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Smooth families of tori and linear Kähler groups (∗)

Benoît Claudon (1)

ABSTRACT. — This short note, meant as an addendum to [6], enhances the
results contained in loc. cit. In particular it is proven here that a linear Kähler group
is already the fundamental group of a smooth complex projective variety. This is
achieved by studying the relative deformation of the total space of a smooth family
of tori in an equivariant context.

RÉSUMÉ. — Cette courte note améliore les résultats de l’article [6] et peut donc
être considérée comme un addendum à ce dernier. Nous y établissons qu’un groupe
kählérien linéaire peut être réalisé comme le groupe fondamental d’une variété projec-
tive lisse. Pour y parvenir, nous étudions certaines déformations relatives de l’espace
total d’une famille lisse de tores, et ce dans un contexte équivariant.

1. Introduction

In his seminal paper on compact complex surfaces [11], Kodaira proved
that a compact Kähler surface can be deformed to an algebraic one (Theo-
rem 16.1 in loc. cit.). However since the groundbreaking works of Voisin [20,
21] we know that this is specific to the surface case: in dimension at least 4,
there exists compact Kähler manifolds which do not have the cohomology
algebra of a projective manifold (and in particular cannot be deformed to
such an algebraic manifold). The examples of Voisin being bimeromorphic to
a torus (or to a projective bundle over a torus), it leaves open the following
question concerning the fundamental groups of compact Kähler manifolds
(known as Kähler groups).
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Question 1.1. — Can any Kähler group be realized as the fundamental
group of a smooth complex projective variety? In other terms, is any Kähler
group already a projective one?

Going back to Kodaira’s Theorem, Buchdahl gave another proof of this
result in [3, 4], providing by the way a useful criterion ensuring that a com-
pact Kähler manifold can be approximated by projective ones. This criterion
applies nicely to the case of smooth families(1) of tori (this was already ob-
served in [6]) and can even be used when the family is equivariant under the
action of a finite group.

Theorem 1.2. — Let f : X → B be a smooth family of tori whose total
space is compact Kähler and let us assume that f is equivariant with respect
to the action of a finite group Γ on both X and B. Then there exists a smooth
family of tori of the form

X π−→ T ×B p1−→ T

with T a polydisk and a point t0 ∈ T such that the family Xt0 := (π◦pT )−1(t0)
is (isomorphic to) the initial one. This family has moreover the following
properties:

(i) the group Γ acts on X ,
(ii) the projection π is equivariant with respect to this action on X and

to the action on T ×B induced by the trivial one on T ,
(iii) the set Talg of points t ∈ T such that Xt → B has a multisection

and its fibres are abelian varieties is dense near t0.

The last sentence means that the closure(2) of Talg contains an open
neighbourhood of t0. Up to shrinking T we can assume that Talg is thus the
whole of T .

In particular, Theorem 1.2 shows that the problem of approximating
compact Kähler manifolds with projective ones has a positive answer in the
case of smooth tori families.

Corollary 1.3. — Let X be a compact Kähler manifold and let us as-
sume that there is a finite étale Galois cover X̃ → X which is the total space
of a smooth family of tori over a projective base (equivariant under the action
of the Galois group). Then X can be approximated by projective manifolds: it

(1) As recalled in Paragraph 2.1, it is simply a holomorphic proper submersion whose
fibres are complex tori.

(2) The set Talg is the set of parameters such that the corresponding deformation is
“as algebraic as possible”. It should be noted that Xt is not necessarily projective (even
when t ∈ Talg) since B is not assumed to be so.

– 478 –



Linear Kähler groups

is the central fibre of a smooth morphism (X , X)→ (T, t0) (with T smooth)
and the set of t ∈ T such that Xt is projective is dense near t0.

Proof. — We can apply Theorem 1.2 to the smooth family of tori f :
X̃ → B and to action of Γ := Gal(X̃/X). We get a smooth deformation
X̃ → T × B of the initial family (over t0) and we can assume the set of
points t ∈ T such that X̃t −→ B has a multisection and its fibres are abelian
varieties is dense in T . The manifolds X̃t having these properties are thus
projective according to [5]. Since the action of Γ is free on X̃t0 we can assume
that it is also free on X̃ (up to shrinking T ). The family X := X̃/Γ −→ T is
thus a smooth deformation of Xt0 ' X̃/Γ ' X and the set of points t ∈ T
such that Xt is projective is dense in T (the quotient of a projective manifold
by a finite group is still projective). �

Theorem 1.2 together with the structure results obtained in [7] yields a
definitive answer to Question 1.1 in the linear case.

Corollary 1.4. — A Kähler group which is linear is also a projective
one: the fundamental group of a compact Kähler manifold can be realised as
the fundamental group of a smooth projective variety if it is a linear group.

Let us recall that the main result of [6] is a version of the latter corollary
up to finite index. It is stated there that a linear Kähler group has a finite
index subgroup which is projective. In the sequel of this article, we will
explain how to get rid of this finite index subgroup. Proofs of Theorem 1.2
and Corollary 1.4 will be given in Paragraph 3.3.

