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Remarks on the Gibbs measures for nonlinear
dispersive equations *

NicoLas BUrQ V), LAURENT THOMANN () AND NIkoLAY TZVETKOV (3)

ABSTRACT. — We show, by the means of several examples, how we can use
Gibbs measures to construct global solutions to dispersive equations at low reg-
ularity. The construction relies on the Prokhorov compactness theorem combined
with the Skorokhod convergence theorem. To begin with, we consider the nonlinear
Schrodinger equation (NLS) on the tri-dimensional sphere. Then we focus on the
Benjamin—Ono equation and on the derivative nonlinear Schrédinger equation on
the circle. Next, we construct a Gibbs measure and global solutions to the so-called
periodic half-wave equation and of the Szegd equation. Finally, we consider the cubic
2d defocusing NLS on an arbitrary spatial domain and we construct global solutions
on the support of the associated Gibbs measure.

RESUME. — On montre, grace a différents exemples, comment on peut utiliser
des mesures de Gibbs pour construire des solutions globales, a basse régularité, pour
des équations dispersives. La construction repose sur le théoréme de compacité de
Prokhorov, combiné avec le théoreme de convergence de Skorokhod. D’abord, on
consideére 1’équation de Schréodinger non-linéaire (NLS) sur la sphére de dimension 3.
Ensuite, on étudie I’équation de Benjamin—Ono et ’équation de Schrodinger avec
dérivée sur le cercle. Puis, on construit une mesure de Gibbs et une solution glo-
bales aux équations des demi-ondes et de Szegd avec conditions périodiques. Enfin,
on considére NLS cubique défocalisante, en dimension deux, sur un domaine quel-
conque et on construit des solutions globales sur le support de la mesure de Gibbs
correspondante.
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Nicolas Burq, Laurent Thomann and Nikolay Tzvetkov

1. Introduction and main results
1.1. General introduction

A Gibbs measure can be an interesting tool to show that local solutions
to some dispersive PDEs are indeed global. Once we have a suitable local
existence and uniqueness theory on the support of such a measure, we can
expect to globalise these solutions; this measure in some sense compensates
the lack of conservation law at some level of Sobolev regularity. See [5, 6, 13,
16, 37, 38, 47, 48, 53] where this approach has been fruitful.

Assume now that we have a Gibbs measure, but that we are not able to
show that the equation is locally well-posed on its support. The aim of this
paper is to show (through several examples) that in this case we can use
some compactness methods to construct global (but non unique) solutions
on the support of the measure. Although this method of construction of
solutions is well-known in other contexts, like for the Euler equation (see
Albeverio—Cruzeiro [1]) or for the Navier—Stokes equation (see Da Prato—
Debussche [20]), it seems to be not exploited in the context of dispersive
equations.

In [14] we have constructed global rough solutions to the periodic wave
equation in any dimension with stochastic tools. While in [14] we used the
energy conservation and a regularisation property of the wave equation in
the argument, here we use instead the invariance of the measure by the
nonlinear flow. As a consequence we also obtain that the distribution of the
solutions we construct is independent of time.

Our first example concerns the nonlinear Schrédinger equation on the
sphere S? restricted to zonal functions (the functions which only depend on
the geodesic distance to the north pole). For sub-quintic nonlinearities, we
are able to define a Gibbs measure with support in H°(S?) for any o < %, and
to construct global solutions in this space. This is the result of Theorem 1.1.
In [7], Bourgain-Bulut have considered a similar equation (the radial NLS
on R3) in the case of the cubic nonlinearity. The solutions obtained in [7]
are certainly “stronger” compared to the ones obtained in the present paper,
the uniqueness statement being however not explicited in [7].

In a second time we deal with the Benjamin—Ono equation on the circle
S! = R/(27Z). This model arises in the study of one-dimensional internal
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long waves. In [33, 34] L. Molinet has shown that the equation is glob-
ally well-posed in L?(S') and that this result is sharp. For this problem, a
Gibbs measure with support in H~7(S!), for any o > 0 has already been
constructed by N. Tzvetkov in [49]. In this case, we also construct global
solutions on the support of the measure and prove its invariance (Theo-
rem 1.2). A uniqueness result of the dynamics on the support of the measure
was recently proven in a remarkable paper by Y. Deng [21].

Our third example concerns the periodic derivative Schrodinger equa-
tion. Here we use the measure constructed by Thomann—Tzvetkov [46]. We
construct a dynamics for which the measure is invariant (Theorem 1.3).
This result may be seen as a consequence of a recent work by Nahmod,
Oh, Rey-Bellet and Staffilani [35] and Nahmod, Rey-Bellet, Sheffield and
Staffilani [36]. Their approach is based on the local deterministic theory of
Griinrock—Herr [27] which gauges out (the worst part of) the nonlinearity,
and the uniqueness is only proved in this gauged-out context.

Next, we consider the so-called half-wave equation on the circle, which
can be seen as a limit model of Schrédinger-like equations for which one has
very few dispersion. This model has been studied by Gérard—Grellier [25] who
showed that it is well-posed in Hz (S') (see also O. Pocovnicu [41] and more
recently Krieger-Lenzmann—Raphaél [32] for a study of the equation on the
real line). Here a Gibbs measure with support in H =7 (S!), for any o > 0 can
be defined, and global solutions (see Theorem 1.7) can be constructed. This
approach directly applies to the cubic Szegd equation which was introduced
and studied by Gérard—Grellier [23, 24, 26]. This equation has no linear part,
but using the particular structure of the (resonant) nonlinearity, we are able
to show the invariance of a Gaussian measure (at negative regularity).

Finally, we consider the NLS on an arbitrary 2d spatial domain. Here the
construction of the Gibbs measure goes back to the works in QFT (see [43]
and the references therein). For the sake of completeness, we shall present
a proof below based on (precise versions of) the Weyl formula. However we
want to stress that the ideas used in the construction of the Gibbs measure
are in the spirit of [43]. The support of the measure is again H~° for any
s> 0. In the case of the torus as spatial domain, J. Bourgain [6] constructs
strong global solutions on the support of the measure. This remarkable result
relies on the local theory in H?, ¢ > 0 and on a probabilistic regularization
property. In the case of an arbitrary spatial domain the local theory is much
more involved (and presently restricted to much higher regularity) compared
to the case of the torus. Consequently, it seems natural to turn to weak
solution techniques.
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Therefore our results on the half-wave equation and the 2d NLS are out
of reach of the present “strong solutions” methods and as such they should
be seen as the main result of this article.

Summarizing the previous discussion, one may also conclude that the
main point to be discussed when applying strong solutions techniques in all
considered examples is the uniqueness.

1.2. The Schrédinger equation on S3

Let S® be the unit sphere in R*. We then consider the nonlinear Schrod-
inger equation

i0yu + Agsu = |u|""tu, (t,r) € R x S3, (1.1)
u(0,z) = f(x) € H7(S%), '

for 1 < r < 5. In [11] N. Burq, P. Gérard and N. Tzvetkov have shown
that (1.1) is globally well-posed in the energy space H'(S?). In this paper
we address the question of the existence of global solutions at regularity
below the energy space. Denote by Z(S?) the space of the zonal functions,
i.e. the space of the functions which only depend on the geodesic distance to
the north pole of S3. Set HZ ,(S®) := H°(S®) N Z(S?), L?,,(S?) = H?, ,(S?)
and ) )
Xfad = Xgad(s3) = m ;"Tad(S?’)'

O'<%
1
In the sequel we say that uy converges to u in X , if uy converges to v in

H? , for any s < %

For z € S?, denote by 6 = dist(z, N) € [0, 7] the geodesic distance of x
to the north pole and define

2 sinnf
=4/ —— > 1. .
P, (x) ”77 o n>l1 (1.2)

Then, (P,)n>1 is a Hilbertian basis of L?_,(S?), which will be used in the
sequel. Next, in order to avoid the issue with the O-frequency, we make the
change of unknown u —— e~ u, so that we are reduced to consider the
equation

. . — r—1 3
{z@tu+(As Du = |u""tu, (tz) €R xS, (1.3)

uw(0,7) = f(x) € HO(S?).

Let (92, F,p) be a probability space and (gn(w)), -,
pendent complex normalised Gaussians, g, € N¢(0, 1), which means that g,

a sequence of inde-
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can be written
() = = (o ) +i60()).

where(hy, (w), €n(w)), -, are independent standard real Gaussians (Vg (0, 1)).

n>1

For N > 1 we define the random variable

gn(w

wr pn(w,x)

and we can show that if o < %, then (<pN) ~>1 is a Cauchy sequence in
L*(Q; H°(S?)): this enables us to define its limit

w i p(w, ) Z gn ) € L*(Q; HO(S?)). (1.4)

nz1

We then define the Gaussian probability measure p on Xm J(S?) by p =
p o oL In other words, p is the image of the measure p under the map

& — Xfad(S3)

w — pw Z gn(w
n>1
We now construct a Gibbs measure for the Equation (1.3). For u € L™T1(S?)
and 8 > 0, define the density
__1_ f a1

Gu) = fe Jis 1™, (1.5)
and with a Suitable choice of 8 > 0, this enables to construct a probability
measure p on X2 d(S3) by

dp(u) = G(u)dp(w).

Then we can prove

THEOREM 1.1. — Let 1 < r < 5. The measure p is invariant under a
dynamics of (1.1). More precisely, there exists a set 3 of full p measure so
that for every f € ¥ the Equation (1.1) with initial condition u(0) = f has
a solution

u € C(R; Xﬁad(S?’)).

The distribution of the random variable u(t) is equal to p (and thus indepen-
dent of t e R):

Ly (ut) =2 1 (u(0)=p, VteR
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Here and after, we abuse notation and write

C(R XTQad ﬂ C R Tad ))

a'<2

In our work, the only point where we need to restrict to zonal functions is
for the construction of the Gibbs measure. The other arguments do not need
any radial assumption. The result of Theorem 1.1 can not be extended to
the case 7 = 5. Indeed, it is shown in [2, Theorem 4] that |lu| s(ss) = 400,
p—a.s.

Since G( ) > 0, p—a. 5., both measures 1 and p have same support In-
deed, pu(X md(SS)) o( md(S3)) = 1, but we can check that p( Tad(S3))

o( md(S?’)) =0 (see [12, Proposition C.1]).

Let us compare our result to the result given by the usual deterministic

compactness methods. The energy of the Equation (1.1) reads

1
/ | 7/ ‘u|r+1.
1 .

Then, one can prove (see e.g. [17]) that for all f € H'(S?) N L™ 1(S3) there
exists a solution to (1.1) so that

u € Cy(RyH'(S*)) N Cu (R; L™H1(S?)), (1.6)

(here C,, stands for weak continuity in time) and so that for all ¢ € R,
H(u)( ) < H(f) Notice that in (1.6) we can replace the space H' with

rad if f €H rad

The advantage of this method is that there is no restriction on r > 1 and
no radial assumption on the initial condition. However this strategy asks
more regularity on f. We also point out that with the deterministic method
one loses the conservation of the energy, while in Theorem 1.1 we obtain an
invariant probability measure (see also Remark 2.3).

1.3. The Benjamin—Ono equation

Recall that S' := R/(27Z) and let us define

27
22 = ,R_fl 2d )
112201, = (27) / () Pdx

For f(z) =3,z o € and N > 1 we define the spectral projector Iy by
Iy f(z) =32 < Ok e’k We also define the space X°(S') =, ., H °(S").
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Denote by H the Hilbert transform, which is defined by
() = —i Z sign(n)c, e™*, for wu(z) = Z e
nez* nezZ*

In this section, we are interested in the periodic Benjamin—Ono equation

Ou + HO?*u + 0, (uQ) =0, (t,z)eRxS!, (1.7)
u(0,z) = f(z). '
Let (2, F,p) be a probability space and (gn(w))n>1

dent complex normalised Gaussians, g, € N¢(0,1). Set g_p,(w) = gn(w). For
any o > 0, we can define the random variable

a sequence of indepen-

wis plwz) = S Il gine ¢ p2 (2 H=o(SY), (1.8)

neZ* 2|TL|§

and the measure p on X°(S!) by u = po ¢! Next, as in [49] define the
measure py on X°(S!) by

dpn (u) = U (u)dp(u), (1.9)

where the weight ¥ is given by

—2 ’U.3 x xr
Wi () = Avx(lunl3e —aw) e Fl Oy — i,
with x € C§°(R),

1
ow= [ lunlandn = [ lento ) nip) = ¥ 1
XO0(st) &) &) 1<§N "

and where the constant Sy > 0 is chosen so that py is a probability measure
on X9(S1). Then the result of N. Tzvetkov [49] reads: There exists ¥ (u) which
satisfies for all p € [1,4o00[, ¥(u) € LP(du) and

Uy(u) — ¥(u) in LP(dp(u)). (1.10)

As a consequence, we can define a probability measure p on X°(S') by
dp(u) = ¥(u)dp(u). Then our result is the following

THEOREM 1.2. — There exists a set X2 of full p measure so that for every
f € X the Equation (1.7) with initial condition uw(0) = f has a solution

ue C(R; X0(Sh).
For allt € R, the distribution of the random variable u(t) is p.
Some care has to be given for the definition of the nonlinear term in (1.7),

since u has a negative Sobolev regularity. Here we can define 0, (u?) on the
support of 4 as a limit of a Cauchy sequence (see Lemma 5.3).
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As in [13, Proposition 3.10] we can prove that

J suppp=suppp.
X€Cs° (R)
The cut-off x(|lun||?2 — ) can not be avoided here because the term
Jo wX (z)dz does not have a sign (compare with the analysis of the half-
wave equation and the defocusing NLS below where it can be avoided, after
a suitable renormalization of the potential energy).

Observe that ¢ in (1.8) has mean 0, thus u and p are supported on 0-
mean functions. This is not a restriction since the mean fSl u is an invariant
of (1.7).

We complete this section by mentioning [22, 50, 51, 52] where the authors
construct Gibbs type measures associated with each conservation law of the
Benjamin—Ono equation.

