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Equidistribution and β-ensembles

Tom Carroll (1), Jordi Marzo (2),
Xavier Massaneda (3) and Joaquim Ortega-Cerdà (4)

ABSTRACT. — We find the precise rate at which the empirical measure associated
to a β-ensemble converges to its limiting measure. In our setting the β-ensemble is a
random point process on a compact complex manifold distributed according to the
β power of a determinant of sections in a positive line bundle. A particular case is
the spherical ensemble of generalized random eigenvalues of pairs of matrices with
independent identically distributed Gaussian entries.

RÉSUMÉ. — On trouve le taux précis où la mesure empirique associée à un β-
ensemble converge vers sa mesure limite. Le β-ensemble est un processus de points
aléatoires sur une variété complexe compacte répartis selon la puissance β d’un
déterminant de sections d’un fibré de ligne positif. Un cas particulier est l’ensemble
sphérique de valeurs propres généralisés de paires de matrices aléatoires avec entrées
gaussiennes identiquement distribuées et independantes.

1. Background and setting

Let (X,ω) be an n-dimensional compact complex manifold endowed with
a smooth Hermitian metric ω. Let (L, φ) be a holomorphic line bundle with
a positive Hermitian metric φ. This has to be understood as a collection
of smooth functions φi defined in trivializing neighborhoods Ui of the line
bundle. If ei(x) is a frame in Ui, then |ei(x)|2φ = e−φi(x). Thus φi must satisfy
the compatibilty condition φi − φj = log |gij |, where gij are the transition
functions.
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As usual we denote by H0(X,L) the global holomorphic sections. If s ∈
H0(X,L) we will denote by |s(x)|φ the pointwise norm on the fiber induced
by φ. If we have any other line bundles (like Lk) with a natural metric
induced by φ we will still denote by |s(x)|φ the corresponding norm.

If L is a line bundle over X and M is a line bundle over Y , we denote
by L � M the line bundle over the product manifold X × Y defined as
L �M = π∗X(L) ⊗ π∗Y (M), where πX : X × Y → X is the projection onto
the first factor and πY : X × Y → Y is the projection onto the second. The
line bundle L�M carries a metric induced by that of L and M .

Given a basis s1, . . . , sN of H0(X,L), we define det(si(xj)) as a section
of L�N over XN by the identities det(si(xj)) =

∑
σ∈Sn

sgn(σ)
⊗N

i=1 si(xσi
).

We fix a probability measure on X, given by the normalized volume form
ωn, that we denote by σ.

Definition 1.1. — Let β > 0. A β-ensemble is an N point random
process on X which has joint density given by

1
ZN
|det si(xj)|βφ dσ(x1)⊗ · · · ⊗ dσ(xN ), (1.1)

where ZN = ZN (β) is chosen so that this is a probability distribution in XN

and | · |φ denotes the norm measured using the induced metric in (Lk)�Nk .

Observe that the random point process is independent of the choice of
basis (sj)j .

A particularly interesting case is when β = 2, since then the process
is determinantal. Let K denote the Bergman kernel of the Hilbert space
H0(X,L) endowed with the norm ‖s‖2 =

∫
X
|s(x)|2φ dσ(x). Then

|det(si(xj))|2φ = |det(K(xi, xj))|φ.

Another interesting situation occurs when β →∞. In this case the prob-
ability charges the maxima of the function |det(si(xj))|. A set of points
{xj}j with cardinality dimH0(X,L) and maximizing this determinant is
known as a Fekete sequence. The distribution of these sequences has been
studied in [9], [10], and [2] and we will draw some ideas from there to study
general β-ensembles.

We consider now the situation where we replace L by a power Lk, k ∈ N,
and let k tend to infinity. We denote by Nk the dimension of H0(X,Lk).
It is well-known, by the Riemann–Roch theorem and the Kodaira vanishing
theorem, that

dimH0(X,Lk) = c1(L)n

n! kn +O(kn−1) ∼ kn,
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where c1(L) denotes the first Chern class of L.

For each k we consider a collection of Nk points chosen randomly accord-
ing to the law (1.1). For each k the collection is picked independently of the
previous ones.

