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Harmonic functions on multiplicative graphs and
inverse Pitman transform on infinite random paths (∗)

Cédric Lecouvey (1), Emmanuel Lesigne (2) and Marc Peigné (3)

ABSTRACT. — This survey establishes some miscellaneous results on random Lit-
telmann paths and generalized Pitman transform. We describe central probability
distributions on Littelmann paths. Next we state a law of large numbers and a central
limit theorem for the generalized Pitman transform. We then study harmonic func-
tions on multiplicative graphs defined from the tensor powers of finite-dimensional
Lie algebras representations. Finally, we explain there exists an inverse of the gener-
alized Pitman transform defined almost surely on the set of infinite paths remaining
in the Weyl chamber and how it can be computed.

RÉSUMÉ. — Dans cet article de synthèse nous établissons des résultats complé-
mentaires sur les chemins de Littelmann aléatoires et sur la transformée de Pitman
généralisée. Nous décrivons les distributions de probabilité centrales sur les chemins
de Littelmann. Ensuite nous donnons une loi des grands nombres et un théorème
central limite pour la transformée de Pitman généralisée. Nous étudions alors les
fonctions harmoniques sur les graphes multiplicatifs définis à partir des puissances
tensorielles des représentations irréductibles des algèbres de Lie. Enfin, nous expli-
quons qu’il existe une transformée inverse de la transformée de Pitman généralisée
définie presque sûrement sur les trajectoires infinies qui restent dans la chambre de
Weyl et montrons comment elle peut être calculée.

1. Introduction

The goal of this survey is to state some results on the generalized Pitman
transform P introduced by Biane, Bougerol and O’Connell [1] and also on
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harmonic functions introduced in [7] and [9]. Some of them are new, other
appear implicitly in the literature but we thought it is useful to properly
write them down for a non specialized audience and also for possible future
references. The harmonic functions we are interested in appear in the study
of the random Littelmann path defined from a simple module V of a Kac–
Moody algebra g and its conditioning to stay in the dominant Weyl chamber
of g. Roughly speaking, the random path we are interested in is obtained by
concatenation of elementary paths randomly chosen among the vertices of
the crystal graph B associated to V following a distribution depending on the
graph structure of B. It is worth noticing that for g = sl2, this random path
reduces to the random walk on Z with steps {±1} and the transform P is the
usual Pitman transform [15]. Also when V is the defining representation of
g = sln+1, the vertices of B are simply the paths linking 0 to each vector of
the standard basis of Rn+1 and we notably recover some results by O’Connell
exposed in [14]. It appears that many natural random walks can in fact be
realized from a suitable choice of the representation V .

We will assume here that g is a simple (finite-dimensional) Lie algebra
over C of rank n. The irreducible finite-dimensional representations of g are
then parametrized by the dominant weights of g which are the elements of
the set P+ = P ∩ C where P and C are the weight lattice and the dominant
Weyl chamber of g, respectively. The random pathW we considered in [9] is
defined from the crystal B(κ) of the irreducible g-module V (κ) with highest
weight κ ∈ P+ (κ is fixed for eachW). The crystal B(κ) is an oriented graph
graded by the weights of g whose vertices are Littelmann paths of length 1.
The vertices and the arrows of B(κ) are obtained by simple combinatorial
rules from a path πκ connecting 0 to κ and remaining in C (the highest weight
path). We endowed B(κ) with a probability distribution p compatible with
the weight graduation defined from the choice of an n-tuple τ of positive
reals (a positive real for each simple root of g). The probability distribution
considered on the successive tensor powers B(κ)⊗` is the product distribution
p⊗`. It has the crucial property to be central: two paths in B(κ)⊗` with
the same ends have the same probability. We can then define, following
the classical construction of a Bernoulli process, a random path W with
underlying probability space (B(κ)⊗Z>0 , p⊗Z>0) as the direct limit of the
spaces (B(κ)⊗`, p⊗`). The trajectories of W are the concatenations of the
Littelmann paths appearing in B(κ). It makes sense to consider the image
of W by the generalized Pitman transform P. This yields a Markov process
H = P(W) whose trajectories are the concatenations of the paths appearing
in B(κ) which remain in the dominant Weyl chamber C. When the drift of
W belongs to the interior of C, we establish in [9] that the law of H coincides
with the law of W conditioned to stay in C. By setting W` = W(`) for any
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positive integer `, we obtain in particular a Markov chain W = (W`)`>1 on
the dominant weights of g.

In the spirit of the works of Kerov and Vershik, one can define central
probability measures on the space ΩC of infinite trajectories associated to H
(i.e. remaining in P). These are the probability measures giving the same
probability to any cylinders Cπ and Cπ′ issued from paths π and π′ of length
` remaining in C with the same ends. Alternatively, we can consider the
multiplicative graph G with vertices (λ, `) ∈ P+ × Z>0 and weighted arrows

(λ, `)
mΛ
λ,κ→ (Λ, ` + 1) where mΛ

λ,κ is the multiplicity of the representation
V (Λ) in the tensor product V (λ)⊗ V (κ). Each central probability measure
on ΩC is then characterized by the harmonic function ϕ on G associating
with each vertex (λ, `), the probability of any cylinder Cπ where π is any
path of length ` remaining in C and ending at λ. Finally, a third equivalent
way to study central probability measures on ΩC is to define a Markov chain
on G whose transition matrix is computed from the harmonic function ϕ.
We refer to Section 6.1 for a detailed review.

When g = sln+1, the elements of P+ can be regarded as the partitions
λ = (λ1 > · · · > λn > 0) ∈ Zn. Moreover, if we choose V (κ) = V , the defin-
ing representation of g = sln+1, we have mΛ

λ,κ 6= 0 if and only if the Young
diagram of Λ is obtained by adding one box to that of λ. The connected com-
ponent of G obtained from (∅, 0) thus coincides with the Young lattice Yn of
partitions with at most n parts (one can obtain the whole Young lattice Y by
working with g = sl∞). In that case, Kerov and Vershik (see [6]) completely
determined the harmonic function on Y. They showed that these harmonic
functions have nice expressions in terms of generalized Schur functions.

In [15] Pitman established that the usual (one-dimensional) Pitman trans-
form is almost surely invertible on infinite trajectories (i.e. reversible on a
space of trajectories of probability 1). It is then a natural question to ask
wether its generalized version P shares the same invertibility property. Ob-
serve that in the case of the defining representation of sln+1 (or sl∞), the
generalized Pitman transform can be expressed in terms of a Robinson–
Schensted (RS) type correspondence. Such an invertibility property was ob-
tained by O’Connell in [14] (for the usual RS correspondence related to
ordinary Schur functions) and recently extended by Sniady [16] (for the
generalized version of RS correspondence used by Kerov and Vershik and
related to the generalized Schur functions). We show that this invertibility
property (implicit in fact in [1]) survives beyond type A and for random
paths constructed from any irreducible representation.

In what follows, we first prove that the probability distributions p on B(κ)
we introduced in [7, 8, 9] are precisely all the possible distributions yielding
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central distributions on B(κ)⊗`. We also establish a law of large numbers
and a central limit theorem for the Markov process H. Here we need our
assumption that g is finite-dimensional since in this case P has a particular
simple expression as a composition of (ordinary) Pitman transforms. Then
we determine the harmonic functions on the multiplicative graph G for which
the associated Markov chain satisfies a law of large numbers. We establish
in fact that these Markov chains are exactly the processes H defined in [7]
and have simple expressions in terms of the Weyl characters of g. This can
be regarded as an analogue of the result of Kerov and Vershik determining
the harmonic functions on the Young lattice. Finally, we prove that the
generalized Pitman transform P is almost surely invertible and explain how
its inverse can be computed.

The survey is organized as follows. In Section 2, we recall some back-
ground on continuous time Markov processes. Section 3 is a recollection of
results on representation theory of Lie algebras and the Littelmann path
model. We state in Section 4 the main results of [9] and prove that the prob-
ability distributions p introduced in [7] are in fact the only possible yielding
central measures on trajectories. The law of large numbers and the central
limit theorem for H are established in Section 5. We study the harmonic
functions of the graphs G in Section 6. In Section 7 we show that the spaces
of trajectories for W and H both have the structure of dynamical systems
coming from the shift operation. We then prove that these dynamical sys-
tems are intertwined by P. Finally, we study the inverse of P in Section 8.

2. Random paths

2.1. Background on Markov chains

Consider a probability space (Ω,F ,P) and a countable setM . A sequence
Y = (Y`)`>0 of random variables defined on Ω with values in M is a Markov
chain when

P(Y`+1 = µ`+1 | Y` = µ`, . . . , Y0 = µ0) = P(Y`+1 = µ`+1 | Y` = µ`)
for any ` > 0 and any µ0, . . . , µ`, µ`+1 ∈ M . The Markov chains considered
in the sequel will also be assumed time homogeneous, that is P(Y`+1 = λ |
Y` = µ) = P(Y` = λ | Y`−1 = µ) for any ` > 1 and µ, λ ∈ M . For all µ, λ in
M , the transition probability from µ to λ is then defined by

Π(µ, λ) = P(Y`+1 = λ | Y` = µ)
and we refer to Π as the transition matrix of the Markov chain Y . The
distribution of Y0 is called the initial distribution of the chain Y .
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A continuous time Markov process Y = (Y(t))t>0 on (Ω,F ,P) with values
in Rn is a measurable family of random variables defined on (Ω,F ,P) such
that, for any integer k > 1 and any 0 6 t1 < · · · < tk+1 the conditional
distribution(1) of Y(tk+1) given (Y(t1), · · · ,Y(tk)) is equal to the conditional
distribution of Y(tk+1) given Y(tk); in other words, for almost all (y1, · · · , yk)
with respect to the distribution of the random vector (Y(t1), · · · ,Y(tk)) and
for all Borelian set B ⊂ Rn

P(Y(tk+1) ∈ B | Y(t1) = y1, · · · ,Y(tk) = yk)
= P(Y(tk+1) ∈ B | Y(tk) = yk) .