Before presenting the ingredients involved in these proofs, let us give a
word of explanation on the relative deformation constructed in Theorem 1.2
(the reader is advised to consult [16, §3.4.2, p. 191] for the notions con-
cerning relative deformations). The infinitesimal relative deformations of a
smooth morphism f : X → B are described by the space H1(X,TX|B) (cf.
Lemma 3.4.7 in loc. cit.) and the Leray spectral sequence for TX|B and f
gives a piece of exact sequence:

0 −→ H1(B, f∗TX|B) −→ H1(X,TX|B) −→ H0(B,R1f∗TX|B). (1.1)

In our situation (smooth families of tori), both sides of (1.1) correspond
to a different type of relative deformation. The left-hand side parametrizes
relative deformation using translations in the fibres of f (see the content
of Proposition 2.4) whereas the right-hand side has to do with deformation
of the variation of Hodge structures induced by f (these deformations are
identified in Paragraph 3.2). In a sense, the strategy of the proof is thus
dictated by the terms appearing in (1.1).
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2. Smooth families of tori

We recall here some basic facts about smooth families of tori: their de-
scription as torsors and their deformations. We then put this study in an
equivariant framework. Some facts recalled in Paragraph 2.1 already appear
in [14, §2]. Our reference concerning Hodge theory is [19]. For more advanced
material on Jacobian fibrations, the reader is referred to [1, 15] and to the
references therein.

2.1. Jacobian fibrations

Let f : X → B be a proper submersion between complex manifolds. We
assume moreover that the fibres of f are complex tori. We shall call such a
fibration a smooth family of tori. This fibration determines(3) a variation of
Hodge structures H (vhs for short) of weight −1 and rank 2g where g :=
dim(f) is the relative dimension of f . Let us recall that, in this weight one
situation, a vhs consists of an even rank local system HZ and a holomorphic
subbundle F of V := HZ ⊗OB satisfying the Hodge symmetry:

Vb = Fb ⊕ F̄b
for any b ∈ B. The vhs associated with a tori family is given by the following
data: the underlying local system is

HZ := Hom(R1f∗ZX ,ZB),
the Hodge filtration being given by

F := Hom(R1f∗OX ,OB) ⊂ HZ ⊗OB .
Let us remark that the duality

R1f∗ZX ⊗R2g−1f∗ZX −→ R2gf∗ZX ' ZB
shows that HZ is isomorphic to R2g−1f∗ZX .

With these data we can associate a particular family of tori. Let us con-
sider the injection

HZ ↪→ E := HZ ⊗OB/F ' f∗TX|B
to this end. It can be used to define an action of HZ on the total space of E
and the quotient gives rise to a smooth family of tori which will be denoted

p : J(H) −→ B

(3) Since in the sequel we will have to change the Hodge structure keeping the local
system fixed, we will use calligraphic letters when referring to a vhs and straight ones to
denote the underlying local system.

– 480 –



Linear Kähler groups

and called the Jacobian fibration associated with H. This fibration comes
endowed with a natural section (the image of the zero section of E) and
using it as the origins of the fibres we can define an abelian group law on
the sections of p. We will denote by J (H) this sheaf of abelian groups which
sits in the following short exact sequence:

0 −→ HZ −→ E −→ J (H) −→ 0. (2.1)

Let us say a word about polarizations (inspired from [14, p. 15–17]). A
real polarization of H is a flat non degenerate skew-symmetric bilinear(4)

form
q : HR ×HR −→ RB

satisfying the Hodge–Riemann relations:
q(F ,F) = 0 and ∀ 0 6= x ∈ F , iq(x, x̄) > 0.

The polarization is said to be rational if it defined on HQ (with values in QB).
If such a rational polarization exists, we shall say that H is Q-polarizable.
In this case, the corresponding tori are abelian varieties.

Once such a polarization is fixed, the period domain of (HZ, q) can be
identified with the Siegel half space

Hg :=
{
τ ∈ Mg(C) | τ t = τ and=m(τ) > 0

}
and the representation associated with the local system has its value in the
symplectic group

π1(B) −→ Spg(Z).
This can then be used to define an action of π1(B) n Z2g on B̃ × Cg, the
resulting quotient being another realization of the Jacobian fibration. In
this case, the Jacobian fibration is endowed with a relative Kähler form ωq:
its restriction to any fiber is a Kähler metric. If q is rational, the fibration
J(H)→ B is then a locally projective morphism.

In the reverse direction, starting from a smooth family of tori f : X → B
inducing H, it is obvious that a (relative) Kähler metric ω on X induces a
real polarization qω on HR.

2.2. Smooth families of tori as torsors

Now it is well known that the initial family f : X → B can be seen as
a torsor under the Jacobian fibration and as such can be described by an
element

η(f) ∈ H1(B,J (H)).

