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Metrics and convergence in moduli spaces of maps (∗)

Joseph Palmer (1)

ABSTRACT. — We provide a general framework to study convergence properties
of families of maps between manifolds which have distinct domains. For manifolds
M and N where M is equipped with a volume form we consider families of maps in
the collection {(φ,Bφ) | Bφ ⊂ M,φ : Bφ → N with Bφ, φ both measurable} and we
define a distance function similar to a generalized L1 distance on such a collection.
We show that the resulting metric space is always complete. We then shift our focus
to exploring the convergence properties of families of such maps.

RÉSUMÉ. — Nous présentons un cadre général pour l’étude de la convergence des
familles d’applications entre variétés dont les domaines de définition sont distincts.
Étant données deux variétés M et N , M étant munie d’une forme volume, nous
considérons des familles d’applications dans l’ensemble {(φ,Bφ) | Bφ ⊂M,φ : Bφ →
N avec Bφ, φ mesurable} et nous définissons une distance sur cet ensemble, de type
distance L1 généralisée. Nous démontrons que l’espace métrique ainsi obtenu est tou-
jours complet. Nous nous concentrons ensuite sur l’étude des propriétés de conver-
gence de telles familles d’applications.

1. Introduction

In [11] the authors show that if M and N are symplectic manifolds with
Bt ⊂M for each t ∈ (a, b) and

{(φt, Bt) | t ∈ (a, b) and φt : Bt ↪→ N}
is a smooth (see Definition 7.1) family of symplectic embeddings such that

(1) each Bt is open and simply connected;
(2) if s < t then Bt ⊂ Bs;
(3) for all t, s ∈ (a, b) the set

⋃
v∈[t,s]φv(Bv) is relatively compact in N ,
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then there exists a symplectic embedding

φ0 :
⋃

t∈(a,b)

Bt ↪→ N.

Given a family of embeddings with distinct domains which satisfy certain
conditions not related to convergence, this result assures the existence of an
embedding from the union of their domains, which takes the place of the
limit. This motivates the study of families of maps with distinct domains in
more general settings, and in particular the study of convergence properties
of such families. In the present article we introduce a distance function on
maps which do not necessarily have the same domain. The new distance
function is related to the L1 norm, and we establish results related to com-
pleteness and convergence which are analogous to those that hold in the
case of the L1 distance, though we also see that there are some important
differences. See Remark 3.2 for a comparison to the L1 distance.

With a metric defined on the space of such maps, we can ask the following
question: given a collection of embeddings with distinct domains which does
not converge, how much does each embedding need to be perturbed (with
respect to the new distance) in order to produce a convergent collection? In
particular we study when a family of embeddings which does not converge
can be perturbed by an arbitrarily small amount to produce a convergent
family. Note that in this case, unlike in the result of Pelayo–Vũ Ngo.c above,
we are more interested in the nature of the family of embeddings than the
existence of such a limiting embedding.

The study of collections of maps between smooth manifolds, particu-
larly of embeddings or diffeomorphisms, has recently attracted a lot of inter-
est [1, 2, 13, 11, 12]. Defining a metric space structure on collections of such
mappings allows one to study the topological properties of the collection
and also to study deformations of the mappings, as is done in [14]. It is the
goal of this paper to define a new distance function on collections of maps
with distinct domains, which are subsets of the same manifold, and study
the properties of the resultant metric space.

1.1. Outline of paper

In Section 2 we define the space of maps over which we will be working and
the distance function. We state the main results of this paper in Section 3. In
Section 4 we prove several properties of the distance function including some
parts of Theorem A. In Section 5 we examine the convergence properties of
the distance and prove part of Theorem B, and in Section 6 we prove the
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rest of Theorem A and Theorem B. Sections 7 and 8 are somewhat distinct
from the rest of the paper; in these sections we pursue an application of
the framework developed in the previous sections. In Section 7 we study
families of embeddings which do not converge to an embedding and prove
Theorem C. In our last section, Section 8, we comment on how the ideas
from this paper can be used to further study such families and mention
some other possibilities for applications of this distance.

2. The distance function

Considering families of maps with different domains is essential for appli-
cations, see for instance the work of Pelayo–Vũ Ngo.c [11, 12]. Suppose that
the maps are defined on subsets of a smooth manifoldM with a volume form
V and map to a complete Riemannian manifold N with natural distance d.
By this we mean that if g is the Riemannian metric on N and y1, y2 ∈ N
then

d(y1, y2) = inf
{∫ 1

0

√
g(γ′(t), γ′(t)) dt

∣∣∣∣ γ : [0, 1]→ N is piecewise C1 with
γ(0) = y1 and γ(1) = y2

}
.

We will soon see that the properties of the distance will not depend on
the choice of metric g and it is known that any smooth manifold admits
a complete Riemannian metric, so we are not making any assumptions on
N . Throughout the paper by metric we will always mean a metric function
on the space and if referring to a metric tensor we will always specify the
Riemannian metric. Also, it is well known (see the Hopf–Rinow Theorem [6,
Satz I]) that (N, g) is a geodesically complete Riemannian manifold if and
only if (N, d) is a complete metric space, so throughout this paper we will
call such a manifold complete without specifying. Let µV be the measure on
M induced by V. That is, for any A ⊂ M we have µV (A) =

∫
A
V. Now we

will define the set of maps we will be working with (shown in Figure 2.1).

Definition 2.1. — Let

M(M,N) :=
{

(φ,Bφ)
∣∣∣∣Bφ ⊂M a nonempty measurable set and
φ : Bφ → N a measurable function

}
which we denote byM when M and N are understood. We also occasionally
write only φ where the associated domain is understood to be denoted by Bφ.
Also let

F(M) =
{
{(φt, Bt)}t∈(a,b) ⊂M

∣∣ a, b ∈ R with a < b
}
.

For the remainder of the paper we will denote by F(S) the collection of
one parameter families in a set S indexed by an open interval in R.
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Figure 2.1. We will be considering maps from subsets of M to N .

Recall the symmetric difference of sets A and B is given by A M B =
(A \B) ∪ (B \A).

Definition 2.2. — For (φ,Bφ), (ψ,Bψ) ∈ M we define the penalty
function pdφψ : M → [0, 1] by

pdφψ(x) =


1 if x ∈ Bφ M Bψ;
min{1, d(φ(x), ψ(x))} if x ∈ Bφ ∩Bψ;
0 otherwise,

.

and we define

DdM ((φ,Bφ), (ψ,Bψ)) =
∫
M

pdφψ dµV .

A reasonable first guess for the “distance” between two elements in M
would be to integrate a penalty function over M . That is, we start with
a function which assigns a penalty at each point in M depending on how
different the mappings are at that point, and then compute the “distance”
between the two mappings by adding up all of these penalties via integration.
For each point in the symmetric difference, we know that one mapping acts
on it while the other does not, so we assign it a maximum penalty of 1. For
each point which is in the intersection of the domains, we simply find the
distance between where each map sends the point, cut off to not exceed a
maximum value of 1, and use this as the penalty.
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Notice that we need the minimum in Definition 2.2 to make sure that
any point on which both mappings act is not penalized more than the points
which are only acted on by one mapping. It is worth noting that even though
the choice of the constant 1 may seem arbitrary it is shown in Proposition 4.3
that any positive constant may be used instead and the induced distance will
be strongly equivalent (see Definition 4.1). Also, if the Riemannian metric
g is chosen so that the associated metric space (N, d) is complete (which
can always be done [10, Theorem 1]) the choice of g will not change the
properties of the induced metric.

However while DdM is the natural “distance” it turns out to not be a
distance function on M. There are two main problems. First, it is possible
that DdM will evaluate to zero on two distinct elements ofM and second it
might be that DdM evaluates to infinity. The first problem is a common one
and can be addressed in the standard way, by having DdM act on equivalence
classes of maps, but the second problem will require a more delicate solution.