We refer to the book [3, Chapter 3], for a description of such processes.

From now on, we consider a Rn-valued Markov process (Y(t))t>0 defined
on (Ω,F ,P) and we assume the following conditions:

(1) M ⊂ Rn
(2) for any integer ` > 0

Y` := Y(`) ∈M P−almost surely . (2.1)
It readily follows that the sequence Y = (Y`)`>0 is a M -valued
Markov chain.

(3) for any integer ` > 0, the conditional distribution of (Y(t))t>` given
Y` is equal to the one of (Y(t))t>0 given Y0; in other words, for any
Borel set B ⊂ (Rn)⊗[0,+∞[ and any λ ∈M , one gets

P((Y(t))t>` ∈ B | Y` = λ) = P((Y(t))t>0 ∈ B | Y0 = λ) .

In the following, we will assume that the initial distribution of the Markov
process (Y(t))t>0 has full support, i.e. P(Y(0) = λ) > 0 for any λ ∈M .

2.2. Elementary random paths

Consider a Z-lattice P ⊂ Rn of rank n. An elementary Littelmann path
is a piecewise continuous linear map π : [0, 1]→ PR such that π(0) = 0 and

(1) Let us recall briefly the definition of the conditional distribution of a random vari-
able given another one. Let X and Y be random variables defined on some probability
space (Ω,F ,P) with values respectively in Rn and Rm, n,m > 1. Denote by µX the dis-
tribution of X, it is a probability measure on Rn. The conditional distribution of Y given
X is defined by the following “disintegration” formula: for any Borelian sets A ⊂ Rn and
B ⊂ Rm

P
(

(X ∈ A) ∩ (Y ∈ B)
)

=
∫
A

P(Y ∈ B | X = x) dµX(x) .

Notice that the function x 7→ P(Y ∈ B | X = x) is a Radon–Nikodym derivative
with respect to µX and is thus just defined modulo the measure µX . The measure
B 7→ P(Y ∈ B | X = x) is called the conditional distribution of Y given X = x.
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π(1) ∈ P . Two paths which coincide up to reparametrization are considered
as identical.

The set F of continuous functions from [0, 1] to Rn is equipped with
the norm ‖ · ‖∞ of uniform convergence : for any π ∈ F , one has ‖π‖∞ :=
supt∈[0,1] ‖π(t)‖ where ‖ · ‖ denotes the Euclidean norm on P ⊂ Rn. Let B be
a finite set of elementary paths and fix a probability distribution p = (pπ)π∈B
on B such that pπ > 0 for any π ∈ B. Let X be a random variable with
values in B defined on a probability space (Ω,F ,P) and with distribution p
(in other words P(X = π) = pπ for any π ∈ B). The variable X admits a
moment of order 1 defined by

m := E(X) =
∑
π∈B

pππ .

The concatenation π1 ∗ π2 of two elementary paths π1 and π2 is defined by

π1 ∗ π2(t) =
{
π1(2t) for t ∈ [0, 1

2 ] ,
π1(1) + π2(2t− 1) for t ∈ [ 1

2 , 1] .
In the sequel, C is a closed convex cone in P ⊂ Rn.

Let B be a set of elementary paths and (X`)`>1 a sequence of i.i.d. random
variables with the same law as X where X is the random variable with values
in B introduced just above. We define a random process W as follows: for
any ` ∈ Z>0 and t ∈ [`, `+ 1],

W(t) := X1(1) +X2(1) + · · ·+X`−1(1) +X`(t− `) .
The sequence of random variablesW = (W`)`∈Z>0 := (W(`))`>0 is a random
walk with set of increments I := {π(1) | π ∈ B}.

3. Littelmann paths

3.1. Background on representation theory of Lie algebras

Let g be a simple finite-dimensional Lie algebra over C of rank n and
g = g+ ⊕ h ⊕ g− a triangular decomposition. We shall follow the notation
and convention of [2]. According to the Cartan–Killing classification, g is
characterized (up to isomorphism) by its root system R. This root system
is determined by the previous triangular decomposition and realized in the
Euclidean space Rn. We denote by ∆+ = {αi | i ∈ I} the set of simple roots
of g, by R+ the (finite) set of positive roots. We then have n = card(∆+)
and R = R+ ∪ R− with R− = −R+. The root lattice of g is the integral
lattice Q =

⊕n
i=1 Zαi. Write ωi, i = 1, . . . , n for the fundamental weights
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associated with g. The weight lattice associated with g is the integral lattice
P =

⊕n
i=1 Zωi. It can be regarded as an integral sublattice of h∗R (the real

form of the dual h∗ of h). We have dim(P ) = dim(Q) = n and Q ⊂ P .

The cone of dominant weights for g is obtained by considering the
positive integral linear combinations of the fundamental weights, that is
P+ =

⊕n
i=1 Z>0ωi. The corresponding open Weyl chamber is the cone

C̊ =
⊕n

i=1 R>0ωi. We also introduce its closure C =
⊕n

i=1 R>0ωi. In type A,
we shall use the weight lattice of gln rather than that of sln for simplicity.
We also introduce the Weyl group W of g which is the group generated by
the orthogonal reflections si in the hyperplanes perpendicular to the simple
roots αi, i = 1, . . . , n. Each w ∈ W may be decomposed as a product of the
si, i = 1, . . . , n. All the minimal length decompositions of w have the same
length l(w). The group W contains a unique element w0 of maximal length
l(w0) equal to the number of positive roots of g, this w0 is an involution and
if si1 · · · sir is a minimal length decomposition of w0, we have

R+ = {αi1 , si1 · · · sia(αia+1) with a = 1, . . . , r − 1} . (3.1)

Example 3.1. — The root system of g = sp4 has rank 2. In the standard
basis (e1, e2) of the Euclidean space R2, we have ω1 = (1, 0) and ω2 = (1, 1).
So P = Z2 and C = {(x1, x2) ∈ R2 | x1 > x2 > 0}. The simple roots are
α1 = e1 − e2 and α2 = 2e2. We also have R+ = {α1, α2, α1 + α2, 2α1 + α2}.
The Weyl group W is the dihedral group with 8 elements. It acts on R2

by permuting the coordinates of the vectors and flipping their sign. More
precisely, for any β = (β1, β2) ∈ R2, we have s1(β) = (β2, β1) and s2(β) =
(β1,−β2). The longest element is w0 = −id = s1s2s1s2. One easily verifies
we indeed have

R+ = {α1, s1s2s1(α2) = α2, s1s2(α1) = α1 + α2, s1(α2) = 2α1 + α2} .

We now summarize some properties of the action of W on the weight
lattice P . For any weight β, the orbit W · β of β under the action of W
intersects P+ in a unique point. We define a partial order on P by setting
µ 6 λ if λ− µ belongs to Q+ =

⊕n
i=1 Z>0αi.

Let U(g) be the enveloping algebra associated to g. Each finite dimen-
sional g (or U(g))-module M admits a decomposition in weight spaces M =⊕

µ∈P Mµ where

Mµ := {v ∈M | h(v) = µ(h)v for any h ∈ h and some µ(h) ∈ C} .

This means that the action of any h ∈ h on the weight space Mµ is diagonal
with eigenvalue µ(h). In particular, (M⊕M ′)µ = Mµ⊕M ′µ. The Weyl group
W acts on the weights ofM and for any σ ∈W, we have dimMµ = dimMσ·µ.
For any γ ∈ P , let eγ be the generator of the group algebra C[P ] associated
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with γ. By definition, we have eγeγ′ = eγ+γ′ for any γ, γ′ ∈ P and the group
W acts on C[P ] as follows: w(eγ) = ew(γ) for any w ∈W and any γ ∈ P .

The character ofM is the Laurent polynomial char(M):=
∑
µ∈Pdim(Mµ)eµ

in C[P ] where dim(Mµ) is the dimension of the weight space Mµ.

The irreducible finite dimensional representations of g are labelled by
the dominant weights. For each dominant weight λ ∈ P+, let V (λ) be
the irreducible representation of g associated with λ. The category C of
finite dimensional representations of g over C is semisimple: each mod-
ule decomposes into irreducible components. The category C is equivalent
to the (semisimple) category of finite dimensional U(g)-modules (over C).
Roughly speaking, this means that the representation theory of g is essen-
tially identical to the representation theory of the associative algebra U(g).
Any finite dimensional U(g)-module M decomposes as a direct sum of
irreduciblesM =

⊕
λ∈P+

V (λ)⊕mM,λ where mM,λ is the multiplicity of V (λ)
in M . Here we slightly abuse the notation and also denote by V (λ) the irre-
ducible finite dimensional U(g)-module associated with λ.

When M = V (λ) is irreducible, we set sλ := char(M) =
∑
µ∈P Kλ,µe

µ

with dim(Mµ) = Kλ,µ. Then Kλ,µ 6= 0 only if µ 6 λ. Recall also that the
characters can be computed from the Weyl character formula but we do not
need this approach in the sequel.

Given κ, µ in P+ and a nonnegative integer `, we define the tensor product
multiplicities f `λ/µ,κ by

V (µ)⊗ V (κ)⊗` '
⊕
λ∈P+

V (λ)⊕f
`
λ/µ,κ . (3.2)

For µ = 0, we set f `λ,κ = f `λ/0,κ. When there is no risk of confusion, we
write simply f `λ/µ (resp. f `λ) instead of f `λ/µ,κ (resp. f `λ,κ). We also define the
multiplicities mλ

µ,κ by

V (µ)⊗ V (κ) '
⊕
µ λ

V (λ)⊕m
λ
µ,κ (3.3)

where the notation µ  λ means that λ ∈ P+ and V (λ) appears as an
irreducible component of V (µ)⊗V (κ). We have in particular mλ

µ,κ = f1
λ/µ,κ.