(4) Here and below, HQ and HR stand for HZ ⊗ Q and HZ ⊗ R as usual.
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Here is a simple description of the class η(f). If (Ui) is an open cover of B
such that f−1(Ui) → Ui has a section σi then the quantity ηij := σi − σj
is a perfectly well defined cocycle with values in J (H). Conversely, given
a cohomology class η represented by a cocycle (ηij), we can look at the
isomorphisms induced by the sections ηij (translations in the fibres):

tr(ηij) : p−1(Uij)
∼−→ p−1(Uij)

defined by the formulas:
tr(ηij)(x) = x+ ηij(p(x))

(the addition referring to the one in J(H)). The isomorphisms tr(ηij) satisfy
a cocyle relation and we can use them to glue the fibrations p−1(Ui) → Ui
into a new family of tori J(H)η → B (and both mechanisms are inverse one
to each other).

Proposition 2.1. — There is a one-to-one correspondence between iso-
morphism classes of smooth families of tori f : X → B inducing H and
the cohomology classes η ∈ H1(B,J (H)). In particular, if f : X → B and
g : Y → B are smooth families of tori inducing the same vhs on B, we can
glue them over B to get a new family h : Z → B such that η(h) = η(f)+η(g).

With this in mind it is obvious that there always exists an étale morphism
J(H)η → J(H)m·η

for η ∈ H1(B,J (H)) and m > 1 an integer (obtained by gluing the multipli-
cation by m defined on the Jacobian fibration). In particular, if η is torsion
(of order m say), J(H)η appears as a finite étale cover of J(H)m·η = J(H)
and, in that case, the pull-back of the canonical section of J(H)/B gives rise
to a multisection of J(H)η/B (which is étale over B by its very construction).
This proves at least one implication of the following proposition.

Proposition 2.2. — Let f : X → B be a smooth family of tori (in-
ducing the vhs H). The class η(f) is torsion in H1(B,J (H)) if and only if
f has a multisection. If it is the case, the multisection can be chosen étale
over B.

Remark 2.3. — Using relative Deligne groups (as in [14, §2]), we can
give an intrinsic definition of the class η(f) associated with a family of tori
f : X → B. Let us look at the following complex:

Z•D(X/B) : 0 −→ ZX −→ OX
dX|B−→ Ω1

X|B
dX|B−→ . . .

dX|B−→ Ωg−1
X|B (2.2)

where dX|B denotes the relative differential. The complex (2.2) sits obviously
in the exact sequence

0 −→ Ω6g−1
X|B [−1] −→ Z•D(X/B) −→ ZX −→ 0 (2.3)
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where the last term is the complex given by the constant sheaf concentrated
in degree 0. Taking derived direct image of (2.3) yields a triangle:

Rf∗Ω6g−1
X|B [−1] −→ Rf∗Z•D(X/B) −→ Rf∗ZX

+1−→ . (2.4)

On the other hand, we also have another triangle:

Rf∗Ω>g
X|B −→ Rf∗Ω•X|B −→ Rf∗Ω6g−1

X|B
+1−→ (2.5)

and the long exact sequence of cohomology associated with (2.5) shows that

Hk Rf∗Ω6g−1
X|B '

(
Rkf∗CX ⊗OB

)
/F g (2.6)

where F g is the gth-step of the Hodge filtration on the vhs Rkf∗CX . Now
looking at the long exact sequence associated with (2.4), we get:

R2g−1f∗ZX → H2g−1 Rf∗Ω6g−1
X|B → H2g Rf∗Z•D(X/B)→ R2gf∗ZX → 0.

We can identify several terms in the sequence above: R2gf∗ZX is the constant
sheaf ZB and R2g−1f∗ZX is nothing but HZ. Using the isomorphism (2.6),
the last piece of exact sequence reads as:

0 −→ J (H) −→ D0(X/B) := H2g Rf∗Z•D(X/B) −→ ZB −→ 0 (2.7)

which is nothing but a relative version of [19, cor. 12.27, p. 285]. So we have
just associated with f : X → B an extension of the sheaf J (H) by ZB and
it is fairly clear that the cohomology class η(f) is obtained as the image of
1 under the connecting morphism

δf : H0(B,ZB) −→ H1(B,J (H))

coming from (2.7).

As the name suggests, the sheaf D0(X/B) should be thought as a sheaf
of relative 0-cycles of X/B. With this in mind, we see that a multisection
of f determines a global section of D0(X/B) which is sent to some non zero
integer in H0(B,ZB) (the relative degree of the corresponding cycle) and the
description of η(f) we got above implies that this class should be a torsion
one, thus proving the second implication in Proposition 2.2.