The problem of DdM evaluating to infinity is even worse than it seems.
Suppose that φt(x) = (x, t) takes R into R2 for all t ∈ (0, 1). Using the
notation from above in this case we have that M = Bφt = R for all t ∈ (0, 1)
and N = R2 with dR2 the usual distance. Then φt has a pointwise limit of
φ0(x) := (x, 0) as t→ 0, but despite this we have that DdR2

M (φt, φ0) is infinite
for all t ∈ (0, 1). This example shows that DdM is not always able to capture
when a family of maps is converging. We are able to solve this problem by
observing DdM restricted to various subsets of M .

Definition 2.3. — We define D restricted to a measurable set S ⊂M by

DdS((φ,Bφ), (ψ,Bψ)) =
∫
S

pdφψ dµV .

Figure 2.2 shows a good way to visualize computing DdS . Now each DdS
contains all of the information about DdM on the set S and, as long as S is
chosen to be of finite volume, DdS cannot evaluate to infinity. The problem
now, of course, is that we no longer have just a single metric with infor-
mation about all of M but instead have an infinite family of metrics which
each have information about only one finite volume subset of M . We solve
this last problem by recalling that any manifold admits a nested exhaustion
by compact sets, which must each have finite volume. For the remaining
portion of this paper by exhaustion we will always mean a countable nested
exhaustion by finite volume sets. In the following definition we set up the
framework for this paper. We write ν{Sn} in place of ν{Sn}∞

n=1
and Dd{Sn} in

place of Dd{Sn}∞
n=1

for simplicity.
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Figure 2.2. A graphic representing the values of pdφψ on S ⊂M .

Definition 2.4. — Let M and N be manifolds with d a metric on N
induced by a Riemannian metric.

(1) Let {Sn}∞n=1 be a exhaustion of M by nested finite volume sets and
let ν{Sn} be the measure on M given by

ν{Sn}(A) =
∞∑
n=1

2−nµV (A ∩ Sn)
µV (Sn)

for A ⊂ M . Notice that ν{Sn}(M) = 1 so ν{Sn} is a probability
measure. Then define

Dd{Sn}(φ, ψ) =
∫
M

pdφψ dν{Sn}.

(2) If Dd{Sn}(φ, ψ) = 0 for one choice of exhaustion then, by Corol-
lary 4.7, it equals zero for all choices of exhaustion and complete
metrics d, so in that case we write D(φ, ψ) = 0.

(3) Let
M∼(M,N) :=M(M,N)/∼

where (φ,Bφ) ∼ (ψ,Bψ) if and only if D(φ, ψ) = 0. As before we
will frequently shorten this to M∼ and we denote by [φ,Bφ] the
equivalence class of (φ,Bφ) ∈M.
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There is an equivalent definition of Dd{Sn} given in Proposition 4.4 which
is used in some of the proofs in this paper and explicitly shows the relation
between Dd{Sn} and D

d
S .

3. Main results

3.1. Foundational results

Now we have enough notation to state our first result. Let M and N be
manifolds and V a volume form on M .

Theorem A. — For any choice of a metric d on N induced by a com-
plete Riemannian metric and a countable exhaustion {Sn}∞n=1 ofM by nested
finite volume sets, the space (M∼,Dd{Sn}) is a complete metric space. More-
over, such a metric and exhaustion always exist and if d′ and {S ′n}∞n=1 are
other such choices then Dd′

{S′
n}

induces the same topology as Dd{Sn} onM
∼.

Theorem A follows from Proposition 4.8, Lemma 4.11, Lemma 6.3, and
the fact that every manifold admits a complete Riemannian metric [10, The-
orem 1]. In light of Theorem A we can now make the following definitions.
Recall that F(M) denotes the collection of one-parameter families of M
indexed by an interval (a, b) ⊂ R.

Definition 3.1. — Let a, b, c ∈ R with a < b and c ∈ [a, b]. Also let
{(φt, Bt)}t∈(a,b) ∈ F(M) and ψ ∈M.

(1) Let S ⊂M be any subset. If limt→cDdS(φt, ψ) = 0 we write

φt
DdS−→ ψ as t→ c.

(2) If limt→cDd{Sn}(φt, ψ) = 0 for one, and hence all, choices of {Sn}∞n=1
and d, we write

φt
D−→ ψ as t→ c.

(3) Since all metrics Dd{Sn} generate the same topology on the set M∼
we denote this set with such topology as (M∼,D).

ThusM∼ is a metric space with metricDd{Sn} for any choice of exhaustion
and complete metric and the metric spaces for different choices of exhaustion
are all equivalent topologically. Notice that all of the information about
Dd{Sn} is contained in DdM if M is finite volume, and in this case we will only
have to consider DdM , see Remark 4.12.
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Remark 3.2. — Recall that Lp spaces are collections of maps from a fixed
measure set to R. SinceM is a collection of all maps between fixed manifolds
we can see that in some senseM is a generalization of Lp spaces. The func-
tion Dd{Sn} is similar to the L1 norm, but there are several differences. It is
noteworthy that any measurable mapping from M to N is “integrable” with
respect to Dd{Sn}, in the sense that the distance between any two measurable
mappings is finite. This is why M includes all measurable maps, while Lp
includes only functions which satisfy a growth restriction. In Example 4.13
we work out a specific case which does not converge in Lp for any p but does
converge with respect to the distance defined in this paper.

Now that there is a metric defined on M∼ we can explore families in
F(M∼) which converge with respect to that metric. In Section 5 we study
another type of convergence and we explore the connection between these two
natural forms of convergence on M∼. The limit inferior and limit superior
of a family of sets are reviewed in Equations (5.1) and (5.2) in Section 5.

Definition 3.3. — Let a, b, c ∈ R with a < b and c ∈ [a, b]. Let
{(φt, Bt)}t∈(a,b) ∈ F(M) and suppose there exists some measurable B ⊂ M
satisfying

B ⊂
{
x ∈ lim

t→c
Bt

∣∣∣∣ limt→cφt(x) exists
}

and µV
(
limt→cBt \B

)
= 0. This in particular requires that the domains

converge as sets as is described in Definition 5.1. Then, with

φ : B → N

x 7→ lim
t→c

φt(x).

we say that {(φt, Bt)}t∈(a,b) converges to (φ,B) almost everywhere pointwise
as t→ c inM and we write φt

a.e.−→ φ as t→ c.

Theorem B. — Let a, b, c ∈ R such that a < b and c ∈ [a, b]. Suppose
{(φt, Bt)}t∈(a,b) is a family such that (φt, Bt) ∈ M for t ∈ (a, b) and let
(φ,B) ∈M. If φt

a.e.−→ φ as t→ c then φt
D−→ φ as t→ c. A partial converse

also holds: if φt
D−→ φ as t→ c then there exists a sequence {ti}i∈N ⊂ (a, b)

such that {(φti , Bti)}i∈Z>0 converges to (φ,B) almost everywhere as i→∞.

It is not true that convergence with respect to D is equivalent to almost
everywhere convergence, see Example 4.13 and Remark 5.6. Theorem B is a
combination of Lemma 5.5 and Corollary 6.2.
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3.2. An application

The preceding results have laid out a framework to study the families of
maps we are interested in, and there are many different directions one could
head from this point. Since there is research already being done regarding
the convergence properties of families of embeddings [11, 12] we will explore
that field. As an application of Theorems A and B we will use D to study
families of embeddings which do not converge to an embedding, such as
the maps mentioned in the motivating theorem in Section 1, and quantify
how far they are from converging. With this in mind we make the following
definitions.

