.4]). Since Y is a ball
and Y is connected, we conclude that ¢ is a biholomorphism, and so we may
assume that f has connected fibers Xy which satisfy K %, = o X, The maps

Xy — X, are also {-fold unramified coverings, and the Weil-Petersson form
for f equals the one for f. Furthermore, f is a holomorphic fiber bundle if
and only if f is ([26, Lemma 4.5]).

Therefore we may assume that Kx, = Ox, . For every y € Y there is a
Kodaira-Spencer linear map p, : T,Y — H'(X,,, T1°X,) (see [46]), and the
Weil-Petersson form at y is equal to the pullback under p, of the L? inner
product on Hl(Xy,Tl’OXy) defined using harmonic forms with respect to
the Ricci-flat metric on X, in the class [wo]|x,, thanks to [70, Theorem 2]
or [24]. Therefore wwp is semipositive definite (see also [26, Lemma 1.8] for a
direct proof of this semipositivity), and identically equal to zero if and only
if all the Kodaira—Spencer maps p, are zero. But Serre duality, together with
Kx, = Ox,, gives H(X,, T"°X,) = H" (X, Q% )= H'"=1(X,), and
SO thls vector space has dimension independent of y. A theorem of Kodaira—
Spencer [46, Theorem 4.6] then implies that the Kodaira—Spencer maps are
all zero if and only if f is a holomorphic fiber bundle. O

It is instructive to see directly that if the map f is a holomorphic fiber
bundle then the Weil-Petersson form is identically zero. Indeed, in this case
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all the fibers are biholomorphic to a fixed Calabi—Yau manifold F' and we can
find local trivializing biholomorphisms f~(U) — U x F, over all sufficiently
small open sets U C Y, and using these we can then choose the forms ¥,
as above to be independent of y € U, equal to the pullback to U x F of a
fixed never vanishing section of K ?e. This way the integrals | X, (Ty A Fy)%

do not depend on y, and so wwp = 0.
We also have the following useful fact.

PROPOSITION 5.8. — Let f : X — Y be a holomorphic submersion be-
tween compact Kihler manifolds, with connected fibers, such that Kg?e = f*L
for some £ > 1, where L — 'Y is an ample line bundle. Then the class

—27mc1(Y) + [wwp],

is a Kdhler class on'Y .

Proof. — The assumption that f has connected fibers is equivalent to
f+Ox = Oy, and so the projection formula gives
FAKRY) = (f(Ky) @ K§°. (5.15)
But the assumption K?;Z > f*L implies
Ox, = K¢ |x, = K%y X,

and together with Lemma 5.6 we obtain K}eéf = Ox,,.

Therefore dimHO(Xy,KE?fY\Xy) = 1 is independent of y € Y, and
Grauert’s theorem on direct images [3, Theorem 1.8.5] shows that

F(BESy) =1, (5.16)

is a line bundle on Y. Since all the fibers of f have trivial K}‘?ﬁ, it follows
that

K3 = [ f.(KY) (5.17)
(see [3, Theorem V.12.1]). Indeed, note that

F I F(KR) = fKES,

thanks to the projection formula. If we denote by F = K}ef ® (f* f« (K}eég))*
the “error term”, then we have that f.E = Oy, and so H°(X,E)
H(Y, f«E) = C. Let e be a global trivializing section of f.FE, and let
s € H°(X,E) be the section which corresponds to e under this isomor-
phism. If s vanishes at a point z € X, then the restriction of s to the fiber
X{(z) is a holomorphic section of F|x, = Kg?f = Ok, the trivial bundle,
so s|x, is a holomorphic function which vanishes somewhere, and hence it
is zero since the fiber Xy, is compact. Therefore e vanishes at the point
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f(x), which is absurd. This shows that s is never vanishing, and so E is the
trivial bundle, and this proves (5.17).

From (5.15), (5.16) and (5.17) we conclude that

K= P(LEL ) @ K = F(U oK),  (518)

But we also have by assumption that K ©f >~ 1 and so
(Lo K$ e L*) =0y,
and pushing forward and using the projection formula we see that
I'eK$'=1p,

which is ample, and so ¢;(L) € Cy. By definition, the smooth form flwwp
is the curvature of a singular metric on L', and so [wwp] = ZFci(L'). We
obtain that

—2mc1(Y) + [wwp] =2mc1(Ky) + [wwp] = 2%01([1) € Cy,

as claimed. 0

5.7. Reduction to a parabolic complex Monge—Ampére equation

Since in Theorem 5.5 the collapsing is for the rescaled metric &7 we

t
again consider the normalized flow

9
ot
w(0) = wo

(t) = — Ric(w(t)) — w(t) (5.19)

The flow (5.19) is also solvable on [0, 00), and (5.11) is equivalent to showing
that the solution w(t) of (5.19) satisfies

w(t) = ffwy, (5.20)
in C°(X) as t — oo, and (5.13) is equivalent to the statement that
ew(t)|x, — wy, (5.21)

in C*(X,), where w, is the unique Ricci-flat Kéhler metric on X, in the
class [wo]|x,. In fact, since we assume that S = (), we will be able to show
that convergence in (5.20) and (5.21) is exponentially fast.

As usual, we would like to rewrite (5.19) as an equivalent parabolic com-
plex Monge—Ampére equation, but in order to obtain the convergence results
in Theorem 5.5, we have to make a very careful choice of reference metrics,
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and we have to first derive several preliminary results. The Kéhler class of
the evolving metric w(t) is now

[w(t)] = e wo] — (1 — e )27y (X).
Since the fibers X, are Calabi-Yau, thanks to Yau’s Theorem [88] for every

y € Y there exists a unique smooth function p, on X, with fX pywi ™ =0,
Y

and such that wo|x, ++/—1889p, = w, is the unique Ricci-flat Kéhler metric
on X, in the class [wo|x,]. Thanks to Yau’s a priori estimates for p, in [88],
we see that the functions p, depend smoothly on y, and so they define a
global smooth function p on X (see also [20, Lemma 2.1]). We define

WSRF = W + V —185p.

This is a closed real (1,1) form on X, which restricts to a Ricci-flat Kéhler
metric on all fibers X, of f. It was first introduced by Greene-Shapere—Vafa—
Yau [29] in the context of elliptically fibered K3 surfaces and “stringy cosmic
strings”. For every 7 Kéhler form on Y, we clearly have that f*n™ Awgpp' is a
smooth positive volume form on X. As a side remark, it would be interesting
to know whether wsrp is semipositive definite everywhere on X.

The following two propositions are due to Song—Tian [63, 64] (see also [75]).
PROPOSITION 5.9. — Given a Kdhler form n on'Y, then on X we have
V—=1001og(f*n™ A wirp') = —f* Ric(n) + f*wwp.

Proof. — We choose local product coordinates as in Lemma 5.6, which
we call (z1,...,2,) on U C X and (z1,...,2p,) on f(U) C Y. In these
coordinates we write

n=+v-1 Z nijdzi A dz;.
i,j=1

We choose a local nonvanishing holomorphic section ¥, of f.(KY /Y) as
before, with y € f(U), and define a smooth positive functlon on f(U) by

(V=D (W, AT

WERE |X

u(y) =

This is well-defined because both (y/—1)n=m)° (¥, AW,)7 and W3R X,
are Ricci-flat volume forms on X, (recalling (5.14)) and so their ratio is a
constant on X,. Then integrating u(y)wszy |x, over X, we see that

(V=1 (nm)f\pA\p%

u(y) =

)

fx WERE.
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and so

—V/—1001logu = wwp + \/—18510g/ WRE -

Y

But the function y — [ . WiRp is constant on Y, because it equals the
Y

pushforward m,wipp" and we have

dmwgpp’ = medwgpp = 0. (5.22)
Therefore

—V/—=1901ogu = wwp. (5.23)
Writing as before
U, = F(y,2)(dz1 A Adzy_m)®,
with F' holomorphic and nonzero, then we have
™ ANwgge' = ™ A (were'|x,)

(ﬁ)(n—m)zf*nm A (\Ily /\@y) 7 (5'24)

ENC

_ 1
=+
and so
V=189 log(f*n™ A wirp') = V—190log (|F|% det(ni3)> — f*V/—100log u
= —f" Ric(n) + frwwe,

thanks to (5.23). O
PROPOSITION 5.10. — There is a unique Kdhler metric wy on 'Y which

satisfies
RiC(UJy) = —wy + wwp- (525)

Proof. — Thanks to Lemma 5.8 we know that —2m¢;(Y) + [wwp] € Cy,
and so we can choose a Kédhler metric n in this class. Thanks to (5.18), we
have that

2mc1(X) = f*(2rer(Y) — [wwe)),

and so we can find a smooth positive volume form €' on X with Ric(Q') =
—f*n. Consider then the smooth positive function on X given by

Q/
TP A wiRe
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We claim that G is constant when restricted to every fiber X of f. Indeed
we can choose local product coordinates as in Lemma 5.6, and write

n=v -1 Z nzgdzl AN dEj,

i,5=1

n
wsrF|x, = V-1 Z 94z N dzj,

i,j=m+1
QO =H(-1)"dz; Adz; A -+ Adz, AdZ,,

so that in these coordinates we have
B H
det(m‘j) det (gij) ’

and so if we differentiate only along X, we have
V—1901og G = Ric(wsrr|x,) = 0,

because f*n and Ric(Q') are pulled back from Y, and wsrr|x, is Ricci-flat.
Therefore G is the pullback of a smooth positive function on Y, still denoted
by G.

Thanks to Aubin [1] and Yau [88] there is a unique smooth function
on Y such that n + /=199y > 0 and

(7 +V/=100y)™ = Ge¥n™. (5.26)
If we let wy = 1+ /=100, then we can use Proposition 5.9 to compute
Ric(wy) = —v/—1001og G — /—199¢ + Ric(n)
= Ric() +v—100log(f*n™ A wips") — v/ —199¢ + Ric(n)
= —n — Ric(n) + wwp — vV—109¢ + Ric(n)

= —wy + wwp,

(5.27)

which is (5.25). Note here that the (1,1) forms Ric()’) and /=190 log(f*n™A

n—m

wrp ) which as written are defined on X, are in fact pullbacks of forms on
Y (the latter thanks to Proposition 5.9).