1.4. The derivative nonlinear Schrédinger equation

We consider the periodic DNLS equation.

i0u + 02u = 0, (|ul*u), (t,z) € R x S,
(1.11)
uw(0,x) = up(x).
Here, for o < i we define the random variable ({n) = (1 + n?)z)
wr plw,z) = Z grg(c;) e e L?(Q; HO(SY), (1.12)
n

nez
and the measure y on X2 (S!) = Mot H(S') by = pop~!. Next, denote
by

() = [ )0, )

Let Kk > 0,and let x : R — R, 0 < x < 1 be a continuous function
with support supp x C [~k, ] and so that x =1 on [—%, §]. We define the
density

\IJN('LL) _ ﬁNX(”uN”LQ(Sl)) e%fN(u)—%Ll \u1\r(;1c)|6dac7

and the measure py on X2 (S1) by
dpn () = Uy (w)dp(u), (1.13)

and where By > 0 is chosen so that py is a probability measure on Xz (S1).
By Thomann—-Tzvetkov [46, Theorem 1.1], py converges to a probability
measure p so that dp(u) = ¥(u)du(u). Moreover, for all p > 2, if kK < kp,
then ¥(u) € LP(dy). Then our result reads

- 534 —



Remarks on the Gibbs measures for nonlinear dispersive equations

THEOREM 1.3. — Assume that k < ko. Then there exists a set % of full
p measure so that for every f € ¥ the Equation (1.11) with initial condition
u(0) = f has a solution

ueC(R; X3(SY).
For all t € R, the distribution of the random variable u(t) is p.

Here, for k < ko, we have

U suppp={llulr: <} suppp.
XEC5® ([=ron])

1.5. The half-wave equation

The periodic cubic Schrodinger on the circle has been much studied and in
particular rough solutions have been constructed. See Christ [18], Colliander—
Oh [19], Guo—Kwon—-Oh [28], and Bourgain [6] in the 2-dimensional case.

Here we investigate a related equation where one has no more dispersion:
We replace the Laplacian with the operator |D]|, i.e. the operator defined by
|D|e™* = |n| e, and we consider the following half-wave Cauchy problem

i0yu — |D|u = |ul?u, (t,r) € R xS
u(0,z) = f().

This model has been studied by P. Gérard and S. Grellier [25] who showed

that it is well-posed in H 2 (S'). However, the Sobolev space which is invariant

by scaling is L?(S!), hence it is natural to try to construct solutions which

have low regularity. In the sequel, in order to avoid trouble with the 0-

frequency, we make the change of unknown u — e~* u, so that we are
reduced to consider the equation

i0pu — Au = |ul?u, (t,z) € R x S!,
where A := |D| + 1.

Let (2, F,p) be a probability space and (gn (w)) a sequence of inde-

nez
pendent complex normalised Gaussians. Here we define the random variable
w p(w,z) = Lw)l e e L?(Q; H°(SY)), (1.14)
wer (L4 nl)2

for any o > 0, and we then define the measure p on X°(S') by u=pop=t.

We need to give a sense to |u|?u on the support of . In order to avoid the
worst interaction term, we rather consider a gauged version of the equation
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for which the nonlinearity is formally |u|?u — 2HU||2L2(51)U- More precisely,
define the Hamiltonian

2
1
iyt = [ e+ g [t = ()
St 2 St St

and consider the equation

iatu = Mija
ou

which reads

P _ L
10w — Au=Gn(u), (t,z) € R xS, (1.15)
u(O,:c) = f(‘r)v
where G stands for
G (u) = Ty (TMyulTivu) — 2| Tyu|7z g Tvu. (1.16)

This modification of the nonlinearity is classical, and is the Wick ordered
version of the usual cubic nonlinearity (see Bourgain [6], Oh—Sulem [40]).
Recall, that since the L? norm of (1.15) is preserved by the flow, one can
recover the standard cubic nonlinearity with the change of function vy (t) =
up (t) exp (— 2i fot |lun (7)||32d7) with the notation uy = Iyu.

Here, the main interest for introducing the gauge transform in (1.16) is
to define the limit equation, when N — 4o0.

PrOPOSITION 1.4. — For all p > 2, the sequence (GN('LL))N>1 is a

Cauchy sequence in the space LP (XO(Sl),B,d,u;H_"(Sl)). Namely, for all
p = 2, there exist n > 0 and C > 0 so that for all 1 < M < N,

C
G -G e yd < —.
S, 1630 = Gaa e () < 57
We denote by G(u) the limit of this sequence.

It is then natural to consider the equation
i — Au = G(u), (t,r) € R xS
{u(O,:c) = f(x).
We now define a Gibbs measure for (1.17) as a limit of Gibbs measures

for (1.15). In the sequel we use the notation uy = Iyu. Let x € C§°(R) so
that 0 < x < 1. Define

1
2
= d = _—
an /XO(Sl)HuN”LQ(Sl) p(u) = Tl

In|<N

(1.17)

consider the density
4 4
On(u) = Avx(lun ey — a) e (¥ lisen =2vtizen) (1 1g)
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and define the measure
dpn (u) = Oy (u)dpu(u),
where Sy > 0 is chosen so that py is a probability measure.

Remark 1.5. — We could avoid the cut-off procedure, x, above, by using
another renormalization, namely defining

éN(U) = HN(‘HNU/'QHNU) — QO{NHN'LL, anN = Eu |:|HNU||%2(S1):|, (119)

see the construction in Section 8.3 for NLS on a bounded domain.
In our next result, we define a weighted Wiener measure for the Equa-
tion (1.17).

THEOREM 1.6. — The sequence Oy (u) defined in (1.18) converges in
measure, as N — oo, with respect to the measure p. Denote by ©(u) the
limit and define the probability measure

dp(u) = O(u)dpu(u). (1.20)
Then for every p € [1,00][, O(u) € LP(dpu(u)) and the sequence © N converges
to © in LP(dp(u)), as N tends to infinity.
The sign of the nonlinearity in (1.17) (defocusing) plays a role. Indeed,
Theorem 1.6 is not expected to hold when G(u) is replaced with —G(u).

Again, with the arguments of [13, Proposition 3.10], we can prove that

J suppp=suppp.
X€Cs° (R)
Consider the measure p defined in (1.20), then

THEOREM 1.7. — There exists a set ¥ of full p measure so that for every
f € X the Equation (1.17) with initial condition w(0) = f has a solution

ue C(R; X%(Sh).
For all t € R, the distribution of the random variable u(t) is p.
In Equation (1.17) the dispersive effect is weak and it seems difficult to

deal with the regularities on the support of the measure by deterministic
methods.

Remark 1.8. — More generally, we can consider the equation

i0pu — A = |uP"tu, (t,z) € R x S,
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with & > 1 and p > 1. Define X#(S') = (N _5 H™(S'). In this case, the
situation is better since the series

gn(w) inx
W o (w,z) = Zﬁe ,
2 [+ )3
are so that ¢, € L*(Q; H(S')) for all 0 < 8 < w Here we should be

able to construct solutions
(a—1)

ueC(R; X (Sh).

1.6. The Szeg6 equation

Our approach can also be applied to the Szegd equation, introduced and
studied by Gérard-Grellier [23, 24, 26]. This equation is defined by

iOpu =17 (|ul’u), (t,z) e R xS, (1.21)
where IIT is the orthogonal projector on the non-negative frequencies:
H+(Zn€Z Cnén) = Zn>0 Cnén. In this context, we define the Gaussian mea-
sure g4 by pup =po gpj_l with

w op(w,z) = Meim € L*(Q; H°(SY)), o>0,
=0 (I4+n)2
where H$ (S') = H*(S') N {u = II'" (u) }. Moreover, one can prove that the

H_%_ (S') norm is conserved by the flow of (1.21). Since the Szegd equation is
a Hamiltonian equation which preserves the volume form, the measure p is
formally invariant under its flow. As a consequence, the result of Theorem 1.7
also applies to the measure p4 (such a fact is not true for (1.17)). More
precisely, one has

THEOREM 1.9. — There exists a set ¥ of full uy measure so that for
every [ € ¥ the Equation (1.21) with initial condition u(0) = f has a solution
u e C(R; XO(Sh).

For all t € R, the distribution of the random variable u(t) is p4 .

The probabilistic approach for the construction of dynamics for the Szegé
1
equation below H?(S') is relevant for two reasons. In [39], T. Oh studied
the second iterate of the Szegd equation with random initial conditions and
showed that there is no stochastic smoothing, which shows the difficulty to
1
perform a fixed point argument below H} (S'). Next, concerning the study
of the Szegb equatio at negative Sobolev regularity, Gérard and Grellier
recently proved that there exists a sequence (un)n>0 of smooth solutions
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of (1.21) and a sequence of times ¢, — 0 such that for all o > 0, when
n — +00
[un (O o sty — 0O,
but
‘(un(tn), 1>| — 400,
which shows that if a deterministic flow map exists in H~7(S!), it can not

be continuous near the origin. The sequence (uy,(0)),>0 is explicit and takes
the form wu,,(0) = A, (6™ +¢,), see [23].

For n > 0, we have Ae,, = (n+ 1)e,, then u satisfies (1.21) if and only if
v = e "My satisfies

O+ Av =17 (|v[*v), (t,z) e R xS

Notice that v and v only contain non-negative frequencies. It is easy to see
that the renormalized equation in this context is the same as in the case
of the half-wave equation, but restricted on non-negative frequencies. As

consequence, the analysis is very close to (1.17), except that we only deal
with non-negative frequencies.

Observe that the truncated renormalized Szegd equation, with nonlinear-
ity given by

G (w) = I (I u* T ) — 2] o) IR,

is a Hamiltonian PDE with the Hamiltonian given by

1 2 2
5/ IR ul* — (/ || ) :
st St

As a consequence, the L} -norm is conserved by the dynamics of
i0yu = G§;(u),

and as in the previous section, one can construct the corresponding objects
p}, p+ by replacing Iy by IITIIy. Then the result of Theorem 1.9 also
applies with the measure p. .

The details of the proof of Theorem 1.9 are omitted since one can rely
on the analysis of the previous section.

1.7. The 2d NLS on an arbitrary spatial domain

We assume that (M, g) is either a two dimensional compact Riemannian
manifold without boundary or a bounded domain in R?. We suppose that
vol(M) = 1. This assumption is not a restriction since we can always reduce

- 539 -



Nicolas Burq, Laurent Thomann and Nikolay Tzvetkov

the analysis to this case by rescaling the metric. We impose it since some of
the computations simplify a little under this assumption.

Denote by —A, the Laplace-Beltrami operator on M (with Dirichlet
boundary conditions in the case of a domain in R?). Consider the nonlinear
Schrédinger equation

. _ — 2
{z@tu—k (Ay —Du = |ul*u, (t,z) e Rx M, (1.22)

u(0,z) = f().

Our aim is to construct a Gibbs measure p associated to (1.22) and to con-
struct global solutions to (1.22) on the support of p. Let (¢, )n>0 be an or-
thonormal basis of L?(M) of eigenfunctions of —A, associated with increas-
ing eigenvalues (A2),>0. By the Weyl asymptotics A, ~ n2. Let (gn(w))n>0
be a sequence of independent standard complex Gaussian variables on a
probability space (2, F,p). We denote by p the Gaussian measure induced
by the mapping

wr— U(w,x) = _Inlw) on(2),

1
2o (2 + 1)

and we can interpret p as the Gibbs measure which is associated to the
linear part of (1.22). One may see p as a measure on H*(M) for any fixed
s > 0, and we can check that p(L?(M)) = 0. Notice also that thanks to the
invariance of the Gaussians under rotations the measure p is independent of
the choice of the orthonormal basis (¢n)n>0-

Now, if one wishes to define a Gibbs measure p (which is a density measure
w.r.t. p) associated to (1.22), namely corresponding to the Hamiltonian

1 1
1w =5 [ (vl )+ g [t

we have [ M |u|* = 400 on the support of u. Therefore a suitable renormal-
ization is needed. For u = Zn>0 Cnpn, we set uy = lyu = anN Crn'Pn-
Denote by

1
o :/ [un 172 oy () = - (1.23)
XO(M) L2(M) Z 2

0<H<N1+)\l

Then we define the renormalized Hamiltonian
1
Hy(u) = / (|Vu|? + |u?) + 7/ TIyul* — 2aN/ |HNu|2 + o,
M 2 Jm M

and consider the equation
0H N
ou ’

i@tu =
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which reads

i0u+ (Ay — u= Fn(un), (t,z) eRxM, (1.24)
u(O,x) = f(x)a ’
where Fy stands for
FN(UN) :HN(|’LLN|21LN) 720[1\/’&]\/. (125)

Recall, that since the L? norm of (1.24) is preserved by the flow, one can
recover the standard cubic nonlinearity with the change of function vy (t) =
upn (t) exp(—2ant).

Thanks to the gauge transform in (1.25) we are able to define the limit
equation, when N — 400. Set X°(M) =N, o H (M), then

ProrosiTioN 1.10. — For all p > 2 and o > 2, the sequence
(Fn(un)) ys, is Cauchy in LP(X°(M),B,du; H=°(M)). Namely, for all
p = 2, there exist n > 0 and C > 0 so that for all1 < M < N,

C
Fyx(un) — Far(uad) %, dp(u) < —.
/XO(M)II (1) = P () o (o) < 52

We denote by F(u) the limit of this sequence.

We now consider the equation
i0u+ (Ay —Du=F(u), (t,x)€RxM,
u(0,z) = f(x).

We now define a Gibbs measure for (1.26) as a limit of Gibbs measures
for (1.24). Set

(1.26)

() = ;/M Myult — 2an /M Myul® + a3, (1.27)
and consider the measure
dpn (1) = Cn e dp(u),
where C'y > 0 is chosen so that py is a probability measure. Then

THEOREM 1.11. — Let us fit 1 < p < oo. The sequence (fn(u))n>1
converges in LP(du(u)) to some limit denoted by f(u). Moreover

e~ e LP(dp(u)).
Therefore, we can define a probability measure on X°(M) by
dp(u) = Cooe W dp(u). (1.28)
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The result of Theorem 1.11 is not new. One may find a proof of it in the
book by B. Simon [43, p. 229]. The approach in [43] is using the control of
the singularity on the diagonal of the Green function associated with A;l.
Here we present a slightly different proof based on spectral consideration via
the Weyl asymptotics. We decided to include this proof since the argument
is in the spirit of the analysis of the other models considered in this article.

We are able to use the measure p defined in (1.28) to define global dy-
namics for the Equation (1.26).

THEOREM 1.12. — There exists a set % of full u measure so that for
every [ € ¥ the Equation (1.26) with initial condition u(0) = f has a solution

u € C(R; XO(M)).
For all t € R, the distribution of the random variable u(t) is p.

Remark 1.18. — Another choice of renormalization procedure, namely
defining
Fy(un) =Ty (Jun Pun) = 2lun |72 v un- (1.29)
would lead to another limit equation
O+ (A, — 1)u = F(u),
with
I : I « 2 2
Fu)= lim F(w)* =" JuPu— 20ullBagu
which is slightly more natural as if v is a (L?-bounded) solution of
10w + (A, — v = |v]?v,

—2it||v]? .
e I HL2<M>U satisfies

O+ (A, — V)u = F(u).

then u =

However, this renormalization would require another cut-off (see Section 7)
because the main contribution of the potential energy in the Hamiltonian is
no longer positive. Finally, yet another renormalization is possible: by the
Weyl formula (8.1) we know ay = 2= In N +C +0(1), and it is easy to check
that it is possible to replace ayy by its equivalent in the definition of Hy (u)
and in (1.25). In this case, the renormalization does not depend on M (but
only on its volume which if fixed to 1).