Definition 3.4. — Define Emb⊂(M,N) ⊂ M to be those elements
(φ,B) ∈ M such that B ⊂ M is a submanifold and φ : B ↪→ N is an
embedding. Also define Emb∼⊂(M,N) ⊂ M∼ to be those equivalence classes
[φ,B] ∈ M∼ such that [φ,B] contains an element of Emb⊂(M,N). In Def-
inition 7.1 we define the notion of a smooth family of maps. We say that
a smooth family {(φt, Bt)}t∈(a,b) ∈ F(Emb⊂(M,N)) has a singular limit if
either

(1) the family does not converge in D as t→ a;
(2) there exists some φ0 ∈ M such that φt

D−→ φ0 as t→ a, but [φ0] /∈
Emb∼⊂(M,N).

If a smooth family has a singular limit, we are interested in perturbing
that family to produce a family that converges.

Definition 3.5. — Let a, b ∈ R with a < b, ε> 0, and {(φt, Bt)}t∈(a,b) ∈
F(M). We say that a smooth family {(φ̃t, B̃t)}t∈(a,b) ∈ F(M) is a conver-
gent ε-perturbation (with respect to Dd{Sn}) of {(φt, Bt)}t∈(a,b) if

(1) there exists (φ̃, B̃) ∈ Emb⊂(M,N) such that φ̃t
a.e.−→ φ̃ as t→ a;

(2) Bt = B̃t for all t ∈ (a, b) and limt→a B̃t ⊂ B̃;
(3) for all t ∈ (a, b) we have that Dd{Sn}(φt, φ̃t) 6 ε.

The function
rd{Sn} : F(M)→ [0,∞]

takes a family in F(M) to its radius of convergence given by

rd{Sn}
(
{(φt, Bt)}t∈(a,b)

)
:= inf

{
ε > 0

∣∣∣∣ there exists a smooth convergent
ε-perturbation of {(φt, Bt)}t∈(a,b)

}
.

In part 2 of Definition 3.5 we make a requirement on the domains. This
is so that the singular points cannot simply be removed from the domain to
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form a convergent ε-perturbation. It is important to notice that, unlike many
of the properties we have introduced so far, rd{Sn} does depend on the choice
of d and {Sn}∞n=1. We are most interested in the rd{Sn} = 0 case, where
an arbitrarily small perturbation can cause the family to converge to an
embedding. It is unknown if having zero radius of convergence is independent
of the choice of parameters d and {Sn}∞n=1 (see Section 8.2).

It is natural to wonder whether a family can have radius of convergence
zero but still not converge to any element of M. The following Theorem
addresses this.

Theorem C. — Let a, b ∈ R with a < b, {(φt, Bt)}t∈(a,b) be such that
(φt, Bt) ∈ M for each t ∈ (a, b), and let rd{Sn} be the radius of convergence
function associated to a complete Riemannian distance d on N and an ex-
haustion of finite volume nested sets {Sn}∞n=1 ofM . Then the following hold:

(1) if rd{Sn}({(φt, Bt)}t∈(a,b)) = 0 then there exists (φ,B) ∈ M unique
up to ∼ such that φt

D−→ φ as t→ a;
(2) Suppose {(φt, Bt)}t∈(a,b) is a smooth family of embeddings and there

exists T ∈ (a, b) such that s < t < T implies Bs ⊂ Bt. In this
case, if there exists (φ,B) ∈ M such that φt

D−→ φ as t → a, then
rd{Sn}({(φt, Bt)}t∈(a,b)) = 0

In fact, a more general version of part (2) is true, which is stated in
Lemma 7.3. Part (2) of Theorem C is a partial converse to part (1), un-
der some additional conditions. This theorem is important in the study of
families with rd{Sn} = 0 because to characterize such families we may assume
right away that there exists some limit φ0 and study its properties in order to
understand the family we started with. In the final section we explore some
ideas about the open questions regarding rd{Sn} including restricting to em-
beddings with specific properties and considering a converse of Theorem C
without the additional conditions.

4. Definitions and preliminaries

4.1. Basic properties of the distance

Let M be an orientable smooth manifold with volume form V and let N
be a smooth Riemannian manifold with natural distance function d. Again
let µV be the measure on M induced by the volume form V. In this section
we will prove all but the completeness statement in Theorem A, which is
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postponed to Section 6. Recall the different notions of equivalent metrics.
The use of these terms varies, but for this paper we will use the following
conventions.

Definition 4.1. — Let d1 and d2 be metrics on a set X. Then we say
that d1 and d2 are:

(1) topologically equivalent if they induce the same topology on X;
(2) weakly equivalent if they induce the same topology on X and pre-

cisely the same collection of Cauchy sequences;
(3) strongly equivalent if there exist c1, c2 > 0 such that

c1d1 6 d2 6 c2d1.

Now we define the following function.

Definition 4.2. — Let (φ,Bφ), (ψ,Bψ) ∈ M. For α > 0 and a finite
volume subset S ⊂M define

Dd,αS ((φ,Bφ), (ψ,Bψ)) =
∫
S
pd,αφψ dµV

where

pd,αφψ (x) =


α if x ∈ Bφ M Bψ;
min{α, d(φ(x), ψ(x))} if x ∈ Bφ ∩Bψ;
0 otherwise.

In Definition 4.2 we have a family of functions depending on the choice
of α > 0, but in fact these will induce strongly equivalent metrics.

Proposition 4.3. — Let S be a finite volume subset of M . If β > α > 0
then

Dd,αS 6 Dd,βS 6
β

α
Dd,αS .

Proof. — This follows from the fact that if 0 < α < β and x ∈ S we have

pd,αφψ (x) 6 pd,βφψ (x) 6 β

α
pd,αφψ (x). �

So Proposition 4.3 means that the choice of α > 0 will not matter when
we use Dd,αS to define a metric, so henceforth we will assume that α = 1.
That is, for any finite volume subset S ⊂ M we have DdS as defined in
Definition 2.3. In the above proof we wrote out the definition of DdS in a way
which did not explicitly use the penalty function pdφψ. We can now notice
that there is an equivalent definition of DdS which will be useful for several
of the proofs.
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Proposition 4.4. — Let M and N be manifolds with a volume form
V on M , d a distance on N induced by a Riemannian metric, S ⊂ M a
compact subset, and {Sn}∞n=1 a nested exhaustion of M by finite volume
sets. The function DdS given in Definition 2.3 can be written

DdS(φ, ψ) =
∫
Bφ∩Bψ∩S

min{1, d(φ, ψ)} dµV + µV
(
(Bφ M Bψ) ∩ S

)
.

and the function Dd{Sn} from Definition 2.4 satisfies

Dd{Sn}(φ, ψ) =
∞∑
n=1

2−n
DdSn(φ, ψ)
µV (Sn) .

This proposition has a trivial proof. Before the next Proposition we have
a definition.

Definition 4.5. — Suppose a, b ∈ R with a < b and c ∈ [a, b]. For a set
X and a function

F : X ×X → [0,∞]
we say that a family {at}t∈(a,b) ⊂ X is Cauchy with respect to F as t → c
if for all ε > 0 there exists some δ > 0 such that s, t ∈ (c− δ, c+ δ) ∩ (a, b)
implies F (at, as) < ε.

Below are several important properties of Dd{Sn}, which is defined in Def-
inition 2.4.

Proposition 4.6. — Let a, b ∈ R with a < b, {(φt, Bt)}t∈(a,b) ∈ F(M),
and φ, ψ ∈ M. Further suppose that d is a metric on N induced by a Rie-
mannian metric and {Sn}∞n=1 is an exhaustion of M by nested finite volume
sets. The function Dd{Sn} has the following properties.

(1) {(φt, Bt)}t∈(a,b) is Cauchy with respect to Dd{Sn} as t→ c if and only
if it is Cauchy with respect to DdS as t→ c for all compact S ⊂M .