3.2. Littelmann path model

We now give a brief overview of the Littelmann path model. We refer
to [4, 11, 12, 13] for examples and a detailed exposition. Consider a Lie
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algebra g and its root system realized in the Euclidean space PR = Rn. We
fix a scalar product 〈 · , · 〉 on PR invariant under W. For any root α, we
set α∨ = 2α

〈α,α〉 . We define the notion of elementary continuous piecewise
linear paths in PR as we did in §2.2. Let L be the set of elementary paths η
having only rational turning points (i.e. whose inflexion points have rational
coordinates) and ending in P i.e. such that η(1) ∈ P . We then define the
weight of the path η by wt(η) = η(1). Given any path η ∈ L, we define its
reverse path r(η) ∈ L by

r(η)(t) = η(1− t)− η(1) .

Observe the map r is an involution on L. Littelmann associated to each
simple root αi, i = 1, . . . , n, some root operators ẽi and f̃i acting on L∪{0}.
We do not need their complete definition in the sequel and refer to the
above mentioned papers for a complete review. Recall nevertheless that roots
operators ẽi and f̃i essentially act on a path η by applying the symmetry sα
on parts of η and we have

f̃i(η) = rẽir(η) . (3.4)

These operators therefore preserve the length of the paths since the elements
of W are isometries. Also if f̃i(η) = η′ 6= 0, we have

ẽi(η′) = η and wt(f̃i(η)) = wt(η)− αi . (3.5)

By drawing an arrow η
i→ η′ between the two paths η, η′ of L as soon as

f̃i(η) = η′ (or equivalently η = ẽi(η′)), we obtain a Kashiwara crystal graph
with set of vertices L. By abuse of notation, we yet denote it by L which
so becomes a colored oriented graph. For any η ∈ L, we denote by B(η) the
connected component of η i.e. the subgraph of L generated by η by applying
operators ẽi and f̃i, i = 1, . . . , n. For any path η ∈ L and i = 1, . . . , n, set
εi(η) = max{k ∈ Z>0 | ẽki (η) = 0} and ϕi(η) = max{k ∈ Z>0 | f̃ki (η) = 0}.

The set LminZ of integral paths is the set of paths η such that mη(i) =
mint∈[0,1]{〈η(t), α∨i 〉} belongs to Z for any i = 1, . . . , n. We also recall that
we have

C = {x ∈ h∗R | 〈x, α∨i 〉 > 0} and C̊ = {x ∈ h∗R | 〈x, α∨i 〉 > 0} .

Any path η such that Im η ⊂ C satisfies mη(i) = 0 so belongs to LminZ. One
gets the

Proposition 3.2. — Let η and π two paths in LminZ. Then:
(1) the concatenation π ∗ η belongs to LminZ,
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(2) for any i = 1, . . . , n we have

ẽi(η ∗ π) =
{
η ∗ ẽi(π) if εi(π) > ϕi(η)
ẽi(η) ∗ π otherwise,

and f̃i(η ∗ π) =
{
f̃i(η) ∗ π if ϕi(η) > εi(π)
η ∗ f̃i(π) otherwise.

(3.6)

In particular, ẽi(η∗π) = 0 if and only if ẽi(η) = 0 and εi(π) 6 ϕi(η)
for any i = 1, . . . , n.

(3) ẽi(η) = 0 for any i = 1, . . . , n if and only if Im η is contained in C.

The following theorem summarizes crucial results by Littelmann (see [11,
12, 13]).

Theorem 3.3. — Consider λ, µ and κ dominant weights and choose ar-
bitrarily elementary paths ηλ, ηµ and ηκ in L such that Im ηλ ⊂ C, Im ηµ ⊂ C
and Im ηκ ⊂ C and joining respectively 0 to λ, 0 to µ and 0 to κ.

(1) We have B(ηλ) := {f̃i1 · · · f̃ikηλ | k ∈ Z>0 and 1 6 i1, · · · , ik 6
n} \ {0}. In particular wt(η)− wt(ηλ) ∈ Q+ for any η ∈ B(ηλ).

(2) All the paths in B(ηλ) have the same length than ηλ.
(3) The paths on B(ηλ) belong to LminZ.
(4) If η′λ is another elementary path from 0 to λ such that Im η′λ is con-

tained in C, then B(ηλ) and B(η′λ) are isomorphic as oriented graphs
i.e. there exists a bijection θ : B(ηλ)→ B(η′λ) which commutes with
the action of the operators ẽi and f̃i, i = 1, . . . , n.

(5) We have
sλ =

∑
η∈B(ηλ)

eη(1) . (3.7)

(6) For any b ∈ B(ηλ) we have wt(b) =
∑n
i=1(ϕi(b)− εi(b))ωi.

(7) For any i = 1, . . . , n and any b ∈ B(ηλ), let si(b) be the unique path
in B(ηλ) such that

ϕi(si(b)) = εi(b) and εi(si(b)) = ϕi(b)

(in other words, si acts on each i-chain Ci as the symmetry with
respect to the center of Ci). The actions of the si’s extend to an
action(2) of W on L which stabilizes B(ηλ). In particular, for any
w ∈ W and any b ∈ B(ηλ), we have w(b) ∈ B(ηλ) and wt(w(b)) =
w(wt(b)).

(2) This action, defined from the crystal structure on paths (see [4, §11]), should not
be confused with the pointwise action of the Weyl group on the paths which does not
stabilize the crystal B(ηλ).

– 638 –



Central measures and Littelmann paths

(8) Given any integer ` > 0, set

B(ηµ) ∗B(ηκ)∗`

=
{
π = η ∗ η1 ∗ · · · ∗ η` ∈ L

∣∣∣∣ η ∈ B(ηµ) and ηk ∈ B(ηκ)
for any k = 1, . . . , `

}
. (3.8)

The graph B(ηµ) ∗B(ηκ)∗` is contained in LminZ.
(9) The multiplicity mλ

µ,κ defined in (3.3) is equal to the number of paths
of the form µ ∗ η with η ∈ B(ηκ) contained in C.

(10) The multiplicity f `λ/µ defined in (3.2) is equal to cardinality of the
set

H`
λ/µ :=

{
π ∈ B(ηµ) ∗B(ηκ)∗`

∣∣∣∣ ẽi(π) = 0 for any i = 1, . . . , n
and π(1) = λ

}
.

Each path π = η ∗η1 ∗ · · · ∗η` ∈ H`
λ/µ satisfies Im π ⊂ C and η = ηµ.

Remarks 3.4.
(1) Combining (3.5) with Assertions (1) and (5) of Theorem 3.3, one

may check that the function e−λsλ is in fact a polynomial in the
variables Ti = e−αi , namely

sλ = eλSλ(T1, . . . , Tn) (3.9)

where Sλ ∈ C[X1, . . . , Xn].
(2) Using Assertion (1) of Theorem 3.3, we obtain mλ

µ,κ 6= 0 only if
µ + κ − λ ∈ Q+. Similarly, when fκ,`λ/µ 6= 0 one necessarily has
µ+ `κ− λ ∈ Q+.

4. Random paths from Littelmann paths

In this section, we recall some results of [9]. We also introduce the notion
of central probability distribution on elementary Littelmann paths and show
these distributions coincide with those used in the seminal works [1, 14] and
also in our previous papers [7, 8, 9].

4.1. Central probability measure on trajectories

Consider κ ∈ P+ and a path πκ ∈ L from 0 to κ such that Im πκ is
contained in C. Let B(πκ) be the connected component of L containing πκ.
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Assume that {π1, . . . , π`} is a family of elementary paths in B(πκ); the path
π1⊗· · ·⊗π` of length ` is defined by: for all k ∈ {1, . . . , `−1} and t ∈ [k, k+1]

π1 ⊗ · · · ⊗ π`(t) = π1(1) + · · ·+ πk(1) + πk+1(t− k). (4.1)
Let B(πκ)⊗` be the set of paths of the form b = π1⊗· · ·⊗π` where π1, . . . , π`
are elementary paths in B(πκ); there exists a bijection ∆ between B(πκ)⊗`
and the set B∗`(πκ) of paths in L obtained by concatenations of ` paths of
B(πκ):

∆ :
{

B(πκ)⊗` −→ B(πκ)∗`
π1 ⊗ · · · ⊗ π` 7−→ π1 ∗ · · · ∗ π`

. (4.2)

In fact π1 ⊗ · · · ⊗ π` and π1 ∗ · · · ∗ π` coincide up to a reparametrization and
we define the weight of b = π1 ⊗ · · · ⊗ π` setting

wt(b) := wt(π1) + · · ·+ wt(π`) = π1(1) + · · ·+ π`(1) .
The duality map (which is an involution) r on η ∈ B(πκ)⊗` is such that

r(η)(t) = η(`− t)− η(0)
for any t ∈ [0, `].

Consider p a probability distribution on B(πκ) such that pπ > 0 for any
π ∈ B(πκ). For any integer ` > 1, we endow B(πκ)⊗` with the product
density p⊗`. That is we set p⊗`π = pπ1 × · · · × pπ` for any π = π1⊗ · · · ⊗ π` ∈
B(πκ)⊗`. Here, we follow the classical construction of a Bernoulli process.
Write Π` : B(πκ)⊗` → B(πκ)⊗`−1 the projection defined by Π`(π1 ⊗ · · · ⊗
π`−1⊗π`) = π1⊗· · ·⊗π`−1; the sequence (B(πκ)⊗`,Π`, p

⊗`)`>1 is a projective
system of probability spaces. We denote by Ω = (B(πκ)⊗Z>0 , p⊗Z>0) its pro-
jective limit. The elements of B(πκ)⊗Z>0 are infinite sequences ω = (π`)`>1
we call trajectories. By a slight abuse of notation, we will write Π`(ω) =
π1 ⊗ · · · ⊗ π`. We also write P = p⊗Z>0 for short. For any b ∈ B(πκ)⊗`, we
denote by Ub = {ω ∈ Ω | Π`(ω) = b} the cylinder defined by π in Ω.