Remark 1.14. — 1In Theorems 1.11, 1.12, the sign of the nonlinearity
(defocusing) plays key a role and we do not know how to define a probability
Gibbs measure if F is replaced by —F. See Brydges—Slade [8] for a non
existence result in this context.
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Let us recall some deterministic results on the nonlinear cubic Schréodinger
equation on a compact surface. The equation is locally well-posed in H® for
all s > 0 when M = T? (Bourgain [4]), in H* for all s > 1 when M = S? and
H? for all s > % in the case of a general surface M without boundary (Burq—
Gérard-Tzvetkov [10]). In the case of a surface with boundary, the equation
is locally well-posed in H* for all s > 2 (Blair-Smith-Sogge [3]). In each of
the previous cases, thanks to an interpolation argument, S. Zhong [54] has
shown that the (defocusing) equation is globally well-posed in H*® for some
1 -9 < s <1 with 6 > 0 sufficiently small.

1.8. Notations and structure of the paper

Notation. — In this paper ¢, C > 0 denote constants the value of which
may change from line to line. These constants will always be universal, or
uniformly bounded. For n € Z, we write (n) = (1 + |n|?)2. In Section 7 we
use the notation [n] = 1+ |n|, while in Section 8 we write [n] = 1 + A\2. We
will sometimes use the notations LY. = LP(—T,T) for T > 0. For a manifold
M, we write L? = LP(M) and for s € R we define the Sobolev space H: =

H#(M) by the norm ||ullgs = [|(1 — A)%uHLz(M). If F is a Banach space
and y is a measure on E, we write L, = LP(dp) and [|lulzp = H||u||EHLp
For M a manifold, we define X°(M) = __ H"(M), and if I C R is an
interval, C(I; X°(M)) =(,., C(I; H(M)). If Y is a random variable, we
denote by Z(Y) its law (its distribution).

The rest of the paper is organised as follows. In Section 2 we recall the
Prokhorov and the Skorokhod theorems which are the crucial tools for the
proof of our results. In Section 3 we present the general strategy for the
construction of the weak stochastic solutions. Each of the remaining sections
is devoted to a different equation.

Acknowledgements. The authors want to thank Arnaud Debussche for
pointing out the reference [20]. The second author is very grateful to Philippe
Carmona for many clarifications on measures. We also benefitted from dis-
cussions with Christian Gérard and Igor Chueshov.

2. The Prokhorov and Skorokhod theorems

In this section, we state two basic results, concerning the convergence of
random variables. To begin with, recall the following definition (see e.g. [31,
p. 114])
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DEFINITION 2.1. — Let S be a metric space and (pn)n>1 a family of
probability measures on the Borel o—algebra B(S). The family (pn) on
(S,B(S)) is said to be tight if for any € > 0 one can find a compact set
K. C S such that py(K:) 2 1—¢ for all N 2 1.

Then, we have the following compactness criterion (see e.g. [31, p. 114]
or [30, p. 309])

THEOREM 2.2 (Prokhorov). — Assume that the family (pn)n>1 of prob-
ability measures on the metric space S is tight. Then it is weakly compact,
i.e. there is a subsequence (Ng)p>1 and a limit measure po, such that for
every bounded continuous function f:S — R,

lim /Sf(x)dek(x):/Sf(ac)dpoo(x).

k—o0

In fact, the Prokhorov theorem is stronger. In the case where the space
S is separable and complete, the converse of the previous statement holds
true, but we will not use this here.

Remark 2.3. — Let us make a remark on the case S = R™. The measure
given by the theorem allows mass concentration in a point and the tightness
condition forbids the escape of mass to infinity.

The Prokhorov theorem is of different nature compared to the compact-
ness theorems giving the deterministic weak solutions. In the latter case
there can be a loss of energy (as mentioned below (1.6)). A weak limit of
L? functions may lose some mass whereas in the Prokhorov theorem a limit
measure is a probability measure.

We now state the Skorokhod theorem

THEOREM 2.4 (Skorokhod). — Assume that S is a separable metric
space. Let (pn)N>1 and poo be probability measures on S. Assume that
PN — Poo weakly. Then there exists a probability space on which there
are S—valued random variables (Yn)n>1, Yoo such that L(Yn) = pn for all
N2 1, L(Yx) = poo and Yy — Y, a.s.

For a proof, see e.g. [30, p. 79]. We illustrate this result with two elemen-
tary but significant examples:

o Assume that S = R. Let (Yn)i<ngoo be standard Gaussians, i.e.
L(Yn) = L(Ys) = Nr(0,1). Then the convergence in law obviously
holds, but in general we can not expect the almost sure convergence
of the Yy to Y (define for example Yy = (—1)VY,).
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o Assume that S = R. Let (Yn)ig<ngoo be random variables. For
any random variable Y on R we denote by Fy(t) = P(Y < t)
its cumulative distribution function. Here we assume that for all
1 < N < oo, Fy, is bijective and continuous, and we prove the
Skorokhod theorem in this case. Let U be a r.v. so that £(U) is the
uniform distribution on [0, 1] and define the r.v. Yy = F;Ivl(U) We
now check that the Yy satisfy the conclusion of the theorem. To
begin with,

Fy (1) = P(Y <1) = P(U < Fyy (1)) = Fry (0),

therefore we have for 1 < N < oo, L(Yy) = E(?N). Now if we
assume that Yy — Y, in law, we have for all ¢t € R, Fy, (t) —

Fy_(t) and in particular Yy —» Y, almost surely.

3. General strategy

Let (Q2,F,p) be a probability space and (gn(w))n>1 a sequence of in-

dependent complex normalised Gaussians, g, € N¢(0,1). Let M be a Rie-
manian compact manifold and let (e,,),>1 be an Hilbertian basis of L*(M)
(with obvious changes, we can allow n € Z). Consider one of the equations
mentioned in the introduction. Denote by

X=X (M) = () H (M).

T<o

We recall that uy converges to u in X7, if uy converges to u in H*(M)
for any s < o.

3.1. General strategy of the proof

The general strategy for proving a global existence result is the following:

Step 1: The Gaussian measure u

We define a measure p on X7 (M) which is invariant by the flow of the
linear part of the equation. The index o, € R is determined by the equation

and the manifold M. Indeed this measure can be defined as u = po ¢!,
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where ¢ € L*(Q; H°(M)) for all ¢ < o. is a Gaussian random variable
which takes the form
gn(w)

p(w,z) = . en(x).

Here the (\,) satisfy A, ~ ¢n®, a > 0 and are given by the linear part and
the Hamiltonian structure of the equation. Notice in particular that for all
measurable f: X% (M) — R

/ F(u)dpa() = / Fp(w,))dp(w). (3.1)

Step 2: The invariant measure ppn

By working on the Hamiltonian formulation of the equation, we introduce
an approximation of the initial problem which has a global flow @, and for
which we can construct a measure py on X% (M) which has the following
properties

(i) The measure py is a probability measure which is absolutly contin-
uous with respect to

dpn(u) = Uy (u)dp(u).

(ii) The measure py is invariant by the flow ® 5 by the Liouville theo-
rem.
(iii) There exists ¥ # 0 such that for all p > 1, ¥(u) € LP(du) and

Uy(u) — ¥(u), in LP(du).

(In particular |[¥y(u)|zz < C uniformly in N > 1.) This enables
to define a probability measure on X°<(M) by

dp(u) = W(u)dp(u),

which is formally invariant by the equation.

Step 3: The measure vy

We abuse notation and write

C([-T,T); X7*(M)) = ) C([-T,T}; H*(M)).

o<0.¢
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We denote by vy = pyo®y' the measure on C ([T, T]; X< (M)), defined
as the image measure of py by the map

X7¢(M) — C([-T,T); X7*(M))
v — D (t)(v).

In particular, for any measurable F' : C([—T, T); X°e (M)) — R

Xoaec

/C([—T,T];ch)F(U)dyN(U):/ F(®n(t)(v))dpn(v).  (32)

For each model we consider, we show that the corresponding sequence
of measures (vy) is tight in C([-T,T]; H°(M)) for all ¢ < o.. Therefore,
for all ¢ < o, by the Prokhorov theorem, there exists a measure v, = v
on C([-T,T); H°(M)) so that the weak convergence holds (up to a sub-
sequence):

For all ¢ < o, and all bounded continuous F : C([-T,T}; H*(M)) — R

lim F(u)dvy(u) = / F(u)dv(u).
N=eo Je([-1,1);H°) c([-r.1):8H7)

At this point, observe that if 61 < o2, then vy, = vy, on C([-T,T]; H*(M)).

Moreover, by the standard diagonal argument, we can ensure that v is a mea-

sure on C([-T,T]; X7<(M)).

Finally, with the Skorokhod theorem, we can construct a sequence of
random variables which converges to a solution of the initial problem.

We now state a result which will be useful in the sequel. Assume that py
satisfies the properties mentioned in Step 2.

PropPOSITION 3.1. — Let 0 < o.. Let p > 2 and r > p. Then for all
N2>1
el g e[y < OT# llvllgll (3.3)
Letq>1,p>2andr > p. Then for all N > 1
Mallegcall < OT#|[lollsg - (3.4)
In case ¥y < C, one can take r = p in the previous inequalities.
Proof. — We apply (3.2) with the function u — F(u) = HuHi‘;m; Here

and after, we make the abuse of notation
||||U||L‘;Hg||LgN = ||U||L§NL§H;;-
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Then

Hu”ifNL;Hg - /C([—TT]'X’ ) HUHiI%HgdUN(u)

— [ 1o, ydon (o)
Xoc

::/;m:[jf;H¢N<o<vnpgd4de@g

- /T [/Xac Hq)N(t)(UHpgdPN(U)] dt, (3.5)

-T
where in the last line we used Fubini. Now we use the invariance of py under
@, and we deduce that for all t € [T, T

| o) g done) = [ lolfigdon(e).

Xoaec Xoac

Therefore, from (3.5) and Holder we obtain with % + % =1
Il g =27 [ ol don(o)
o7 [ ol O (da(o)
Xoc

S 2Tl gy W ()22
Now, let r > p, take r; = % and we can conclude since Uy (v) € L™ (dp).

For the proof of (3.4), we proceed similarly. We take F(u) = ”u”i’}LZ

in (3.2), and use the same arguments as previously. |

3.2. Some deterministic estimates

We now state an interpolation result, which will be useful for the study
of each model. Consider (e;,),>1 a Hilbertian basis of L? = L?(M) of eigen-
functions of A:

—Ae,, = )\ien, n>1.
For u = En>1 anén, we define the spectral projector
Aju = Z Qpén,
n21]2/ < (Ay)<29+1

so that we have u =35 Aju and for 0 € R

Cr27 || Ajul e < [|Aulle ) < C2277[|Ajull 2.
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Define the space W,” by the norm ||u||W%,p = |lullLz + [|Owul Lz - Then

LEMMA 3.2. — Let T > 0 and p € [l,4o00]. Assume that u €
LP([=T,T; L?) and Oyu € LP([~T,T); L?). Then u € L>=([-T,T]; L?) and

1—1 1
lull e zz < Cllull oy 2o llullg 1 .-

Proof. — Let v € L?>(M) be so that ||y|r2= = 1, and define v(t) =
(u(t),7). Then we clearly have
oy, <llullpprz, 10wllre < l|0wullrp L2,

and from the Gagliardo—Nirenberg inequality we deduce

-2 5 -1 1
ollzze < Cllvlly "0l < Cliul g Zallull s o (3.6)
Now from (3.6) we get
HU||L§,°L2 = sup |u(?)|r:
te[-T,T]
= sup sup ()
te[=T,T] vl p2=1
(1) < Cllull 2 lull
= sup sup v(t) < Clull; s l|ul|Z 1, ,-
9]l p2=1tE[—T,T] = L1 L? W;pL2
This completes the proof of Lemma 3.2. 0

Denote by H? = H?(M). Using the previous result we can prove

LEMMA 3.3. — Let T > 0 and p € [1,400]. Let —00 < 09 < 01 < 400
and assume that u € Lp([—T, T];H"l) and Oyu € LP([—T7 T];H"Q). Then
for all e > % — %, u € LOO([—T, T];H"l_s) and
1
(3.7)

1—1 1
lull ge pres =< < Cllull by o el 10 o -

Moreover, there exists n > 0 and 0 € [0, 1] so that for all t1,ts € [-T,T)

-0 0
lu(tr) = u(ta)l roa—2e < Cltx = to|"[ull g e 1% 1.0 o

Proof. — We use the frequency decomposition as recalled at the begin-
ning of the section, and apply Lemma 3.2 to Aju

1A ull pg pros-= < C2PO || A jul| g 12

=

. _ 1—1

< 0P 9| Al 1 (10l g 12 + 185l g 12)
. _ o 1\ __joo 1—1 1

< 021(01 5)2 joi(1 p)2 P HAJ"LLHL;;IUIHAjU”;/;,pHﬂ2

L i(e_T1 o2 1-1 i
<2 ul g o 0 s
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This inequality together with |lullpecgoi-c < 30550 [|AjullLse pror—- yields
(3.7). By Holder we get

to

[u(ts) — u(te)|| o= = ‘ dpu(r)dr|| < [tr —to|' P ||0sull g s (3.8)

t1 Heo2

Next by interpolation, there exists 6y € (0,1) so that

lu(t) = u(te) | o2 < Hlult) —ulte) |77 Julty) — u(tz) | 3o,

) 2]
< Ol gy < Mlu(tr) = u(t2) [ s

and the result follows from this latter inequality combined with (3.7)
and (3.8). O

4. The nonlinear Schrédinger equation on the three dimensional
sphere

4.1. The setting

Let S® be the unit sphere in R%. Consider the nonlinear Schrédinger

equation
i0u+ (A — Du = |ul""tu, (t,z) € R xS?, (4.1)
w(0,2) = f(x) € H(S?), '

where A = Ags stands for the Laplace-Beltrami operator, and where 1 <
r < 5. In the sequel we consider functions which only depend on the geodesic
distance to the north pole, these are called zonal functions. Denote by Z(S?)
this space. Roughly speaking, this is the same type of reduction as restricting
to radial functions in R3. Denote by L2, ,(S*) = L*(S?) N Z(S?). We endow
this space with the natural norm

HfHLiad(Sz) = </SS |f|2) 2 _ 72((/0 ‘f(x)lz(sin,r)Qde')ﬁ’

where z € [0, 7] represents the geodesic distance to the north pole of S* (the
normalisation constant is chosen such that the unit function has norm 1).
The operator A can be restricted to qud, and it reads

0? 2 0

0x2 ' tanz Oz’

One of the main interests to restrict to zonal functions, is that the eigen-
values of A in L?_,(S®) are simple. The family (P,),>1 defined in (1.2) is a

Hilbertian basis of L?,,(S?) of eigenfunction of the Laplacian: for all n > 1,

A:
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Nl=

—AP, = (n? — 1)P,. We define the operator A = (1 — A) , in particu-

lar AP, = nP,.