Conversely if wy solves (5.25), then we obtain
[wy] = =2me1 (V) + [wwe] = [n],
and so wy = 1 + /=190 for some smooth function . We have

V=100 1og GWJ — = — Ric(wy) —wy +wwp =0,
e
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using the same argument as in (5.27), and so
w’m
Y _ .
Gevnpm
a positive constant on Y. Replacing ¢ with ¢ + logc we may assume that

¢ =1, and so ¢ solves (5.26). But (5.26) has a unique solution, as follows
easily from the maximum principle, and so wy is also unique. O

Let now
n _
0= (m) frg A,
which is a smooth positive volume form on X. Combining Propositions 5.9
and 5.10 we obtain that
RiC(Q) = —f*wy.
We define now reference forms on X
@ =eTwsrr + (1 — e7") frwy,

which are cohomologous to w(t), and are positive definite for all ¢ > Tj
(because f*wy is positive in the base directions and zero in the others, and
wsRF 18 positive in the fiber directions). In fact, there is a uniform constant
C > 0 such that

Gy = C e twy, (5.28)
for all t > Ty. Note also that

1
Wy = §f*wY7 (5-29)

for all ¢ > Tp. Then (5.19) is equivalent to

e(n—m)t Oy — 199 n
2 (1) = tog Ot VA0S _ )

2(0) = —p (5:30)
O 4+ —100¢(t) > 0
Indeed, if ¢(t) solves (5.30) and we define w(t) = &; + /—109p(t), then
0 0. -
&w(t) = a(wt + Vv —100¢(t))
= —@; + ffwy — Ric(w(t)) + Ric(Q) — v—100p(t)
= —Ric(w(t)) —w(®),
and (5.19) holds. Conversely, if w(t) solves (5.19), we define ¢(t) by solving
the ODE

e(n—m)tw(t)n

Ew(t) =log ——a—"—¢(t), »(0)=-p,
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and compute

%(et(u)( t) — & — V=199(1))) = €' (— Ric(w(t)) + Ric(w(t))) = 0,

and since (ef(w(t) — & — /—109¢(t)))|t=0 = 0, we conclude that w(t) =
¢ +v/—100¢(t) for all t (such that the solution exists), and (5.30) holds.

Note that the factor of e»~™?* in (5.30) did not play any role in this
derivation, and indeed it could be omitted at this moment, but it becomes
crucial when discussing the long time convergence properties of the flow.

As we mentioned earlier, the flow (5.30) has a solution defined on [0, +00).

5.8. C° estimates for the potential and its time derivative

LEMMA 5.11. — There is a uniform constant C > 0 such that for all
t > 0 we have
lp(B)] < C(A+t)e” (5.31)
wu|0e% (5.32)
Proof. — First, we observe that for t > Ty we have
(n—m)t~
ellog 9 < (5.33)
Q
Indeed, we have
(n—m)t ~n (n—m)t(,—t 1—et)f* n
e’ log . q Yro_ e'log ¢ (e WSRF;;( e wy)
=ellog eI ((R)em ML — e ) P A wipE" -+ e Wiy

(o) 7w A wipg"
— clog(1+ O(e™)),
which is bounded. We can then apply the maximum principle to efp(t) — At,

for some constant A > 0 to be determined. At a maximum point, assuming
it is achieved at t > Ty, we have

eI (G + /=T100p(t))"
Q

0< %(etcp(t) — At) = e'log —A

e(n—m)t@n

<etloth—A<C—A<O,

as long as we choose A > C, where we used (5.33). Therefore we obtain a
uniform upper bound for e’p(t) — At, which proves that p(t) < C(1+t)e™*
the upper bound in (5.31). The lower bound is similar.
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In order to establish (5.32) we first show that
lp(t)] < C. (5.34)

We apply the maximum principle to $(t) — Ap(t), for some constant A > 0
to be determined. At a maximum point, assuming it is achieved at t > Tj,
we have

0< (57~ 4) (ele) - ¢t)
= try (ffwy — &) +n —m — p(t) — Ap(t) + An — Atry, @y
< —(A+1De(t) + C,
as long as we choose A large enough so that A®; > f*wy for all ¢t > Ty,

using (5.29). Since ¢(t) is bounded by (5.31), we conclude from this that
¢(t) < C.

For the lower bound on ¢, observe that
% (n—m)tgn\ @
R on Y B . e(n—m)tayn\ n e
trw(t)wt >n (uj(tt)n> =n (6 »(t) S"(t)Qt> >C 16 o,

using the arithmetic-geometric mean inequality, and the estimates (5.31)
and (5.33). We can now apply the minimum principle to ¢(¢) + 2¢(t). At a
minimum point, assuming it is achieved at ¢t > T, we have

0> (57 -8) @0 +2000)

= try() (ffwy — @) + 1 —m — @(t) + 20(F) — 2n + 2tr, @t

> try,@s +¢(t) — C

p(t)
>C e 5 4 p(t) - O,

and so at this point we obtain

e(t)

which gives a uniform lower bound for ¢(¢) at this point, and hence every-
where (remembering (5.31)). This proves (5.34).

We now prove (5.32). Differentiating (5.30) we obtain

D o(t) = ~R() —m — (1),

and using R(t) > —C and (5.34) we obtain

0 .

agp(t) < Cy. (5.35)
First we show the bound

¢(t) < Ce™s
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If this fails, then we can find a sequence (zy,t;) € X X [0,400) such that

tr — oo and @(zg,tr) > ke_%. If we let vy, = ﬁe_% then it follows
from (5.35) that

k' tr
QO(Ik,t) 2 §€7T7
for t € [ty — Y, tx]. Integrating in ¢ we get
b . k kK
o(wr, k) — (T, the — k) = O(xg, t)dt > yp—e™d = —e 2.
th =7k 2 4Cy

If for some value of k we have 7, < 1, then we can use (5.31) to bound
p(an, tr) — p(en,te — k) < C(L+tp)e™™ + C(L+ty —yp)e”
<C(+ tk)e_t’“,

and so we obtain

L < CO(1+ty)e (5.36)
—e < e k. .
4Cy k
If on the other hand for some k& we have v > 1 then we integrate in ¢ again
b k Tk
plont) = plonti = 1) = [ plontide> ge
tp—1
and using (5.31) again we obtain
k t
557’“ < C(1+ty)e b, (5.37)

One of the two cases must occur for infinitely many values of k, and so letting
k — oo in (5.36) or (5.37) we obtain contradiction.

Finally, to prove the lower bound
p(t) > —Ce™ 7,

we use the same argument with the interval [tp — ~k,tr] replaced by
[th, tre + Vi) O

5.9. The parabolic Schwarz Lemma

We have the following parabolic Schwarz Lemma, as in [63] (see [88] for
the original Yau-Schwarz Lemma).

LEMMA 5.12. — There is a uniform constant C' > 0 such that for all
t > 0 we have

w(t) = 07 frwy. (5.38)
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Proof. — Given any point © € M we choose local coordinates {z;} on
X centered at x which are normal for w(¢), and coordinates {y,} on Y
near f(x), which are normal for wy. In these coordinates we can represent
the map f as an m-tuple of local holomorphic functions {f*}. We will use

subscripts like f*, f7,... to indicate partial derivatives. We will also write
g5 for the entries of w(t) in these coordinates, and h 5 for those of wy. In

these coordinates we have tr,, ) (f*wy) = gsz,;"f?ghag.

Then we have

9 .
<8t - A) tr, () (f wy)
= gkjgwRi;fﬁffhaE + try o (ffwy) — g7 8i05 (gszﬁffhaﬁ)
= g" g Rz £ ) hog + tru (Frwy) — g7 g" foi £ hos
— 979" g IR [ g R + 97 6 IR £ £ (Ry) 0505

< oy (ffwy) — gﬁgkef;?iffjhag + Cltrom (ffwy))?,  (5.39)

where in the last line we used the following argument: if we set &; = df (%) =
Y a fﬂ% then at our point = we have

SRR R) 35 = LT 5
i,k
= Z RmY(givga gka a)
i,k
<Ol 6l2, = Clerugy (fwr))

ik

where the constant C' is an upper bound for the bisectional curvature of wy
among all wy-unit vectors. Now at x we have 0;(tr,, ) (f*wy)) = >_p o fos fi5

— 347 —



Valentino Tosatti

and using the Cauchy—Schwarz inequality we have
|0t (frwv) 20
= > Sl

ik,p,o, 3
1/2 1/2
< D I (Z |f;?2|2> > 1l (5.40)
kopya3 i j )
1/2\ 2
= | 211 (Z |f,s;-|2) S DM AN DLy
ko i 6.8 i koo
= (tru) (F'wy)g" g* Fs foihog
and combining (5.39) and (5.40) we obtain
0 *
<(9t — A) log trw(t)(f*wy) < Ctrw(t)(f wy) + 1, (5.41)

at every point where tr ) (f*wy) > 0. On the other hand we also have

0 . Ao L x
<8t - A) P(t) = o(t) = n+ tryg@ 2 §trw(t)(f wy) = C,

for t > Tp, thanks to (5.29) and Lemma 5.11. Therefore, if we choose A large
enough, we have that

<§t - A) (log tro ) (f*wy) = Ap(t)) < —try(n (f'wy) + C,

and from this we conclude easily that tr,e)(f*wy) < C on X x [0,00)
(note that at a maximum point of logtr,)(f*wy) — Ap(t) we must have
try () (ffwy) > 0). O

5.10. An optimal C° estimate for the evolving metric

Define a smooth function ¢(t) on Y by
Jx, pwg ™™
pt)(y) = —

Y

which is just the fiberwise average of (t). We will also denote its pullback
7 o(t) to X by o(t).
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LEMMA 5.13. — There is a uniform constant C' > 0 such that for all
t > 0 we have

sup [(f) — o(t)] < Ce™". (5.42)

Proof. — Let 1(t) = €' (¢(t) — ¢(t)). When we restrict to a fiber X, we
have

e'w(t)|x, = wsrr|x, + V=199(¥(t)|x,),

and
(wsrr|x, +V=100(P(t)|x,))" ™ e mmiw(t)n ™ A frwl
(wolx, )" ST A fup
B W) A fru ep(O)+o() ()
- w(t)™ wo ™A frop
< Ctrye (ffwy))" ™™
<C,

using Lemmas 5.11 and 5.12, and the elementary inequality
w(t)n—m /\f*w;y < w(t>n—1 A f*wy n—m
w(t)™ - w(t)” ’

which follows for example from the Maclaurin inequality between elementary
symmetric functions. Therefore Yau’s C° estimate [88] applies, and using also
that [, (t)wg™™ =0, we obtain

Y

sup [¢(t)|x, | < C,
Xy

independent of ¢. Furthermore, this constant is uniform in y € Y, since it
depends only on geometric quantities on the manifold (X, wsrr|x,) (specif-
ically its Sobolev and Poincaré constants) and these are uniformly bounded

in y. This proves (5.42). O
LEMMA 5.14. — There is a uniform constant C > 0 such that for all
t > 0 we have
9]
— —A t) < C. 5.43
(5:-2) ¢ (5.43
Proof. — We have
o p(t)wg ™
790(23) - fxyi_o < C,
ot— qu wg m

by Lemma 5.11. Next, recall from (5.22) that [, wj™™ does not depend

on y, so it is enough to estimate A (fX @(t)wg_m) To compute this, it is
Y
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convenient to write the integral [, ¢(t)wy ™™ using fiber integration as
y