(2) limt→cDd{Sn}(φt, φ) = 0 if and only if φt
DdS−→ φ as t → c for all

compact S ⊂M .
(3) Dd{Sn}(φ, ψ) = 0 if and only if DdS(φ, ψ) = 0 for all compact S ⊂M

if and only if µV
(
(Bφ M Bψ) ∩ S

)
= 0 for every compact S ⊂ M

and φ = ψ almost everywhere on Bφ ∩Bψ.

Proof. — Let ε > 0 and fix some compact subset S ⊂ M . Then S ⊂⋃∞
n=1 Sn = M and since S has finite volume and the Sn are nested we can

find some I ∈ N such that µV (S \ SI) < ε. This means that
DdS 6 DdSI + ε.

Now that we have this fact we will prove the three properties.
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(1). — It is sufficient to assume that a = c = 0 and b = 1. Suppose
that {(φt, Bt)}t∈(0,1) is Cauchy with respect to Dd{Sn} as t→ 0 and fix some
compact S ⊂M . Let ε > 0.

From the above fact we can find some I ∈ N such that DdS 6 DdSI + ε
2 .

Now, since this family is Cauchy with respect to Dd{Sn} we can find some
δ ∈ (0, 1) such that s, t < δ implies

Dd{Sn}(φt, φs) <
ε

2I+1µV (SI)
.

Using the expression for Dd{Sn} from Proposition 4.4 we have that
∞∑
n=1

2−n
DdSn(φt, φs)
µV (Sn) <

ε

2I+1µV (SI)

which in particular means

2−I
DdSI (φt, φs)
µV (SI)

<
ε

2I+1µV (SI)
so DdSI (φt, ψt) <

ε
2 .

Finally, we have that for s, t < δ

DdS(φt, φs) 6 DdSI (φt, φs) + ε

2 < ε.

The converse is easy and the proof of (2) is similar to the proof of (1).

(3). — Suppose Dd{Sn}(φ, ψ) = 0 and fix some compact S ⊂ M . Notice
that this means that DdSn(φ, ψ) = 0 for all n. For any ε > 0 from the fact
above we know we can choose some I such that

DdS(φ, ψ) 6 DdSI (φ, ψ) + ε = ε

so we may conclude that DdS(φ, ψ) = 0.

Next, assume that DdS(φ, ψ) = 0 for all compact S ⊂ M , which means
that µV

(
(Bφ M Bψ) ∩ S

)
= 0 because this is a term in DdS . Suppose that

there is some set of positive measure in Bφ ∩ Bψ for which φ 6= ψ. Then
since manifolds are inner regular there exists some compact subset of positive
measure K on which they are not equal. But this implies that DdK(φ, ψ) 6= 0.

If µV
(
(Bφ M Bψ) ∩ S

)
= 0 for every compact S ⊂ M and φ = ψ almost

everywhere on Bφ ∩Bψ it is clear that Dd{Sn}(φ, ψ) = 0. �

Corollary 4.7. — Let {Sn}∞n=1 be an exhaustion of M and let d be
a metric on N induced by a Riemannian metric. Suppose that (φ,Bφ),
(ψ,Bψ) ∈ M such that Dd{Sn}(φ, ψ) = 0. Then for any such parameters
{S ′n}∞n=1 and d′ we have that Dd′

{S′
n}

(φ, ψ) = 0 as well.
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Given the new information in Proposition 4.6 we can prove the following
important Proposition.

Proposition 4.8. — For any choice of an exhaustion of M by finite
volume sets {Sn}∞n=1 we have that Dd{Sn} is well defined and is a distance
function onM∼. Also, if {S ′n}∞n=1 is another such choice of exhaustion then
Dd{Sn} and D

d
{S′
n}

are weakly equivalent metrics onM∼.

Proof. — Fix some {Sn}∞n=1 a compact exhaustion ofM and let φ, ρ, ψ ∈
M. It is a straightforward exercise to show that

pdφψ(x) 6 pdφρ(x) + pdρψ(x)
for each x ∈M and thus

Dd{Sn}(φ, ψ) 6 Dd{Sn}(φ, ρ) +Dd{Sn}(ρ, ψ).
It should be noted that this inequality would not hold without the minimum
in pdφψ. From here we can see that if φ ∼ ρ then

Dd{Sn}(φ, ψ) 6 Dd{Sn}(ρ, ψ)
and similarly the opposite inequality is true as well. So

Dd{Sn}(φ, ψ) = Dd{Sn}(ρ, ψ)

and thus Dd{Sn} is well defined onM∼.

Now Dd{Sn} is positive definite on M∼ because it is positive on M and
by definition Dd{Sn}(φ, ρ) = 0 implies φ ∼ ρ. Since Dd{Sn} is well defined on
M∼ and satisfies the triangle inequality onM we know that it satisfies the
triangle inequality on M∼ and similarly we know that Dd{Sn} is symmetric
onM∼.

Proposition 4.6 parts (1) and (2) characterize both convergent and
Cauchy sequences of Dd{Sn} in a way which is independent of the choice of
{Sn}∞n=1. This means that different choices of {Sn}∞n=1 will produce weakly
equivalent metrics Dd{Sn}. �

4.2. Independence of Riemannian structure

We have seen that M∼ is a metric space with metric Dd{Sn} for any
choice of compact exhaustion and the metric spaces for different choices of
exhaustion are all weakly equivalent. Now we will show that this construction
is actually independent of the choice of Riemannian metric on N as well. For
the remaining portion of the paper we will use ‖ · ‖ to denote the usual norm
in Rk and dRk to denote the usual distance on Rk.
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Lemma 4.9. — Fix any measurable finite volume subset S ⊂M and let
a, b, c ∈ R with a < b and c ∈ [a, b]. Now let {(φt, Bt)}t∈(a,b) ∈ F(M) and
(φ,B) ∈ M. Suppose that φt

DdS−→ φ ∈ M as t → c and R : B ∩ S → (0,∞)
is any measurable function. Then

lim
t→c

µV ({x ∈ Bt ∩B ∩ S | d(φ(x), φt(x)) > R(x)}) = 0.

Proof. — It is sufficient to prove for a = c = 0 and b = 1. First, for
t ∈ (0, 1) let Ct = {x ∈ Bt ∩ B ∩ S | d(φ(x), φt(x)) > R(x)}. Since Ct ⊂ S
we notice that

DdS(φt, φ) >
∫
Ct

min{1, d(φ, φt)}dµV

>
∫
Ct

min{1,R}dµV .

Now for each n ∈ N let Dn = {x ∈ B ∩ S | R(x) > 2−n} and notice that∫
Ct

min{1,R}dµV >
∫
Dn∩Ct

min{1,R}dµV

> 2−n · µV (Dn ∩ Ct) .

Now combining the above facts we have that DdS(φt, φ) > 2−n ·µV (Dn ∩ Ct)
for any choice of n ∈ N so

lim
t→0

µV (Dn ∩ Ct) = 0 (4.1)

for all n ∈ N.

Finally fix ε > 0. Since R(x) > 0 for all x ∈ B ∩ S we know that the
collection {Dn}∞n=1 covers B ∩ S. Since B ∩ S has finite volume we know
there exists some N ∈ N such that µV

(
(B ∩ S) \DN

)
< ε

2 . This implies
that for all t ∈ (0, 1) we have that µV

(
Ct \DN

)
< ε

2 . By Equation (4.1)
we conclude that we can choose some T such that t < T implies that
µV
(
Ct ∩DN

)
< ε

2 . Now for t < T we have that µV (Ct) = µV
(
Ct \DN

)
+

µV
(
Ct ∩DN

)
< ε. �

Now we show that any choice of continuous metric on N will produce a
weakly equivalent metric onM∼.

Lemma 4.10. — Suppose that d1 and d2 are topologically equivalent met-
rics on N each induced by a Riemannian metric and let {Sn}∞n=1 be any ex-
haustion of M by finite volume sets. Then Dd1

{Sn} and D
d2
{Sn} are topologically

equivalent metrics onM∼.