Definition 4.1. — The probability distribution P = p⊗Z>0 is central
on Ω when for any ` > 1 and any vertices b and b′ in B(πκ)⊗` such that
wt(b) = wt(b′) we have P(Ub) = P(Ub′).

Remark 4.2. — The probability distribution P is central when for any
integer ` > 1 and any vertices b, b′ in B(πκ)⊗` such that wt(b) = wt(b′),
we have p⊗`b = p⊗`b′ . We indeed have Ub = b ⊗ Ω and Ub′ = b ⊗ Ω. Hence
P(Ub) = p⊗`b and P(Ub′) = p⊗`b′ .

The following proposition shows that P can only be central when the
probability distribution p on B(πκ) is compatible with the graduation of
B(πκ) by the set of simple roots. This justifies the restriction we did in [7, 9]
on the probability distributions we have considered on B(πκ). This restric-
tion will also be relevant in the remaining of this paper.
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Proposition 4.3. — The following assertions are equivalent
(1) The probability distribution P is central.
(2) There exists an n-tuple τ = (τ1, . . . , τn) ∈]0,+∞[n such that for

each arrow π
i→ π′ in B(πκ), we have the relation pπ′ = pπ × τi.

Proof. — Assume probability distribution P is central. For any path π ∈
B(πκ), we define the depth d(π) as the number of simple roots appearing in
the decomposition of κ−wt(π) on the basis of simple roots (see Assertion (1)
of Theorem 3.3). This is also the length of any path joining πκ to π in the
crystal graph B(πκ). We have to prove that pπ′

pπ
is a constant depending

only on i as soon as we have an arrow π
i→ π′ in B(πκ). For any k > 1, we

set B(πκ)k = {π ∈ B(πκ) | d(π) 6 k}. We will proceed by induction and
prove that pπ′

pπ
is a constant depending only on i as soon as there is an arrow

π
i→ π′ in B(πκ)k. This is clearly true in B(πκ)1 since there is at most one

arrow i starting from πκ. Assume, the property is true in B(πκ)k with k > 1.
Consider π′ in B(πκ)k+1 and an arrow π

i→ π′ in B(πκ)k+1. We must have
π ∈ B(πκ)k. If B(πκ)k does not contain any arrow i→, there is nothing to
verify. So assume there is at least an arrow π1

i→ π2 in B(πκ)k. In B(πκ)⊗2,
we have wt(π1⊗π′) = wt(π1)+wt(π)−αi since wt(π′) = wt(π)−αi. Similarly,
we have wt(π2⊗π) = wt(π1)−αi + wt(π) since wt(π2) = wt(π1)−αi. Thus
wt(π1 ⊗ π′) = wt(π2 ⊗ π). Since P is central, we deduce from the above
remark the equality p⊗2(π1⊗π′) = p⊗2(π2⊗π). This yields pπ1pπ′ = pπ2pπ.
Hence pπ′

pπ
= pπ2

pπ1
. So by our induction hypothesis, pπ′pπ is equal to a constant

which only depends on i.

Conversely, assume there exists an n-tuple τ = (τ1, . . . , τn) ∈]0,+∞[n

such that for each arrow π
i→ π′ in B(πκ), we have the relation pπ′ = pπ×τi.

Consider vertices b, b′ in B(πκ)⊗` such that wt(b) = wt(b′). Since b and b′

have the same weight, we derive from (3.5) that the paths from πκ to b and
the paths from πκ to b′ contain the same number (says ai) of arrows i→
for any i = 1, . . . , n. We therefore have pb = pb′ = pπκτ

a1
1 · · · τann and the

probability distribution P is central. �

4.2. Central probability distributions on elementary paths

In the remaining of the paper, we fix the n-tuple τ = (τ1, . . . , τn) ∈
]0,+∞[n and assume that P is a central distribution on Ω defined from τ
(in the sense of Definition 4.1. For any u = u1α1 + · · · + unαn ∈ Q, we
set τu = τu1

1 · · · τunn . Since the root and weight lattices have both rank n,
any weight β ∈ P also decomposes in the form β = β1α1 + · · · + βnαn
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with possibly non integral coordinates βi. The transition matrix between
the bases {ωi, i = 1, . . . , n} and {αi, i = 1, . . . , n} (regarded as bases of PR)
being the Cartan matrix of g whose entries are integers, the coordinates βi
are rational. We will also set τβ = τβ1

1 · · · τβnn .

Let π ∈ B(πκ): by Assertion (1) of Theorem 3.3, one obtains

π(1) = wt(π) = κ−
n∑
i=1

ui(π)αi

where ui(π) ∈Z>0 for any i = 1, . . . , n. We define Sκ(τ) := Sκ(τ1, . . . , τn) =∑
π∈B(πκ) τ

κ−wt(π).

Definition 4.4. — We define the probability distribution p =
(pπ)π∈B(πκ) on B(πκ) associated with τ by setting pπ = τκ−wt(π)

Sκ(τ) .

Remark 4.5. — By Assertion (3) of Theorem 3.3, for another elementary
path π′κ from 0 to κ such that Im π′κ is contained in C, there exists an
isomorphism Θ between the crystals B(πκ) and B(π′κ). For p′ the central
probability distribution defined from τ on B(π′κ), one gets pπ = p′Θ(π) for
any π ∈ B(πκ). Therefore, the probability distributions we use on the graph
B(πκ) are invariant by crystal isomorphisms and also the probabilistic results
we will establish in the paper.

The following proposition gathers results of [7, Lemma 7.2.1] and [9,
Proposition 5.4]. Recall that m =

∑
π∈B(πκ) pππ. We set m = m(1).

Proposition 4.6.
(1) We have m ∈ C̊ if and only if τi ∈]0, 1[ for any i = 1, . . . , n.
(2) Denote by L the common length of the paths in B(πκ). Then, the

length of m is less or equal to L.

Set Mκ = {m | τ = (τ1, . . . , τn) ∈]0,+∞[} be the set of all vectors m
obtained from the central distributions defined on B(πκ). Observe thatMκ

only depends on κ and not of the choice of the highest path πκ. This is the
set of possible means obtained from central probability distributions defined
on B(πκ). We will also need the set

Dκ =Mκ ∩ C̊ = {m ∈Mκ | τi ∈]0, 1[, i = 1, . . . , n} (4.3)

of drifts in C̊.

Example 4.7. — We resume Example 3.1 and consider the Lie algebra
g = sp4 of type C2 for which P = Z2 and C = {(x1, x2) ∈ R2 | x1 > x2 > 0}.
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For κ = ω1 and πκ the line between 0 and ε1, we have B(πκ) =
{π1, π2, π2, π1} where each πa is the line between 0 and ea (with the conven-
tion e2 = −e2 and e1 = −e1). The underlying crystal graph is

π1
1→ π2

2→ π2
1→ π1 .

For (τ1, τ2) ∈]0,+∞[2, we obtain the probability distribution on B(πκ)

pπ1 = 1
1 + τ1 + τ1τ2 + τ2

1 τ2
, pπ2 = τ1

1 + τ1 + τ1τ2 + τ2
1 τ2

,

pπ2
= τ1τ2

1 + τ1 + τ1τ2 + τ2
1 τ2

and pπ2
= τ2

1 τ2
1 + τ1 + τ1τ2 + τ2

1 τ2
.

So we have

m = 1
1 + τ1 + τ1τ2 + τ2

1 τ2
((1− τ2

1 τ2)ε1 + (τ1 − τ1τ2)ε2) .

When the pair (τ1, τ2) runs over ]0, 1[2, one verifies by a direct computation
that Dκ coincides with the interior of the triangle with vertices 0, e1, e2.

Remark 4.8. — In the previous example, it is easy to show by a direct
calculation that the closure Mκ of Mκ is the convex hull of the weight
{±e1,±e2} of the representation V (ω1) considered (i.e. the interior of the
square with vertices {±e1,±e2}). In general, one can show thatMκ is con-
tained in the convex hull of the weights of V (κ). The problem of determining,
for any dominant weight κ, wether or not both sets coincide seems to us in-
teresting and not immediate.

4.3. Random paths of arbitrary length

With the previous convention, the product probability measure p⊗` on
B(πκ)⊗` satisfies

p⊗`(π1 ⊗ · · · ⊗ π`) = p(π1) · · · p(π`) = τ `κ−(π1(1)+···+π`(1))

Sκ(τ)` = τ `κ−wt(b)

Sκ(τ)` .

(4.4)
Let (X`)`>1 be a sequence of i.i.d. random variables with values in B(πκ)
and law p = (pπ)π∈B(πκ); for any ` > 1 we thus obtain

P(X` = π) = pπ for any π ∈ B(πκ) . (4.5)
Consider µ ∈ P . The random path W starting at µ is defined from the
probability space Ω with values in PR by
W(t) := Π`(W)(t) = µ+ (X1 ⊗ · · · ⊗X`−1 ⊗X`)(t) for t ∈ [`− 1, `] .

For any integer ` > 1, we set W` = W(`). The sequence W = (W`)`>1
defines a random walk starting at W0 = µ whose increments are the weights
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of the representation V (κ). The following proposition was established in [9,
Proposition 4.6] (we recall that the numbers Kλ,µ are defined in §3.1).

Proposition 4.9.
(1) For any β, η ∈ P , one gets

P(W`+1 = β |W` = η) = Kκ,β−η
τκ+η−β

Sκ(τ) .

(2) Consider λ, µ ∈ P+ we have

P(W` = λ,W0 = µ,W(t) ∈ C for any t ∈ [0, `]) = f `λ/µ
τ `κ+µ−λ

Sκ(τ)` .

In particular

P(W`+1 = λ,W` = µ,W(t) ∈ C for any t ∈ [`, `+ 1]) = mλ
µ,κ

τκ+µ−λ

Sκ(τ) .