/ P(B™ = f (W™ (y),
X

y

where the fiber integration map f, is defined for every proper submersion,
it commutes with d, and since f is holomorphic it preserves the (p, q) types
of forms, and therefore it also commutes with 0 and 9. Then we have

V=160 (/X

w(t)w8m> = V=109f.(p(t)wg ™)

— £.(V=1090(t) A ™),

and so

A(/X

@(t)w(f—m) = tro() (e (V=180p(t) Awg™™))

Y

= try, o) [ (e ((w(t) — @) Awg™™))
= —try @) [T (fe(@Or Awg™™)),
but fi.(&: Aw(™™)) is a smooth (1,1) form on Y which satisfies
fe@r Awg™™)) < Cwy,
for all ¢ > 0. The Schwarz Lemma estimate (5.38) then implies that

A </X gp(t)wgm> > —C,

Y

and (5.43) follows. O

PROPOSITION 5.15. — There is a uniform constant C' > 0 such that for
all t > Ty we have

C 1 < wl(t) < Coy. (5.44)
Proof. — We apply the maximum principle to

log(e™"try,nywo) — Ae’ (p(t) — @(t)),

for a constant A to be determined. To compute the evolution of
log(e™"tryywo) we just use the Schwarz Lemma calculation in (5.41) to
the identity map from (X,w(t)) to (X, wp), which gives
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At a maximum point of our quantity, assuming it is achieved at ¢ > 0, we
have

0< (gt - A) (log(e™"tr(ywo) — Ae’ (o(t) — (1))

< Ctryywo — A€l (p(t) — (1)) — Ae'(t) + Ane’ — Ae'try, )@y + C Ae’
< CAet — Ty wo,

as long as we choose A sufficiently large, using (5.28), (5.34), (5.42) and
(5.43). Therefore we conclude that

e_ttrw(t)wo < C,
on X x [0,00), which implies
w(t) > C e twy = C e twsrr,
and adding this to (5.38) we obtain
w(t) = 071y,
which is half of (5.44). For the other half, it is enough to observe that

W _ ey o

w;&l e(nfm)tw;n

thanks to Lemma 5.11 and (5.33), and so the upper bound
w(t) < C(Jvt,

follows. 0

5.11. C° convergence of the evolving metric

LEMMA 5.16. — There is a uniform constant C' > 0 such that for all
t > 0 we have
trw(t)(f*wy) <m+4Ce 3. (5.45)

Proof. — We apply the maximum principle to
¥ (b (f7wy) —m) — e (p(t) + $(1)).

To compute the evolution of this quantity, we first calculate

7] , -
(55— 2) ) =200 = -+ g0

( % - A) (t) = tron (FFwy — @) +n—m—g(t),
(gt - A) (o) + ¢(1) = trow (fTwy) —m,
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and from the Schwarz Lemma calculation (5.39), together with (5.44),

0
(5~ 2) tran (F7e0) < trao (v + Cltrap (v ))? < €.

At a maximum point of our quantity, assuming it is achieved at ¢ > 0, we
have

0< <§t - A) (e3 (trugn) (f*wy) —m) = € (p(t) + 4(1)))

e

t
es

% t € . t %
< g (trae (Fwy) =m) + Ces — —=(p(t) + (1)) — e (tru o (Fwy) —m)
t 6%
< Ces — E(trw(t)(f*wy) - m),
using Lemma 5.11. Therefore we get a uniform upper bound for this quantity,
and hence for es (tro @) (ffwy) —m). O
THEOREM 5.17. — There are uniform constants C,n > 0 such that for

allt > Ty we have
tro @ < n+ Ce . (5.46)

This result may seem similar to the one obtained in Lemma 5.16, but
it is much more powerful and its proof is considerably harder. This was
originally proved when n = 2 in [80] (for a more general flow of Hermitian
metrics, which specializes to the Kéhler—Ricci flow when the initial metric is
Kéhler). The method of proof used there is special to this dimension, because
in this case the reference metrics @; satisfy |§I\n(t) |, < Ce?, while in general
dimensions this is O(e"). In these notes we present the proof obtained in [81],
which works in all dimensions. This will require us to first prove strong
estimates for the metric along the fibers, including proving (5.21), and then
we will be able to prove (5.46).

Before proving Theorem 5.17, we use it to complete the proof of (5.20).
Proof of (5.20). — We observe that for t > Ty we have,

z

n—m)t A An
e(n=mitgy > e ?W=20) _ et > 1 - Ce 3

L’&n
0 )
n « n—m
w(t)™ () f*w¥ A wipp

9

(5.47)
using Lemma 5.11. If now at any given point we choose local holomorphic
coordinates so that w(¢) is the identity and &; is given by a positive definite
n X n Hermitian matrix A, then (5.46) and (5.47) give

trA<n+Ce ™, detA>1-— C’e*%,
and so Lemma 5.18 below gives

|A—1d|| < Ce 3,
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which means
[@r — w(B)lcox,wiry < Ce™ 2,
and since w(t) < Cwp (by Lemma 5.15), this gives
I = w()llco(x) < Ce™ 2,
and remembering that @; = f*wy +e (wsrr — f*wy ), this gives (5.20). O
In the proof we have used the following elementary result:

LEMMA 5.18. — Let A be an n X n positive definite Hermitian matriz
such that
trA<n+e, detA>1-—¢g,

for some 0 < ¢ < 1. Then there is a constant C' which depends only on n
such that
1A —1d|]* < Ce,

where || - || is the Hilbert-Schmidt norm, and Id is the n x n identity matriz.
Proof. — The lemma is trivial for n = 1 so we may assume that n > 2.

Let A1,..., An > 0 be the eigenvalues of A. Define the normalized elementary
symmetric polynomials Sy by

-1
&(Z) S ANy, fork=1,...,n

1< < <ipg<n
By assumption we have that S; <1+ = and S, > 1 — e. Together with the
Maclaurin inequalities we obtain
€ 1 1
1+=28512V5% 25225 >21-¢
n

which implies that |S; — 1] + |S2 — 1| < Ce for C depending only on n. A
direct calculation gives
|A—1d||? = Z()\j —1)? =n?S8 —2nS; —n(n —1)Sy +n < Ck,
j=1
for C depending only on n. O

5.12. Estimates for the metric along the fibers

Our goal now is to prove (5.21), which we will then use to prove Theo-
rem 5.17. The first step is the following:

THEOREM 5.19. — There is a constant C' > 0 such that for everyy € Y
and all t > 0 we have

le'w(®)|x, llet(x, wolx,) < C- (5.48)
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In fact, we will reprove this result in Theorem 5.20 below, but we decided
to still present this proof in detail since it is self-contained.

Proof. — Given a point z € X, let y = f(x) and choose local product
coordinates on an open set U 3 z and on f(U) 3 y as in Lemma 5.6, and let
wg be the Euclidean metric on U in these coordinates. We may also assume
that in these coordinates U and f(U) are identified with unit balls in C”
and C™ respectively, with  and y being the origin. We claim that on the
half-ball B (0) C U we have

IVEw(t) 2 < C¢, (5.49)
for all t > 0. Assuming this holds, then restricting (5.44) to X, we obtain
Cle twp X, (5.50)

x, Sw(t)|x, < Ce'wp
and so on B (0) we obtain

IVE(tw(t)|x, )5, = e IVE(t)lx,) 2w,
< Ce VP (t)5) < C,

< Ce ' IVE((t)x, )20

(5.51)

using (5.49). Then (5.50) and (5.51) together prove (5.48) on By (0), and a
simple covering argument gives (5.48) everywhere.

We are left with proving (5.49). Following Yau [88] we define a smooth
nonnegative function on U by

S =VEu®)2 4,

which in fact equals |F|i( +) Where I'¥; are the Christoffel symbols of w(t). We
calculate

9 i 9 ( ki ke kg pl ke

50 = B (9 &-gjz) =—9"0iRg+ 9" 9" Ryglig;; = —9" Vil g,

where V is the covariant derivative of w(t). We also have

gpﬁvpvafi?j = gpavp(aﬁri‘cj) = _ngVka‘ = _gpaviRk G = —ngViR =

Jig — Jpq — A
using the second Bianchi identity, and

9PIVGVIS = g7V, Vel = g7 Rigly; + 9" Rygly, — 9" Rygl,

AS = g"V, V3 (gﬁgj bgkaffjm)
= |VI2 ) + VT2, — 2Re (giﬁgjbgkggkfviRjzfgb)

+ 9" ¢ gizg"TY; Rygl'g, + 99" gizg"'TE; RpTey — 99T} RigLgy,
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o - - - I _ _
555 = 5 —2Re (979 90" ViR GTG, ) + 979" gucg T RyaT,

+ 979" greg" T R 6, — 997 T Riglly,

and so

0 —

Let now p be a smooth nonnegative cutoff function, which is supported in
By (0) and is identically 1 on B1(0), and with

V=19p N dp < Cwp, —Cwp < V—100(p*) < Cwpg,

where C' is a dimensional constant. Recalling (5.28) and (5.44), we obtain
that w(t) > C~te 'wg, and so

VplZ < Cet A(p®) > =Ce',
onU.

We can then compute

(5-2) )

0
< p? <8t - A) S+ CSe' +2|(Vp?, VS) )|

<28 = p* (IVT R + VT2, ) + CSe' + 20952, V)|
On the other hand, using the Young inequality
2|<V/027V5>w(t)| = 4P|<Vﬂav\r|i(t)>w(t)| < 4p|Vplu) - \V\F|Z(t)|w(t)
<40l L) Tty (IVT ey + VT o)
< p? (|Vr\i(t) + WHE;@)) +CS|VplZ
< p? (|vr\i(t) + |Vr|3(t)) + OSet,
and so

(g - A) (528) < CSet,

~

9 —t 2
- — < .
(at A)(e p25) < CS

Next, on B;(0) we define

Wy = w%m) + e_twg%m)7
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where wg”) and wgl_m) denote the Euclidean metrics on the two factors of

C™ = C™ x C™ ™. Thanks to (5.44) we have that
C™ 1wy < w(t) < Cwy, (5.52)

on U for all t > 0. Note that the covariant derivative of w; just equals V¥,
independent of ¢, and that w; is flat. Then, as in (3.23), we can compute

<§t - A> try, w(t)
—t i pj ( (n—m)

= —try,w+e g gt (9 )pa 95 — gt gpjngViEngVfgpg
< =91 9" 9"V 945V F gy
< 70713,

using (5.52) and the fact that e’tw(E"_m) < wy. It follows that if we take Cy
large enough, then we have

<86t - A) (e7'p*S + Cotry,w(t)) < 0.