Given points x(k)
1 , . . . , x

(k)
Nk

chosen according to (1.1), consider its associ-
ated empirical measure µk = 1

Nk

∑
δ
x

(k)
i

. For convenience we will drop the
superindex (k) hereafter. We are interested in understanding the limiting
distribution of the measures µk.

The following result is well known; see [2].

Theorem (Berman, Boucksom, Witt Nyström). — Let µk be the em-
pirical measure associated to a Fekete sequence for the bundle H0(X,Lk).
Then, as k →∞,

µk −→ ν := (i∂∂̄φ)n∫
X

(i∂∂̄φ)n
in the weak-∗ topology.

The measure ν is called the equilibrium measure.

There is a counterpart of this result for empirical measures of general
β-ensembles (see [3], which gives an estimate for the large deviations of the
empirical measure from the equilibrium measure).

Our aim is to obtain a different quantitative version of the weak con-
vergence of the empirical measure to the equilibrium measure, measured in
terms of the Kantorovich–Vaserstein distance between mesaures. We have
chosen the compact setting since it is technically simpler than the non com-
pact case as the Ginibre ensemble studied in [15].

This sort of quantification has also been studied, with different tools, in
the context of random matrix models, (see for instance [11, 12, 13]), where
similar determinantal point processes arise.

In fact some of the β-ensembles we are considering admit random matrix
models, at least when dimC(M) = 1. For instance, Krishnapur studied in [8]
the following point process: let A,B be k × k random matrices with i.i.d.
complex Gaussian entries. He proved that the generalized eigenvalues associ-
ated with the pair (A,B), i.e. the eigenvalues of A−1B, have joint probability
density:

1
Zk

k∏
l=1

1
(1 + |xl|2)k+1

∏
i<j

|xi − xj |2, (1.2)

with respect to the Lebesgue measure in the plane.
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It was also observed in [8] that, using the stereographic projection

π :S2 −→ C
Pj 7→ xj ,

the joint density (1.2) (with respect to the product area measure in the
product of spheres) is

1
Zk

∏
i<j

‖Pi − Pj‖2R3 .

Since this is invariant under rotations of the sphere, the point process is
called the spherical ensemble.

A point process with this law had been considered earlier (without a
random matrix model) by Caillol [6] as the model of one-component plasma.

One typical instance of the process is as in the picture.

The spherical ensemble has received much attention. We mention a couple
of properties related to our results. In [5], Bordenave proves the universal-
ity of the spectral distribution of the k × k-matrix A−1B with respect to
other i.i.d. random distribution of entries. As an outcome, he proves that
the weak-* limit of the spectral measures µk = 1

k

∑
i δxi , where xi are the

generalized eigenvalues, is the normalized area measure in the sphere. This
convergence is rather uniform: in [1] Alishahi and Zamani estimate the dis-
crepancy of the empirical measure with respect to its limit and give precise
estimates of the Riesz and the logarithmic energies.

Our main result is a quantification of the equidistribution of the empirical
measure associated to a β-ensemble in terms of the Kantorovich–Vaserstein
distance.

Theorem 1.2. — Let β > 1 and consider the empirical measure µk
associated to the β-ensemble given in Definition 1.1 and let ν = (i∂∂̄φ)n∫

X
(i∂∂̄φ)n

be

the equilibrium measure. Then the expected Kantorovich–Vaserstein distance
from µk to µ can be estimated by

EW (µk, ν) 6 C/
√
k.
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1.1. The Kantorovich–Vaserstein distance

To measure the uniformity and speed of convergence of the empirical
measures µk to the limiting measure ν we use the Kantorovich–Vaserstein
distance W . Given probability measures µ and ν, it is defined as

W (µ, ν) = inf
ρ

∫∫
X×X

d(x, y) dρ(x, y),

where d(x, y) is the distance associated to the metric ω and the infimum is
taken over all admissible transport plans ρ, i.e., all probability measures in
X ×X with marginal measures µ and ν respectively.

In general, the Kantorovich–Vaserstein distance is defined on probabil-
ity measures over a compact metric space X, and it metrizes the weak-∗
convergence of measures.