4.4. The generalized Pitman transform

By Assertion (8) of Theorem 3.3, we know that B(πκ)⊗` is contained in
LminZ. Therefore, if we consider a path η ∈ B(πκ)⊗`, its connected compo-
nent B(η) is contained in LminZ. Now, if ηh ∈ B(b) is such that ẽi(ηh) = 0
for any i = 1, . . . , n, we should have Im ηh ⊂ C by Assertion (3) of Propo-
sition 3.2. Assertion (3) of Theorem 3.3 thus implies that ηh is the unique
highest weight path in B(η) = B(ηh). Similarly, there is a unique lowest path
ηl in B(η) such that f̃i(ηl) = 0 for any i = 1, . . . , n. This permits to define
the generalized Pitman transform on B(πκ)⊗` as the map P which associates
with any η ∈ B(πκ)⊗` the unique path P(η) ∈ B(η) such that ẽi(P(η)) = 0
for any i = 1, . . . , n. By definition, we have ImP (η) ⊂ C and P(η)(`) ∈ P+.
One can also define a dual Pitman transform E which associates with any
η ∈ B(πκ)⊗` the unique path E (η) ∈ B(η) such that f̃i(E(η)) = 0 for any
i = 1, . . . , n. By (3.4), we have in fact

E = rPr.

As observed in [1] the path transformation P can be made more explicit
(recall we have assumed that g is finite-dimensional). Consider a simple re-
flection α. The Pitman transformation Pα : B(πκ)⊗` → B(πκ)⊗` associated
with α is defined by

Pα(η)(t) = η(t)− 2 inf
s∈[0,t]

〈η(s), α

‖α‖2
〉α = η(t)− inf

s∈[0,t]
〈η(s), α∨〉α (4.6)
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for any η ∈ B(πκ)⊗` and any t ∈ [0, `]. Also define the dual transform
Eα := rPαr on B(πκ)⊗`. One verifies easily that we have in fact

Eα(η)(t) = η(t)− inf
s∈[t,`]

〈η(s), α∨〉α+ inf
s∈[0,`]

〈η(s), α∨〉α . (4.7)

Let w0 be the maximal length element of W and fix a decomposition w0 =
si1 · · · sir of w0 as a product of reflections associated with simple roots.

Proposition 4.10 ([1]). — For any path η ∈ B(πκ)⊗`, we have

P(η) = Pαi1 · · · Pαir (η) and E(η) = Eαi1 · · · Eαir (η) . (4.8)

Moreover, P and E do not depend on the decomposition of w0 chosen.

Remarks 4.11.
(1) Since P(η) corresponds to the highest weight vertex of the crystal

B(η), we have P2(η) =P (η).
(2) One easily verifies that each transformation Pα is continuous for the

topology of uniform convergence on the space of continuous maps
from [0, `] to R. Hence P is also continuous for this topology.

(3) Assume η ∈ B(ηλ) ⊂ B(πκ)⊗` where ηλ is the highest weight path
of B(ηλ). Then ηλ = w0(ηλ) (the action of W is that of Theorem 3.3)
is the lowest weight path in B(ηλ). In this particular case, one can
show that we have in fact

Pia+1 · · · Pir (ηλ) = sia+1 · · · sir (ηλ)
and Eia+1 · · · Eir (ηλ) = sia+1 · · · sir (ηλ)

(4.9)

for any a = 1, . . . , r − 1.

Let W be the random path of §4.3. We define the random process H
setting

H = P(W). (4.10)
For any ` > 1, we set H` := H(`). The following Theorem was established
in [9].

Theorem 4.12.
(1) The random sequence H := (H`)`>1 is a Markov chain with transi-

tion matrix

Π(µ, λ) = Sλ(τ)
Sκ(τ)Sµ(τ)τ

κ+µ−λmλ
µ,κ (4.11)

where λ, µ ∈ P+.
(2) Assume η ∈ B(πκ)⊗` is a highest weight path of weight λ. Then

P(W` = η) = τ `κ−λSλ(τ)
Sκ(τ)`
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We shall also need the asymptotic behavior of the tensor product multi-
plicities established in [9].

Theorem 4.13. — Assume m ∈ Dκ (see (4.3)). For any µ ∈ P and any
sequence of dominant weights of the form λ(`) = `m+ o(`), we have

(1) lim
`→+∞

f `
λ(`)−γ

f `
λ(`)

= τ−γ for any γ ∈ P .

(2) lim
`→+∞

f `
λ(`)/µ

f `
λ(`)

= τ−µSµ(τ).

Corollary 4.14. — Under the assumptions of the previous theorem,
we also have

lim
`→+∞

f `−`0
λ(`)

f `
λ(`)

= 1
τ−`0κS`0κ (τ)

for any nonnegative integer `0.

Proof. — We first consider the case where `0 = 1. By definition of the
tensor product multiplicities in (3.2) we have s`κ =

∑
λ∈P+

f `λsλ but also
s`κ = sκ× s`−1

κ =
∑
λ∈P+

f `−1
λ/κ sλ. Therefore f

`
λ = f `−1

λ/κ for any ` > 1 and any
λ ∈ P+. We get

lim
`→+∞

f `−1
λ(`)

f `
λ(`)

= lim
`→+∞

f `−1
λ(`)

f `−1
λ(`)/κ

= 1
τ−κSκ(τ) (4.12)

by Assertion (2) of Theorem 4.13. Now observe that for any `0 > 1 we have

f `−`0
λ(`)

f `
λ(`)

=
f `−`0
λ(`)

f `−`0+1
λ(`)

× · · · ×
f `−1
λ(`)

f `
λ(`)

.

By using (4.12) each component of the previous product tends to 1
τ−κSκ(τ)

when ` tends to infinity which gives the desired limit. �

The previous theorem also implies that the drift m determines the proba-
bility distribution on B(πκ). More precisely, consider p and p′ two probability
distributions defined on B(πκ) from τ ∈]0, 1[n and τ ′ ∈]0, 1[n, respectively.
Set m =

∑
π∈B(πκ) pππ and m′ =

∑
π∈B(πκ) p

′
ππ.

Proposition 4.15. — We have m = m′ if and only if τ = τ ′. Therefore,
the map which associates to any τ ∈]0, 1[n the drift m ∈ Dκ is a one-to-one
correspondence.

Proof. — Assume m = m′. By applying Assertion (1) of Theorem 4.13,
we get τγ = (τ ′)γ for any γ ∈ P . Consider i ∈ {1, . . . , n}. For γ = αi, we
obtain τi = τ ′i . Therefore τ = τ ′. �
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5. Some Limit theorems for the Pitman process

5.1. The law of large numbers and the central limit theorem for
W

We start by establishing two classical limit theorems forW, deduced from
the law of large numbers and the central limit theorem for the random walk
W = (W`)`>1 = (X1 + · · · + X`)`>1. Recall that m =

∑
π∈B(πκ) pππ and

m = m(1). Write m⊗∞ for the random path such that

m⊗∞(t) = `m+m(t− `) for any t > 0

where ` = btc .

Let Γ = (Γi,j)16i,j6n = tX` · X` be the common covariance matrix of
each random variable X`.

Theorem 5.1. — Let W be a random path defined on (B(πκ)⊗Z>0 ,
p⊗Z>0) with drift path m. Then, we have

lim
`→+∞

1
`

sup
t∈[0,`]

∥∥W(t)−m⊗∞(t)
∥∥ = 0 almost surely .

Furthermore, the family of random variables
(
W(t)−m⊗∞(t)√

t

)
t>0

con-

verges in law as t→ +∞ towards a centered Gaussian law N (0,Γ).

More precisely, setting W(`)(t) := W(`t)−m⊗∞(`t)√
`

for any 0 6 t 6 1

and ` > 1, the sequence of random processes (W(`)(t))`>1 converges to a
n-dimensional Brownian motion (BΓ(t))06t61 with covariance matrix Γ.

Proof. — Fix ` > 1 and observe that

sup
t∈[0,`]

∥∥W(t)−m⊗∞(t)
∥∥ = sup

06k6`−1
sup

t∈[k,k+1]
‖W(t)− km−m(t− k)‖ .

For any 0 6 k 6 ` and t ∈ [k, k + 1], we have W(t) = Wk + Xk+1(t − k) so
that

W(t)−m⊗∞(t) = Wk − km+
(
Xk+1(t− k)−m(t− k)

)
(5.1)

with sup
t∈[k,k+1]

‖Xk+1(t− k)−m(t− k)‖ = sup
t∈[0,1]

‖Xk+1(t)−m(t)‖ 6 +2L,

since both paths in B(κ) and m have length L, by Proposition 4.6. It readily
follows that

sup
t∈[0,`]

∥∥W(t)−m⊗∞(t)
∥∥ 6 sup

06k6`
‖Wk − km‖+ 2L . (5.2)
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By the law of large number for the random walk W = (Wk)k>1, one gets
lim

k→+∞
1
k ‖Wk − km‖ = 0 almost surely; this readily implies

lim
`→+∞

1
`

sup
t∈[0,`]

∥∥W(t)−m⊗∞(t)
∥∥ = 0 almost surely.

Let us now prove the central limit theorem; for any t > 0, set kt := btc
and notice that decomposition (5.1) yields

W(t)−m⊗∞(t)√
t

=
√
kt
t
× Wkt − ktm√

kt
+ Xkt+1(t− kt)−m(t− kt)√

t
(5.3)

By the central limit theorem in Rn, one knows that the sequence of random

variables
(
Wk − km√

k

)
k>1

converges in law as k → +∞ towards a centered

Gaussian law N (0,Γ); on the other hand, one gets lim
t→+∞

√
kt
t

= 1 and

lim sup
t→+∞

∥∥∥Xkt+1(t− kt)−m(t− kt)√
t

∥∥∥ 6 lim sup
t→+∞

2L√
t

= 0, so one may conclude

using Slutsky’s theorem.