Note that we have tr,,,w(t) < C, thanks to (5.52). Since p = 0 on the bound-
ary of B1(0), the maximum principle then gives that e =t p2S+Cptr,,,w(t) < C
on B1(0) x [0,00), and so SUPg, ,,(0) S < Cet, as required. a

The following improvement is due to Zhang and the author [82] (and in
fact it also gives another proof of Theorem 5.19):

THEOREM 5.20. — For every k > 1 there is a constant Cj > 0 such that
for everyy € Y and all t > 0 we have
Hetw(tﬂxy||Ck(Xy,w0|Xy) < Cy. (5.53)

Proof. — Given a point ¢y € X, let yo = f(xo). To prove (5.53) we
choose local product coordinates on an open set U 3> xo and on f(U) > yo,
centered at these points as in the proof of Theorem 5.19, and let wg be the
Euclidean metric on U in these coordinates. We may assume that f(U) is
the unit ball in C™, and U is the product of the unit balls in C"™ and C"~.

For each t > 0 let By = B./2(0) € C™, let B = B1(0) ¢ C* ™, and
define rescaling holomorphic maps

F,:B,xB—=U=Byx B, Flyz) =(ye t? 2).

These maps are all equal to the identity when restricted to {0} x B, which
is a “vertical” chart contained in the fiber X, . Thanks to (5.44) we have

C_l(f*wy +e two) < w(t) < C(ffwy + e twy),
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on U, and so the metrics
wi(s) == e Ffw(se™ +1), —-1<s<0,
on B; x B satisfy
CTUEF (el frwy + wo) < wils) < CFf (el f*wy + wo),
and

agwt(s) = — Ric(w(s)) — e Twi(s), —-1<s<0.
s

It is readily verified, using product coordinates as above, that the metrics
F}(e' f*wy + wp) converge smoothly on compact subsets of C™ x B to a
limiting Kéhler metric. Indeed, if we write

[roy(y,2) = V- Z (9v),3W)dya A dyg,

a,B=1
wo(y,2) = V=1 > (90) 45> 2)dya A d7g

a,B=1
+ 2Re (\/j i

a=1 =1

n—m

gO i yv dya A dzz)

+ V= Z go z)dz; A dZ;,
1,5=1
then we have

Ff (e' f*wy +wo)(y, 2)

m

= V=1 Y ((9v)azwe™?) + e (90) 05 (Y, 2))dya A dTs

a,B=1
+ 2¢7Y?Re (\/1 Z Z 90) .:(ye -t/ 2 2)dyq /\dzi>
a=1 1=1

+v-1 Z (go)i;(ye_t/g, 2)dz; A dz;
ij=1
which converges smoothly on compact subsets of C™ x B to

m n—m

V- Z 9v) 4 dya/\dyg-i-\ﬁz 90)7(0,2)dz; A dz;,

a,B=1 i,7=1

which is a smooth Kéhler metric. This implies that

C g < wi(s) € Cwg,
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forallt > 0,—1 < s < 0, where wg is a Euclidean metric on C™ x B. We can
therefore apply the local higher order estimates in Theorem 3.11 (note that
the coefficient e~ of e "tw;(s) in the evolution of w;(s) is uniformly bounded)
and obtain that for every compact set K C C™ x B there are constants Cj
such that

|we($)llcox (,9) < Chs
for allt > 0, —% < s < 0. Setting s = 0 we obtain
le' Frw(t)llor (x,95) < Chks

and since F; is the identity when restricted to {0} x B, which is identified
with X, N U, we obtain (5.53) after a simple covering argument. a

We will also need the following elementary result:

LEMMA 5.21. — Let F: X x [0,00) — R be a smooth function such that

V(P Ix, i, <€ (5.54)
forally € Y,t >0, such that
/X (Flx,)ltnm = 0, (5.55)
forally € Y,t >0, and such that
sup F(z,t) < h(t), (5.56)
X

for allt > 0, where h(t) is a nonnegative function with h(t) — 0 as t — oo.
Then we have )
sup | F'(x,t)] < Ch(t)?+1, (5.57)
b'e
for all t sufficiently large.
Proof. — Thanks to (5.56), it is enough to show that
inf F(z, 1) > —Ch(t)71.
If this fails, then we can find ¢t — oo and x, € X such that
F(zp,ty) < —kh(ty) T,

and we may take t, large so that k’h(tk)ﬁ < 1. If we let y = f(xx), then
thanks to (5.54) we have that for all z in the go|x,, -geodesic ball B, (z) in
Xy, centered at xy, of radius

kh(ty) T _ 1

2C 20’

we have )
kh(ty) 21
Pl < — ST
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and so using (5.55), (5.56) we get

1
—m kh(t.)2n+1 n—m

0= / F(a, te)wln(z) < f% / Wl + Chity).

X By (zk)

Yk
But the metrics wsrr| X,, are all uniformly equivalent to each other, and
since r < % we have

2n

/ wappt = C7r? > CTUEP R (ty) 7T
BT(Ik)

and so we obtain k2" < C, which is impossible for k large. O
We can now prove (5.21).
THEOREM 5.22. — For any given y € Y we have
ew(t)|x, — wy, (5.58)

in C*(Xy), where wy is the unique Ricci-flat Kdihler metric on X, in the
class [wol|x,. The convergence in the C° norm is exponentially fast.

Proof. — We compute
(€w®)lx,)"™ ey @O)]x,)""
(wsrr|x,)" ™™ (wsrF|x, )" ™™
w®)"™ A frul
wspr A frwy
N\ w@®)TTA ey
\m Q

_ erpn (@A frOP
m w(t)™ ’

— e(n—m)t

and so the function F : X x [0,00) — R defined by
F = #4600 (") wt)" " A [T

m w(t)” ’
satisfies
(e'w(t)|x,)" ™
Flx, = —— =
(wsrrFlx,)
and so
| et = [ @l = [
X?/ Xy X"J

so F'—1 satisfies (5.55). It also satisfies (5.54) thanks to (5.48). Now, thanks
to Lemma 5.11 we have that

t

e+t _ 1| < Ce 1. (5.59)
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Choosing local coordinates at a point € X, so that at that point w(t)
is the identity and f*wy is diagonal with eigenvalues (A1, ..., Am,0,...,0),
then at this point

(;)w(t)”mw*wy HA ( Z M)’"(trwmg*w))m’

and so (5.45) gives

(;) = ;(t)A"f Y = (tryn (frov))™ < 1+ Ce™,

for some uniform 7 > 0. Combining this with (5.59) gives that
F <14 Ce™,

everywhere on X X [0, 00), which verifies (5.56). Therefore Lemma 5.21 gives
us
|F — 1| < Ce ™,
for some smaller n > 0, i.e.
[(e'w(®)]x,)" ™™ = (wsrrlx,)" ™" oo (x, wolx,) < Ce™™, (5.60)
for all y € Y. Next, we compute
n—m-—1

(e'w(t)|x,) A (wsrrlx,)

n—m-—1

_ etw(t) ANwgpp A frwy
werp N [y
_ e<p<t>+«>(t)< )w(t) A (e fwsre)" ™A fr0
m w(t)»
so the smooth function G : X x [0,00) — R defined by

ety (M) SN (o)™ 1
m w(t)™ ’

(wsrr|x,)" ™™

(wsrFlx,)" ™™,

satisfies
(e'w(t)lx,) A (wsrr|x,)" ™"

)n—m ’

X, =

G

(wsrF|x,
and the arithmetic-geometric mean inequality gives

nem o (ew(®)x,)" "
) i

(G

X,
v ~ (wsrrlx,

and the RHS converges to 1 exponentially fast thanks to (5.60). Therefore
1 — G satisfies (5.56), and it also satisfies (5.55) (as is simple to verify)
and (5.54), thanks to (5.48). Another application of Lemma 5.21 gives us

1 - G| < Ce ™,
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for some 7 > 0, i.e.

(e w(®)]x,) A (wsrrlx,)" ™! = (wsrr|x, )" ™ loo(x, wolx,) < Ce™™,
(5.61)
for all y € Y. Therefore if we choose local coordinates along a fiber X, such
that at a given point wsrr|x, is the identity and etw(t)] x, is a positive-
definite Hermitian matrix A, then (5.60) and (5.61) imply that

trA<n+Ce™ ™, detA>1—Ce ™,
and so Lemma 5.18 gives
JA - 1d] < Ce#,
which implies
oy

le'w(t)]x, — wsrrlx, oo (x, wolx,) < Ce 27,

for all y € Y and t > 0, so the metrics etw(t)|Xy converge to Wsrr|x,
exponentially fast. The convergence is smooth thanks to Theorem 5.20. [J

5.13. Completion of the proof of Theorem 5.5

As we showed earlier, to complete the proof of (5.20) it is enough to prove
Theorem 5.17, which we can now do:

Proof of Theorem 5.17. — Recall that by definition
O = e twsrr + (1 — e7) frwy,
and that thanks to Lemma 5.16 we have
tro) (ffwy) <m+ Ce™%.
It follows that to prove (5.46) it is enough to show that
tro( (€ 'wsrr) <K n—m+ Ce ™. (5.62)

To this end, fix a point z € X and let y = f(x), and choose local product
coordinates near these points. At the point « we can then consider the (1, 1)
form wsrr|x, as defined for all tangent vectors to X at x (not just those
tangent to the fiber X, ) by using the obvious projection in these coordinates,
so it makes sense to estimate

tro() (€~ wsrrl X, ) = t(etw(n)|x,) (WsrE|x,) <N —m+ Ce™™,
thanks to Theorem 5.22. Lastly, we need to estimate the difference

tro( (e 'wsrr — € ‘wsrr|x, )
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and to do this we write in local product coordinates at x

m
WSRF — WsRF|x, = V—1 Z h,zdya A dyg
a,Bf=1
m n—m
+2Re [ V=1 ) ho7dya AdZ; | |

a=1 j=1
where we use greek indices for the base coordinates and latin indices for
the fiber coordinates. The term involving hjg is not present because wsrp —
WsRF| x, Vvanishes when restricted to X,. Therefore

—t —t 7 t
try(s) (e WsRF — € WsRF|x,) < 9*7h 5| < Cez,

gaghag‘ +2

because thanks to (5.44) the terms gaE are uniformly bounded, and the

terms ¢g®/ are bounded by Ces by Cauchy—Schwarz (since gﬁ is of the order
of e'). This completes the proof of (5.62). O

Lastly, to complete the proof of Theorem 5.5, we need to show that
(X, @) converge to (Y,wy) in the Gromov—Hausdorff topology as ¢t —
0o. Recall that since f is a submersion everywhere, Ehresmann’s Theo-
rem [46, Theorem 2.4] implies that f is a smooth fiber bundle. Then the
Gromov-Hausdorff convergence follows from (5.20) and the following (cf. [80,

Lemma 9.1]):

THEOREM 5.23. — Let m : M — B be a smooth fiber bundle, where
(M, gn) and (B, gg) are closed Riemannian manifolds. If g(t),t > 0, is a
family of Riemannian metrics on M with ||g(t) — 7*gllcor,gy) — 0 as
t — oo, then (M, g(t)) converges to (B, gg) in the Gromov-Hausdorff sense
as t — oo.