Let us define the complex vector space En = span((FP,)ig<n<n). Then
we introduce a smooth version of the usual spectral projector on Fy. Let
X € C°(—1,1), so that x =1 on (—7 1), We then define

272
sv(Tanmn) =) L enfa = LAt
n>1 n=1 n>1

One of the advantages of this operator compared with the usual spectral
projector, is the following result. See Burq—Gérard—Tzvetkov [9] for a proof.

LEMMA 4.1. — Let 1 <p < oo. Then Sy : LP(S®) — LP(S?) is contin-
uous and there exists C > 0 so that for all N > 1,

||SN||L7’(SS)*>LP(S:3) < C.
Moreover, for all f € LP(S?), Sy f — f in LP(S?), when N — +oo.

4.2. Preliminaries: Some estimates

In the sequel, we will need a particular case of Sogge’s estimates.

LEMMA 4.2. — The following bounds hold true for n > 1
1 1
Cnz 7%, if 2<p<4,
Pollpess) < 4.2
I1Pallzeey {Cnl;’ st 42)

Proof. — The bound for p = o is clear by the definition (1.2). The case
p =4 is proved in [48, Lemma 10.1] thanks to the formula

PPy = \/> Z P|k —ey2i-1, k=1

The general case follows from Holder. |

The next Lemma (Khinchin inequality) shows a smoothing property of
the random series in the L? spaces. See e.g. [15, Lemma 4.2] for the proof.

LEMMA 4.3. — There exists C > 0 such that for all p > 2 and (¢,,) €

*(N)
Z gn(w) &

n>1

<ovi( X |cn|2)§. (143)

n>1

1

Define p = po ¢~ !, with ¢ given in (1.4). Then we can state
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LEMMA 4.4. — Let o0 < %, then there exists C' > 0 so that for allp > 2

Mol |, < CVp (4.4)
Let 2 < q < 6, then there exists C > 0 so that for all p > q
Mollzsllp, < Cvp (4.5)

Proof. — We prove (4.4). Let o < % and apply (4.3) to (1 — A)%@ _
Y51 725 Po. Then

. P \?
0= 8ol < (X s )

n>1

Take the L2(S®) norm of the previous inequality, and by the Minkowski
inequality the claim follows. The proof of (4.5) is similar, using (4.2) and
the Minkowski inequality. ]

We will also need the next result. See [13, Lemma 3.3] for the proof.

LEMMA 4.5. — Let 2 < g < 6. Then there exist ¢,C > 0 so that for all
N>1land A>0

,u(u € X%(S?’) | ||SNU||L(1(S3) > )\) < Ce—c/\2 .
Moreover there exist a,c,C > 0 so that for all 1 < M < N and A >0
p(ue X3(S%) | 1Snu— Sarullassy > A) < Ce™M™N 1 (46)

4.3. A convergence result

Let 1 < r < 5 and recall the definition (1.5) of G. Let N > 1 and set
Gy = BnyG o Sy, where By > 0 is chosen such that

dpn (u) = G (u)dp(u),

defines a probability measure on X2 (S?). Notice here that Lemma 4.5 en-
sures that Sy is bounded below away from 0. The next statement shows that
we can pass to the limit N — +oo in the previous expression.

PROPOSITION 4.6. — Let p € [1, 0], then
Gn(u) — G(u), in LP(dp(u)),

when N — +00.

In particular, for any Borel set A C X%(S?’)7 limy oo pn(4) =
1
p(A). Observe that for all N > 1, pN(X%\Xfad) = 0, as well as
1
p(X3\X2,) =0

rad
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Proof. — Let ¢ < 6. By Lemma 4.1, and the Lebesgue theorem, we can
pass to the limit N — +o00 in (4.6) and deduce that for all M > 1

M(U € X%(SS) | |||u||Lq(S3) - ||SMU||L‘1(S3)’ > )\)
<p(ue X3(S*) | flu— Saullpass) > A) < Ce eM™\

Therefore ||Syulps — [Jul/Le in measure, w.r.t. p, and then Gy(u) =
G(Snyu) — G(u). In other words, if for e > 0 and N > 1 we denote by

Ane={ue X3(S%) | |Gy (u) — Gu)| < e},
then p(A% ) — 0, when N — +00. Now use that 0 < G, Gy < ¢
1G = Gnlley < (G = GN)Lay ey + (G = Gh)Lag ez

Se(m(Ane))” +20(n(Ay,.))" < Ce,
for N large enough. This ends the proof. ]

NN

4.4. Study of the measure vy

Let N > 1. We then consider the following approximation of (4.1)
i0u+ (A —1)u= Sy (|Svul""1Syu), (t,z) € Rx S,
u(0,z) = v(z) € X2 (SP).

rad

(4.7)

The main motivation to introduce this system is the following proposition,
which is directly inspired from [13, Section 8]. Therefore we omit the proof.

PROPOSITION 4.7. — The Equation (4.7) has a global flow ® . More-

over, the measure py 1s invariant under @y . For any Borel set A C Xid(Ss)
and for allt € R, py(Pn(t)(A)) = pn(A).

In particular if fx% (v) = pn then for all t € R, XX% (PN (t)v) = pN.

rad rad

Remark 4.8. — Observe that (4.7) is not a finite dimensional system of
ODE, but its flow restricted to high frequencies is linear.

We denote by vy the measure on C([-T, T];X%(Sza))7 defined as the
image measure of py by the map

X5(S%) — C([-T,T]; X%(5%))
v — @N(t)(v).
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LEMMA 4.9. — Let 0 < 3 and p > 2. Then for all N > 1

ey gl < C. (4.8)
Let2 < q<6 and p>q. Then for all N > 1
el zall, < C- (4.9)

Proof. — By (3.3) and the fact that G < C we already have
lullpy  rzmg < Clvlleas = Cllellrgag

where we used the transport property (3.1) with the map f : u +— [Jul/%,..
Finally we conclude with (4.4).

For the proof of (4.9), we use (3.4) and (4.5). O

LEMMA 4.10. — Let o > % and p > 2. Then there exists C' > 0 so that
forall N > 1

||Hu||W71—’pH;“||L£N < C (4.10)
Proof. — By (4.8) it is enough to show that ||[|0ull;» ;o HLP < C. By
T T VN
definition
8upp » 70:/ aupp ,UdV U
o HL”NLTH’” c([-1,1):x3 (59)) o HLTHm w(u)

= PN () (V)P —.d .
/;am 0.8x (), - dpx ()
Now we use that wy := ®n(t)(v) satisfies (4.7) to get
Hath”LgNL;H;”
<A = 1wl g pme + IS8 (Svunl™ Sxwn)ll gy sp e
which in turn implies
HatU”L{jNLI;H;”
<A = Dl g pee + IS8 (1Swul S 1p g e (411)
Firstly, by (4.8) we get for o > 2
(A - 1)“HL§NL1;H;” = ||U||L5NLgH3“’ <C. (4.12)
Then by Sobolev, since o > 2, we get ||g|| y-- < Cllgllry- Therefore
ISn (ISwvul™ " Snu)llpp 1oz < ClISN (ISnvul™" Snu)llze, oo
C||Snul
Cllul

< A
= Lk Ly Ly,
<

s
k rkrr
Lk LyFLne
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where we used twice the continuity of Sy on LP spaces (see Lemma 4.1).
Now, since 1 < 7 < 5 we can apply (4.9) and this together with (4.12) implies
the result. ]

4.5. The convergence argument

PROPOSITION 4.11. — Let T > 0 and 0 < % Then the family of mea-
sures

VN = ZerHe (UN(t)§t €[-T, T])N>1

is tight in C([-T,T); H° (S?)).

Proof. — Let 0 < % Fix o < ¢ < s < % and a > 0. We define the

space C3H® = C([-T,TJ; HY (S*)) by the norm

[u(t) — u(t2)] g
”u”C;’iHs' = sup

t1,b2 €[~ T, T], tr#t2 |ty — t2]®

+ HUHL;OH;H

and it is classical that the embedding C3H® < C([-T,T); H°(S?)) is com-
pact.

We now claim that there exists 0 < a < 1 so that for all p > 1 we have
the bound
||UHL1;NC;HS’ < 0. (4.13)
Indeed apply Lemma 3.3 with o1 = s’ and o9 = . Then for p large enough
we have

1-6
g//
L2 H:

[ullcg rre < Cllul [ulliy s - < Cllullpy g + Cllullyze o,

for some small @ > 0. By (4.8) and (4.10) we then deduce Hu||L€NC%H5/ <C.

(The fact that (4.13) is indeed true for any p > 1 is a consequence of Holder.)
Let 6 > 0 and define the subset of CrH?

Ks={u€CrH’ s.t. HUHc;,Hs’ <o,

endowed with the natural topology of CrH?. Thanks to the previous con-
siderations, the set K is compact. Finally, by Markov and (4.13) we get
that

vy (K§) <0 ||u||L,}NC%HS' < oG,

which shows the tightness of (vy). O
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The result of Proposition 4.11 enables us to use the Prokhorov theorem.
For each T' > 0 there exists a sub-sequence vy, and a measure v on the
space C([-T,T); Xz (S*)) so that for all 7 < 1 and all bounded continuous
function F : C([-T,T}; H™(S*)) — R

/C A F(u)dvy, (u) — /C () F(u)dv(u).

By the Skorokhod theorem, there exists a probability space ((NZ,]? ,D), a se-
quence of random variables (uy, ) and a random variable u with values in
C([-T,T); X3 (S?)) so that

Lyt e [-T,T)) = L(un,;t € [-T,T)) = vn,,

4.14
Lt € [-T,7]) = (4.14)

and for all 7 < %
Uy, — U, p—as.in C([-T,T];H™(S?)). (4.15)

We now claim that £ 3 (un (t) = (’D:Nk( )) = pn,, for all ¢t €
], the evaluatlon map

[-T,T) and k > 1F0rallt6[ T
Ry : C([-T,T); X3(S%) — X3(S%)
u— u(t,-),

is well defined and continuous. Then, for all ¢t € [-T,T], un, (t) and upy, (t)
have the same distribution. Let us now determine the distribution of uy;, (t)
which we denote by v, . By definition of v}, and vy, we have for all mea-

surable F : X2 (S?) — R

/  F)di, (v) = /  F(Raduy, (u)
X3 (S3) c([-T.11:x 3 (s%))

N / . F(Re@n, (w)dpy, (w)
X2 (S8)

. . t _
From the invariance of py, under ®y, we get vy, = pn,-

Thus from (4.15) and the convergence property of Proposition 4.6, we
deduce that
XX% (u(t))=p, Vtel[-T,T). (4.16)

Let k> 1 and t € R and consider the r.v. X given by

X, = z'atuNk + (A — 1)uN,C — SNk (|SNkUNk|T_1SNkUNk>'
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Define Xk similarly to X} with uy, replaced with UN, - Then by (4.14),

. XQ(XNk) = ,,Sfc XQ(XNk) = 0o, in other words, Xy = 0 p—a.s. and

up, satisfies the following equation p—a.s.

iata]vk_ + (A — l)a]\/k = SNk (\SNkﬂNk|r’1SNkﬂNk). (417)

We now show that we can pass to the limit & — 400 in (4.17) in order
to show that @ is p—a.s. a solution to (4.1). Firstly, from (4.15) we deduce
the convergence of the linear terms of the equation. Indeed, p—a.s., when
k — +o0

0N, + (A — Dy, — i0u+ (A—1a in D([-T,T] xS?).
To handle the nonlinear term, we apply the next lemma.

LEMMA 4.12. — Let 1 < r < 5. Up to a sub-sequence, the following
convergence holds true

Uy, — U, Pp—as. in L"([-T,T] x S§%).

Proof. — In order to simplify the notations in the proof, we drop all the
tildes and write Nj = k and L} , = LP([-T,T] x §?). If 1 < r < 2, the result
immediately follows from (4.15). For 2 < r < 5, by the Holder inequality,

s =l <l =l = ull} 2, (118)

with 6 = By (4.15), a.s. inw € Q

_2
(r=1)-
|lug — u||L§z — 0. (4.19)
Let € > 0 and A > 0. By the inclusion
VXY >0, {XV>Ac{Xx>Nu{y>e?],
together with (4.18) and the Markov inequality we have

p(||uk — u||L;$ > /\)

< pllug —ully > <A) +p (e — ull > <)
<ol —ulzz, >N) +e77 [ fu—ulfidp.  (420)
By (4.9) and the definition of vy

[l = [ o
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r4+1 d r4+1
Lt Lt
uniformly in k. Thus, thanks to (4.19) and (4.20), we get the following con-
vergence in probability

Similarly, [, [|ull p < Cr. Therefore [, |lux — |’ 75:dp is bounded

VA>0, p(|lup— ully > A) — 0, when k— +o0,

and after passing to a sub-sequence, we obtain the announced almost sure
convergence. |

4.6. Conclusion of the proof of Theorem 1.1

Define f = @(0). Then by (4.16), EX%(]?) = p and by the previous ar-
guments, there exists Q' C Q of full p-measure such that the following holds
true.

Set ¥ = f(€), then p(X) = ﬁ(@) = 1. Moreover, for ' € V, the r.v. U
satisfies the equation

i0u+ (A —Du=|u""tu, (t,z)eRxS?
7(0,2) = f(x) € X2 ().

rad

(4.21)

It remains to check that we can construct a global dynamics. Take a
sequence Ty — +o00, and perform the previous argument for T" = T . For
all N > 1, let ¥y be the corresponding set of initial conditions and set
¥ =NnenZn. Then p(X) =1 and for all f € 3, there exists

1
a € C(R ) szad(SS))’

which solves (4.21).
This completes the proof of Theorem 1.1.