Proof. — Fix finite volume S ⊂ M . If we show Dd1
S and Dd2

S are topo-
logically equivalent then we have proved the lemma by Proposition 4.6. It
is sufficient to show that the same families indexed by (0, 1) converge so
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suppose {(φt, Bt)}t∈(0,1) ∈ F(M) and (φ0, B0) ∈ M such that φt
Dd1

S−→ φ0 as
t→ 0 and we will show that φt

Dd2
S−→ φ0 as t→ 0. Fix ε > 0 and without loss

of generality assume that ε < µV (S) . Let

C2
t =

{
x ∈ Bt ∩B0 ∩ S

∣∣∣∣ d2(φ0(x), φt(x)) > ε

3µV (S)

}
.

Let biy0
(r) = {y ∈ N | di(y, y0) < r} for i = 1, 2. Since d1 and d2 are

weakly equivalent metrics for each y ∈ N there exists some radius ry > 0
such that the ball with respect to d1 of radius ry centered at y is a subset
of the ball with respect to d2 of radius ε

3µV (S) centered at y. In fact, the
weak equivalence of the metrics also implies that there exists a continuous
(with respect to the induced topology) function ψ : N → (0,∞) such that
b1
y(ψ(y)) ⊂ b2

y( ε
3µV (S) ) for all y ∈ N . Thus, the function R : B0∩S → (0,∞)

given by R = ψ ◦ φ0 is measurable and satisfies

b1
φ0(x)

(
R(x)

)
⊂ b2

φ0(x)

(
ε

3µV (S)

)
for all x ∈ B0 ∩ S. (4.2)

Define C1
t = {x ∈ Bt ∩ B0 ∩ S | d1(φ0(x), φt(x)) > R(x)} and notice that

Equation (4.2) implies that C2
t ⊂ C1

t . By Lemma 4.9 since φt
Dd1

S−→ φ0 as
t→ 0 and R is measurable we know that limt→0 µV

(
C1
t

)
= 0 and so we can

conclude that
lim
t→0

µV
(
C2
t

)
= 0.

Now we can find some T ∈ (0, 1) such that if t < T then µV
(
C2
t

)
< ε

3
and also µV

(
(Bt M B0) ∩ S

)
< ε

3 . Then

Dd2
S (φt, φ0) =

∫
Bt∩B0∩S

min{1, d2(φt, φ0)} dµV + µV
(
(Bt M B0) ∩ S

)
6
∫

(Bt∩B0∩S)\C2
t

min{1, d2(φt, φ0)} dµV

+
∫
C2
t

min{1, d2(φt, φ0)} dµV + µV
(
(Bt M B0) ∩ S

)
6
∫
S

ε

3µV (S) dµV + µV
(
C2
t

)
+ µV

(
(Bt M B0) ∩ S

)
< ε

3 + ε
3 + ε

3 = ε. �

We conclude this section with the following lemma.

Lemma 4.11. — Let {Sn}∞n=1 be a nested exhaustion of M by finite vol-
ume sets and suppose that d1 and d2 are metrics on N induced by smooth Rie-
mannian metrics. Then Dd1

{Sn} and D
d2
{Sn} are topologically equivalent metrics

onM∼.
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Proof. — Both d1 and d2 are continuous with respect to the given topol-
ogy on N . This means that they are topologically equivalent metrics and so
by Lemma 4.10 the result follows. �

Remark 4.12. — If M is finite volume, such as in the case that M is
compact, then there is an obvious preferred choice to make when choosing
the exhaustion, namely simply {M} itself. In such a case we will always use

DdM (φ, ψ) =
∫
M

pdφψ dµV =
∫
Bφ∩Bψ

min{1, d(φ, ψ)} dµV + µV (Bφ M Bψ) .

There are also no choices now when defining convergent ε-perturbations or
the radius of convergence except for the choice of metric on N .

4.3. A representative example

To conclude Section 4 we work out an important example which will be
referenced throughout the paper.

Example 4.13. — Let Φm,k : (0, 1)→ R by
Φm,k(x) = m · χ

( km,
k+1
m )

(x)

(shown in Figure 4.1) for k,m ∈ N with k < m where χS is the indicator
function for the set S ⊂ (0, 1). We can see that∫

(0,1)
Φm,k = 1

Figure 4.1. An image of Φm,k.
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for all possible values of k and m. We will use these functions to construct an
example which is similar to the “traveling wave” example that is common in
introductory analysis [4] except that our example changes height so it always
integrates to 1.

Consider the sequence
φ1 = Φ0,1, φ2 = Φ0,2, φ3 = Φ1,2, φ4 = Φ0,3,

φ5 = Φ1,3, φ6 = Φ2,3, φ7 = Φ0,4, . . .

(as shown in Figure 4.2) and let φ0 : (0, 1)→ R by
φ0(x) = 0 for all x ∈ (0, 1).

Figure 4.2. A few terms of {φn}. It can be seen that each integrates
to 1 and the “traveling waves” pass over every point infinitely many
times, so pointwise convergence is impossible.

Notice that this sequence does not converge pointwise to φ0 for any point
x ∈ (0, 1). Also notice that since the integral of any element in this sequence
is 1 we can conclude that this sequence does not converge in L1 (or Lp for
any p ∈ [1,∞]) either (as is mentioned in Remark 3.2), but it will converge
with respect to D. This is because the measure of values in the domain which
get sent to a number other than zero is becoming arbitrarily small, so we
can conclude that

lim
n→∞

DdR(0,1)(φn, φ0) = 0.
This example shows a case in which we have a family which does not behave
well pointwise almost everywhere or with respect to the Lp norm, but which
does behave well with respect to D.

Of course, if we replace the indicator function with a bump function we
can produce a sequence of smooth functions which has the same essential
properties as these functions. In fact, for this example we have considered
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a sequence of functions instead of a continuous family of functions because
it made it easier to describe the sequence, but we could easily extend this
sequence to a smooth (see Definition 7.1) family of smooth embeddings of
(0, 1) into (0, 1)× R indexed by t ∈ (0, 1) which has the same properties.

5. Almost everywhere convergence and D

We already have a definition of convergence in distance, so in this section
we will define and explore the properties of a way in which these maps can
converge pointwise almost everywhere. To talk about convergence of a family
in F(M) we must have both the domains and the mappings converge. First,
we will describe the convergence of the domains.

Let a, b, c ∈ R with a < b and c ∈ [a, b]. Now let {Bt ⊂ M}t∈(a,b) be
a collection of measurable subsets of M . Recall the limit inferior and limit
superior of a family of sets, given by

lim
t→c

(Bt) :=
⋃

δ∈(0,1)

 ⋂
t∈(a,b),
|t−c|<δ

Bt

 (5.1)

and

lim
t→c

(Bt) :=
⋂

δ∈(0,1)

 ⋃
t∈(a,b),
|t−c|<δ

Bt

 (5.2)

respectively. So the limit inferior of the family is the collection of all points
which are eventually in every Bt as t → c and the limit superior is the
collection of all points which are not eventually outside of every Bt. Clearly
it can be seen that lim(Bt) ⊂ lim(Bt). We say that the family converges if
these two sets only differ by a set of measure zero. That is,

Definition 5.1. — Let a, b, c ∈ R with a < b and c ∈ [a, b] and let
{(φt, Bt)}t∈(a,b) ∈ F(M). If

µV

{
lim
t→c

(Bt) \ lim
t→c

(Bt)
}

= 0

we say that the collection of sets {Bt}t∈(a,b) converges to limt→c(Bt) as
t→ c or {(φt, Bt)}t∈(a,b) has converging domains as t→ c. Furthermore, if
{[φt, Bt]}t∈(a,b) ∈ F(M∼) is such that {Bt}t∈(a,b) converges for one choice
of representative we say it has converging domains.
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Remark 5.2. — Notice that any nested family of subsets will converge
by this definition. For a, b ∈ R with a < b let {Bt}t∈(a,b) be a family of
subsets such that for s, t ∈ (a, b) we have that s < t implies Bt ⊂ Bs. Then

lim
t→a

Bt = lim
t→a

Bt =
⋃

t∈(a,b)

Bt.