Proof. — For any y € B we denote by E, = 7 !(y) the fiber over y.
Fix € > 0, denote by L; the length of a curve in M measured with respect
to g(t), and by d; the induced distance function on M. Similarly we have
Lp,dp on B. Let F =7 : M — B and define a map G : B — M by sending
every point y € B to some chosen point in M on the fiber E,. The map G
will in general be discontinuous, and it satisfies F'o G = Id, so

dp(y, F(G(y))) = 0. (5.63)

On the other hand since g(t)|g, goes to zero, we have that for any ¢ large
and for any x € M

di(z,G(F(x))) < e. (5.64)
Next, given two points x1,z2 € M let v : [0, L] — B be a unit-speed mini-
mizing geodesic in B joining F'(x1) and F(x5). Since the bundle 7 is locally

- 362 —



KAWA lecture notes on the Kéhler—Ricci flow

trivial, we can cover the image of y by finitely many open sets U;,1 < j < N,
such that 7=1(U;) is diffeomorphic to U; x E (where E is the fiber of the
bundle) and there is a subdivision 0 = tg < t; < -+ < ty = L of [0, L]
such that v([t;_1,t;]) C U;. Fix a point e € F, and use the trivializations
to define 4,(s) = (v(s),e), for s € [t;_1,t;], which are curves in M with the
property that
1Le(%) = LB(Y;_0t0)l < €/N,

as long as t is sufficiently large (because g(t) — 7*gp). The points 7;(¢;) and
7;+1(t;) lie in the same fiber of 7, so we can join them by a curve contained
in this fiber with L;-length at most €/2N (for ¢ large). We also join z; with
71(0) and x2 with 45 (L) in the same fashion. Concatenating these “vertical”
curves and the curves 7;, we obtain a piecewise smooth curve 4 in M joining
x1 and xq, with 7(§) = v and |L+(§) — dg(F(x1), F(x2))| < 2¢. Therefore,

dt(l‘l,l‘g) < Lt(’?) < dB(F(1‘1),F(£2)) + 2e. (565)
Since F' o G = Id, we also have that for all ¢ large and for all y1,y2 € B,
di(G(y1), G(y2)) < dB(y1,y2) + 2. (5.66)

Given now two points z1,29 € M, let v be a unit-speed minimizing ¢(t)-
geodesic joining them. If we denote by Ly-4,(y) the length of v using the
degenerate metric 7*gp, then we have for ¢ large,
dp(F(z1), F(22)) < LB(F(7)) = La=g5 (7) < Lt(7) + € = de(21, 22) + &,
(5.67)

where we used again that g(t) — 7*gp. Obviously this also implies that for
all t large and for all y;,y2 € B,

dp(y1,y2) < di(G(y1), G(y2)) +e. (5.68)
Combining (5.63), (5.64), (5.65), (5.66), (5.67) and (5.68) we get the required
Gromov—Hausdorff convergence. |

5.14. Smooth collapsing when the general fibers are tori

Having completed the proof of Theorem 5.5, we now show under the same
assumptions that if we assume that the generic fiber X, of f is biholomorphic
to the quotient of a complex torus by a holomorphic free action of a finite
group, then the collapsing in (5.11) is in the smooth topology. More precisely,
we show:

THEOREM 5.24 ([22, 28, 31, 38, 82]). — Let (X, wp) be a compact Kihler
manifold with Kx semiample and 0 < k(X) < n, and let f : X —» Y
be the fibration as in Theorem 5.5, and assume that for some y € Y\S'
the fiber X, = f~1(y) is biholomorphic to a finite quotient of a torus. Let
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w(t),t € [0,00) be the solution of the Kihler—Ricci flow (1.1) starting at wy.
Then as t — oo we have

t
AO o, (5.60)
in C2(X\S), where wy is the same Kdhler metric on Y\S' as in Theo-
rem 5.5. Furthermore, the metrics th) have locally uniformly bounded cur-

vature tensor on compact sets of X\S.

This theorem was proved in [22] under the assumption that X, is bi-
holomorphic to a torus, that X is projective, and the initial class [wp] is in
H?(X,Q), by adapting to this parabolic setting the proof of a similar result
for the elliptic complex Monge-Ampére equation in [31]. In the case when
X =Y x F where ¢;(Y) < 0 and F is a finite quotient of a torus, this theo-
rem was proved in [28]. The projectivity and rationality assumptions in [22]
were removed in [38], and finally the case when X, is a finite quotient of a
torus was dealt with in [82]. We will give a unified treatment of these results,
following [31, 38, 82].

It is natural to conjecture that in the general setting of Theorem 5.5 (i.e.
when the fibers X, are general Calabi-Yau manifolds) the smooth conver-
gence in (5.69) still holds. On the other hand, the local uniform boundedness
of the curvature of # is false when X, is not a quotient of a torus. Indeed
thanks to (5.13) the metrics w(t)|x, converge smoothly to wsrr|x,, the
unique Ricci-flat Kéhler metric on X, in the class [wo|x,]. But the metric
WsRF| x, is not flat, since otherwise X, would be a finite quotient of a torus
by [44, Corollary V.4.3] and [45, Theorem IX.7.9]. Tt follows easily that the
largest bisectional curvature of wsrr|x, (among unit vectors) is strictly pos-
itive, and so the same is true for w(t)|x, for all ¢ large. Since the bisectional

curvature decreases in submanifolds, the same is also true for w(t) (at points
w(t)
¢

on X,), and so the maximum of the curvature of
infinity as ¢ — oo.

on X, blows up to

Proof. — As in the proof of Theorem 5.5 we assume that w(t) satisfies
instead the normalized flow (5.19). The statements that we need to prove
are local on the base Y\\S’, so it is enough to prove that for every sufficiently
small open subset B C Y'\S’, given any k > 0 there are constants Cy > 0
such that on the preimage U = f~!(B) we have

lw®llcxw,go) < Chks (5.70)

and
Sgp IRm(w(t))]w < Co, (5.71)

for all ¢ > 0. Let us first give the proof of these in the case when X, is in
fact biholomorphic to a torus for some y € Y\\S’. Then, using Ehresmann’s
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Theorem [46, Theorem 2.4] (which gives that f is a locally trivial smooth
fiber bundle over Y\S’) and the fact Y'\S’ is connected, we immediately
conclude that all fibers X,y € Y\S’ are diffeomorphic to a torus. But a
compact Kéahler manifold which is diffeomorphic to a torus must be in fact
biholomorphic to a torus, as follows easily using the Albanese map, and
we conclude that all fibers X,,y € Y\S’ are biholomorphic to tori, say
X, = C"™/A,, where A, is a lattice in C™~ ™. Since f is a holomorphic
submersion over Y\S’, we may choose a basis v1(y), ..., v2n—2m(y) of the
lattice A, which varies holomorphically in y € B, for any sufficiently small
B C Y\S’. We can then construct another family f’ of tori over B, by taking
the quotient of B x C"~™ by the holomorphic free Z2"~2™ action given by

2n—2m
(‘gla e a€2nf2m) : (ya Z) = <y7 z+ Z éz”z(?/)) )
=1

where y € B,z € C"™ and ¢; € Z. Note that while the choice of the
generating vectors v;(y) is not unique, the quotient does not depend on
this choice. This gives us a holomorphic submersion f’ : U’ — B with
fiber f'~'(y) biholomorphic to X, for all y € B. A theorem of Wehler [86,
Satz 3.6] then shows that the families f and f’ are locally isomorphic, so
up to shrinking B there is a biholomorphism U’ — U, which is compatible
with the projections to B. Composing the quotient map B x C"~"" with this
biholomorphism, we obtain a local biholomorphism p : B x C"~™ — U such
that fop(y,z) =y for all (y, z). The map p is thus the universal covering of
U.

The following is the key tool we need:

PROPOSITION 5.25 ([29, 31, 38]). — Up to shrinking B, on U = f~(B)
there is a closed semipositive definite real (1,1) form wgp which is semi-flat
in the sense that wsr|x, a flat Kdihler metric on X,, for ally € B, and such

that p*wgp = /—1900n where n € C°(B x C"~™ R) satisfies

n(y, Az) = Nn(y, 2), (5.72)
for all (y,z) € Bx C"™ and X € R.

This was proved in [31, Section 3] when X is projective and [wp] is ratio-
nal, following the recipe in [29], and was then proved in [38] in general. We
will not prove this here, but just say that the function 7 is given explicitly
by

1 n—m
-1 _ _
M2 =~ 3 (mZ); (-2~ %),
i,j=1
where Z is a holomorphic period map from B to the Siegel upper half space
$Hn—m of symmetric (n—m) x (n—m) complex matrices with positive definite
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imaginary part (so (ImZ(y))~" in this formula is well-defined). The key
reason why this can be done is that ,,_,, classifies complex tori which are
polarized by a Kéhler class. We refer the reader to [31, 38] for the details of
the construction of Z (which is easier under the rationality assumption) and
of why this n satisfies our requirements.

Now, recall than thanks to Proposition 5.15 (or rather its generalization

to the case when S # 0)) we have that
Cil(eithF + f*wY) < w(t) < C(eithF + f*wy),
where we used that on U we have that wsr + f*wy is a Kéhler metric. For
t>01let \;: BxC"™ — B x C" ™ be given by
/\t(y7 Z) = (y7 Zet/2)7
which is a “stretching in the fiber directions” (compare this with the maps
F} in Theorem 5.20 which were instead shrinking the base directions). Then
the metrics
w(s) == A p'w(s+t), —-1<s<0,

on B x C"™™ satisfy

C™He "N p wsk + A p* [fwy) <wi(s) < Cle " Ajptwsr + A\p™ frwy),
forallt>0,—1<s<0, and

0

awt(s) = —Ric(we(s)) —wi(s), —1<s<0.