5. The Benjamin—Ono equation
5.1. Preliminaries

As in [49], consider the following approximation of (1.7)

{atu + HOZu+ N8, ((Myu)?) =0, (t,z) e R xS, (5.1)
w(0,z) = f(z). '

This equation is a linear PDE for the high frequencies (modes larger than V)
and an ODE for the low frequencies. It is straightforward to check that the
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quantity |lu|z2(s1) is preserved by the equation, thus (5.1) admits a global
flow @ (¢). The motivation for introducing (5.1), is that it is given by the

Hamiltonian
1

142 1 3
Hy(u) = _7/ (1Da]2u)” — f/ (yu)”.
2 Jsu 3 Jst
As a consequence, we can check that the measure py as defined in (1.9) is
invariant by ® . See [49] for more details.

We now state a technical result which we will need in the sequel.

LEMMA 5.1. — Let a > %, then there exists Cg > 0 so that for all N € Z
1 Cs

2 Tl W S ) 52
forall B <2a—1 when%<a<l and = a when a > 1.
Proof. — Cut the sum in two parts
1 1 1
D TR TP PN G T TP PR v VO
Assume that o > 1. Then by (5.3)
Z 1 < C 1 < C '
2 pafn =N S V)7 22 Gge S (e

Assume that § < a <1 and fix 8 < 2a — 1. Then by (5.3)

nez
< C 1 L C 1
) 2o, el =N T IN)P 2, T = N
C
< W7
which completes the proof. O

5.2. Definition of the nonlinear term in (1.7)

To begin with, we have
LEMMA 5.2. — Let 0 > 0. Then there exists C' > 0 so that for all p > 2
H”U”H;”HLﬁ < Cyp.
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The proof is analogous to (4.4) and is omitted here.

We define the term d,(u?) in (1.7) on the support of p as the limit of
a Cauchy sequence. Recall the notation uy = IIyu and set 119 = 1 — I,
the orthogonal projection on O-mean functions. The next result is inspired
from [49, Lemma 5.1]

LEMMA 5.3. — For all p > 2, the sequence (Ho(u?\,))N>1 is Cauchy in
LP(XO(SY), B,dpu; H=2(SY)). Namely, for all p > 2, there exist n > 0 and
C > 0 so that for all1 < M < N,

100 ~ T30 o o) < o
X0(s1) o M=o @) S e

We denote by T1°(u?) its limit. This enables to define
9 (u?) == 0, (T1°(u?)).

Proof. — By the result [46, Proposition 2.4] on the Wiener chaos, we only
have to prove the statement for p = 2.

Firstly, by definition of the measure p
[ 00 TR e i)
X0(st)

- / IT0(63) = TO(92) [ (on,Ip-

Therefore, it is enough to prove that (II°(¢3/)) v, is a Cauchy sequence in
L?2(H°(SY)). Let 1 < M < N, let k € Z and denote by ej(z) = e™**.

Then, by definition of ¢y,

M) = Y e eilmeme

1 I
0<|n1l,|n2|<N [n1]2|ne|2
ni#—nz

and thus we get

CIHCE
Biiln
where B](f[?N is the set defined by
(k) 2 0<|T’L1|,|Tl2|<N, nl#fn%
By/ny = (ni,n2) €Z .
’ (|n1| > M or |ng| > M) and ny +ny = k
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Therefore we obtain

Z gnlgnggmlgmz dp

0(02 — 2| e V2 _
H< (L)ON QDM)| k>HL2(Q) |n1\%|n2|%|m1\%|m2|%

(n1,n2)€B§\];?N

(ml,an)eBg\j?N
Since (gn )nez+ are independent and centred Gaussians, we deduce that each
term in the r.h.s. vanishes, unless (n1,ns) = (mq,ms) or (nq,ng) = (Mg, my).
Thus by interpolation between (5.2) and the inequality

1 1 1 Cy
e S <
2 Tl < 3 2 o =] S 89

we obtain that for all 0 < 77 < 1 there exists C' > 0 so that forall 1 < M < N

1
KA~ @l e ray <C 2

nim
gy Tl

1 C
< < .
<C D ln=H S Me

|n|>M

As a consequence we get

2 1 2
||H0(90?V - @?\J)HH(Q;H—U(Sl)) = Z WH<HO(9@?\T — o) | ek>||L2(Q)
keZ

C 1 C
S N 2 T S A
keZ

whenever we choose 1 < 20. |

5.3. Study of the measure vy

Consider the probability measure py defined by (1.9). Define the measure
vy on C([-T,T); X°(S")) as the image of py by the map

XO(s") — ¢([-T,7); X°(s"))
v > q)N(t)(v)?

where @ is the flow of (5.1). Then, we are able to prove the following
bounds

LEMMA 5.4. — Let 0 > 0 and p > 2. Then there exists C > 0 such that
forall N > 1

HHUHL;H;”‘ e, <C, (5.4)

and
||HatuHL‘;,H;”*2||L§N < C. (55)
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Proof. — The bound (5.4) is obtained thanks to (1.10), (3.3) and Lem-
ma 5.2. We now turn to (5.5). From the equation

O = —HO*u — HN&E((HNU)Z),
similarly to (4.11), we deduce
HatUHLf;'NLI;H;"*2 < ||U||L5NL;H;“ + ||HO(HNU)2||L5NL;H;“'
By the invariance of the measure py by ®n we get

0 (11 u2’p
‘ [( N ):| LﬁNL;H;a

-/ Jm° [(yy?)|
C([-T,T);X0) Ly

PO
= [ e e o))
XO(St)

oo
= ZT/
X0(s1)

and by Cauchy—Schwarz and Lemma 5.3

10 [0L)?] [ e < Ol HO [0

p

dpn (v)

et ,

O[] e @)dne). (56)

||L2pH—o||‘I’N v)|lrz < C,
which concludes the proof. O
PROPOSITION 5.5. — LetT > 0 and o > 0. Then the family of measures
UN = ZLepH-o (uN(t);t € [-T, T})N>1
is tight in C([—T,T); H=7(S")).

Proof. — The proof is similar to the proof of Proposition 4.11. Here we
use the estimates (5.4) and (5.5). O

5.4. Proof of Theorem 1.2

By Proposition 5.5 we can use the Prokhorov theorem. For each T' > 0
there exists a sub-sequence vy, and a measure v on the space C([—T, TY;
XO(SY)) so that vy, — v weakly on C([-T,T}; H=?(S')), for all ¢ >
0. By the Skorokhod theorem, there exists a probability space (?2,]-: , D), a

sequence of random variables (uy, ) and a random variable & with values in
C([-T,T); X°(S")) so that

E(ﬂNk;t S [—T,TD = X(uN,c;t € [—T,T]) = UNy, X(H;t S [—T, T]) =

- 562 —



Remarks on the Gibbs measures for nonlinear dispersive equations
and for all ¢ > 0
Uy, — 4, p—as.in C([-T,T); H °(S"). (5.7)
We have that Zxost)(un, (t)) = Lxosny(Un, (1) = pn,, for all t € [T, T]

and k > 1. Therefore, for all t € [-T,T], Lxost)(u(t)) = p. Next, up,
satisfies the following equation p—a.s.

Ortin, + H 02U, + Ty, 0, (T, n, )?) = 0.

We now show that we can pass to the limit &k — +oo in the previous
equation. Firstly, from (5.7) we deduce the convergence of the linear terms
of the equation. Indeed, p—a.s., when k — +o0

Oyin, + MOy, — Ou+Hozu in D'([-T,T] xS").

The only difficulty is to pass to the limit in the nonlinear term. Here we can
proceed as in [20].

LEMMA 5.6. — Let 0 > 0. Up to a sub-sequence, the following conver-
gence holds true

I°[(Iy,un, )2 — T°[@?], P —a.s in L*([-T,T;; H°(S")).

Proof. — In order to simplify the notations, in this proof we drop the
tildes and write N, = k. Let M > 1 and write

° [(Hkuk)z — u2:| =T11° [((Hkuk)2 — u%) + (ui — (HMuk)2)

+ (Marur)® — Mpyw)?) + (Myu)® — uQ)]

To begin with, by continuity of the square in finite dimension, when k& —
+o0

00 [(Mppug)?] — O°[(Myw)?], P —as. in L*([-T,T; H 7 (S")).
We now deal with the other terms. It is sufficient to show the convergence in

the space X := L? (Q x [=T,T7; H’”(Sl)), since the almost sure convergence
follows after exaction of a sub-sequence.
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With the same arguments as in (5.6) we obtain
110 [(Mar)? — ] [

- /C([ N L (0 [T

B /X°<51>
o N LG e Al Tt

— QT/XO(SI) [T [(TTarf)? — £2] qu;g%(f)du(f),
and by Cauchy—Schwarz and (1.10),

10 [ agw)® =] [ < O (WU f)” = £2] |y o

This latter term tends to 0 uniformly in £ > 1 when M — +o0, according
to Lemma 5.3. The term || IT°[(ITa;u)? — w?] ||  is treated similarly.

2

dpr(f)

2 —0o
L2 H;

‘HO {[Hjum(t)(f)]2 - [‘I’k(t)(f)]z]

Ix

Finally, with the same argument we show
I [(Tu)* = 3] || ¢ < O TO[(0)” = £] [ o
which tends to 0 when & — 4oc0. This completes the proof. |

The conclusion of the proof of Theorem 1.2 is similar to the argument in
Subsection 4.6.

6. The derivative nonlinear Schrodinger equation
6.1. Hamiltonian formalism of DNLS

To begin with, we recall some facts which are explained in the appendix
of [46]. We define the operator =1 by

Z a, ewu —_ Z 71 zru
nez neZ\{o}
and the skew symmetric operator (K (u,v)* = —K (u,v))
—udt(u-) —i+udt(v-)
K = .
(,0) (H—v@_l(u-) 00~ (v-) )
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Define H by

1
H(u(t)) :/ |8wu|2dm+§i/ ﬂ28w(u2)dx+f/ lu|Sdu,
St 4 St 2 St

and introduce the Hamiltonian system

Oru %(u,v)
( By ) = K(u,v) ( SLH(%U) ) (6.2)

ov
Denote by
3
T.(t) = 2Im / w0, + f/ |u|?, (6.3)
St 2 St
then the system (6.2) is a Hamiltonian formulation of the equation
i0pu + 02u = 0, (Jul*u) + T, (t)u, (6.4)

in the coordinates (u,v) = (u, @) (see [46, Proposition A.2]). Now, if we set
o(t,z) = ¢’ Jo Tuas u(t, x), (6.5)
then v is the solution of the equation
{i@tv + 020 =i, (Jv]*v), (t,x) € Rx S,
v(0,x) = ug(x).
Moreover, if u and v are linked by (6.5), we have T,, = T,,.

Thanks to these observations, we can focus on the Equation (6.4). We
introduce a natural truncation for which we can construct an invariant Gibbs
measure. Namely, let K be given by (6.1), and consider the following system

Btu> %(uNa/UN)
— Ty K (uy, vy)IT . 6.6
( o VK (. ox) N< o) (6.6)

This is an Hamiltonian system with Hamiltonian H(IIywu, [Iyv). Now we
assume that v = u and we compute the equation satisfied by wuy. This will
be a finite dimensional approximation of (6.4). Denote by Iy = 1 — Ly,
then in the coordinates vy = Uy, the system (6.6) reads

z'atu + 8%111\[ = iHN <8x(|uN|2uN)) + UNTuN + RN('LLN), (t,x) cR x Sl,

(6.7)
where
Ry (un) = gHN (UNa_l [UNHﬁ (un0s(aN?)) + unlly (Wax(uNQ))D
+ gZHN (uNa_l |:UNH§(|UN|4W) - Wﬂﬁﬂum‘lug\;)b
= le\r(uN) —&—R?V(uN) (68)
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For all N > 1, this equation is globally well-posed in L?(S') and let us denote
by @ the flow map. Moreover, the measure py defined in (1.13) is invariant
by ®n (see [46, Proposition A.4]).

Recall that u = p o =1 with ¢ as in (1.12). We need to give a sense to
the expression 73, in (6.3) on the support of .

LEMMA 6.1. — For all p > 2, the sequence (T )N>1 is a Cauchy se-

quence in L”(X2(Sl),B, du; ) Namely, for all p > 2, there exists C > 0
so that for all1 < M < N,

C
Tounv — Loy Pdu(u) < —.
b o = TPt < 57

We denote by T, the limit of this sequence which is formally given by (6.3).
Proof. — Denote by J(u) = Im [, ud,u. Let 1 < M < N. Then for

N (W, @) =30 e g”nw) e"® we compute

J(en) = Jlem) == Y n'f;i—— > W,

M<|n|<N M<|n|<N

where we used that 37/, <y mayz = 0. Define ther.v. G (w) = lgn(w)|?—1,
hence

n1n2Gn, G,
Ten) = TP = > e (6.9)

M<|ny|,|n2|<N < 1> <n2>
By independence of the g,, E[G(Gr] = Cdy.m. Thus by integration of (6.9)

n? c
|J (on) = Jea)PPdp = > o <37

M<|n|<N

By definition of p we have proved the result for p = 2. The general case p > 2
follows from the Wiener chaos estimates (see e.g. [46, Proposition 2.4]). O

6.2. Study of the measure vy

Now define the measure vy = py 0 ®5' on C([~7T,T]; X3 (S')) and we
have

LEMMA 6.2. — Leto < 5 andp 2. Then for all N >
|||IUI|L;Hg||L5N <C. (6.10)
||H8tu||L1;Hg*2||L5N <O (6.11)
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Proof. — The estimate (6.10) is obtained with Proposition 3.1 and the
definition (1.12) of ¢. Similarly, we also have that for all 2 < ¢ < p
lullze  rere < C. (6.12)
We turn to (6.11). From the Equation (6.7) we get (similarly to (4.11))
HatU”LgNL;H;*Z
< ||5§U||L1;NL;H5*2 + Hai(|uN|2uN)||L§NL‘;H;”2
+ lunTuy HL{jNLg,Hg—2 + ”RN(UN)”LﬁNL?Hg_Q
<lullze roms + ||UN||325NL;LQ + llunTunllce 122
By (un)llpy e pg—2-

We estimate each term of the r.h.s. By (6.10) and (6.12) we only have to
consider the two last ones. By Cauchy—Schwarz (recall that T, does not
depend on z)

lunTuy ||L’;NL’;L§ < lun ||L5§VL2TPL§ [Tun ||L§§V 2P (6.13)

Then using the invariance of py (see the proof of Proposition 3.1) and
Lemma 6.1 we have

Tl 1o =27 [ | (T PPUn(0)da(0)
L L x¥ @y
< CIT 2, W (o)1 < C,
which by (6.13) implies
lunTun ez 1oz < C.
The conclusion of the proof is given by the next result. O
LEMMA 6.3. — Let 0 > % and p > 2. Then
HHRN(UN)HLPHiUHLP — 0 when N — +o0.
T VN

Proof. — To begin with, using the same arguments as in the proof of

Proposition 3.1 with F(u) = [|[Ry(IInu)[}, . we have,
AR

[’ (un) HLﬁN LPH;° < CllRy(vw) ||Lf}’H;"’

where we used that | W (|12 < C. We estimate each contribution in the r.h.s.
of (6.8).
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e Denote by Qn(vy) = vNHJA‘,(UNax(WQ)). Then by Sobolev and
Cauchy—Schwarz

IBN (o)l - < ClIBN (o)l 2
Cllond™ ' Qn(vn) Lyt
lonllpzrre HQN(UN)HLfngl

Cl@w () | - (6.14)

Next, by the definition of u and the Wiener chaos estimates

ININN

IRY om0l e < ClIQu(on)l g
< Cl@n(en)llpa - (6.15)

We now compute the term ||Qn (@)l ;2 -1- We have
2H;

Z (nl + n2)m%gn3 ei(ngfnzfnl)a:
y

PN Oz (py) = —i (n1)(nz)(ns)

[n1lsInzls|ns|<N

so that

97'Qn(enN)

_ (11 + 12)Gn; Gy Gns Ina
= 2 (n1)(n2)(n3)(na)(na +nz — na — n1)

ei(n4+n3 —na—n1)T
)

neAN
where the set Ay is given by
|TL1|, |Tl2|, |T’L3|, |Tl4| < Na
Ay = nz(nl,ng,ng,n4)€Z4 |n1 +TL2—?13‘>N
and ng+ng—ng—ng #0

As a consequence we obtain the following expression

||QN(<PN)||§{;1

_ Z (nl + n2)(m1 + mQ)%%gng Iny 9my Gma Gms Gmy
(n1)(na)(n3)(na)(ma)(me)(ms)(ma) (ng+nz —ng —ny)?’