Now we can use the exact sequence (2.1) to define a topological invariant
of a smooth family of tori. The long exact sequence associated with (2.1)
reads as

H1(B, E) exp−→ H1(B,J (H)) c−→ H2(B,HZ).
The following was first observed by Kodaira in his study of elliptic sur-
faces [11, Th. 11.3].
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Proposition 2.4. — Let us fix a class η0 in H1(B,J (H)). Then any
finite dimensional vector space V ⊂ H1(B, E) appears as the base space of a
smooth deformation

π : X η0
V → V ×B

such that if v ∈ V the smooth family of tori

πv : X η0
v := π−1({v} ×B)→ B

is such that η(πv) = exp(v) + η0.

In particular, if c(η0) is torsion, J(H)η0 can be deformed (over B) to a
smooth family of tori having a multisection.

Proof. — There is a tautological vector bundle EV which is an extension:

0 −→ E −→ EV −→ V −→ 0

where V is the trivial vector bundle. Its extension class is given by

IdV ∈ End(V ) ⊂ V ∗ ⊗H1(B, E) ' H1(B, V ∗ ⊗ E).

The local system HZ acts on the total space of EV by translations and we
can form the quotient. The manifold Y we obtain has a natural projection
to the total space of V . This is thus a smooth family of tori

ρ : Y −→ V ×B

and over a point v ∈ V we get from the construction that η(ρv) := exp(v).
Now we can glue the trivial family V ×X → V × B and Y → V × B over
V ×B to get the sought family

π : X −→ V ×B.

If c(η0) is torsion then there exists an integer m > 1 such that m · η0 =
exp(v0) for some v0 ∈ H1(B, E). The latter being a vector space we can
rewrite this equality as m · (η− exp(v0/m)) = 0. The construction explained
above with C · v0 ⊂ H1(B, E) gives a smooth family of tori X → C×B such
that η(X0) = η0 and η(X−1/m) is torsion. The family X−1/m → B has thus
a multisection according to Proposition 2.2. �

Let us remark that the situation corresponding to the second part of the
preceding proposition occurs in the Kähler case(5) .

Proposition 2.5. — Let f : X → B be a smooth family of tori inducing
H. If X is Kähler, the class c(η(f)) is torsion in H2(B,HZ).

(5) Let us note that if f : X → B is proper and smooth, and if X is Kähler, then B is
Kähler as well. If d is the relative dimension of f and ω a Kähler form on X, the fibrewise
integration of ωd+1 provides us with a Kähler form on B.
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Proof. — Using the description of the class η(f) given in Remark 2.3, we
readily infer that there is a commutative diagram

H0(B,ZB = R2gf∗ZX)

δf **

d2 // H2(B,R2g−1f∗ZX = HZ)

H1(B,J (H))

c

OO
(2.8)

where d2 is the differential appearing in the Leray spectral sequence as-
sociated with f and ZX . But it is well known that this spectral sequence
degenerates at E2 for a Kähler morphism and when it is computed using real
coefficients [9, prop. 2.4] (see also [19, th. 16.15, p. 379]). The diagram (2.8)
is translated into the equality

c(η(f)) = c(δf (1)) = d2(1)

and the vanishing of d2,R exactly means that c(η(f)) is torsion. �

Remark 2.6. — Obviously a relative Kähler class is enough to get the
same conclusion as above. It is quite surprising that c(η) being torsion is in
fact equivalent to the fibration J(H)η → B being cohomologically Kähler
(meaning that there is a class of degree 2 on J(H)η whose restriction to the
fibres is a Kähler class). This is the content of [14, Prop. 2.17].

2.3. Equivariant cohomology

In this paragraph, we recall some facts about equivariant cohomology
with respect to the action of a (finite) group Γ. This formalism was also used
in the study of elliptic surfaces [11, §13-14]. Here is the setting: we consider
a finite group Γ acting on a complex manifold B and we look at sheaves of
abelian groups F over B endowed(6) with an action of Γ compatible with
the one on B: it means that for any γ ∈ Γ, there exists an isomorphism

iγ : γ∗F
∼−→ F

or, even more concretely, for any open subset U ⊂ B, there is an isomorphism

iγ : H0(U,F) ∼−→ H0(γ−1(U),F).

The collection of these isomorphisms has to satisfy the cocycle relation:

iγg = iγ ◦ (γ∗ig).

(6) This is equivalent to giving an action on the étalé space F associated with F such
that the natural projection F→ B is Γ-equivariant.
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If F is such a Γ-sheaf, the group Γ acts on the space of global sections and
we can define the following functor:

FΓ :
{
ShΓ(B) −→ Ab
F 7→ H0(B,F)Γ

from the category of Γ-sheaves (of abelian groups) to the category of abelian
groups.

Definition 2.7. — The equivariant cohomology groups of a Γ-sheaf F
are defined using the (right) derived functors of FΓ:

Hi
Γ(B,F) := RiFΓ(F).

The functor FΓ being expressed as the composition of two functors (tak-
ing first the global sections and then the invariants under Γ), the equivariant
cohomology groups can be computed using the spectral sequence of a com-
posed functor (see [19, th. 16.9, p. 371]).

Proposition 2.8. — For any Γ-sheaf F , there is a spectral sequence
Ep,q2 := Hp(Γ,Hq(B,F)) =⇒ Hp+q

Γ (B,F) (2.9)
abutting to the equivariant cohomology of F .