Remark 5.3. — Notice that if {[φt, Bt]}t∈(a,b) ∈ F(M∼) has converging
domains as t → c, for a, b, c ∈ R, a < b, c ∈ [a, b], then we can always
choose some collection of representatives {(φ′t, B′t) ∈ [φt, Bt]}t∈(a,b) such that
limB′t = limB′t where both limits are taken as t→ c.

Now that we understand the convergence of domains we are prepared to
describe almost everywhere convergence inM. Let a, b, c ∈ R with a < b and
c ∈ [a, b]. Notice that if x ∈ limt→c(Bt) then there exists some δ > 0 such
that if t ∈ (a, b) and |t− c| < δ then x ∈ Bt. This means that φt(x) exists
for such t so we may ask if {φt(x)}t∈(a,b)∩(c−δ,c+δ) converges as a family of
points in N as t→ c. If it does converge then we have a limit

lim
t→c

φt(x)

and thus we arrive at Definition 3.3.

Remark 5.4. — Here it is important to notice that the limit (φ,B) from
Definition 3.3 is not unique in M but by Corollary 5.8 we know it does
represent a unique element in M∼. Furthermore, given {[φt, Bt]}t∈(a,b) ∈
F(M∼) we can create a family in F(M) by making a choice of representative
for each t ∈ (a, b). If a choice exists such that the resulting family in F(M)
converges than we say that {[φt, Bt]}t∈(a,b) converges almost everywhere
pointwise. Corollary 5.7 shows that any limit computed in this way gives the
same element ofM∼. In such a case we would write [φt]

a.e.−→ [φ0] as t → c.
Note that the existence of one choice of representatives which converges does
not guarantee that all choices will converge.

We are now ready to prove one direction of Theorem B.

Lemma 5.5. — Let a, b, c ∈ R such that a < b and c ∈ [a, b]. Suppose
{(φt, Bt)}t∈(a,b) is a family such that (φt, Bt) ∈ M for t ∈ (a, b) and let
(φ,B) ∈M. If φt

a.e.−→ φ as t→ c then φt
D−→ φ as t→ c.

Proof. — It is sufficient to consider families indexed by (0, 1) and limits
as t → 0. Let {Sn}∞n=1 be a nested exhaustion of M by finite volume sets,
(φ,B) ∈M, and {(φt, Bt)}t∈(0,1) ∈ F(M) such that φt

a.e.−→ φ as t→ 0. For
the duration of this proof let lim(Bt) denote limt→0(Bt) and limBt denote
limt→0 Bt.
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Recall that for x ∈ B we have that x ∈ limBt and φt(x)→ φ(x) as t→ 0
by Definition 3.3. Thus

lim
t→0

pdφtφ(x) = lim
t→0

min{1, d(φt(x), φ(x))}

= min
{

1, d
(

lim
t→0

φt(x), φ(x)
)}

= 0.

Also notice that for any x ∈ M \ limBt we know that x /∈ B and also for
small enough t we know x /∈ Bt. That is, there exists some T ∈ (0, 1) such
that t < T implies that x /∈ Bt so for such t we have that x /∈ B ∪ Bt. This
means that for t < T we have that pdφtφ(x) = 0. Thus

lim
t→0

pdφtφ(x) = 0

for any x ∈M \ limB as well. Every x ∈ S must either

(1) be in B or M \ limBt and thus satisfy lim pdφtφ(x) = 0 as t→ 0;
(2) be in limBt \B0, which is a set of measure zero.

This means that pdφtφ → 0 as t→ 0 pointwise almost everywhere. Also notice
that each pdφtφ is bounded by the constant function 1, which is integrable on
M because ν{Sn} (M) = 1. These two facts allow us to invoke the Lebesgue
Dominated Convergence Theorem to conclude that

lim
t→0
Dd{Sn}(φt, φ) = lim

t→0

∫
M

pdφtφ dν{Sn} =
∫
M

lim
t→0

pdφtφ dν{Sn} = 0. �

Remark 5.6. — Notice that the converse of Lemma 5.5 does not hold in
general. We know because of Example 4.13 in which the family converges in
D but not pointwise almost everywhere.

The following two results are a consequence of Lemma 5.5 and the fact
that (M∼,Dd{Sn}) is a metric space.

Corollary 5.7. — Almost everywhere pointwise limits of families in
F(M∼) are unique in M∼. That is, let a, b, c ∈ R with a < b and c ∈
[a, b]. Now suppose {[φt, Bt]}t∈(a,b) ∈ F(M∼), (φ1

t , B
1
t ), (φ2

t , B
2
t ) ∈ [φt, Bt]

for t ∈ (a, b), and (φ1, B1), (φ2, B2) ∈ M such that (φit, Bit)
a.e.−→ (φi, Bi) as

t→ c for i = 1, 2. Then [φ1, B1] = [φ2, B2] inM∼.

Proof. — Let {[φt, Bt]}t∈(a,b), (φ1
t , B

1
t ), (φ2

t , B
2
t ), (φ1, B1), and (φ2, B2)

be as in the statement of the Corollary. Thus for any choice of a nested
exhaustion of M by finite volume sets {Sn}∞n=1, a complete metric d on N
which is induced by a Riemannian metric, and t ∈ (a, b) we have that

0 6 Dd{Sn}(φ
1, φ2) 6 Dd{Sn}(φ

1, φ1
t ) +Dd{Sn}(φ

1
t , φ

2
t ) +Dd{Sn}(φ

2
t , φ

2).
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The middle term on the right side is zero because (φ1
t , B

1
t ) ∼ (φ2

t , B
2
t ) and the

remaining terms both approach zero as t→ c because (φit, Bit)
D−→ (φi, Bi) ∈

M∼ as t→ c by Lemma 5.5. �

Corollary 5.8. — Almost everywhere pointwise limits of families in
F(M) are unique up to ∼. That is, suppose that a, b, c ∈ R with a < b and
c ∈ [a, b] and further suppose that {(φt, Bt)}t∈(a,b) ∈ F(M) and φ, φ′ ∈ M.
If φt

a.e.−→ φ and φt
a.e.−→ φ′ then φ ∼ φ′.

6. Completeness of M∼

In this section we prove the remaining parts of Theorem A and Theo-
rem B. Recall that
L1

loc(M) = {f : M→ R measurable | f |K ∈L1(K) for all compact K ⊂M}.
It is well-known that L1

loc(M) is a complete metrizable space, with one choice
of possible metric given by

dloc(f, g) =
∑
k∈N

2−k
∫
Sk

min{1, |f(x)− g(x)|}dµV ,

see for instance [4].

Lemma 6.1. — Suppose that (N, d) is complete and {(φ`, B`)}`∈N ⊂M∼
is Cauchy with respect to Dd{Sn}. Then there exists a subsequence which con-
verges almost everywhere.

Proof. — For `, `′ ∈ N let χB` ,χB`′ denote the characteristic function for
B`, B`′ respectively. For any compact K ⊂M we have

Dd{Sn}((φ`, B`), (φ`′ , B`′)) >
∫
K

∣∣χB` − χB`′

∣∣dν{Sn}
> aK

∫
K

∣∣χB` − χB`′

∣∣dµV
where aK is a constant which depends on K, and thus we see that {χB`}`∈N
is Cauchy in L1

loc(M). Thus, since L1
loc(M) is complete there exists some

measurable set B∞ ⊂M such that lim`→∞ χB` = χB∞ in L1
loc(M) which is

unique up to measure zero. That is, for every compact K ⊂M we have that

lim
`→∞

∫
K

|χB` − χB∞ |dµV = 0.