(6.16)

n,meBN
with
By = {n,meAN ‘ my +m3 — Mo — My =n4+n3—n2—n1}.

We take the expectation of (6.16). By independence of the g,, and since they
are centered, each contribution in the r.h.s. is zero, unless {nl, No, M3, m4} =

{ml,mg,ng,n4}. But coming back to the definition of Ay, the condition
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|ny + ng — ng| > N implies that ng ¢ {nl,ng}. Similarly, ms & {ml,mg}.
Therefore, up to permutation we have n = m and by (5.2) with o = 2

2 (n1 + ny)?
 I@xemliip < D T T P T T
9 1
SOV P —ma =

1
<O L TP

n€EAN

Next, use that on Ay, (n1)(n2)(ns) = CN to get that

C 1 C
[ 1anen e << % <

(6.17)

5 S (n1)¥(ng) 3 (ng)? SN

Finally, from (6.14), (6.15) and (6.17) we conclude that

Nl

||RJIV(UN)HL§NL‘;H;” — 0.
o We now consider the contribution of R?\,. With the same arguments as
previously,
IR ()l s < CIRR (o)l

< Cllond™ on Ty (Jon [*om)] |y 21

< Cllowlrzrre ||UNHJJ\_I(|1}N|4W)”Lﬁ"‘H,;l
Cllon Lk (for o)l 22 1
CTy (|Jon [*on) || L2 -

Denote by Vv = |vn|*wx. Then by [46, Lemma 2.2], (Vx)ny>1 is a Cauchy
sequence in LffLi, and denote by V its limit. Write

NN

My Vallpare < Ty (Ve = V)llparzz + TN V| a2
<NV = Vgarrz + I0xVI|arzz,
which tends to 0 when N — +o0. g
PROPOSITION 6.4. — LetT >0 ando < % Then the family of measures
vN = ZLerne (un(t);t € [T, T])N>1
is tight in C([~T,T]; H? (S1)).
Proof. — The proof is similar to the proof of Proposition 4.11. Here we

use the estimates (6.10) and (6.11). O
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6.3. Proof of Theorem 1.3

We can proceed as in the proofs of Theorems 1.1 and 1.2. By Proposi-
tion 6.4 and the Prokhorov theorem we can extract a sub-sequence vy, and
a measure v on the space C([-T,T7; X%(Sl)) so that vy, — v weakly on
C([-T,T); H°(S")) for all ¢ < 3. Thanks to the Skorokhod theorem, there

exists a probability space (ﬁ,]—' ,P), a sequence of random variables ()
and a random variable & with values in C([-T, T}; Xz (S')) so that

ZL(un;t € [-T,T)) =L (un;t € [T, 1) =vn,, ZL(ute|[-T,T])=v,
and for all o < %
Uy, — 4, p—as.in C([-T,T);H’(S")).

Moreover, uy, satisfies p-a.s. the Equation (6.7). Passing to the limit in the
linear terms makes no difficulty, we only have to take care on the nonlinear
terms. Denote by

G (1) = iTly (3x(\uN|2uN)) +unTuy + By (uy).
The next result completes the proof of Theorem 1.3 (the conclusion of the
proof is similar to the argument in Subsection 4.6).

LEMMA 6.5. — Up to a sub-sequence, the following convergence holds
true. For any o >0

On, (Un,) — i0,(|u]?u) + uT>,  p—as. in L*([-T,T; H 7 (S")).

Proof. — We drop the tildes and write N, = N. Since .Z(uy) = vy, we
can apply Lemma 6.3

1BN (un) a2 e = BN (un)llzz 12570 — 0,

when N — 400. The convergence of the two other terms is obtained as in
Lemma 5.6. O

Remark 6.6. — Observe that in all the proof, we only used the fact
that Uy € L?(dy) uniformly in N > 1 (and not higher order integrability).
Therefore the result of Theorem 1.3 holds for k < k2, and the support of p
is not empty.

7. The half-wave equation
7.1. Justification of the equation

Proof of Proposition 1.4. — We prove the result when p = 2. The general
case follows by the Wiener chaos estimates.
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To begin with, use that
/ 1G () = Gr ()3 gony i) / 1GN(#) = Grr (@) 3o onydp-
XO(S1)

Therefore, we are reduced to prove that (G N((p)) is a Cauchy sequence

in L?(Q; H=7(S')). Denote by (with ¢n = IIx¢)

N>1

xn = len*en = 2llen|F2 sy en-
It is enough to show the result for (x ), because once we know that xy — x
in L?(Q;H~7(S")), we deduce that Gy (¢) = nxny —> x in L (Q;H 7 (S1)).
In the sequel, we will use the notation [n] = 1 4 |n|. Then, by definition of
PN We can compute

XN = Z M ei(ni—natnz)z_ 9 |g”1 |29n§ eins
el na <v (M1]2 2] [15] 2 |t (Pallns] 2
- Z Mei@ufnfrna)z . Z ‘gn‘zgn eine
s gl < v, [7]2 [12]2 [ns] v (]2
n1#n2,n3#n2
= X1,N + X2,N-
Let 1 < M < N, then the second term is easily estimated
C

HX27N - X2,MHL2(Q;L2(51)) S M

We now turn tho the estimation of x; . Denote by ex(x) = e**  then for
all< M <N

In19n, 9
O — x| er) = Y —reEt (7.1)
(k) [nl]fz[nﬂz[nﬂz
BM,N

where the set BJ(\Z?N is defined by
0 < |nal, [n2l, [ns| < N, n1 # n2, ng # no,
BJ(\’;?N = ¢ (n1,n2,n3) € Z3 | and (|n1| > M or |na| > M or |ng| > M)
and nqy —ng +n3 =k

From (7.1) we obtain

H<X1,N - X1,M | ex) Hiz

gm?nggns?mlgm?gms 1d .
ol AR S o ot o v e

’I’7,1 no, TL3 GB(k)

(m1,m2,m3)€ BUC?
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Since the (g,) are independent and centered, we deduce that each term in
the r.h.s. vanishes, unless {ny = my and (n1,n3) = (my,m3)} or {(ny,n3) =
(mg3,my)}. Thus
2 1
| Oy — X1, | ek)HLg(Q) <C Z

ni)Y{na)(ng)
(7L1,n2,na)eB$;?N< 1)(n2)(n3)

By symmetry in the previous sum, we can assume that M < |n;| < N,
0 < |ng| < N and write ng = k+mn2 —ny. Then by (5.2) for some small € > 0

H<X1,N - Xl,M| Ck>“i2(g)

1 1
SC D Gy 2 s W)

M<|ni|<N no €L
1 C
<C < . (7.2)
lle () (ny — kyl=e  Me(k)i-2
Now, by (7.2) we get
2 1 2
HXl,N - X1,MHL2(Q;H_U(51)) = Z WH@(LN = X1,M | ek>||L2(Q)

keZ

C 1 C
< Me Z <k>1+20725 < m’
keZ
if we choose € < o, and this concludes the proof.

As a conclusion, we are able to define a limit G(u) so that for all p > 2
G Lr o1y < Cps (7.3)

hence the result.

7.2. Construction of the measure p

In this section ¢ is given by (1.14). Denote by [n] = 1 + |n|, then define
AN =N ﬁ and

gn(u) = [MyullZ: — oy

7.2.1. Preliminar results

We begin with the following result due to N. Tzvetkov. See [49, Lem-
ma 4.8] for a proof.
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LEMMA 7.1. — The sequence (gN(u))N>1 is Cauchy in L*(X°(S?),
B,d,u). Moreover there exists ¢ > 0 so that for all A\ >0 and N > M > 1

1
p(u € XO8Y) [ lon () = gar(w)] > A) < ComoMM*
Define the sequence

2
) == [ st 2 ([ on?) =l + 2l

PROPOSITION 7.2. — The sequence (fn)n>1 is Cauchy in L?(X°(S'),
B,du). More precisely, there exists C' > 0 so that for all N > M > 1
C
HfN(U') _fM(u)HL?(XO(Sl),B,d/L) < E (75)
Moreover, for allp>2 and N > M > 1
C(p—1)
||fN(u) 7fM(u)HLP(XO(S1),B,du) < T (76)
COROLLARY 7.3. — There exists ¢ > 0 so that for all A > 0 and N >

M=>1

A=

(e X0 | Ifwl) ~ far)] > 1) € Cem

Proof of Corollary 7.3. — By Markov and (7.6) we have that for all
p=2

(e XOE | 1)~ )] > A) < o7~ FurC)l?

2 P
<(Cp1) -
AM 2

Then choose p = cO/\%M 1 for co > 0 small enough. O

r(x0(s1),B,du)

Proof of Proposition 7.2. — We prove (7.5). The estimate (7.6) im-
mediately follows from [46, Proposition 2.4]. Firstly, we have [, |on|* =

2o inl<N % (recall the notation [n] = 1 + |n|). Thus

(flok) = 5l &

In|,Im|<N

Similarly, we explicitly obtain

9In1GngGnsGny
[lesi= % sl (7g)

(1] [na] % [n3] % [n4] 2

[l |nzlInsl,Ina| <N
ni—ns+nz—nyg=0
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We introduce the set

In1|, [nal, [ns|, [na] < N }

An =3 (n1,m2,n3,n4) € Z*
N {( 172, M3, Ma) and ng —ng+n3 —ng =0

We now split the sum (7.8) in two parts, by distinguishing the cases
ng = n1 and n3g # ny in Ay and write

enlt =Yn + 2, (7.9)
S

with

Yy = Z gvn@%m@ )
B (]2 [ne]2 [ns]2 [n4]2

where By = Ay N{ny =ny or ny =ny }, and
Iy = In19na9nsny ' (7.10)

1 1 1 1
Anrmy [M1]2[n2]2 [n3] % [n4] 2
ni#ng

We observe that if (n1,n2,n3,n4) € By, then either (nq,ns) = (ng,n4) or
(nl,ng) = (714,712). Thus

2 2 2 2

Yy = Z |97[L71L|]|[in;j, + Z |97[L7;]|[in1,|

Il ngl<n  LTHE il lngl<y UTHES
ni1#ns

=2(f r) - 3

In|<N

where in the last line we used (7.7). Thus, with (7.9) we obtain
4 2 ’ |gn "
_ +2 = E ~_ _ Zn.
/Sl fowl (/sl x| ) In|<N () N

We now show that (Zy)n>1 is Cauchy in L2(2, F,p). Let 1 < N < M, then
we define

M < |ny|,[n2l, [nsl, Ins| < N
Am.n =< (n1,n2,n3,n4) € Z* | ny —n2 +ng —ng =0,
and |n;| > M for some 1 < j <4
Thus, thanks to (7.10) we have

gnlgnggnggm; gmlgngmggm4
(Zy — Zn)? .
- = Z 2[ns]3[na] > [ma]? [me]® [ms] 2 [ma] >

Am,N, AMN,
7L1757I2 ml?'émz
n1#£Ng M1FEMyg
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We take the integral over €2 of the previous sum. By the independence of the
Gaussians each term vanishes unless {ni,nq,ng,na} = {my, ma, ms, may}.

Thus
Zn — ZN||220) < C .
H M NHL2 AZ nl n2 ><n4>
M,N
By symmetry of the sum, we can assume that |nj| > M and we replace
ng =Ny — ng + nz. Then by (5.2)
1
Zyr — Zn |22y < C
| D D o [ ey
ni,n2,n3€EZL
|n1|>M
<C Y
ni, TLQEZ nl - n2>17€
[n1|>M
C
C Z 2 2e Ml 2e
|n1\>M
which was the claim. O

7.2.2. The crucial estimate

We now have all the ingredients to prove the following proposition, which
is the key point in the proof of Theorem 1.6. Recall the definition (7.4).

PROPOSITION 7.4. — Let x € C5°([—R, R]). Then for all 1 < p < oo
there exists C > 0 such that for every N > 1

I ()

Myuf3e) = an ) <
HX(H NUlzag) —on e LP(dpa(u))

Proof. — Our aim is to show that the integral fooo NP (A n)d s
convergent uniformly with respect to N, where

Ayn = {u e XOsh | x <||HNu||%2(Sl) - aN) efn () > /\} .

Proposition 7.4 is a straightforward consequence of the following lemma. O

LEMMA 7.5. — For any L > 0, there exists C > 0 such that for every N
and every A > 1
p(Axn) < OX7R

Proof. — Firstly, observe that we can assume that A > Cr for any con-
stant Cr > 0. Let ¢g > 0 a small number which will be fixed later and
set .