But we have that fopo A = fop, so Ajp* f*wy = p* f*wy, and
Aip*wsr = AV —100n = /—=109(n o \) = e'/—=100n = e'p*wsr,
since
noM(y, z) = n(y, z'?) = e'n(y, 2),
thanks to (5.72). Therefore we conclude that on B x C"~™ we have
C™'p*(wsr + ffwy) < wi(s) < Cp*(wsk + frwy),
and so for each given compact set K C B x C*™™ there is a constant Cg
such that on K we have
Cx'wp < wi(s) < Crwg,

forallt > 0,—1 < s <0, where wg is a Euclidean metric on B x C"~™. We
can therefore apply the local higher order estimates in Theorem 3.11 and
obtain that for every compact set K C B x C"~™ there are constants C j
such that

lwe($)llcx (r,g5) < Cr ks
for all t > 0, —% < s < 0. Setting s = 0 we obtain

NP w(O) ek (k,gs) < Ok ks (5.73)
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and we still have
ANpfw(t) > C twg,
on K x [0,00). In particular, this gives
sup [Rm(A;p"w(®)lx;prw(e) < (5.74)
for all t > 0. If now K’ C U C X\S is a compact set which is small enough

so that K = p~1(K') C B x C"™ is compact and p is a biholomorphism
on K (note that such compact sets K’ cover U) then we have

sup [Ran(w(®))lu(e) = sup [Rm(p"w (1)) lprw(r

~ sp [Rm(Npw(h)
A1/ (K)

Arprw(t)s

where Ay, is the inverse map of A;. But the compact sets Ay ¢(K) are all
contained in a fixed compact set of B x C"~™, and so from (5.74) and a
covering argument we easily obtain (5.71). Also, (5.73) easily implies that

Ip*w(t) o (k,9m) < Ck k>

for any given compact set K C B x C"~™ (in fact, (5.73) is a much stronger
bound). Since p is a local biholomorphism, this (and another covering argu-
ment) proves (5.70), and completes the proof of Theorem 5.24 when X, is a
torus.

If now the fiber X, is just biholomorphic to a finite quotient of a torus, for
some y € Y\ S’ (and therefore for all such y, by the same argument as before
using Ehresmann’s Theorem), then we choose again a sufficiently small open
set B C Y\S’ such that f is a locally trivial smooth fiber bundle over B,
and so there is a diffeomorphism ¥ : B x F — f~1(B), compatible with the
projections to B, where F' is the smooth manifold underlying X,. We use ¥
to pull back the complex structure on f~!(B) to a complex structure J on
B x F, which is in general different from the product complex structure on
B x X,,. This way, the map ¥ becomes a biholomorphism (where here and in
the following we always use the complex structure J on B x F'). If we now let
F — F be a smooth finite covering map with F' a torus, then the map p : B x
F — B x F is a smooth finite covering (hence a local diffeomorphism), and
so we can use it to pull back the complex structure J to a complex structure
J on B x F. This way p is also a local biholomorphism, and so pulling
back a Kihler metric on f~!(B) via ¥ o p we obtain a compatible Kihler
metric on B x F. Then the projection 7 : B x F is by construction equal to
f oWop, and so it is holomorphic, and clearly a proper submersion. This
implies that its fibers Xy = 7 1(y) are all compact complex submanifolds of
BxF (with the complex structure J ), and so they are also Kéhler, and each
Xy is diffeomorphic to the torus F. As remarked earlier, this implies that
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all fibers Xy are in fact biholomorphic to complex tori C*~™/A,. Therefore
the family 7 over B has torus fibers, and pulling back the solution w(t)
of the Kéahler—Ricci flow via the holomorphic finite covering map ¥ o p we
obtain a solution p*¥*w(t) of the Kéhler-Ricci flow on B x F. We can then
apply Proposition 5.25 to B x F and get a semi-flat form wgp with the same
properties, and from Proposition 5.15 we again have

C™ e twsr + T wy) < p*UFw(t) < Cle™ wsp + T wy),
on B x F for all t > 0. Then the rest of the argument above goes through,
and we obtain (5.70) and (5.71) on B x F' for the metrics p*U*w(t). Since

W o p is a holomorphic finite covering, these estimates immediately imply
those for w(t) on f~1(B). O

6. Some open problems

In this closing section, we collect some well-known open problems on the
Kéahler—Ricci flow (in addition to the conjectures that we have already dis-
cussed in Section 4), related to the material discussed in these notes.

6.1. Diameter bounds

Diameter bounds for solutions of the Kéhler—Ricci flow as we approach
a singularity are not easy to get. In general we expect:

CONJECTURE 6.1. — Let X be a compact Kihler manifold and w(t) a
solution of the Kahler—Ricci flow (1.1) defined on a mazimal time interval
[0,T) with T < co. Then there is a constant C > 0 such that

diam (X, w(t)) < C,
for allt €10,T).

This conjecture is known in the case when the limiting class [a] = [wo] —
2mc1(X) is equal to 7*[wy]| where m : X — Y is the blowup of a compact
Kahler manifold Y at finitely many distinct point and wy is a Kéhler metric
on Y, thanks to [67], and this is in fact the general case when n = 2 and the
singularity is noncollapsed. The conjecture is also known when X is Fano
and [wp] = Aeq(X) for some A > 0, since as we mentioned earlier Perelman
proved that in this case diam(X,w(t)) < C(T —t)2 (see [56]), and it is also
proved in [62] for some special Fano fibrations (also discussed earlier).

In the case of infinite time solutions, we expect:
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CONJECTURE 6.2. — Let X be a compact Kihler manifold and w(t) a
solution of the Kihler—Ricci flow (1.1) defined on [0,00). Then there is a
constant C' > 0 such that

t
diam (X, w}(f)) <O,
for allt > 0.

Recall that the existence of an infinite time solution is equivalent to Kx
being nef. As mentioned earlier, the Abundance Conjecture for Kéhler man-
ifolds would imply that Kx is semiample, so in particular x(X) > 0. Assum-
ing Kx is semiample, if £(X) = 0 then X is Calabi-Yau (by Lemma 5.4) and
we even have that diam(X,w(t)) < C, thanks to Theorem 5.1. If k(X) = n
then Kx is nef and big, and in this case Conjecture 6.2 is proved in [34] when
n = 2 and in [74] when n < 3 (see also [33] for further progress). Lastly, when
0 < k(X) < n (this is the setup of Theorem 5.5), Conjecture 6.2 seems to
be open even in the case when n = 2, k(X) = 1.

6.2. Volume growth

The growth of the total volume of X ast — oo for an infinite time solution
is a delicate issue as well. Indeed, the following conjecture is equivalent to
the Abundance Conjecture in the general Kéhler case:

CONJECTURE 6.3. — Let X be a compact Kihler manifold and w(t) a
solution of the Kdhler—Ricci flow (1.1) defined on [0,00). Then k(X) > 0
and there is a constant C' > 0 such that

C 1) < Vol(X, w(t)) < Ct™ ), (6.1)
for allt > 0.

Since the Abundance Conjecture in the Kéahler case is now known for
n < 3 by [5], so is this conjecture. Indeed, by the Abundance Conjecture we
have that Kx is semiample, and then as explained in Section 5 we get a fiber
space f: X — Y onto a normal projective variety of dimension x(X) > 0,
such that K}eéé = f*L for an ample line bundle L on Y. This implies that
c1(Kx)P =0 for all p > (X), and so

Vol(X, w(t)) = / (wo + 2rter (K )"
X
=t [ W ne (1) 4 O,
X
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where ¢ > 0 and
n—g K 1 n—k * K
/ Wo 0 Aer(Kx)"X) = 7r(X) / Wo ) A frer(L)FX) > 0.
X X

The fact that conversely Conjecture 6.3 implies the Abundance Conjecture
follows easily from [53, Theorem 5.5] (which is the extension of [43, Corol-
lary 6.1.13] to the Kéahler case), since (6.1) implies that K x is abundant (i.e.
its numerical dimension is equal to x(X)).

We also have the following simple observation, related to Conjecture 6.3:

PROPOSITION 6.4. — Let X be a compact Kihler manifold and w(t) a
solution of the Kihler—Ricci flow (1.1) defined on [0,00). Then there is a
constant C' > 0 such that

Vol(X,w(t)) < C, (6.2)
if and only if X is Calabi—Yau.

Proof. — If X is Calabi—Yau then Vol(X,w(t)) is clearly constant. Con-
versely, if (6.2) holds then expanding

Vol(X, w(t)) = / (wo + 2ter (K x))",
X
we see that we must have
/ wg_l /\Cl(Kx) =0.
X

Since ¢;(Kx) is nef, the Khovanskii-Teissier inequality for nef classes (see
e.g. [23])

fo s (f2ssine) ()

implies that [, wi™*Aci(Kx)? = 0. The result now follows from the Hodge-
Riemann blhnear relations on Ké&hler manifolds, proved in [14]. Indeed, fol-
lowing their notation, we set wy = -+ = wp_1 = wp, so that the condition
Ix wo_ Aci(Kx) = 0 says that ¢;(Kx) € PY1(X), while the condition
Jx w2 Aeir(Kx)? = 0 says that Q(c1(Kx),e1(Kx)) = 0. Since by [14,
Theorem A] the bilinear form @ is positive definite on P11(X), this implies
that ¢1(Kx) =0, and so X is Calabi-Yau. O

6.3. Singularity types

Following [37] we say that a solution w(t) of the Kahler—Ricci flow (1.1) on
a compact Kéahler manifold X, defined on a maximal time interval [0, T),T <
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00, develops a type I singularity at time T if we have

sup (T —t)|[Rm(w(t))|w@) < +o0,
X x[0,T)

and a type Ila singularity if

sup (T = HRm(w(t))]) = +o.
X x[0,T)

While type I singularities are easy to construct, this is not the case for

type Ila singularities. The first compact examples, for the Ricci flow on

Riemannian manifolds, were constructed in [32]. Since these examples are

not Kéhler, this leaves open the following:

PROBLEM 6.5. — Construct a type Ila finite time singularity of the
Kdhler—Ricci flow on a compact Kéhler manifold.

For example, when X is Fano and [wg] = Acq (X) for some A > 0, then the
singularity being type I is equivalent to the curvature remaining uniformly
bounded for all ¢t > 0, after we renormalize the flow to have constant volume
(the normalized flow exists for all ¢ > 0). It seems very likely that there exist
Fano manifolds where the normalized flow does not have uniformly bounded
curvature, but no examples have been found yet.

On the other hand, in the Fano case Perelman has proved a uniform
scalar curvature bound (see [56]), which in the unnormalized flow translates
to the estimate

C
Tt
on X x [0,7). It is not known whether (6.3) holds for all finite time singu-
larities of the Kahler—Ricci flow, but see [90] for partial results.

R(t) < (6.3)

We now discuss infinite time solutions, and their singularity types “at
infinity”. Again following [37] we say that a solution w(t) of the Kahler—
Ricci flow (1.1) on a compact Kéhler manifold X, defined for all ¢ > 0,
develops a type III singularity at infinity if we have

sup  t{Rm(w(t))]w) < 400,

X [0,00
and a type IIb singularity if

sup  t|Rm(w(t))|w@) = +oo.