Furthermore, we claim that B∞ can be chosen such that there exists a sub-
sequence {χB`k }k∈N such that

lim
`→∞

χB`(x) = χB∞(x)
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for almost every x ∈M . Indeed, letting
B∞,m := {x ∈M | x ∈ B`k for all k > m}

we may take B∞ = ∪mB∞,m.

Since (N, d) a complete the space (N, d̂), where d̂ = min{1, d}, is also
complete. Now, we proceed as in the proof that L1 is complete. For any
K ⊂M compact and m ∈ N we can assume, possibly by passing to a smaller
subsequence, that

∫
K∩B∞,m

d̂(φ`k(x), φ`k+1(x))dµV(x) < 2−k for each k > m
and thus ∑

k>m

(∫
K∩B∞,m

d̂(φ`k(x), φ`k+1(x))dµV(x)
)
<∞. (6.1)

For each x ∈ B∞ there exists some m such that x ∈ B∞,m and by Equa-
tion (6.1) for almost all such x the sequence {φ`k(x)}k>m of points in N is
Cauchy with respect to d̂ and thus converges. Let B denote the collection
of all such x and define φ(x) = limk→∞ φ`k(x) for each x ∈ B. Thus, the
subsequence converges to (φ,B). �

This implies the following, which is a portion of Theorem B.

Corollary 6.2. — If φt
D−→ φ as t → c then there exists ti ∈ (a, b)

for i ∈ Z>0 such that {(φti , Bti)}i∈Z>0 converges to φ almost everywhere as
t→ c.

Now we have the tools to prove the last part of Theorem A.

Lemma 6.3. — Suppose that {Sn}∞n=1 is a nested exhaustion of M by
finite measure sets and that d is a metric on N induced by a Riemannian
metric. Then

(
M∼,Dd{Sn}

)
is complete if and only if (N, d) is complete.

Proof. — It is easy to see that if (N, d) is not complete thenM∼ is not
complete. Consider a sequence of constant functions {φt : M → N}t∈(0,1)
such that φt(x) = yt where yt is a Cauchy family in N which does not
converge.

Now suppose that (N, d) is complete and suppose that {(φ`, B`)}`∈N is a
Cauchy sequence in

(
M∼,Dd{Sn}

)
. It is sufficient to prove that {(φ`, B`)}`∈N

converges in
(
M∼,Dd{Sn}

)
, and for this it is sufficient to find a subsequence

which converges.

By Lemma 6.1 there exists a subsequence {(φ`k , B`k)}k∈N and (φ,B) ∈
M∼ such that (φ`k , B`k) → (φ,B) almost everywhere and thus, by
Lemma 5.5, we see that (φ`k , B`k) converges with respect to Dd{Sn}, as
desired. �
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Figure 7.1. A figure of the relevant maps when defining a smooth family.

7. Families with singular limits

We will be considering one parameter families of mappings in F(M∼).
For this type of family we can adapt the definition of smoothness from [11]
which is visualized in Figure 7.1.

Definition 7.1 ([11]). — Let a, b ∈ R with a < b. We say that a family
of smooth maps {(φt, Bt)}t∈(a,b) ∈ F(M) is smooth if:

(1) each element of {Bt} is a submanifold of M ;
(2) there exists a smooth manifold B and a smooth map g : (a, b)×B →

M such that
(a) the mapping gt : x 7→ g(t, x) is a smooth immersion;
(b) for each t ∈ (a, b) we have gt(B) = Bt.

(3) the map (t, x) 7→ φt ◦ gt(x) is smooth.

Despite the choice of terminology, it is unknown if this sense of smooth-
ness implies that the family is continuous with respect to the topology onM.

Recall the function rd{Sn} : F(M) → [0,∞] from Definition 3.5. This
function quantifies how far a family is from converging by measuring how
much each embedding must be changed in order to create a new family which
does converge. It is straightforward to show that r is surjective.

Proposition 7.2. — For any q ∈ [0,∞] there exists some choice of
manifolds M and N , an exhaustion {Sn}∞n=1 of M , a distance d induced by
a complete Riemannian metric on N , a, b ∈ R such that a < b, and a smooth
family {(φt, Bt)}t∈(a,b) ∈ F(M) for which rd{Sn}({(φt, Bt)}t∈(a,b)) = q.
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Proof. — From the existence of families of embeddings which do converge
we know that 0 is in the image of r. Also, notice that if φt : (0, 1) → R,
φt(x) =

( 1
t

)
sin( 1

t ) then rd{Sn}({(φt, Bt)}t∈(a,b)) =∞.

Pick some q ∈ (0, 1) and let φt : (0, 3q)→ R for t ∈ (0, 1) via

φt(x) = x

9q + 1
3sin( 1

t ).

So in this case Bt = (0, 3q) for all t, a = 0, b = 1, M = (0, 3q) with the
usual measure inherited from R, and N = R with the usual distance. Since
M is finite throughout this example let D := Dd{M} and r := rd{M} where
d is the standard distance on R. Notice that if we perturbed this family to
converge to some limit which did not have (0, 3q) as its domain we could
change the domain of the limit to (0, 3q) and have a smaller perturbation.
So we can assume that the domain of the limit is (0, 3q). Suppose that we
wanted to change this family so it converged to some map φ0 : (0, 3q)→ R.
We can see that the φt oscillate to the left and right, so let φL(x) = x

9q −
1
3

and φR(x) = x
9q + 1

3 . Now let

ln = 2
(4n+ 1)π and rn = 2

(4n+ 3)π

so that φln = φL and φrn = φR for all n ∈ N. Notice d(φL(x), φR(x)) = 2
3

for all x ∈ (0, 3q) so

d(φL(x), φ0(x)) + d(φ0(x), φR(x)) > 2
3 .

Clearly this implies that

min{1, d(φL(x), φ0(x))}+ min{1, d(φ0(x), φR(x))} > 2
3

and so integrating each side over (0, 3q) gives D(φL, φ0) + D(φ0, φR) > 2q
so one of the two terms must be greater than or equal to q. Without loss of
generality suppose that D(φL, φ0) > q. In such a case choose any ε > 0 and
find some T ∈ (0, 1) such that t < T implies D(φ̃t, φ0) < ε where {φ̃t} is any
family which converges to φ0. Then pick some n ∈ N such that ln < T and
let t = ln. Now

D(φt, φ̃t) +D(φ̃t, φ0) > D(φt, φ0)
so D(φt, φ̃t) > q − ε for all ε > 0. This allows us to conclude that
r({(φt, Bt)}) > q.

Now let φ̃t : (0, 3q) → R with φ̃t(x) = x
9q be a family of maps which is

clearly smooth and has limit φ0(x) = x
9q . Now notice

D(φt, φ̃t) =
∫

(0,3q)
min{1, d(φt, φ̃t)} dµV = q

∣∣sin( 1
t )
∣∣ 6 q
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and it is important to notice that D(φt, φ̃t) = q is achieved infinitely
often. Thus we know that r({(φt, Bt)}) 6 q so in fact we know that
r({(φt, Bt)}) = q. �

Lemma 7.3. — Suppose that {(φt, Bt)}t∈(a,b) ∈ F(M) and for all ε > 0
there exists family {(φ̃t, B̃t)}t∈(a,b) ∈ F(M) such that

(1) there exists (φ̃, B̃) ∈M such that φ̃t
a.e.−→ φ̃ as t→ a;

(2) Bt = B̃t for all t ∈ (a, b) and limt→c B̃t ⊂ B̃;
(3) Dd{Sn}(φt, φ̃t) 6 ε for all t ∈ (a, b).