M = co(ln)\)§
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To begin with (A n) < u(g,\7N), where

Ay = {ueX°S) | fw(w) > A, Jgv(u)] < RJ.

e Assume that N < M. On the set { |gn(u)] < R+ 1} we have
fy(u) <2|Myullfzey < 2(CInN + R)?> <2(CIn M + R)* = CcgIn A,
if A > Cg 1a{ige enough. We fix ¢y > 0 so that CcZ < i. In particular
p(Axn) < p(Axn) = 0.
e Assume that N > M. First observe that if we define
Buw = {ue X" | |on(w) — grr(w)] > 1},
by Lemma 7.1 and the definition of M, we get for any L > 1
u(Byn) < Cexp(—cM?) < CLa~t.
Similarly, set
Cax = {ue XY || fv(w) = furw)| > 1},
then by Corollary 7.3, for any L > 1 we have
p(Crw) < Cexp(—eMT) < CLA™E.

We have g)\,N C C)\’N @] D)\’N where

Dyy {u e X(s") \ farw) > T gn(u)] < R}.

2

Then observe that {|gn(u)| < R} N {lgn(u) — gp(w)] < 1} C {lgm(u)| <
R + 1}, therefore we can write Dy v C By ny U E) y where

EAz{ueX%y)

Far(w) > gInA, lgas(u)] < R+ 1}.

In the first part of the proof, we have already shown that u(E)) = 0. Finally,
we put all the estimates together and obtain pu(Ay n) < CLA™E. O

7.2.3. Convergence to the mesure p

We now have all the ingredients to complete the proof of Theorem 1.6.

First we define the density © : X°(S') — R with respect to the mea-
sure 4 of the measure p. To begin with, let us recall the definition(1.18) of
the density © . By Lemma 7.1 and Proposition 7.2, we have the following
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convergences in the p measure: gy (u) converges to g(u) and fy(u) to f(u).
Then, by composition and multiplication of continuous functions, we obtain

On(u) — Bx(9(w) /™ = O(u),

in measure, with respect to the measure p, and where 5 > 0 is so that
dp(u) = O(u)du(u) is a probability measure on X°(S*). By this construction,
© is measurable from (X°(S'), B) to R.

Then, we can extract a sub-sequence Oy, (u) so that Oy, (u) — O(u),
u a.s. and by Proposition 7.4 and the Fatou lemma, for all p € [1,4+00),

/ 1©/(u) Pdps(us) < lim inf / O, () Pdpu(u) < €,
X0(S1) X0(S1)

k—o0

thus O(u) € LP(du(uw)).

It remains to prove the convergence of © y(u) in LP(du(u)). Here we can
follow the proof of Proposition 4.6. We do not write the details.

7.3. Study of the measure vy

Let N > 1 and consider the Equation (1.15). Observe that uy = IIyu
satisfies an ODE, while uy; = (1 — Iy)u is solution to the linear problem
(10 — A)uz = 0. Since the L%(S!)-norm of a solution u to (1.15) is preserved,
it follows that the equation is globally well-posed in L?(S'). We denote by
@ the flow map. Moreover, because of the Hamiltonian structure and the
Liouville theorem, the measure py is invariant by ® .

Similarly to the previous section, for T' > 0 we define the measure vy on
C([-T,T); X°(S")) as the image of py by the flow map

X8y — c([-T,T]; X°(sh))
v — DN (t)(v).

Using this definition, we can prove

LEMMA 7.6. — Let 0 > 0, then for all p > 2
NG gzl <C (7.11)
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Proof. — By definition, invariance of py and Cauchy—Schwarz
GWwl?, .. ,(,:/ G)||?, . _,dvn(u
L T L O AP
— [ IG@x @), , dow)
X0 T
=27 [ 16 0n(0)dulo)

S 2TNG ) zp gy o 18 (V)] 22 -

We conclude with (7.3) and Proposition 7.4. O
LEMMA 7.7. — Let 0 > 0, then for all p > 2

Ml gy rzellp < (7.12)

’|||u||W%,pH;U—1||L€N < C. (7.13)

Proof. — The proof of (7.12) is a consequence of (3.3) and Lemma 5.2.
The estimate (7.13) is obtained from (7.11) and (7.12). The proof is similar
to (5.5) and we do not write the details. O

As a consequence we can show
PROPOSITION 7.8. — LetT > 0 and o > 0. Then the family of measures
vN = Lepm-o (un(t);t € [=T,T])
is tight in C([-T,T); H=°(S')).

N>1

7.4. Proof of Theorem 1.7

The proof is similar to the Benjamin—Ono case. The only difficulty lies
in the limit of the nonlinear term. Recall the definition (1.16), then

LEMMA 7.9. — Up to a sub-sequence, the following convergence holds
true

Gn, (in,) — G(@), p—as in L*([-T,T;; H°(S")),
where G is defined by Proposition 1.4.

Proof. — We only give the main lines, and we refer to the proof of
Lemma 5.6 for the details. We drop the tildes and write Ny = k. Let M > 1
and write

Gr(ur) — G(u) = (Gk(uk) - G(uk)) + (G(uk) - GM(uk))
+ (GM(uk) - GM(U)) + (GM(U) — G(u))
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For fixed M > 1, using that Gjs is continuous
G]\/[(’uk) — G]u(u), f)—a.s. in LQ([—T,T];H_U(Sl)).
k—+o00

For the other terms, we use the definition of the measure v, and Proposi-
tion 1.4 to prove the convergence (when k — 400 or M — +00) in the space
X := L?(Q x [-T,T); H?(S")). Then the almost sure convergence follows
after extraction of a sub-sequence. O

8. The two dimensional nonlinear Schrodinger equation on an
arbitrary domain

8.1. Preliminaries: some pointwise estimates on the spectral func-
tion

Let
e(ﬂf,)\,ﬂ) = Z |¢n(x)|2v

BEAR <A
be the spectral function.

We first state a precise asymptotic of the spectral function “away” from
the boundary essentially due to Hérmander [29, Theorem 17.5.10].

PROPOSITION 8.1. — Let d(x) = d(x,0M) be the distance of the point
x € M to the boundary OM. There exists C' > 0 such that for any A > 1,
any © € M satisfying d(z) > A\"2 and any § € [0,1], we have

3 5

e(z, A+ A%, \) — ;AE < OAE. (8.1)
s

This result can be deduced from Seeley [42, Estimate (0.1) with n = 2 and
T = ). Here, in Section 8.6 we give an argument based on Hérmander [29].

Now we give a general bound of the spectral function near the boundary
due to Sogge [45].

PropPOSITION 8.2. — There exists C' > 0 such that for any A > 1 and
reM
e(z, \+1,\) < CA. (8.2)

In particular, the previous result implies the bound
lenllze < OX < Cm)T. (8.3)

Proposition 8.2 is the case ¢ = 400 in [44, (1.5)], which in turn is an easy
consequence of [45].
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8.2. Estimates on the spectral function in mean value

The following propositions which will be proved in Section 8.6 are the key
elements in our argument. The first one is a rough bound which states that
(in a mean value meaning with respect to the index n), the eigenfunctions are
uniformly bounded on M. We state it for windows of size 1 for the spectral
projector.

PROPOSITION 8.3. — There exists C > 0 such that for any orthonormal
basis (¢n)nso of eigenfunctions of —Ag4, and any p > 0, any x € M, we

have 1 L
Z )\27_’_1|§0m|2(x) <C Z N
Am E[p,p+1) =™ Am€E[p,p+1) =

The second one is more precise and states that (again in a mean value
meaning), the eigenfunctions are actually constant on M (away from the
boundary and modulo errors). Remark that our assumption that Vol(M) =1
and the L? normalization of eigenfunctions imply that this constant has to
be 1.

PROPOSITION 8.4. — There exists C > 0 such that for any orthonormal
basis (on)nzo0 of eigenfunctions of —Ay, and any p > 0,9 € [0, 1], we have

1 1
Z m|@m|2($): Z m—i—G#(x),
AmG[u,Wréu%) Ame[u,wéu%)
with
/ Gu(z)dz =0, (8.4)
M
and , )
Gu(@) SCu™ T +Cp721 4y
where for x € M, d(x) is the distance of x to the boundary of M.
Remark 8.5. — The introduction of windows [, j14 6p2) is required by

the analysis near the boundary but are unnecessary for manifolds without
boundaries, in which case elementary version of Proposition 8.3 are sufficient.

8.3. Definition of the Gibbs measure

The aim of this paragraph is to prove Theorem 1.11. To begin with, we
decompose, on the support of the measure p, the quartic term ||HNuH‘£4(M)
in the Hamiltonian in order to get a suitable renormalization in the following
section.
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8.3.1. Decomposition of ||HNu||‘i4(M) on the support of u

Recall that ay is defined in (1.23) and that Oyu = anN Cnipn for
u = Zn>0 Cnpn- Therefore we can write

HHNU”AJL%(M) = Z Cny Cnz CngCny Y (N1, N2, N3, M),

ni,n2,n3,n4 <N

where
Y(n1,m2,n3,M4) = /M Py PrPrs Py -
Next, we set
A= {(nl,ng,ng,n4) c N* ‘ {ni,n3} = {ng,n4}} .
We denote by A€ the complementary of A in N*. Therefore, we can split
TN ull e = Y18 (u) + Yo, n(u) + Vs 5 (u),

where
YLN(U‘) = E CnyCnyCngCny 7(n1>n27n37n4)7
(n1,m2,n3,n4)EA®
ni,n2,n3,ma <N
2 2
s = mn1 mn2 9 ) ) b
Yo n(u) =2 |ens | lens "y (1, 1, n2, ng)
ny,na <N
and finally

Vi () = — 3 lealy(n.n.n.m).

n<N

As we shall see the singular part of the L* norm on the support of y is given
by the contribution of Y3 . Indeed, let us study the behavior of Y5 n on the
support of pu. Write

gn (w) |gn1 |gn2 / )
Y — =2
2,N<n>0 (A’?L_‘_l)% " ) Z )\2 —|—1 )\2 +1 |(p”1| ‘¢n2|

ny, n2<N

We can split the last expression as [ 4+ I + I, where

\gm |2 - 1) (Igns (@)* = 1) / 20, 12
I =2 E n n2l

n1,n2 <N

|gn1 )|2 2 2
I=4 Z )()\2 )/M|90n1 lon, |,

nl,n2<N
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and

Il = -2 Z )(/\2 )/M|SDTL1| “Pn2| .

n1,n2<N

o Study of the term I. The term I is a regular term.

o Study of the term II. This one will require the most delicate analysis.
We have

| 2 2

Let
1
aN = Z /\2+1 u[”uNH%z(M)]
o<m<N ™M

(notice that according to Weyl formula, |ay| < In(N)).

We can Write the segment [A\p, \y] as a disjoint union of intervals Ej =
[uk, Wi + dkuk) <k < My, with di, =1 for k < MN and dMN [O, 1] In
other words we define i by po = Ao, pr+1 = px + uk for k < My.

We can check that
k2
Za
and this will be used in the sequel to study convergence of series.

oy ~ (8.6)

By Proposition 8.4, if we denote by EQ@; G, () = Kn(x) we have

Y s leml@) = ax + Ky(e), (87)

m<N =™

and with this decomposition we can split

I=1, +1,
where
|gn, (W) 2
I, =4
1 N Z 2 + 1
n1<N 711
and
|gn(w)|*
SO0 ol I NETS
k< My
We deduce
Iy = 1y + 1lao,
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where

My =4 ) (|gn Z / |onl? Gl (2

n<N A k<My

and

H22—4Z)\2+1 Z / |onl* Gy (2

n<N k<M
By Sobolev ||¢n||re < CAy,, then by interpolation

1

1 1
/ . |gon|2(x)d:1: < Cinf(1, py, 2 Hcpn||2Loo) <COpy, A
{zeMid(e)<puy ? }

Thanks to the previous inequality, we get

> [ lePute

k<Mn
_3 _1 1
<C Y (uk‘* +uk2/ . lenl(@ )dx) <O,
k<My {zeM; d(ﬂc)<uA }

where we have used (8.6).

We are now able to show that the term I3y is regular because

BT P = C Y. g 3 [, oGt

2

n<N A k<My
1
<C — < +00,
2

where in the last line we used that by Weyl formula, we have A\, ~ \/n.

On the other hand, I33 is a constant (and hence can be renormalized).
However, we want to keep track of the necessary renormalization involved
(and to compare them with the usual ones). Hence, we apply again Propo-
sition 8.3 to the index m now (with the same decomposition on [A1, An]).
With (8.7) and (8.4) we get

Iy = dan Z/ ue(@)de + 4 Z / e ()G, (z)d

k<Mn kA< My

= 4//\/1 K3 (x)dx
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and with (8.5) we prove that this term is uniformly bounded with respect
to N. Actually

< ¥ /d() , L, Cu(@)Gy (@)

kL<My

<min(p, 2,p, %)
+C 1 G ()G, (z)da

1 —
E<O< My “ He 2 <d(z)<py, ?

ey | , G ()G, (2)de
kf<My d(z)>max(p, 2 ,p, )

1

11
min (s, %, 1, ) -3 -4
SC Y T A D mn
k A<My I 1§ k<< My

2
_3
+C< E Ly, 4)
k<Mn

<. (8.8)

o Study of the term IlI. We have

|§0n |2 )( |<Pn |2 )
M= —2/ ( ! 2l dx
2 2
M N <N Ay 1 na<N Any 1

_ 2<Q§V+/M ( 3 Guk(w))de).

k<My

The last term in the previous line is 195 up to a factor, hence we can write
I[[ = —20[?\, —|— }/4:7]\/'7
where Yy n = Il55 up to a factor.

Remark 8.6. — We could also define Iy as the smooth projector Iy =
X(¥52), where x € C§°(R) is equal to 1 on [—1,1]. Then

An
Iy ( ; Cn(Pn) = ; X (N) Cn¥n -
With such a definition of Iy the singular term II becomes
A A
X&) 2~ X(5) 2
=3 {0l S [ en@en)lar.

In this context, the main contribution of this term is

Am
X (o (@) = Kn (o, 2),

m
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where Ky (x,y) is the kernel of the operator (lfA)*lx(%). Therefore K
is a regularised version of the Green function G of 1 — A, namely Kn(-,y) =
IINyG(-,y). In the case of a manifold without boundary, we can use the
Helffer—Sjostrand formula (see for instance [9]) and a partition of unity to
prove that

Ky(z,z) = ay + O(1),

where
A

x(%)
aszl+]\>’\$n ~InN.
m
Therefore measuring the singularity on the diagonal of the truncated Green
function of 1 — A is the key point of the analysis of the singular term. The
above interpretation of Ky (z,y) is in the spirit of the analysis in Simon [43].

8.3.2. An L2 estimate

A crucial step in the proof is the following

LEMMA 8.7. ,
[ fn () = far (Wl L2 (dpuy) S M7, (8.9)
for some positive constant o’.