X x[0,00)

A simple scaling argument shows that type III is equivalent to the solution
of the normalized flow (5.1) having uniformly bounded curvature for all
t > 0, and type IIb to its negation. When n = 1 it follows from work of
Hamilton [36] that all infinite time solutions are type III. In the case of the
Ricci flow on real 3-dimensional compact Riemannian manifolds, all infinite
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time solutions are type III thanks to [2]. However, in the Kahler case when
n = 2 there are type IIb solutions. It is enough to take X a K3 surface, and
w a Ricci-flat Kéhler metric on X, which exists thanks to Yau [88]. Then
w cannot be flat since x(X) = 24 # 0, so supy |[Rm(w)|, = ¢ > 0. Then
w(t) = w is a static solution of the K&hler—Ricci flow (1.1), and
sup t{Rm(w(t))|we) = sup ct = +oo,
X x[0,00) te[0,00)

so this solution is type IIb.

The following theorem was proved in [82]:

THEOREM 6.6. — Let X™ be a compact Kihler manifold with Kx semi-
ample, and consider a solution of the Kahler—Ricci flow (1.1) (which neces-
sarily exists for all positive time).

(1) Assume k(X) = 0. Then the solution is type III if and only if X is
a finite unramified quotient of a torus

(2) Assume k(X) = n. Then the solution is type III if and only if Kx
is ample

(3) Assume 0 < k(X) <n, and let X, be any smooth fiber of the fibra-
tion f: X — Y defined by sections of Kg?z, for £ large. If X, is not
a finite unramified quotient of a torus then the solution is type IIb,
while if X, is a finite unramified quotient of a torus and S =0 (i.e.
Y is smooth and f is a submersion) then the solution is type III.

In particular, in all these cases the singularity type does not depend on the
initial metric.

Another proof of (2) was obtained in [33]. This theorem leaves open the
case when the generic fiber X, is a finite unramified quotient of a torus, but
f is not a submersion everywhere. In this case the solution can be either
type IIb or type III, depending on the singularities and multiplicities of the
fibers contained in S. A complete classification when n = 2 is obtained
in [82], where it is also shown that in general dimensions if any component
of singular fiber is uniruled then the solution is of type IIb. It remains to
understand what happens when no such component is uniruled.

Considering Theorem 6.6, it is then natural to conjecture:

CONJECTURE 6.7. — Let X be a compact Kahler manifold with Kx nef,
so every solution of the Kahler—Ricci flow (1.1) exists for all positive time.
Then the singularity type at infinity does not depend on the choice of the
nitial metric wg.

As mentioned above, this conjecture is only known when n < 2, thanks
to [82].

- 372 —



(1
2]
(3]

[4

(5]
(6]
(7]

8

9

[10]
(1]
(12]
(13]
14]
(15]
(16]
(17)
(18]

(19]

20]
21]
22]

(23]

KAWA lecture notes on the Kéhler—Ricci flow

Bibliography

T. AUBIN, “Equations du type Monge-Ampére sur les variétés kdhlériennes com-
pactes”, Bull. Sci. Math. 102 (1978), p. 63-95.

R. H. BAMLER, “Long-time analysis of 3 dimensional Ricci flow III”, https://arxiv.
org/abs/1310.4483, 2013.

W. P. BarTH, K. HULEK, C. A. M. PETERS & A. VAN DE VEN, Compact complex
surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 4,
Springer, 2004, xii+436 pages.

N. BUCHDAHL, “On compact Kéhler surfaces”, Ann. Inst. Fourier 49 (1999), no. 1,
p- 287-302.

F. CamPANA, A. HORING & T. PETERNELL, “Abundance for Kéhler threefolds”, Ann.
Sci. Ec. Norm. Supér. 49 (2016), no. 4, p. 971-1025.

H.-D. Cao, “Deformation of Kdhler metrics to Kdhler-Einstein metrics on compact
Kéhler manifolds”, Invent. Math. 81 (1985), p. 359-372.

A. CHAU, “Convergence of the Kahler—Ricci flow on noncompact Kéhler manifolds”,
J. Differ. Geom. 66 (2004), no. 2, p. 211-232.

X. CHEN & B. WANG, “Space of Ricci flows (II)”, https://arxiv.org/abs/1405.6797,
2014.

X. CHEN & Y. WANG, “Bessel functions, heat kernel and the conical Kahler—Ricci
flow”, J. Funct. Anal. 269 (2015), no. 2, p. 551-632.

T. C. CoLLINS & V. TosATTI, “Kéhler currents and null loci”, Invent. Math. 202
(2015), no. 3, p. 1167-1198.

J.-P. DEMAILLY, “Regularization of closed positive currents and intersection theory”,
J. Algebr. Geom. 1 (1992), no. 3, p. 361-409.

J.-P. DEMAILLY & M. PAUN, “Numerical characterization of the Kéahler cone of a
compact Kdhler manifold”, Ann. Math. 159 (2004), no. 3, p. 1247-1274.

E. D1 NEzzA & C. H. Lu, “Uniqueness and short time regularity of the weak Kéhler—
Ricci flow”, Adv. Math. 305 (2017), p. 953-993.

T.-C. DINH & V.-A. NGUYEN, “The mixed Hodge-Riemann bilinear relations for
compact Kéhler manifolds”, Geom. Funct. Anal. 16 (2006), no. 4, p. 838-849.

G. EDWARDS, “A scalar curvature bound along the conical Kéahler—Ricci flow”; J.
Geom. Anal. 28 (2018), no. 1, p. 225-252.

L. EiN, R. LAZARSFELD, M. MUSTATA, M. NAKAMAYE & M. Pora, “Asymptotic
invariants of base loci”, Ann. Inst. Fourier 56 (2006), no. 6, p. 1701-1734.

J. ENDERS, R. MULLER & P. M. TOPPING, “On type-I singularities in Ricci flow”,
Commun. Anal. Geom. 19 (2011), no. 5, p. 905-922.

P. EvssipiEux, V. GUEDJ & A. ZERIAHI, “Weak solutions to degenerate complex
Monge-Ampére flows 117, Adv. Math. 293 (2016), p. 37-80.

M. FeLpmaN, T. ILMANEN & D. KNOPF, “Rotationally symmetric shrinking and
expanding gradient Kéhler—Ricci solitons”, J. Differ. Geom. 65 (2003), no. 2, p. 169-
209.

J. FINE, “Fibrations with constant scalar curvature Kéhler metrics and the CM-line
bundle”, Math. Res. Lett. 14 (2007), no. 2, p. 239-247.

W. FiscHER & H. GRAUERT, “Lokal-triviale Familien kompakter komplexer Mannig-
faltigkeiten”, Nachr. Akad. Wiss. Géttingen 1965 (1965), p. 89-94.

F. T.-H. FonG & Z. ZHANG, “The collapsing rate of the Kéhler—Ricci flow with
regular infinite time singularity”, J. Reine Angew. Math. 703 (2015), p. 95-113.

J. Fu & J. X1A0, “Teissier’s problem on proportionality of nef and big classes over a
compact Kahler manifold”, https://arxiv.org/abs/1410.4878, to appear in Algebr.
Geom., 2014.

- 373 —


https://arxiv.org/abs/1310.4483
https://arxiv.org/abs/1310.4483
https://arxiv.org/abs/1405.6797
https://arxiv.org/abs/1410.4878

24]

(25]
[26]
27]
(28]
29]
(30]
(31]
(32]
(33]

34]

35]

(36]

37)

(38]
39]
[40]
[41]
[42]

[43]

[44]

[45]
[46]

Valentino Tosatti

A. Fuiiki & G. SCHUMACHER, “The moduli space of extremal compact Kahler mani-
folds and generalized Weil-Petersson metrics”, Publ. Res. Inst. Math. Sci. 26 (1990),
no. 1, p. 101-183.

O. FuJiNo & Y. GONGYO, “On images of weak Fano manifolds”, Math. Z. 270 (2012),
no. 1-2, p. 531-544.

T. FuJsita, “On Kahler fiber spaces over curves”, J. Math. Soc. Japan 30 (1978),
p. 779-794.

M. GILL, “Convergence of the parabolic complex Monge-Ampére equation on compact
Hermitian manifolds”, Commun. Anal. Geom. 19 (2011), no. 2, p. 277-304.

, “Collapsing of products along the Kéahler—Ricci flow”, Trans. Am. Math.
Soc. 366 (2014), no. 7, p. 3907-3924.

B. R. GREENE, A. SHAPERE, C. VAFA & S.-T. YAU, “Stringy cosmic strings and
noncompact Calabi-Yau manifolds”, Nucl. Phys. B 337 (1990), no. 1, p. 1-36.

P. GRrIFFITHS & J. HARRIS, Principles of algebraic geometry, Pure and Applied Math-
ematics, John Wiley & Sons, 1978, xii+813 pages.

M. GRross, V. TOSATTI & Y. ZHANG, “Collapsing of abelian fibered Calabi-Yau man-
ifolds”, Duke Math. J. 162 (2013), no. 3, p. 517-551.

H.-L. Gu & X.-P. ZnHu, “The existence of type II singularities for the Ricci flow on
St Commun. Anal. Geom. 16 (2008), no. 3, p. 467-494.

B. Guo, “On the Kéhler Ricci flow on projective manifolds of general type”, Int.
Math. Res. Not. 2017 (2017), no. 7, p. 2139-2171.

B. Guo, J. SONG & B. WEINKOVE, “Geometric convergence of the Kahler—Ricci flow
on complex surfaces of general type”, Int. Math. Res. Not. 2016 (2016), no. 18,
p- 5652-5669.

R. S. HAMILTON, “Three-manifolds with positive Ricci curvature”, J. Differ. Geom.
17 (1982), p. 255-306.

, “The Ricci flow on surfaces”, in Mathematics and general relativity (Santa
Cruz, CA, 1986), Contemporary Mathematics, vol. 71, American Mathematical So-
ciety, 1988, p. 237-262.

, “The formation of singularities in the Ricci flow”, in Surveys in differential
geometry. Vol. II (Cambridge, MA, 1993), Surveys in Differential Geometry, Inter-
national Press, 1995, p. 7-136.

H.-J. HEIN & V. To0sATTI, “Remarks on the collapsing of torus fibered Calabi-Yau
manifolds”, Bull. Lond. Math. Soc. 47 (2015), no. 6, p. 1021-1027.

A. HORING & T. PETERNELL, “Mori fibre spaces for Kahler threefolds”, J. Math. Sci.,
Tokyo 22 (2015), no. 1, p. 219-246.

, “Minimal models for Kéhler threefolds”, Invent. Math. 203 (2016), no. 1,
p. 217-264.

D. HUYBRECHTS, Complex geometry. An introduction, Universitext, Springer, 2005,
xii+309 pages.

Y. KAWAMATA, “On the length of an extremal rational curve”, Invent. Math. 105
(1991), no. 3, p. 609-611.

Y. KawamaTta, K. MAaTsupa & K. MATsukI, “Introduction to the minimal model
problem”; in Algebraic geometry (Sendai, 1985), Advanced Studies in Pure Mathe-
matics, vol. 10, North-Holland, 1987, p. 283-360.