The convergence of the sequence (W`(t))`>1 towards a Brownian motion
goes along the same line. One sets

W (`)(t) :=
Wb`tc + (`t− b`tc)Xb`tc+1(1)− `tm

√
`

for all ` > 1 and 0 6 t 6 1

and observes that
∥∥∥W(`)(t)−W (`)(t)

∥∥∥ 6 2√
`
(‖m‖∞ + ‖Xbntc+1‖∞). �

5.2. The law of large numbers and the central limit theorem for H

To prove the law of large numbers and the central limit theorem for H,
we need the two following preparatory lemmas. Consider a simple root α
and a trajectory η ∈ Ω such that 1

` 〈η(`), α∨〉 converges to a positive limit
when ` tends to infinity.

Lemma 5.2. — There exists a nonnegative integer `0 such that for any
` > `0

inf
t∈[0,`]

〈η(t), α∨〉 = inf
t∈[0,`0]

〈η(t), α∨〉 .

Proof. — Since 1
` 〈η(`), α∨〉 converges to a positive limit, we have in par-

ticular that lim
`→+∞

〈η(`), α∨〉 = +∞. Consider t > 0 and set ` = btc. We can
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write by definition of η ∈ Ω, η(t) = η(`) + π(t − `) where π is a path of
B(πκ). So 〈η(t), α∨〉 = 〈η(`), α∨〉+ 〈π(t− `), α∨〉. Since π ∈ B(πκ), we have

‖π(t− `)‖ 6 L

where L is the common length of the paths in B(πκ). So the possible
values of 〈π(t − `), α∨〉 are bounded. Since lim`→+∞〈η(`), α∨〉 = +∞, we
also get limt→+∞〈η(t), α∨〉 = +∞. Recall that η(0) = 0. Therefore
inft∈[0,`]〈η(t), α∨〉 6 0. Since limt→+∞〈η(t), α∨〉 = +∞ and the path η is
continuous, there should exist an integer `0 such that inft∈[0,`0]〈η(t), α∨〉 =
inft∈[0,`0]〈η(t), α∨〉 for any ` > `0. �

Lemma 5.3.
(1) Consider a simple root α and a trajectory η ∈ Ω such that 1

` 〈η(`), α∨〉
converges to a positive limit when ` tends to infinity. We have for
any simple root α

sup
t∈[0,+∞[

‖Pα(η)(t)− η(t)‖ < +∞ ,

in particular, 1
` 〈Pα(η)(`), α∨〉 also converges to a positive limit.

(2) More generally, let αi1 , · · · , αir , r > 1, be simple roots of g, and η a
path in Ω satisfying limt→+∞〈η(t), α∨ij 〉 = +∞ for 1 6 j 6 r. Then
one has

sup
t∈[0,+∞[

‖Pαi1 · · · Pαir (η)(t)− η(t)‖ < +∞ .

Proof. — (1) By definition of the transform Pα, we have

‖Pα(η)(t)− η(t)‖ =
∣∣∣∣ inf
t∈[0,t]

〈η(s), α∨〉
∣∣∣∣ ‖α∨‖

for any t > 0. By the previous lemma, there exists an integer `0 such that
for any t > `0,

‖Pα(η)(t)− η(t)‖ =
∣∣∣∣ inf
s∈[0,t]

〈η(s), α∨〉
∣∣∣∣ ‖α∨‖ =

∣∣∣∣ inf
s∈[0,`0]

〈η(s), α∨〉
∣∣∣∣ ‖α∨‖ .

Since the infimum infs∈[0,`0]〈η(s), α∨〉 does not depend on `, we are done.
Now 1

` 〈Pα(η(`)), α∨〉 and 1
` 〈η(`), α∨〉 admit the same limit.

(2) Consider a ∈ {2, . . . , r − 1} and assume by induction that we have

sup
t∈[0,+∞[

∥∥Pαia · · · Pαir (η)(t)−m⊗∞(t)
∥∥ < +∞ . (5.4)

We then deduce

lim
`→+∞

1
`
〈Pαia · · · Pαir (η)(`), α∨ia−1

〉 = 〈m,α∨ia−1
〉 > 0 . (5.5)
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This allows us to apply Lemma 5.3 with η′ =P αia
· · · Pαir (η) and α = αia−1 .

We get

sup
t∈[0,+∞[

∥∥∥Pαia−1
· · · Pαir (η)(t)− Pαia · · · Pαir (η)(t)

∥∥∥ < +∞ .

By using (5.4), this gives

sup
t∈[0,+∞[

∥∥∥Pαia−1
· · · Pαir (η)(t)−m⊗∞(t)

∥∥∥ < +∞ . (5.6)

We thus have proved by induction that (5.6) holds for any a = 2, . . . ,
r − 1. �

Theorem 5.4. — Let W be a random path defined on Ω = (B(πκ)⊗Z>0 ,
p⊗Z>0) with drift path m and let H = P(W) be its Pitman transform. Assume
m ∈ Dκ. Then we have

lim
`→+∞

1
`

sup
t∈[0,`]

∥∥H(t)−m⊗∞(t)
∥∥ = 0 almost surely .

Furthermore, the family of random variables
(
H(t)−m⊗∞(t)√

t

)
t>0

con-

verges in law as t→ +∞ towards a centered Gaussian law N (0,Γ).
Proof. — Recall we have P=Pαi1 · · · Pαir by Proposition 4.10. Conse-

quently, by Theorem 5.1 and Lemma 5.3, the random variable H − W =
P(W)−W is finite almost surely. It follows that

lim sup
`→+∞

1
`

sup
t∈[0,`]

∥∥H(t)−m⊗l(t)
∥∥

6 lim sup
`→+∞

1
`

sup
t∈[0,`]

∥∥W(t)−m⊗l(t)
∥∥+ lim sup

`→+∞

1
`

sup
t>0
‖H(t)−W(t)‖ = 0

almost surely. To get the central limit theorem for the process H(t), we write
similarly

H(t)−m⊗l(t)√
t

= W(t)−m⊗l(t)√
t

+ H(t)−W(t)√
t

.

By Theorem 5.1, the first term in this decomposition satisfies the central
limit theorem; on the other hand the second one tends to 0 almost surely
and one concludes using Slutsky theorem. �

6. Harmonic functions on multiplicative graphs associated to a
central measure

Harmonic functions on the Young lattice are the key ingredients in the
study of the asymptotic representation theory of the symmetric group. In
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fact, it was shown by Kerov and Vershik that these harmonic functions
completely determine the asymptotic characters of the symmetric groups.
We refer the reader to [6] for a detailed review. The Young lattice is an
oriented graph with set of vertices the set of all partitions (each partition is
conveniently identified with its Young diagram). We have an arrow λ → Λ
between the partitions λ and Λ when Λ can be obtained by adding a box to
λ. The Young lattice is an example of branching graph in the sense that its
structure reflects the branching rules between the representation theory of
the groups S` and S`+1 with ` > 0. One can also consider harmonic functions
on other interesting graphs.

Here we focus on graphs defined from the weight lattice of g. These graphs
depend on a fixed κ ∈ P+ and are multiplicative in the sense that a positive
integer, equal to a tensor product multiplicity, is associated to each arrow.
We call them the multiplicative tensor graphs. We are going to associate a
Markov chain to each multiplicative tensor graph G. The aim of this section is
to determine the harmonic functions on G when this associated Markov chain
is assumed to have a drift. We will show this is equivalent to determine the
central probability measure on the subset ΩC containing all the trajectories
which remain in C. When g = sln+1 and κ = ω1 (that is V (κ) = Cn+1 is
the defining representation of sln+1), G is the subgraph of the Young lattice
obtained by considering only the partitions with at most n + 1 parts and
we recover the harmonic functions as specializations of Schur polynomials.
Observe nevertheless that the definition of G is related to tensor products of
representations of sln+1 and not to an induction procedure on the irreducible
representations of the symmetric group.

6.1. Multiplicative tensor graphs, harmonic functions and central
measures

So assume κ ∈ P+ is fixed. We denote by G the oriented graph with set
of vertices the pairs (λ, `) ∈ P+ × Z>0 and arrows

(λ, `)
mΛ
λ,κ→ (Λ, `+ 1)

with multiplicity mΛ
λ,κ when mΛ

λ,κ > 0. In particular there is no arrows
between (λ, `) and (Λ, `+ 1) when mΛ

κ,κ = 0.

Example 6.1. — Consider g = sp2n. Then P = Zn and P+ can be
identified with the set of partitions with at most n parts. For κ = ω1 the
graph G contains the arrow (λ, `) → (Λ, ` + 1) with mΛ

λ,κ = 1 if and only if
the Young diagram of Λ is obtained from that of λ by adding or deleting one
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box. We have drawn below the connected component of ( ∅, 0 ) up to ` 6 3.

(∅, 0 )
↓(
, 1
)

↙ ↓ ↘

(∅, 2 )
(

, 2
) (

, 2
)

↙↘ ↓ ↙↘ ↓ ↘

(
, 3
) (

, 3
) (

, 3
)  , 3


...

...
...

...

Observe that in the case g = sln+1 and κ = ω1, we have mΛ
λ,κ = 1 if and

only if of the Young diagram of Λ is obtained by adding one box to that of
λ and mΛ

λ,κ = 0 otherwise. So in this very particular case, it is not useful to
keep the second component ` since it is equal to the rank of the partition λ.
The vertices of G are simply the partitions with at most n parts (i.e. whose
Young diagram has at most n rows).

Now return to the general case. Our aim is now to relate the harmonic
functions on G and the central probability distributions on the set ΩC of
infinite trajectories with steps in B(πκ) which remain in C. We will identify
the elements of P+ × Z>0 as elements of the R-vector space PR × R (recall
PR = Rn). For any ` > 0, set H` = {π ∈ B(πκ)⊗` | Im π ⊂ C}. Also if
λ ∈ P+, set H`

λ = {π ∈ H` | wt(π) = λ}. Given π ∈ H`, we denote by

Cπ = {ω ∈ ΩC | Π`(ω) = π}

the cylinder defined by π. We have C∅ = ΩC . Each probability distribution
Q on ΩC is determined by its values on the cylinders and we must have

∑
π∈H`

Q(Cπ) = 1

for any ` > 0.
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Definition 6.2. — A central probability distribution on ΩC(3) is a prob-
ability distribution Q on ΩC such that

Q(Cπ) = Q(Cπ′)
provided that wt(π) = wt(π′) and π, π′ have the same length.