Remark 2.9. — It is well known that the higher cohomology groups
Hp(Γ,M) are torsion groups for any Γ-module M and for any p > 0 when Γ
is finite (see [2, Ch. III, Cor. 10.2]). In particular, ifM is in addition a vector
space, then the groups Hp(Γ,M) vanish for p > 0. It applies for instance
when M = Hq(B,F) for F a Γ-sheaf which is at the same time a coherent
sheaf. In this case, the spectral sequence from the preceding proposition
degenerates and the equivariant cohomology consists in nothing but taking
the invariants:

Hi
Γ(B,F) = Hi(B,F)Γ.

2.4. Smooth family of tori endowed with a group action

We now aim at applying results from the previous paragraph to the fol-
lowing situation: f : X → B is smooth family of tori endowed with an action
of a finite group Γ. The fibration f is equivariant with respect to both actions
of Γ on X and B. In particular, all the natural objects arising in this situa-
tion (the local system HZ, the vhs, the Jacobian fibration as well as its sheaf
of sections) are endowed with compatible actions of Γ. The sequence (2.1)
is then an exact sequence of Γ-sheaves and using Remark 2.9 the long exact
sequence reads now as:

H1(B, E)Γ exp−→ H1
Γ(B,J (H)) cΓ−→ H2

Γ(B,HZ) . . . (2.10)

– 486 –



Linear Kähler groups

As in Paragraph 2.1, we can naturally identify a Γ-equivariant smooth family
of tori f : X → B with its cohomology class

ηΓ(f) ∈ H1
Γ(B,J (H)).

This can be done as in Kodaira’s work [11, Th. 14.1] or using relative Deligne
groups. The exact sequence

0 −→ J (H) −→ D0(X/B) −→ ZB −→ 0
is indeed an exact sequence of Γ-sheaves and the connecting morphism

δΓ
f : H0(B,ZB)Γ = Z −→ H1

Γ(B,J (H))

enables us to define ηΓ(f) := δΓ
f (1) in the group H1

Γ(B,J (H)).

We can now turn Propositions 2.4 and 2.5 into Γ-equivariant statements.
The proof of Proposition 2.4 applies verbatim to give the following result.

Proposition 2.10. — Let us fix a class η in H1
Γ(B,J (H)). Then any

finite dimensional vector space V ⊂ H1(B, E)Γ appears then as the base space
of a smooth Γ-equivariant deformation

π : X ηV → V ×B.
Precisely: the group Γ acts on X ηV and the morphism π is equivariant for the
trivial action of Γ on V . If v ∈ V the smooth family of tori

πv : X ηv := π−1({v} ×B)→ B

has the following cohomology class
ηΓ(πv) = exp(v) + η ∈ H1

Γ(B,J (H)).

Proposition 2.11. — Let f : X → B be a Γ-equivariant smooth family
of tori and let us assume that X is Kähler. Then the class

cΓ(ηΓ(f)) ∈ H2
Γ(B,HZ)

is torsion and f : X → B can be deformed (over B) to another smooth
family of tori having a multisection and acting on by Γ.

Proof. — Since the E0,2
∞ coming from the spectral sequence (2.9) is a

subgroup of E0,2
2 , we have a natural morphism:

H2
Γ(B,HZ) π0,2

−→ H2(B,HZ)Γ.

The following relation is clear:
π0,2(cΓ(ηΓ(f))) = c(η(f))

and consists in ignoring the Γ-action. Now we can use Proposition 2.5 to infer
that π0,2(cΓ(ηΓ(f))) is torsion. Finally the kernel of π0,2 is an extension of
E2,0
∞ by E1,1

∞ and these groups are torsion according to Remark 2.9. It is
enough to conclude that cΓ(ηΓ(f)) is a torsion class in H2

Γ(B,HZ).
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Since cΓ(ηΓ(f)) is torsion, we can mimic the proof of Proposition 2.4: it
produces a deformation

X −→ C×B −→ C
endowed with an action of Γ, the group acting fibrewise over C. Moreover
there is a point in the base space t ∈ C such that

ηΓ(Xt → B) ∈ H1
Γ(B,J (H))

is torsion and it implies that Xt → B has a multisection (look at the natural
projection H1

Γ(B,J (H)) −→ H1(B,J (H))Γ). �

3. From Kähler fibrations to projective ones

3.1. Deforming the VHS

In this section we show how to deform a smooth family of tori once a
deformation of the vhs is fixed. Let us make this more precise. We consider
f : X → B a smooth family of tori between compact Kähler manifolds and
as before we denote by H the vhs induced on the local system HZ. We aim
at considering small deformation of H in the following sense.

Definition 3.1. — A small deformation of H is a vhs HU on HZ seen
as a local system on U × B where U is a polydisk around o ∈ U and such
that the restriction of HU to {o} × B ' B is the given H. We shall denote
by EU the holomorphic vector bundle HU/H1,0

U .