It was observed in [9] that in the definition of W it is possible to enlarge
the class of admissible transport plans to complex measures ρ that have
marginals µ and ν respectively. We include the argument for the sake of
completness.

Let
W̃ (µ, ν) = inf

ρ∈S

∫∫
X×X

d(x, y) d|ρ(x, y)|, (1.3)

where the infimum is now taken over the set S of all complex measures ρ on
X ×X with marginals ρ( · , X) = µ and ρ(X, · ) = ν.

In order to see that W̃ (µ, ν) = W (µ, ν), we recall the dual formulation
of W (see [17, (6.3)]):

W (µ, ν) = sup
{∣∣∣∫

X

f d(µ− ν)
∣∣∣ : f ∈ Lip1,1(X)

}
, (1.4)

where Lip1,1(X) is the collection of all functions f on X satisfying |f(x) −
f(y)| 6 d(x, y).

For any complex measure ρ with marginals µ and ν and any f ∈ Lip1,1(X)
we have∣∣∣∫
X

f d(µ−ν)
∣∣∣ =

∣∣∣∫∫
X×X

(f(x)−f(y)) dρ(x, y)
∣∣∣ 6 ∫∫

X×X
d(x, y) d|ρ(x, y)|.

Hence
W (µ, ν) 6 inf

ρ∈S

∫∫
X×X

d(x, y) d|ρ(x, y)| = W̃ (µ, ν).

The remaining inequality (W̃ (µ, ν) 6W (µ, ν)) is trivial.

A standard reference for basic facts on Kantorovich–Vaserstein distances
is the book [17].
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1.2. Lagrange sections

We fix now a basis of sections s1, . . . sNk
of H0(X,Lk). Given any col-

lection of points (x1, . . . , xNk
) we define the Lagrange sections informally

as:

`j(x) =

∣∣∣∣ s1(x1) ··· s1(x) ··· s1(xNk
)

···

···

···
sNk

(x1) ··· sNk
(x) ··· sNk

(xNk
)

∣∣∣∣∣∣∣∣ s1(x1) ··· s1(xj) ··· s1(xNk
)

···

···

···

sNk
(x1) ··· sNk

(xj) ··· sNk
(xNk

)

∣∣∣∣
Clearly `j ∈ H0(X,Lk) and `j(xi) = 0 if i 6= j and |`j(xj)| = 1.

More formally, we proceed as in [9]: if ej(x) is a frame in a neighborhood
Uj of the point xj , then the sections si(x) are represented on each Uj by
scalar functions fij such that si(x) = fij(x)ej(x). Similarly, the metric kφ is
represented on Uj by a smooth real-valued function kφj such that |si(x)|2 =
|fij(x)|2e−kφj(x).

To construct the Lagrange sections we denote by A the matrix(
e−

k
2φj(xj)fij(xj)

)
i,j
,

and define

`j(x) := 1
det(A)

Nk∑
i=1

(−1)i+jAijsi(x),

where Aij is the determinant of the submatrix obtained from A by removing
the i-th row and j-th column. Clearly `j ∈ H0(X,Lk), and it is not difficult
to check that |`j(xi)|φ = δij , 1 6 i, j 6 Nk.

Notice that if we denote by ρk(x1, . . . , xNk
) = 1

ZNk
|det si(xj)|βφ then

|`j(x)|βφ = ρk(x1, . . . , x, . . . , xNk
)

ρk(x1, . . . , xj , . . . , xNk
) , (1.5)

and thus E(‖`j‖β) 6 1, because

E(‖`j‖β)β 6 E(‖`j‖ββ) = E
(∫

X

|`j(x)|βφdσ(x)
)

=
∫
XNk+1

ρk(x1, . . . , x, . . . , xNk
)dσ(x)dσ(x1) · · · dσ(xNk

) = 1.

In the case of the Fekete points (β =∞), supX |`j(x)|φ = 1 by definition.
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2. Proof of the main result

Before proving the main result a couple of remarks on the sharpness of
the result are in order.