Then there exists (φ,B) ∈M unique up to ∼ such that φt
D−→ φ as t→ a

Proof. — Fix some compact S ⊂M and we will show that {(φt, Bt)}t∈(a,b)

is Cauchy with respect to DS . Fix δ > 0. Let ε = δ
4 and let {(φ̃εt , B̃εt )} be

the family assumed to exist in the statement of the lemma.

From Theorem B and item (1) in the statement of the lemma we know
that φ̃εt

DdS−→ φ̃ε0 as t → a so we can choose some T ∈ (a, b) such that t < T

implies DS(φ̃εt , φ̃ε) < ε. Finally, we can conclude that for any t, s < T we
have that
DS(φt, φs) 6 DS(φt, φ̃εt ) +DS(φ̃εt , φ̃ε) +DS(φ̃ε, φ̃εs) +DS(φ̃εs, φs) < 4ε = δ.

This means that {(φt, Bt)}t∈(a,b) is Cauchy as t → a for each DS so by
Proposition 4.6 we know that it is Cauchy with respect to D as t→ a. The
result follows from the fact that (M∼,D) is complete by Theorem A. �

Now we are prepared to prove Theorem C.

Proof of Theorem C. — Part (1) follows immediately from Lemma 7.3
because the conditions of Theorem C part (1) are a special case of the con-
ditions of Lemma 7.3.

Now we will show part (2). Suppose that the domains satisfy the required
property for T ∈ (a, b), {(φt, Bt)}t∈(a,b) is a smooth family of embeddings,
and that φt

D−→ φ0 as t→ a. Fix ε > 0 and find some T1 ∈ (a, T ) such that
s, t < T1 implies that D(φt, φs) < ε. Now let B : (a, b) → [0, 1] be a smooth
bump function such that B(t) = 0 for t > T1 and b(t) = 1 for t < T1+a

2 . Now
define f : (a, b)→ [ (T1+a)

2 , b) via

f(t) =
(
1− B(t)

)
t+ B(t)T1 + a

2 .

Finally let φ̃t = φf(t)|Bt and notice that {(φ̃t, Bt)} is a smooth family sat-
isfying φ̃t

a.e.−→ φT1
2

as t → a. By the choice of T1 we can see that for all
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t ∈ (a, b) we have D(φt, φ̃t) < ε. Also, because of the requirement on the
domains we know that Bt ⊂ Bf(t) and thus φ̃t : Bt → N is defined on all of
Bt. �

Remark 7.4. — It is natural to wonder if r({(φt, Bt)}t∈(a,b)) = 0 implies
the family must in fact converge pointwise almost everywhere in M∼. The
answer to this question is no; again consider Example 4.13. The functions in
Example 4.13 converge in D and all have the same domain so we know that
rd{Sn} = 0 for these functions, but we also know that they do not converge
pointwise almost everywhere.

8. Final remarks

8.1. Approaches to prove a converse to Theorem C

Now we have set up all of the machinery to begin to explore the converse
of Theorem C in the case that the domains are not restricted to shrink or
stabilize eventually. That is, we will outline some potential avenues to answer
the following question.

Question 8.1. — Is it true that {(φt, Bt)}t∈(a,b)
D−→ φ0 implies that

rd{Sn}({(φt, Bt)}t∈(a,b)) = 0?

There are two approaches in the general case: we can attempt to extend
embeddings or we can smooth singular limits by understanding the singulari-
ties locally. For the following two subsections assume {(φt, Bt)}t∈(a,b)

D−→ φ0.

8.1.1. Extending embeddings to remove singularities

To get an ε-perturbation of {(φt, Bt)}t∈(a,b) we choose some T ∈ (a, b)
such that s, t < T implies that Dd{Sn}(φt, φs) < ε. Then, just as in the proof
of Theorem C, we must smoothly change the family so that t < T+a

2 implies
that φ̃t = φT+a

2
. If limBt 6⊂ BT

2
then this will not define an embedding

with domain all of B0, so this embedding would have to be extended. Thus,
this question comes down to asking when an embedding of some subset
of M can be extended to a larger domain in M . Extending embeddings or
smooth maps has been of independent interest for many years (i.e. the Tietze
Extension Theorem [4, Theorem 4.16], the Whitney Extension Theorem [16,
Theorem I], and the Extension Lemma [7, Lemma 2.27]). For a collection of
more recent work in extension problems see [3].
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Figure 8.1. The strategy is to connect the embedding φt0 with the
map φ which is an embedding away from S. In this way we are able
to avoid the singular part of φ while only changing it slightly on a
small set.

8.1.2. Removing singularities locally

Suppose there exists a closed set S ⊂ B such that φ0|B\S : B \ S ↪→ N
is an embedding and there exists some T ∈ (a, b) such that t < T implies
S ⊂ Bt. Then for some neighborhood U of S we can define φ̃0 in U to be
equal to φt0 for some small t0 ∈ (a, b) and define φ̃0 outside of a larger
neighborhood V ⊃ U to be equal to φ0. A schematic of this idea is shown in
Figure 8.1. The difficulty is connecting the portion of φ̃0 defined in U with
the portion defined outside V ; it is well known that partition of unity type
arguments can be used to smoothly transition between two smooth maps [7]
but in this case we must also preserve the embedding structure.

8.2. Implications of a positive answer to Question 8.1

If the answer to Question 8.1 were yes, then there are several implications.
First, we will have a new characterization of families with rd{Sn}({(φt, Bt)}) =
0, namely these are exactly the families which converge in D. Second, there
is then an easy proof that rd{Sn}({(φt, Bt)}) = 0 does not depend on the
choices of {Sn}∞n=1 and d. The proof is the following:

Let {Sn}∞n=1, {S ′n}∞n=1, d, and d′ be choices of finite exhaustion and met-
ric. Suppose that a, b ∈ R with a < b and {(φt, Bt)}t∈(a,b) ∈ F(M) is a
smooth family such that rd{Sn}({(φt, Bt)}t∈(a,b)) = 0. Then by Theorem C
we know that limDd{Sn}(φt, φ) = 0 as t→ a for some φ ∈M. By Theorem A
this means that limDd′

{S′
n}

(φt, φ) = 0 as t → a and thus by the assumed
positive answer to Question 8.1 we know that rd′

{S′
n}

({(φt, Bt)}t∈(a,b)) = 0.
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8.3. Further questions

In [14] the authors produce a metric on the space of toric integrable sys-
tems. An integrable system is a 2n-dimensional symplectic manifold (M,ω)
along with a map F : M → Rn such that the components of F Poisson
commute and are independent almost everywhere. The metric defined in the
present paper could potentially be used to define a metric on more general
spaces of integrable systems, as long as those systems could be viewed as
subsets of the same manifold.

It would be interesting to study Question 8.1 restricted to a specific
type of embedding. For example, thinking back to the original motivation
from Section 1, one could consider whether this is true for the collection of
symplectic embeddings where the original smooth family {(φt, Bt)}t∈(a,b)
consists exclusively of symplectic embeddings and the perturbed family
{(φ̃t, B̃t)t∈(a,b)} from the definition of the radius of convergence is also re-
quired to be symplectic. Resolving singular points of symplectic manifolds is
related to this in spirit and has been studied extensively such as in [8]. Sym-
plectic manifolds have been shown to admit a high degree of flexibility (see
for example Moser’s Theorem [9] or Darboux’s Theorem [15]) although Gro-
mov’s nonsqueezing theorem [5] represents a level of rigidity that symplectic
embeddings do need to respect. One could also consider the case of isometric
embeddings of Riemannian manifolds, even in the case ofM(R,R2). Clearly
studying further types of embeddings would be enlightening as it would al-
low us to gain a greater understanding of the rigidity of these structures.
Indeed, it is the purpose of this paper to create a foundation off of which
many types of families of embeddings may be studied.
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