We will make use of the following lemma in the sequel.

Lemma 3.2. — Let VR be a local system underlying a vhs V of weight
w defined on a compact Kähler manifold B. Then for any k > 0, the natural
map

Hk(B,VR) −→ Hk(B,V/F 1)
induced by VR → VC → V → V/F 1 is surjective.

Proof. — The vector space Hk(B,VR) carries a natural Hodge structure
of weight k+w. This is Deligne’s construction explained in [22, Th. 2.9] (see
also [13, §4.3]). From the construction itself, the (P,Q) part of this Hodge
structure is given by the hypercohomology of a certain complex

Hk(B,VC)P,Q = Hk(K•P,Q).
It happens that when (P,Q) = (0, k + w) this complex reduces to the Dol-
beault complex

K•0,k+w = A0,•(V0,w)
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and its hypercohomology is thus the usual one of the holomorphic vector
bundle V0,w = V/F 1. The (0, k + w) part of this Hodge structure is then
given by

Hk(B,VC)0,k+w ' Hk(B,V/F 1).
Now it is an easy observation that the real vector space underlying a weight
n Hodge structure always surjects onto its (0, n) Hodge component. �

With Definition 3.1 at hand, we have the following deformation process.

Proposition 3.3. — Let f : X → B be a smooth family of tori between
compact Kähler manifolds inducing H and HU a small deformation of H.
Then there exists

XU
πU−→ U ×B p1−→ U

a smooth family of tori over U ×B inducing HU and such that the family of
tori (πU ◦ p1)−1(o)→ B is isomorphic to X → B.

Proof. — The vhs HU being fixed we can consider the Jacobian fibration

J (HU )→ U ×B

associated with it and the corresponding long exact sequences:

H1(U×B, EU ) exp //

��

H1(U×B,J (HU )) c //

��

H2(U×B,HZ) // H2(U×B, EU )

H1(B, E) exp // H1(B,J (H)) c // H2(B,HZ)
(3.1)

The vertical arrows in the preceding diagram are induced by the restriction
to B ' {0} × B. Since c(η(f)) is torsion (Proposition 2.5), its image in
the vector space H2(U × B, EU ) vanishes and thus there exists a class η1 ∈
H1(U×B,J (HU )) whose restriction to B satisfies c(η1

|B) = c(η(f)). It means
that there exists a class α ∈ H1(B, E) such that η1

|B − η(f) = exp(α). To
conclude it is enough to observe that the first vertical arrow is surjective. To
do so, let us consider the following diagram:

H1(U ×B,HR) // H1(U ×B, EU )

����
H1(B,HR) // // H1(B, E).

Since the horizontal bottom arrow is surjective (Lemma 3.2), it is then clear
that the map we are interested in

H1(U ×B, EU ) −→ H1(B, E)
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is surjective as well. Now if αU ∈ H1(U × B, EU ) is such that (αU )|B = α

then the class ηU := η1− exp(αU ) restricts to B as the given η(f). The class
ηU corresponds thus to a smooth family of tori over U ×B inducing HU and
whose restriction to B is isomorphic to the fibration f : X → B we started
with. �

Remark 3.4. — The last proposition holds also in the equivariant setting
(we wrote down the proof without a group acting to keep the notation read-
able). It is enough to use equivariant cohomology and it gives the following
conclusion (let us recall that a Γ-vhs is a vhs such that the underlying local
system is endowed with an action of Γ, the Hodge filtration being compatible
with this action).

Proposition 3.5. — Let f : X → B be a smooth family of tori (between
compact Kähler manifolds) equivariant under the action of a finite group Γ
on both X and B. Let us moreover consider HU a small deformation of H
which at the same time a Γ-vhs for the action on U ×B given by the trivial
one on U . There exists then

XU
πU−→ U ×B p1−→ U

a smooth family of tori over U×B as in Proposition 3.3 such that Γ is acting
on XU and πU is equivariant for the trivial action on U .

3.2. Buchdahl’s criterion for families of tori

We now recall the relative Buchdahl criterion we obtained in [6, th. 1.1]
and explain how to make it equivariant (adapting Graf’s arguments from
[10, §9]).

Proposition 3.6. — Let H be a weight −1 and rank 2g vhs over B
(whose underlying local system is denoted HZ). Let us assume moreover that
H admits a real polarization q. Then there exists a small deformation HV
of H such that the set

{v ∈ V | HV,v admits a rational polarization}
is dense near o ∈ V : its closure contains an open neighbourhood of o (the
notation HV,v is simply the restriction of HV to {v} ×B ' B).

Since we need to check that the construction of [6] can be made in an
equivariant framework, we recall how the proof goes.