Consider a central probability distribution Q on ΩC . For any ` > 1, we
have

∑
π∈H` Q(Cπ) = 1, so it is possible to define a probability distribution

q on H` by setting qπ = Q(Cπ) for any π ∈ H`. Since Q is central, we can
also define the function

ϕ :
{

G → [0, 1]
(λ, `) 7−→ Q(Cπ) (6.1)

where π is any path of H`. Now observe that

Cπ =
⊔

η∈B(πκ)|Im(π⊗η)⊂C

Cπ⊗η .

This gives
Q(Cπ) =

∑
η∈B(πκ)|Im(π⊗η)⊂C

Q(Cπ⊗η) . (6.2)

Assume π ∈ H`
λ. By Theorem 3.3, the cardinality of the set {η ∈ B(πκ) |

Im(π ⊗ η) ⊂ C and wt(π ⊗ η) = Λ} is equal to mΛ
λ,κ. Therefore, we get

ϕ(λ, `) =
∑
Λ

mΛ
λ,κϕ(Λ, `+ 1) . (6.3)

This means that the function ϕ is harmonic on the multiplicative graph G.

Conversely, if ϕ′ is harmonic on the multiplicative graph G, for any cylin-
der Cπ in ΩC with π ∈ H`

λ, we set Q′(Cπ) = ϕ′(λ, `). Then Q′ is a probability
distribution on ΩC since it verifies (6.2) and is clearly central. Therefore, a
central probability distribution on ΩC is characterized by its associated har-
monic function on G defined by (6.1).

6.2. Harmonic function on a multiplicative tensor graph

Let Q be a central probability distribution on ΩC . Consider π =
π1 ⊗ · · · ⊗ π` ∈ H`

λ and π# = π1 ⊗ · · · ⊗ π` ⊗ π`+1 ∈ H`+1
Λ . Since we

have the inclusion of events Cπ# ⊂ Cπ, we get

Q(Cπ# | Cπ) = Q(Cπ#)
Q(Cπ) = ϕ(Λ, `+ 1)

ϕ(λ, `)
(3) Alternatively, one can also consider central probability distributions M on the mul-

tiplicative graph G. The paths in C should then be replaced by the weighted paths in G
which slightly modifies the definition of central distributions (see [5]).
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where the last equality is by definition of the harmonic function ϕ (which
exists since Q is central). Let us emphasize that Q(Cπ#) and Q(Cπ) do not
depend on the paths π and π# but only on their lengths and their ends λ
and Λ. We then define a Markov chain Z = (Z`)`>0 from (ΩC ,Q) with values
in G and starting at Z0 = (µ, `0) ∈ G by

Z`(ω) = (µ+ ω(`), `+ `0) .
Its transition probabilities are given by

ΠZ((λ, `), (Λ, `+ 1)) =
∑
π#

Q(Cπ# | Cπ)

where π is any path in H`
λ and the sum runs over all the paths π# ∈ H`+1

Λ
such that π# = π ⊗ π`+1. Observe, the above sum does not depend on the
choice of π in H`

λ because Q is central. Since there are mΛ
λ,κ such pairs, we

get

ΠZ((λ, `), (Λ, `+ 1)) =
mΛ
λ,κϕ(Λ, `+ 1)
ϕ(λ, `) (6.4)

and by (6.3) Z = (Z`)`>0 is indeed a Markov chain. We then write
Q(µ,`0)(Z` = (λ, `)) for the probability that Z` = (λ, `) when the initial
value is Z0 = (µ, `0). When Z0 = (0, 0), we simply write Q(Z` = (λ, `)) =
Q(0,0)(Z` = (λ, `)).

Lemma 6.3. — For any µ, λ ∈ P+ and any integer `0 > 1, we have

Q(µ,`0)(Z`−`0 = (λ, `)) = f
(`−`0)
λ/µ

ϕ(λ, `)
ϕ(µ, `0) for any ` > `0 .

Proof. — By (6.4), the probability Q(µ,`0)(Z`−`0 = (λ, `)) is equal to the
quotient ϕ(λ,`)

ϕ(µ,`0) times the number of paths in C of length ` − `0 starting at
µ and ending at λ. The lemma thus follows from the fact that this number
is equal to f (`−`0)

λ/µ by Theorem 3.3. �

We will say that the family of Markov chains Z with transition proba-
bilities given by (6.4) and initial distributions of the form Z0 = (µ, `0) ∈ G
admits a drift m ∈ PR when

lim
`→+∞

Z`
`

= (m, 1) Q-almost surely

for any initial distributions Z0 = (µ, `0) ∈ G.

Theorem 6.4. — Let Q be a central probability distribution on ΩC such
that Z admits the drift m ∈ Dκ (see (4.3)).

(1) The associated harmonic function ϕ on G satisfies ϕ(µ, `0) =
τ−µSµ(τ)
τ−`0κS

`0
κ (τ)

for any µ ∈ P+ and any `0 > 0 where τ is determined
by m as prescribed by Proposition 4.15.
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(2) The probability transitions (6.4) do not depend on `.
(3) For any π ∈ H`0

µ , we have Q(Cπ) = τ−µSµ(τ)
τ−`0κS

`0
κ (τ)

. In particular, Q is
the unique central probability distribution on ΩC such that Z admits
the drift m. We will denote it by Qm.

Proof. — (1) Consider a sequence of random dominant weights of the
form λ(`) = `m+ o(`). We get by using Lemma 6.3

f
(`−`0)
λ(`)/µ

f
(`)
λ(`)

× 1
ϕ(µ, `0) = f

(`−`0)
λ(`)/µ

× ϕ(λ(`), `)
ϕ(µ, `0) × [f (`)

λ(`) × ϕ(λ(`), `)]−1

=
Q(µ,`0)(Z`−`0 = (λ(`), `))

Q(Z` = (λ(`), `))
=

Q(µ,`0)(
Z`−`0
`−`0 = ( λ

(`)

`−`0 ,
`

`−`0 ))
Q(Z`` = (λ(`)

` , 1))
.

Since Z admits the drift m, we obtain

lim
`→+∞

Q(µ,`0)(
Z`−`0
`−`0 = ( λ

(`)

`−`0 ,
`

`−`0 ))
Q(Z`` = (λ(`)

` , 1))
= 1

1 = 1

and lim
`→+∞

f
(`−`0)
λ(`)/µ

f
(`)
λ(`)

× 1
ϕ(µ, `0) = 1 .

This means that

ϕ(µ, `0) = lim
`→+∞

f
(`−`0)
λ(`)/µ

f
(`)
λ(`)

.

Now by Theorem 4.13 and since m ∈ Dκ we can write

lim
`→+∞

f
(`−`0)
λ(`)/µ

f
(`)
λ(`)

= lim
`→+∞

f
(`−`0)
λ(`)/µ

f
(`−`0)
λ(`)

× lim
`→+∞

f
(`−`0)
λ(`)

f
(`)
λ(`)

= τ−µSµ(τ)
τ−`0κS`0κ (τ)

where τ ∈]0, 1[n is determined by the drift m as prescribed by Proposi-
tion 4.15. We thus obtain ϕ(µ, `0) = τ−µSµ(τ)

τ−`0κS
`0
κ (τ)

.

(2) We have ΠZ((λ, `), (Λ, `+1)) = mΛ
λ,κϕ(Λ,`+1)
ϕ(λ,`) = SΛ(τ)

Sκ(τ)Sλ(τ)τ
κ+λ−ΛmΛ

λ,κ

which does not depend on `.

(3) This follows from the fact that Q(Cπ) = ϕ(λ, `) for any π ∈ H`
λ. �

Consider m ∈ Dκ and write τ for the corresponding n-tuple in ]0, 1[n. Let
W be the random walk starting at 0 defined on P from κ and τ as in §4.3.

Corollary 6.5. — Let Q be a central probability distribution on ΩC
such that Z admits the drift m ∈ Dκ. Then, the processes (Z`)` and
((P(W`), `))` have the same law.
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Proof. — By the previous theorem, the transitions of the Markov chain
Z on G are given by ΠZ((λ, `), (Λ, `+ 1)) = mΛ

λ,κϕ(Λ,`+1)
ϕ(λ,`) . By Theorem 4.12,

the transition matrix ΠZ thus coincides with the transition matrix of P(W )
as desired. �

Let Pm and Qm be the probability distributions associated to m (recall
m determines τ ∈]0, 1[n) defined on the spaces Ω and ΩC , respectively.

Corollary 6.6. — The Pitman transform P is a homomorphism of
probability spaces between (Ω,Pm) and (ΩC ,Qm), that is we have

Qm(Cπ) = Pm(P−1(Cπ))
for any ` > 1 and any π ∈ H`.

Proof. — Assume π ∈ H`
λ. We have Qm(Cπ) = ϕ(λ, `) = τ−λSλ(τ)

τ−`κS`κ(τ) . By
definition of the generalized Pitman transform P, P−1(Cπ) = {ω ∈ Ω |
P(Π`(ω)) = π}, that is P−1(Cπ) is the set of all trajectories in Ω which
remain in the connected component B(π) ⊂ B(πκ)⊗` for any t ∈ [0, `].
We thus have Pm(P−1(Cπ)) = p⊗`(B(π)) = τ−λSλ(τ)

τ−`κS`κ(τ) by Assertion (2) of
Theorem 4.12. Therefore we get Pm(P−1(Cπ)) = Qm(Cπ) as desired. �

7. Isomorphism of dynamical systems

In this section, we first explain how the trajectories in Ω and ΩC can be
equipped with natural shifts S and J , respectively. We then prove that the
generalized Pitman transform P intertwines S and J . When g = sln+1 and
κ = ω1, we recover in particular some analogous results from [16].