Proof. — Thanks to the analysis in the previous section, we can write

15 (w) = far (Wl 22 (dpeuy) S J1+ J2 + Jz + Ju,

where Jq, Jo, J3 and Jy are defined as follows. The term .J; is the contribution
of Y1 n(u) and thus it is defined by

_ In, (W) Ins (W) Ins (W)
h= H D R 1N Ry Ep T

(n1,m2,n3,m4)EAC
max(ni,n2,ng,ng)>M
ni,n2,n3,na <N

gna (W)
02, + 1)} o)
The term J; is the contribution of Y3 n(u) and thus it is defined by
|gn (w)[*
Z W’Y(nan,nan)

M<n<N

’y(nl; n2,ns, n4)

Jo =

L2(Q)
The term J3 is the contribution of I and thus it is defined by

g @ = 1) (g =1) [ o
> [ leullon

J =
’ (2, +1)(22, + 1)

max(ni,n2)>M

L*(Q)
ni,ne <N
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Finally, the term J4 is the contribution of the renormalized part of II and
therefore it is defined by

Gy (n)(|gn(w)|* — 1)
Z - A2 +1

JF‘

M<n<N L2(9)

Let us first estimate J,. Using Proposition 8.4 and orthogonality, we get that
1
2 -1
S ), M
M<n<N

For the estimate of Jy, we will not use an orthogonality in w, we will simply
rely on the triangle inequality. The estimates for J; and J3 will rely on
orthogonality arguments. The estimates for Jy, Jo and J3 will rely on the
following key estimate for the behavior of v(ny, ne, ns,n4)

LEMMA 8.8. — There exists § > 0 such that

2
Z (22 +1)|Z/\(2n1—75-n12)7(7;\277$)1|)()\2 +1) SM™. (8.10)
max(An; s Ang Ang Ang )M 0 n2 ns3 4

We postpone the proof of this result and finish the proof of Lemma 8.7.
Using an orthogonality argument, we can estimate J; as follows

| 2

J12 < Z 1|7(n17n127n3,n41) :
max(nl 7”2»”37"4)>M (nl + )(n2 + )(n3 + )(n4 + )

ni,n2,n3,na <N
which can be readily estimated by an application of Lemma 8.8.

To estimate Jo, we use the bound (8.3), which implies that

1
lonllze < O,
and therefore
RS Y L smh.

3~
M<n<N V2
Finally concerning J3, we can use another orthogonality argument in order

to write

J2 < Z (121,121, 129, 120) |*

~ 2 2

max(ni,n2)>M (nl T 1) (n2 T 1)
ni,n2 <N

Z |7(n17n17n17n1)7(n27nQa”?an2)|

* (n1 + 1)2(na + 1)

M<ny,n2<N
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The first term in the right hand side is estimated similarly as J? (it is a sub-
case), while the second term is estimated as J,. This completes the proof of
Lemma 8.7. ]

Proof of Lemma 8.8. — By a symmetry argument, we can estimate the
left hand-side of (8.10) by

> (NiNoNgNG) ™2 > [y(na,ma,mg,na) . (8.11)

N12N22N32>=Ny An;~Nj
NizM j=1,2,3,4
(N1,N2,N3,N4)—dyadic

Now we can perform the n; summation and estimate (8.11) as

> (MNNsND) ™ Y (0m@ns nalliz oy - (8.12)
N1ZN22N32>Ny An;~ N
NizM j=2,3,4

Next, we can write

Z H‘pnz PrnzPnay H%Z(M)
An;~N;
j=2,3

- /M |<Pn4(x)2(/\ Z |¥n, (x)|2> (/\ Z |<Pn3($)|2)dx.

ng ~N2 ng~N3
Now, from Proposition 8.2 applied to control
e(z,2M, M) = e(x,2M,2M — 1)+ -- -+ e(x, M + 1, M),

we get the pointwise bound

Y lea@) S N?

An~N
and (integrating on the manifold)

#{n] A0 ~ N} S N2
This gives that (8.12) can be estimated by

> (MiNaN3Ny)“2NF(N3N3)
N12N22N32>=Ny
Ni>M

which clearly can be bounded by M~? for any 0 < 6 < 2. O
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8.3.3. Proof of Theorem 1.11

To prove Theorem 1.11, the main point is to estimate the measure

(| = F () > In(N) (8.13)
and to show that

Awu@yﬁwm)>mQ»MﬁA<C, (8.14)

where C'is independent of N. Standards arguments show that (8.13) implies
Theorem 1.11 (see [13, 46, 49]). Now we can write

1
) = 5 [ (I ()? = 200)" - o
Therefore, we have the pointwise bound

—fn(u) < (In(N))*. (8.15)

The power of In(NN) of the last estimate is not of importance for the further
analysis. Notice that here we make a crucial use of the defocusing nature of
the nonlinear interaction. Using (8.15) we obtain that if M is such that

In(\) — C(In(M))* > 1,
where C' is the implicit constant appearing in (8.15), then
plul =fn) >) <plu| = (Fx(u) = frr(u) >1).
We therefore choose M such that In()\) ~ (In(M))4, i.e.
M~ emONT
The result clearly follows from the following bound
36¢,6>0; VN > M pu(u| — (fn(w) — far(w) >1) <e M (8.16)
Finally, (8.16) follows from the L2-bound (8.9) and classical hypercon-

tractivity estimates (see for instance [46, Proposition 2.4]). This in turn
completes the proof of Theorem 1.11.

8.4. Definition of the nonlinearity

The aim of this paragraph is to prove Proposition 1.10.

By the result [46, Proposition 2.4] on the Wiener chaos, we only have to
prove the statement for p = 2.
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Recall the definition of Fiy in (1.25) and let ¢ > 2. To begin with, use
that

[ ) = FurCsn) By andi
X0(M)

- /Q I Fx (@) = Far (Ua)[ o .

Therefore, we are reduced to prove that (F N (U N)) is a Cauchy sequence

in L?(Q; H=?(M)). Denote by

N>1

XN = |\I’N|2\I’N — 2OZN\I/N.
It is enough to show the result for (xx ), because once we know that xy —
x in L?(Q; H=7(M)), we deduce that Fy(¢n) = Hyxny — x in L*(€;
H=7(M)). In the sequel, we will use the notation [n] = A2 + 1. By the Weyl
formula we have [n] ~ n when n — +o00. Then, by definition of ¥y we can
compute

In19n, 9
Wn[Uy = > %%%%
ni,ne,n3<N [nl] [nQ] [ng]z
gn1§n29n3
= Y T om P,
ny,n2,n3<N, [n1]2[n2] 2 [n3]2

n1#£n2,n3#En2

+2 Z |[Z7}1[|Tnim n|2 Z |gn| gn‘ n|2

n,m<N n<N

= El(N) + EQ(N) — 23(]\7)

Then for o (N) we use the decomposition (8.7)

S (N _2\1/NZ ‘g" |on 2

n<N

_2\1/ Z ‘gn _ |(p ‘2+204N\I/N+2KN\I/N
n<N

= Egl(N) + EQQ(N) — 223(]\7)

Observe that Yoo (V) is the term which is removed in the definition of y n.
Therefore we are reduced to study the contribution of the other terms.

o Contribution of 31. Forall 1 < M < N

) =R M) e = Z %7(711,712,713,]6)’ (8.17)
By, N [nl] 2 [HZ] 2 [713] 2

- 589 —



Nicolas Burq, Laurent Thomann and Nikolay Tzvetkov

where the set By, n is defined by

Bu.n = {(nl,n2,n3) eN?

0 < ny,ng,n3 <N, ny #ng, ng#na,
and max(ny,ne,ng) > M '

From (8.17) we obtain

11 (V) = 1) [ i)

/ Z gn1§n2gn3§mlgm2§m3
1 1 1 1 1 1
(nvmamyeBan 112 [02]2[n3]2 [ma]2 [mo] 2 [ms] >

(m1,m2,m3)EBM,N

X y(n1,n2,n3, k)y(mi, ma, ms, k)dp.

Since the (g,) are independent and centred, we deduce that each term in
the r.h.s. vanishes, unless ny = mgo and (n1,n3) = (my,m3) or (ny,n3) =
(ms, mq). Thus

1) = 130 [ o) a0 < € > 7(&11;&;1&;)' '

(n1,m2,m3)€EBM, N

Let o > 1, then we get
2 1
122() = 210D - aay) = 2 7|
keN

[y(n1, n2, 0, k)|?
SC D ety sy

(L1(N) = 21(M) | 90k>H2L?(Q)

(n1,m2,m3)€EBM, N
keN

and this term can be estimated as Ji, namely for some 1 > 0

c
121 (N) = 21| 2.7 payy < M

e Contribution of X3. Forall 1 < M < N

B _ 197 [°gn
(Z3(N) = Ss(M) | or) = > s (n,n,n, k).
M<n<N [n]>

By the bound (8.3) we infer

Al

y(n,n,n, k)| < C(n)3 (k)
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and from the independence of the Gaussians we get
(n,

[{Ss(N) —

Finally, if o > % we obtain

||23(N

where the set Cjs n is defined by

o Contribution of 3o. For all 1 <
gn -
iw =2 3 Lol jon

n,n, k)2
[n]?
(k)2

M<n<N

2 lv(n
(M) | px ||L2(Q) =C Z

<
M<n<N

2
3 )||L2(Q H-° (M))
— Y3(M

— Sy(M
*Z

kGN

M<N

Cum,N

<E21( ) Z:21
N and m < N) }

(M <n<
(M<m<Nandn<M)

CJV[,N = {(mm) S N2
[v(n,n,m, k)|

Then by the orthogonal properties of the Gaussians we obtain
2
[(£21(N) = a1 (M) [ @1) [ L2y SC - D ()
n,m<IN
max(n,m)>M
which (when multiplied by (k)~!) is estimated by Lemma 8.8 in the previous

o) 12

section (it is actually a sub-case) fixing ny = ns = n,n3 = m,ng = k)

[y(n,n, m, k)|

S (V) — Sor (M
(n)?(m) (k)

> (k)"
“0xZ,
C

k
max(n m)>M
|’Y(Tl1, n2,ns, TL4)|
S M

S X i)

ni,n2,n3,na <N
max(ni,n2,ng,na>M

Therefore, if o > 1 we obtain
2 C
)= 2 (M) e a) < 37

21 (v
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We now study the term Xo3. We have
Yo3(N) — 301 (M) =2(Ky — Kp) U N + 2K (T ny — Tpy). (8.18)
Let’s consider the contribution of the first term in the previous line. For
k>0

(Ky = Knm)Vn [ pr) = Z
n<N

/ (KN — Kn)onPr-

M\»—A

By the orthogonal properties of the Gaussians and Parseval, we obtain
2

0 = Kan) o 20l oy = 2 o
n<N

/ (KN — Knm)on®r
M

2
<C ‘/ (Kn — Km)on®r

n<N

< C/ (Kn — Knr)? x|
M

< C(k) /M(KN — Kn)*.

Now we estimate [, (Kny — Kps)? as in (8.8) and we get that for o > 2

C
H(KN - KM)\I/NHLQ(Q;H—C’(M)) S Mn’

for some 1 > 0. The estimate of the second term in (8.18) is similar.

As a conclusion, we are able to define a limit F'(u) so that for all p > 2

I F)llLz -7 (my < Cp. (8.19)

8.5. Proof of Theorem 1.12

Once estimate (8.19) is proved, the analysis in the proof of Theorem 1.12
is the same as in the proof of Theorem 1.7 (see Section 7).

8.6. Proof of Propositions 8.1, 8.4 and 8.3

Proof of Proposition 8.1. — We first treat the case of Dirichlet boundary
conditions. For y € R? and 7 > 0, denote by

1 _
2 - zy~§d .
W) = g /{5€R2 lel<r) ¢
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Then by [29, Theorem 17.5.10]
le(x, A, 0) — (0, %) + eo(2d(z), A\?)| < C. (8.20)

(Notice that in [29] the parameter A denotes the eigenvalues while here
A are the square root of the eigenvalues and that in our setting v(z) =
(det(g®(z)))~2). The function eg is radial in y and with a change of vari-
ables we get

2 .
eo(y,7%) = 7——J(T|y|), with  J(t) = / elerde. (8.21)
Am {€er? | |¢|<1}

We now claim that for all t € R
3

J) <O, J{t)<Ci) 3. (8.22)

For the first inequality we write for [¢| > 1

ALY R

_ 2 z (eitCOSO _ e—itcosQ) cos 0d6

it
and the result follows from the stationary phase. The estimate on J’ is
obtained similarly.

Clearly, from eg(0,\?) = 2~ we get

eo(o,(HaA%)?) —e0(0,\2) = ;A +O(N), (8.23)

m
and by (8.21) and (8.22)

|eo(2d(x), (A + 9A%)?) — ep(2d(x), A?)|
< ONZSd(2)A2 (d(2)A) "2 + CoAE (d(x)\) "% < CoAT,
under the condition d(z) > A~2. Then by (8.20) and (8.23) we get (8.1). O
Let us now prove Proposition 8.4.
Proof of Proposition 8.4. — For any p > 0 and x € M, we write
1 2
Z 1 WWM (2)
Am E[p,p+op?)
o |90m|2(x) 1 1 2
B 2 GRS o A2 41 p24l o[ ()
Am E[p,p+0p2) Am€p,p+dp?)

= FLu(z) + Fy,pu(2).
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First observe that by (8.2) we have for all z € M
e(w, i+ 0u%, p) < Cps. (8.24)

Then from the previous bound, we deduce that

3

2 _

|Fo, ()] < Cug 1 > lom|*(z) < Cp™t,
Am Elpop+6p3)

which is an acceptable bound.

We now turn to the estimate of Fy ,. For € M such d(z) > p~% we

can use (8.1) to write
Fon(®) = e+ b ) = — L o(it)
1, _,U/2+1 s M B2, _271_(”2_'_1) M
But thanks to the Weyl formula
1 o s 1
H{rmsdn € lop+0p2)}p = o—p2 (14 0(u™1)),
which is obtained by integrating (8.1) and using (8.24), we get
1 5/1,% 3
= O(p~1), 8.25
2 2 t1 R+ (=) (8.25)
)\7,L€[M,M+5H§)

which was the claim.

Now we assume that d(z) < 2. Then by (8.24) we have

1 . 2 \
F = — dpz,p) < = Tz),
I,H(x) u2+16(x’u+ :U/27/J’) C,UQ_"I O(/”L 2)

This proves (8.5). The fact (8.4) is obtained by integration of F),. The proof
of Proposition 8.4 is complete. O

Proof of Proposition 8.3. — By (8.25) with § = 1, we observe that
Proposition 8.4 directly implies Proposition 8.3. g
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