Sketch of proof. — Let us consider the R-algebra
AR := H0(B,End(HR)).
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The vhs H is nothing but an element I ∈ AR such that I2 = −1 and as
such determines a complex structure on AR. This structure can be enriched
as follows. Let us consider the decomposition

AR = AI ⊕A−I

where AI (resp. A−I) consists in elements of AR commuting with I (resp.
anti-commuting with I). Multiplication by I respects the decomposition and
thus induces a complex structure on each piece. If we let

A−IC := A1,−1
C ⊕A−1,1

C ,

we then have a weight 0 Hodge structure on AR whose (0, 0) part is just AI .

Let G be the group of invertible elements of AR: it acts on AR by con-
jugation. The orbit through I is G/G◦ where G◦ is the group of invertible
elements commuting with I. The space G/G◦ inherits a complex structure
from the local diffeomorphism

G/G◦ −→ GC/G
◦
C.

Let us consider a small neighbourhood V of o the class of the identity in
G/G◦: it is the base of a tautological family of complex structures on HR, i.e.
it carries a small deformation HV of H. Now we can consider the following(7)

weight 2 vhs on V : the local system is given by
WQ := H0(B,Λ2H∨

Q)
and the Hodge structure on Wv is induced by Hv for v ∈ V . Now we aim at
applying [19, prop. 17.20] and we first remark that the polarization can be
seen as an element q ∈ W1,1

o . Moreover such an element induces in particular
a morphism (of bidegree (1, 1)) of Hodge structures

q ◦ · : AR −→Wo

which is clearly surjective (q is an isomorphism betweenH andH∨). It implies
that the following component of the differential of the period map

∇̄o(q) : TV,o = A−I = AR ∩
(
A1,−1

C ⊕A−1,1
C

)
−→W0,2

o (3.2)

is surjective. The statement of [19, prop. 17.20] ensures that the set of v ∈ V
such that Hv is Q-polarizable is dense in V . �

(7) Here a remark is in order. Usually to be able to endow the cohomology of a vhs with
a Hodge structure, the base manifold needs to be compact Kähler or at least a Zariski
open subset of a compact Kähler manifold (in the latter case we end up with a mixed
Hodge structure). But in our situation we only have to handle Hodge structures (on the
global sections) coming from weight one vhs. Since the complex structure I commutes
with the monodromy of the underlying local system, the Hodge decompositions induced
on tensor products are compatible with the action of the monodromy group and these
decompositions are preserved when taking the invariants. That is the reason why no
assumption is needed on B in our study.
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From the proof we get the following equivariant version.

Corollary 3.7. — Let us assume that a finite group Γ acts on B and
that the vhs H is a Γ-vhs. Then there exists a small deformation HU of H
on U×B which is at the same time a Γ-vhs over U×B for the trivial action
on U and such that the set of points u ∈ U corresponding to Q-polarizable
complex structures is dense in U .

Proof. — Let us consider the small deformation HV constructed in the
above proof. It is obvious from the construction that Γ acts on V and that
HV is a Γ-vhs for the diagonal action of Γ on V ×B. Now let us restrict it to
the set U := V Γ of fixed points of Γ in V . Since we saw that the space V can
be identified with an open neighbourhood of 0 ∈ AR ∩

(
A1,−1

C ⊕A−1,1
C

)
and

since Γ acts linearly on the latter vector space, we see that U is smooth(8)

near the point o. Replacing the polarization q with its average over the group
Γ we can assume that q is Γ-invariant. Finally, since we are dealing with
vector spaces, taking the invariants under the group Γ preserves surjectivity
in (3.2):

∇̄o(q)Γ : TΓ
V,o = TU,o −→

(
W0,2
o

)Γ
.

The use of [19, prop. 17.20] in this invariant context (we apply it to the
vhs WΓ) shows that we can endow HU := (HV )|U with a Γ-invariant po-
larization qU such that qu is a rational polarization of Hu for a dense set of
points u ∈ U . �

3.3. Proofs of main statements

We are now in position to prove the main statements of this article.

Proof of Theorem 1.2. — Let f : X → B be a smooth family of tori
with X compact Kähler and assumed to be equivariant under the action of
a finite group Γ. We denote by H the vhs induced on the local system HZ.
We first apply Corollary 3.7: it produces a small deformation HU (over a
polydisk U) of H as a Γ-vhs and such that the vhs Hu is Q-polarizable for a
dense subset of U . Since X is compact Kähler, we can apply Proposition 3.5:
there exists a smooth family of tori fU : XU −→ U × B inducing HU and
such that Γ acts equivariantly on XU −→ U × B (with the trivial action
on U).

(8) It is a general fact: the set of fixed points XΓ of a finite group acting on a complex
manifold is smooth, see [8].
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Now we need to find the right space of deformation to get the density
statement. First we apply Lemma 3.2 to infer that

H1(B,HR) −→ H1(B, E)

is surjective. Since we want to use H1(B, E)Γ as a space of deformation for
the family fU , we look at the following commutative diagram:

H1(U ×B,HR) // H1(U ×B, EU )

����
H1(B,HR) // // H1(B, E).