Remark. — The rate of convergence cannot be improved. Let σ be
any nowhere vanishing smooth probability distribution on X. Let Ek be
any discrete set on X with cardinality #Ek ' kn ' Nk, and let µk =

1
#Ek

∑
y∈Ek

δy. Then the distance W (µk, σ) & 1/
√
k.

To obtain a lower bound for W (µk, σ) we use the dual formulation of
the Kantorovich–Vaserstein distance (1.4) and the function f(x) = d(x,Ek),
which is in Lip1,1(X). Since d(x,Ek) = 0 on the support of µk we obtain

W (µk, σ) >
∫
X

d(x,Ek) dσ.

Vitali’s covering lemma ensures that for each k and for some ε small enough,
independent of k, there are at least 2#Ek pairwise disjoint balls of radius
ε/
√
k. Since the number of balls is twice the number of points in Ek, at least

half the balls contain no point of Ek. We consider one such ball, B(yi, ε/
√
k).

In the smaller ball B(yi, 0.5ε/
√
k) we have d(x,Ek) > 0.5ε/

√
k. Thus∫

X

d(x,Ek) dσ >
∑
i

∫
B(yi,ε/

√
k)
d(x,Ek) dσ &

∑
i

1√
k
σ
(
B(yi, ε/

√
k)
)

& #Ek
1√
k
k−n ' 1√

k
.

Remark. — Once we have observed that the rate of convergence is opti-
mal we may consider what is the value of the constant C that appears on the
speed of convergence. This constant depends on the off-diagonal estimate of
the Bergman kernel (2.2). Thus the positivity of the holomorphic line bundle
plays an important role in the speed of convergence.

As a final remark we observe that the techniques that we use are modelled
after the proof of the speed of the equidistribution of the Fekete points that
appears in [9].

Proof of Theorem 1.2. — To prove this we provide a (complex) transport
plan between the probability measure bk(x) = 1

Nk
Kk(x, x) (bk stands for

Bergman measure) and the empirical measure µk. We are going to prove
that

EW (µk, bk) = O
( 1√

k

)
.
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Standard estimates for the Bergman kernel provide:

W (bk, ν) = O
( 1√

k

)
.

Actually one can prove that the total variation (which dominates the
Kantorovich–Vaserstein distance) satisfies:∥∥∥∥Kk(x, x)

Nk
− ν
∥∥∥∥ 6 C√

k
. (2.1)

This follows for instance from the expansion in powers of 1/k of the Bergman
kernel. In this context this is due to Tian, Catlin and Zelditch, [7, 16, 18].

In the particular case of the spherical ensemble, the kernel is explicit
and invariant under rotations, and the estimate is even better: the Bergman
measure is the equilibrium measure, i.e. bk = ν.

Consider the transport plan

p(x, y) = 1
Nk

Nk∑
j=1

δxj
(y)〈Kk(x, xj), `j(x)〉dσ(x).

It has the correct marginals (bk and µk respectively) and thus

W (bk, µk) 6
∫∫

X×X
d(x, y) d|p|(x, y)

6
1
Nk

Nk∑
j=1

∫
X

d(x, xj)|`j(x)||Kk(x, xj)|dσ(x).

Now, letting β′ be the conjugate exponent of β (so that 1/β+ 1/β′ = 1), we
have

(EW )β 6
∫
XNk

1
Nk

Nk∑
j=1

(∫
X

d(x, xj)|`j(x)||Kk(x, xj)|dσ(x)
)β

× ρk(x1, . . . , xNk
)dσ(x1) · · · dσ(xNk

)

6
∫
XNk

1
Nk

Nk∑
j=1

(∫
X

d(x, xj)|Kk(x, xj)|dσ(x)
)β/β′

×
(∫

X

|`j(x)|β |Kk(x, xj)|d(x, xj)dσ(x)
)

× ρk(x1, . . . , xNk
)dσ(x1) · · · dσ(xNk

).
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Assume for the moment that the following off-diagonal decay of the
Bergman kernel holds:

sup
y∈X

∫
X

d(x, y)|Kk(x, y)|dσ(x) 6 C√
k
. (2.2)