S. KoBayasHI & K. Nowmizu, Foundations of differential geometry. I., John Wiley &
Sons, 1963.

, Foundations of differential geometry. II., John Wiley & Sons, 1969.

K. KopAIRA, Complex manifolds and deformation of complex structures, 2nd ed.,
Classics in Mathematics, Springer, 2005, viii+-465 pages.

- 374 —



(47)

(48]
[49]
[50]
[51]
[52]

(53]

[54]

[55]

[56]
[57]
/58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]

(69]

KAWA lecture notes on the Kéhler—Ricci flow

N. V. KRryLov, Lectures on elliptic and parabolic equations in Hélder spaces,
Graduate Studies in Mathematics, vol. 12, American Mathematical Society, 1996,
xii+164 pages.

G. LA NavVE & G. TIAN, “Soliton-type metrics and Kahler—Ricci flow on symplectic
quotients”, J. Reine Angew. Math. 711 (2016), p. 139-166.

A. LAMARI, “Le cone kéhlérien d’une surface”, J. Math. Pures Appl. 78 (1999), no. 3,
p- 249-263.

R. LAZARSFELD, Positivity in algebraic geometry I € II, Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge, vol. 48-49, Springer, 2004.

G. M. LIEBERMAN, Second order parabolic differential equations, World Scientific,
1996, xi+439 pages.

M. NAKAMAYE, “Stable base loci of linear series”, Math. Ann. 318 (2000), no. 4,
p. 837-847.

N. NAKAYAMA, “The lower semicontinuity of the plurigenera of complex varieties”, in
Algebraic geometry (Sendai, 1985), Advanced Studies in Pure Mathematics, vol. 10,
North-Holland, 1987, p. 551-590.

D. H. PHONG & J. STURM, “On stability and the convergence of the Kahler—Ricci
flow”, J. Differ. Geom. 72 (2006), no. 1, p. 149-168.

X. RONG, “Convergence and collapsing theorems in Riemannian geometry”, in Hand-
book of geometric analysis 2, Advanced Lectures in Mathematics, vol. 13, Higher
Education Press, 2010, p. 193-299.

N. SEsuM & G. TiAN, “Bounding scalar curvature and diameter along the Kéhler—
Ricci flow”, J. Inst. Math. Jussieu 7 (2008), no. 3, p. 575-587.

L. SHEN, “Unnormalize conical Ké&hler-Ricci flow”, https://arxiv.org/abs/1411.
7284, 2014.

M. SHERMAN & B. WEINKOVE, “Interior derivative estimates for the Kéahler—Ricci
flow”, Pac. J. Math. 257 (2012), no. 2, p. 491-501.

W.-X. SHI, “Ricci flow and the uniformization on complete noncompact Kahler man-
ifolds”, J. Differ. Geom. 45 (1997), no. 1, p. 94-220.

J. Song, “Ricci flow and birational surgery”, https://arxiv.org/abs/1304.2607,
2013.

, “Finite time extinction of the Kahler—Ricci flow”, Math. Res. Lett. 21 (2014),
no. 6, p. 1435-1449.

J. SonG, G. SzEKELYHIDI & B. WEINKOVE, “The Kéhler—Ricci flow on projective
bundles”, Int. Math. Res. Not. 2013 (2013), no. 2, p. 243-257.

J. SoNG & G. TiaN, “The Kéhler—Ricci flow on surfaces of positive Kodaira dimen-
sion”, Invent. Math. 170 (2007), no. 3, p. 609-653.

, “Canonical measures and Kahler—Ricci flow”; J. Am. Math. Soc. 25 (2012),
no. 2, p. 303-353.

, “Bounding scalar curvature for global solutions of the Kéahler—Ricci flow”,
Am. J. Math. 138 (2016), no. 3, p. 683-695.

, “The Kéahler-Ricci flow through singularities”, Invent. Math. 207 (2017),
no. 2, p. 519-595.

J. SonaG & B. WEINKOVE, “Contracting exceptional divisors by the Kéhler—Ricci flow.
17, Duke Math. J. 162 (2013), no. 2, p. 367-415.

, “Introduction to the Kéahler—Ricci flow”, in An introduction to the Kahler—
Ricci flow, Lecture Notes in Math., vol. 2086, Springer, 2013, p. 89-188.

, “Contracting exceptional divisors by the Kahler—Ricci flow. I1.”, Proc. Lond.
Math. Soc. 108 (2014), no. 6, p. 1529-1561.

- 375 —


https://arxiv.org/abs/1411.7284
https://arxiv.org/abs/1411.7284
https://arxiv.org/abs/1304.2607

[70]

[71]

[72]
(73]
[74]
[75]

[76]

[77]
[78]
[79]
80]
81]
82]
83]
84]

(85]

(86]

(87)

(88]
(89]
[90]

[91]

Valentino Tosatti

G. TiIAN, “Smoothness of the universal deformation space of compact Calabi-Yau
manifolds and its Peterson—Weil metric”, in Mathematical aspects of string theory,
Advanced Series in Mathematical Physics, vol. 1, World Scientific, 1987, p. 629-646.
——, “New results and problems on Kéahler—Ricci flow”, in Differential geome-
try, mathematical physics, mathematics and society II, Astérisque, vol. 322, Société
Mathématique de France, 2008, p. 71-91.

, “Finite-time singularity of Kahler—Ricci flow”, Discrete Contin. Dyn. Syst.
28 (2010), no. 3, p. 1137-1150.

G. TIAN & Z. ZHANG, “On the Kéhler—Ricci flow on projective manifolds of general
type”, Chin. Ann. Math. 27 (2006), no. 2, p. 179-192.

, “Convergence of Kahler—Ricci flow on lower dimensional algebraic manifolds
of general type”, Int. Math. Res. Not. 2016 (2016), no. 21, p. 6493-6511.

V. TosaTTi, “Adiabatic limits of Ricci-flat Kéhler metrics”, J. Differ. Geom. 84
(2010), no. 2, p. 427-453.

, “Non-Kéhler Calabi—Yau manifolds”, in Analysis, complex geometry, and
mathematical physics, Contemporary Mathematics, vol. 644, American Mathematical
Society, 2015, p. 261-277.

, “Nakamaye’s theorem on complex manifolds”, https://arxiv.org/abs/
1603.00319, to appear in Proc. Symp. Pure Math., 2016.

V. TosATTI & B. WEINKOVE, “The Chern—Ricci flow on complex surfaces”, Compos.
Math. 149 (2013), no. 12, p. 2101-2138.

, “On the evolution of a Hermitian metric by its Chern—Ricci form”, J. Differ.
Geom. 99 (2015), no. 1, p. 125-163.

V. TosAatTi, B. WEINKOVE & X. YANG, “Collapsing of the Chern—Ricci flow on elliptic
surfaces”, Math. Ann. 362 (2015), no. 3-4, p. 1223-1271.

————, “The Kéhler—Ricci flow, Ricci-flat metrics and collapsing limits”, https:
//arxiv.org/abs/1408.0161, to appear in Am. J. Math., 2017.

V. TOSATTI & Y. ZHANG, “Infinite time singularities of the Kahler—Ricci flow”, Geom.
Topol. 19 (2015), no. 5, p. 2925-2948.

, “Finite time collapsing of the Kéahler-Ricci flow on threefolds”, Ann. Sc.
Norm. Super. Pisa Cl. Sci 18 (2018), no. 1, p. 105-118.

H. TsuJi, “Existence and degeneration of Kahler-Einstein metrics on minimal alge-
braic varieties of general type”, Math. Ann. 281 (1988), no. 1, p. 123-134.

, “Degenerate Monge-Ampeére equation in algebraic geometry”, in Proceedings
of the miniconference on analysis and applications (Brisbane, 1993), Proceedings
of the Centre for Mathematics and its Applications, vol. 33, Australian National
University, 1994, p. 209-224.

J. WEHLER, “Isomorphie von Familien kompakter komplexer Mannigfaltigkeiten”,
Math. Ann. 231 (1977), p. 77-90.

B. WEINKOVE, “The Kéhler—Ricci flow on compact Kéhler manifolds”, in Geometric
analysis, IAS /Park City Mathematics Series, vol. 22, American Mathematical Society,
2016, p. 53-108.

S.-T. YAau, “On the Ricci curvature of a compact Kéahler manifold and the complex
Monge-Ampere equation”, Commun. Pure Appl. Math. 31 (1978), p. 339-411.

7. ZHANG, “Scalar curvature bound for Kéhler—Ricci flows over minimal manifolds of
general type”, Int. Math. Res. Not. 2009 (2009), no. 20, p. 3901-3912.

, “Scalar curvature behavior for finite-time singularity of Kdhler—Ricci flow”,
Mich. Math. J. 59 (2010), no. 2, p. 419-433.

, “General weak limit for Kahler—Ricci flow”, Commun. Contemp. Math. 18
(2016), no. 5, Article ID 1550079, 21 p.

- 376 —


https://arxiv.org/abs/1603.00319
https://arxiv.org/abs/1603.00319
https://arxiv.org/abs/1408.0161
https://arxiv.org/abs/1408.0161

	1. Introduction
	2. Preliminaries
	2.1. (1,1) classes and the Kähler cone
	2.2. Ricci curvature and first Chern class
	2.3. Some more notation
	2.4. Analytic subvarieties
	2.5. Kodaira dimension
	2.6. Gromov–Hausdorff convergence

	3. Maximal existence time
	3.1. The maximal existence time of the Kähler–Ricci flow
	3.2. Reduction to a parabolic complex Monge–Ampère equation
	3.3. Existence for a short positive time
	3.4. A priori estimates and completion of proof of Theorem 3.1
	3.5. Examples of calculations of T

	4. Finite time singularities
	4.1. Finite time singularities of the Kähler–Ricci flow
	4.2. Noncollapsed finite time singularities
	4.3. A conjectural uniform bound for the potential
	4.4. Expected behavior at noncollapsed finite time singularities
	4.5. Expected behavior at collapsed finite time singularities

	5. Long time behavior
	5.1. Kähler–Ricci flows with long time existence
	5.2. Semiample canonical bundle
	5.3. The case kappa(X)=0
	5.4. The case kappa(X)=n
	5.5. The case 0< kappa(X)<n
	5.6. General facts about holomorphic submersions
	5.7. Reduction to a parabolic complex Monge–Ampère equation
	5.8. C0 estimates for the potential and its time derivative
	5.9. The parabolic Schwarz Lemma
	5.10. An optimal C0 estimate for the evolving metric
	5.11. C0 convergence of the evolving metric
	5.12. Estimates for the metric along the fibers
	5.13. Completion of the proof of Theorem 5.5
	5.14. Smooth collapsing when the general fibers are tori

	6. Some open problems
	6.1. Diameter bounds
	6.2. Volume growth
	6.3. Singularity types

	Bibliography