We can remark that taking the invariants yields a diagram of the same shape:

H1(U ×B,HR)Γ // H1(U ×B, EU )Γ

����
H1(B,HR)Γ // // H1(B, E)Γ.

Let us consider V the image of H1(B,HR)Γ in H1(U ×B, EU )Γ and similarly
VQ ⊂ V the image of H1(B,HQ)Γ in H1(U × B, EU )Γ. Let us remark that
the subset VQ is obviously dense in V . We can use V in Proposition 2.10 to
construct a Γ-equivariant deformation:

fU,V : XV,U −→ V × U ×B

such that XU,0 −→ {0} × U × B is the previous fU . Moreover the points of
VQ are sent to torsion points in

H1
Γ(U ×B,J (HU ))

and thus to smooth families of tori with multisections. Finally if we denote
by Ualg the set of points u ∈ U such that Hu is Q-polarizable, the set

Talg := VQ × Ualg ⊂ T := V × U

is dense in T and parametrizes families Xv,u having multisections and abelian
varieties as fibres. �

Before giving the proof of Corollary 1.4, let us state the structure result
obtained in [7]. This is the main ingredient in the above mentioned proof.

Theorem 3.8. — Let ρ : π1(X) → GLN (C) be a linear representation
of the fundamental group of X a compact Kähler manifold. If H < π1(X)
is a finite index subgroup such that ρ(H) is torsion free, then the étale
cover Y → X corresponding to H has the following property (up to
bimeromorphic transformations): the base of the Shafarevich morphism
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shρ : Y → Shρ(Y ) := W is such that the Iitaka fibration of W is a smooth
family of tori f : W → B (onto a projective manifold of general type).

We refer to loc. cit. for the relevant notions. We will also make use of the
following lemma.

Lemma 3.9. — Let Γ be a finite group acting on a topological space X.
If P is any simply connected space endowed with a free action of Γ, the finite
étale cover X×P→ (X×P)/Γ gives rise to an exact sequence of fundamental
groups:

1 −→ π1(X) −→ π1 ((X × P)/Γ) −→ Γ −→ 1.
This extension is unique and in particular does not depend on the choice of
P. If the action is already free on X, then this extension is nothing but the
one corresponding to the finite étale cover X → X/Γ.

Proof. — Let BΓ be the classifying space of Γ and EΓ → BΓ be its univer-
sal cover. Universal properties of the classifying space ensure the existence
of canonical maps X×P→ X×EΓ and (X×P)/Γ→ BΓ making the corre-
sponding diagram commutative. It shows readily that both group extensions
are the same.

If the action is free on X, we can use the projection onto the first factor
(X × P) /Γ −→ X/Γ.

It is a fibre bundle with fibre P and, using the homotopy exact sequence, we
readily infer that

π1 ((X × P)/Γ) ' π1(X/Γ). �

Proof of Corollary 1.4. — We use the notation introduced in the pre-
ceding statement and we are in the situation where ρ is injective. We can
moreover assume that the finite étale cover Y → X is Galois, its Galois
group to be denoted Γ. We make the following observations:

(1) the Shafarevich and Iitaka fibrations being functorial, the group Γ
acts onW , B and the fibration f is equivariant with respect to both
actions. Let us note however that the action is in general no longer
free on both W and B.

(2) the fundamental group of W is isomorphic to the one of Y .

The last assertion is a consequence of the torsion freeness of π1(Y ). We have
indeed an exact sequence

1 −→ π1(F )Y −→ π1(Y ) −→ πorb1 (W ) −→ 1
where F is the general fibre of shρ and the orbifold structure onW is induced
by the fibration shρ. The defining property of F being the finiteness of
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π1(F )Y , we infer that this group is trivial. Finally the orbifold fundamental
group πorb1 (W ) is an extension

1 −→ K −→ πorb1 (W ) −→ π1(W ) −→ 1
where K is a group generated by torsion elements. As before, it implies that
K = 1 and that π1(Y ) ' π1(W ).

We can now apply Theorem 1.2: W can be deformed to a projective
manifold Walg on which the group Γ acts. To deal with the lack of freeness
of the action of Γ on Walg, let us introduce a simply connected projective
manifold P on which Γ acts freely: such a manifold exists according to [17]
(see also [18, Ch. IX, §4.2]). We can finally consider the quotient Xalg :=
(Walg × P) /Γ as in Lemma 3.9: this is a smooth projective variety whose
fundamental group is the extension

1 −→ π1(Walg) −→ π1(Xalg) −→ Γ −→ 1. (3.3)
Since the deformation is (Γ-equivariantly) topologically trivial, the exten-
sion (3.3) is the same when Walg is replaced with W . The Shafarevich
map being Γ-equivariant and inducing an isomorphism between fundamental
groups, we can plug Y instead of Walg in the extension (3.3). Lemma 3.9
shows that this extension is the same as the one corresponding to the cover
Y → X. It gives the desired isomorphism

π1(X) ' π1(Xalg)
and ends the proof of Corollary 1.4. �
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