Then, by (1.5), we obtain:

(EW )β 6
(
C√
k

)β/β′∫
XNk

1
Nk

Nk∑
j=1

∫
X

|`j(x)|β |Kk(x, xj)|d(x, xj)

× ρk(x1, . . . , xj , . . . , xNk
)dσ(x)dσ(x1) · · · dσ(xNk

)

=
(
C√
k

)β/β′∫
XNk

1
Nk

Nk∑
j=1

∫
X

|Kk(x, xj)|d(x, xj)

× ρk(x1, . . . , x, . . . , xNk
)dσ(x)dσ(x1) · · · dσ(xNk

).

Finally, integrating first in xj and applying again (2.2) we obtain

(EW )β 6
( C√

k

)β/β′( C√
k

)
= O

( 1√
k

)β
,

as desired.

Estimate (2.2) follows from the pointwise estimate for the Bergman kernel

|Kk(x, y)| 6 CNke−C
√
k d(x,y), (2.3)

which holds when the line bundle is positive, see [4].

Indeed, consider the function h(s) = se−C
√
ks that is strictly decreasing

in
[ 1
C
√
k
,+∞

)
. For any y ∈ X we bound the integral in (2.2) as∫

X

d(x, y)|Kk(x, y)|dσ(x) .
∫ +∞

0
σ ({x ∈ X : h(d(x, y)) > s}) ds

. Nk

∫ +∞

(C
√
k)−1
|h′(s)|σ ({x ∈ X : d(x, y) < s}) ds . 1√

k
,

where the last estimate follows from σ(B(y, s)) . s2n and Nk ∼ kn.

In the particular case of the spherical ensemble, the kernel is explicit and
the decay is even faster:

|Kk(z, w)|2 = k2
(

1− |z − w|2

(1 + |z|2)(1 + |w|2)

)k−1

6 Kk2 exp
(
−Ck |z − w|2

(1 + |z|2)(1 + |w|2)

)
= Kk2 exp

(
−Ck d(z, w)2) ,
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where here d(z, w) coincides with the chordal metric. �

3. The determinantal setting

Now we turn our attention to the almost sure convergence of the empirical
measure. Using the fact that Lipschitz functionals of determinantal process
concentrate the measure around the mean, we prove the following result.

Corollary 3.1. — If µk is the empirical measure associated with the
determinantal point process given by (1.1) with β = 2, and ν denotes the
equilibrium measure, then:

• If dimC(X) > 1 then W (µk, ν) = O(1/
√
k) almost surely.

• If dimC(X) = 1 then W (µk, ν) = O(log k/
√
k) almost surely.

In particular, any realization of the spherical ensemble satisfies W (µk, ν) =
O(log k/

√
k) almost surely.

Let ν be, as before, the normalized equilibrium measure. Let us define
the functional f on the set of measures of the form σ =

∑n
i=1 δxi

by

f(σ) = nW
(σ
n
, ν
)
.

As the Kantorovich–Vaserstein distance is controlled by the total variation,
f is a Lipschitz functional with Lipschitz norm one with respect to the
total variation distance. Here we use the following result of Pemantle and
Peres [14, Theorem 3.5].

Theorem (Pemantle-Peres). — Let Z be a determinantal point process
of N points. Let f be a Lipschitz-1 functional defined in the set of finite
counting measures (with respect to the total variation distance). Then

P(f − Ef > a) 6 3 exp
(
− a2

16(a+ 2N)

)
Take now a = 10αkNk/

√
k, where αk = C

√
log k for n = 1 and αk = C

for n > 1 (C is the constant that appears in Theorem 1.2). Then

P
(
W (µk, ν) > 11αk√

k

)
6 P

(
NkW (µk, ν) > NkEW (µk, ν) + 10αk

Nk√
k

)
6 3 exp

(
− 100α2

kN
2
k/k

16(10αkNk/
√
k + 2Nk)

)
. exp(−α2

kNk/k) . 1
k2 .
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Finally, a standard application of the Borel–Cantelli lemma shows that,
with probability one, for all k large enough,

W (µk, ν) 6
11√αk√

k
.
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