7.1. The shift operator

Let S : Ω→ Ω be the shift operator on Ω defined by
S(π) = S(π1 ⊗ π2 ⊗ π3 ⊗ · · · ) := (π2 ⊗ π3 ⊗ . . .)

for any trajectory π = π1 ⊗ π2 ⊗ π3 ⊗ · · · ∈ Ω. Observe that S is measure
preserving for the probability distribution Pm. We now introduce the map
J : ΩC → ΩC defined by

J(π) = P ◦ S(π)
for any trajectory π ∈ ΩC . Observe that S(π) does not belong to ΩC in
general so we need to apply the Pitman transform P to ensure that J takes
values in ΩC .
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7.2. Isomorphism of dynamical systems

Theorem 7.1.
(1) The Pitman transform is a factor map of dynamical systems, i.e.

the following diagram commutes:

Ω S→ Ω
P ↓ ↓ P

ΩC →
J

ΩC

(2) For any m ∈ Dκ, the transformation J : ΩC → ΩC is measure pre-
serving with respect to the (unique) central probability distribution
Qm with drift m.

Proof. — (1) To prove this assertion, it suffices to establish that the above
diagram commutes on trajectories of any finite length ` > 0. So consider
π = π1 ⊗ π2 ⊗ · · · ⊗ π` ∈ B(πκ)⊗` and set P(π) = π+

1 ⊗ π
+
2 ⊗ · · · ⊗ π

+
` . We

have to prove that

P(π2 ⊗ · · · ⊗ π`) = P(π+
2 ⊗ · · · ⊗ π

+
` )

which means that both vertices π2 ⊗ · · · ⊗ π` and π+
2 ⊗ · · · ⊗ π

+
` belong to

the same connected component of B(πκ)⊗`−1. We know that P(π) is the
highest weight vertex of B(π). This implies that there exists a sequence of
root operators ẽi1 , . . . , ẽir such that

π+
1 ⊗ π

+
2 ⊗ · · · ⊗ π

+
` = ẽi1 · · · ẽir (π1 ⊗ π2 ⊗ · · · ⊗ π`) . (7.1)

By (3.6), we can define a subset X := {k ∈ {1, . . . , r} such that ẽik acts on
the first component of the tensor product ẽik+1 · · · ẽir (π1 ⊗ π2 ⊗ · · · ⊗ π`)}.
We thus obtain

π+
2 ⊗ · · · ⊗ π

+
` =

∏
k∈{1,...,r}\X

ẽik(π2 ⊗ · · · ⊗ π`)

which shows that π2⊗· · ·⊗π` and π+
2 ⊗· · ·⊗π

+
` belong to the same connected

component of B(πκ)⊗`−1. They thus have the same highest weight path as
desired.

(2) Let A ⊂ ΩC be a Q-measurable set. We have Q(J−1(A)) =
P(P−1(J−1(A)) since P is a homomorphism. Using the fact that the
previous diagram commutes and S preserves P, we get Q(J−1(A)) =
P(S−1(P−1(A))) = P(P), so Q(J−1(A)) = Q(A) since P is a homomor-
phism. �
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8. Dual random path and the inverse Pitman transform

It is well known (see [15]) that the Pitman transform on the line is re-
versible. The aim of this paragraph is to establish that E , restricted to a
relevant set of infinite trajectories with measure 1, can be regarded as a
similar inverse for the generalized Pitman transform P. We assume in the
remaining of the paper that m ∈ Dκ. This permits to define a random walk
W and a Markov chain H = P(W) as in Section 4. Since m is fixed, we
will denote for short by P and Q the probability distributions Pm and Qm,
respectively.

8.1. Typical trajectories

Consider m ∈ Dκ and the associated distributions Pm and Qm defined
on Ω and ΩC , respectively. We introduce the subsets of typical trajectories
Ωtyp,Ωιtyp and Ωtyp

C as

Ωtyp = {π ∈ Ω | lim
`→+∞

1
`
〈π(`), α∨i 〉 = 〈m,α∨i 〉 ∈ R>0 ∀i = 1, . . . , n} ,

Ωιtyp = {π ∈ Ω | lim
`→+∞

1
`
〈π(`), α∨i 〉 = 〈w0(m), α∨i 〉 ∈ R<0 ∀i = 1, . . . , n} ,

Ωtyp
C = {π ∈ ΩC | lim

`→+∞

1
`
〈π(`), α∨i 〉 = 〈m,α∨i 〉 ∈ R>0 ∀i = 1, . . . , n} .

By Theorems 5.1 and 5.4, we have
Pm(Ωtyp) = 1 and Qm(Ωtyp

C ) = 1 .
We are going to see that the relevant Pitman inverse coincides with E acting
on the trajectories of Ωtyp

C and we will show that E(H) is then a random
trajectory with drift w0(m) where w0 is the longest element of the Weyl
group W.

8.2. An involution on the trajectories

We have seen that the reverse map r on paths defined in (3.4) flips the
actions of the operators ẽi and f̃i on any connected crystal B(πκ) of highest
path πκ. Nevertheless, we have

r(B(πκ) 6= B(πκ)
in general. So r(Ω) 6= Ω. To overcome this difficulty we can replace our space
of trajectories Ω by the set L∞ of all infinite paths defined from the set L of
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§3.2. But L∞ has not a probability space structure neither a simple algebraic
interpretation. Rather, it is interesting to give another definition of E where
the involution r is replaced by the Lusztig involution ι which stabilizes B(πκ)
(see for example [10]). The longest element w0 of the Weyl group W (which
is an involution) induces an involution ∗ on the set of simple roots defined by
αi∗ = −w0(αi) for any i = 1, . . . , n. Write πlowκ for the lowest weight vertex
of B(πκ), that is πlowκ is the unique vertex of B(πκ) such that f̃i(πlowκ ) = 0
for any i = 1, . . . , n. The involution ι is first defined on the crystal B(πκ) by

ι(πκ) = πlowκ and ι(f̃i1 · · · f̃irπκ) = ẽi∗1 · · · ẽi∗r (πlowκ )

for any sequence of crystal operators f̃i1 , . . . , f̃ir with r > 0. This means
that ι flips the orientation of the arrows of B(πκ) and each label i is changed
to i∗. In particular, we have wt(ι(π)) = w0(wt(π)) for any π ∈ B(πκ). We
extend ι by linearity on the linear combinations of paths in B(πκ).

We next define the involution ι on B(πκ)⊗` by setting
ι(π1 ⊗ · · · ⊗ π`) = ι(π`)⊗ · · · ⊗ ι(π1)

for any π1 ⊗ · · · ⊗ π` ∈ B(πκ)⊗`. It then follows from (3.6) that for any
i = 1, . . . , n we have

ιf̃iι(π1 ⊗ · · · ⊗ π`) = ẽi∗(π1 ⊗ · · · ⊗ π`) . (8.1)
Thus the involution ι flips the lowest and highest weight paths, reverses
the arrows and changes each label i to i∗. In particular, for any connected
component B(η) of B(πκ)⊗`, the set ι(B(η)) is also a connected component
of B(πκ)⊗`. In addition, we have

wt(ι(π1 ⊗ · · · ⊗ π`)) = w0(wt(π1 ⊗ · · · ⊗ π`)). (8.2)

Remark 8.1. — Observe that ι is very close to r. The crucial difference
is that the crystals ι(B(πκ)) and B(πκ) coincide whereas r(B(πκ)) is not a
crystal in general.

Example 8.2. — We resume Example 4.7 and consider g = sp4 and
κ = ω1. In this particular case we get w0 = −id and ι = r on B(πω1). We
then have ι(π1) = π1 and ι(π2) = π2. In the picture below we have drawn
the path η and ι(η) where

η = 1121112̄1̄2̄1112221̄2̄1112221112̄1̄22211,
ι(η) = 1̄1̄2̄2̄2̄121̄1̄1̄2̄2̄2̄1̄1̄1̄212̄2̄2̄1̄1̄1̄2121̄1̄1̄2̄1̄1̄.

Here we simply write a ∈ {2̄, 1̄, 1, 2} instead of πa and omit for short the
symbols ⊗.

The following proposition shows we can replace the involution r by ι in
the definition of the dual Pitman transform.
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Figure 8.1. The paths η (in red) and ι(η) (in dashed read)

Proposition 8.3. — We have

E = rPr = ιPι .

Proof. — Observe first that for any simple root αi, and any path η ∈
B(πκ)⊗`, we have by (8.1) Eαi(η) = ιPαi∗ ι(η) because the action of Eαi on
any path reduces to a product of operators f̃i. Since E = Eα1 · · · Eαr , we
get E = ιPα1∗ · · · Pαr∗ ι. But Pα1∗ · · · Pαr∗ = Pα1 · · · Pαr = P by Proposi-
tion 4.10 because w0 = sα1∗ · · · sαr∗ is also a minimal length decomposition
of w0. We therefore obtain E = ιPι as desired. �

8.3. Dual random path

Let us define the probability distribution pι on B(πκ) by setting

pιπ = pι(π) = τκ−w0wt(π)

Sκ(τ) for any π ∈ B(πκ) (8.3)

and consider a random variable Y with values in B(πκ) and probability
distribution pι. Set mι = E(Y ), mι = mι(1) and Dικ = w0(Dκ).
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Lemma 8.4. — We have
(1) mι = ι(m)
(2) mι = w0(m). In particular, m ∈ Dκ if and only if mι ∈ Dικ.

Proof. — By using that ι is an involution on B(πκ), we get

mι =
∑

π∈B(πκ)

pιππ =
∑

π∈B(πκ)

pι(π)π = ι

 ∑
π∈B(πκ)

pι(π)ι(π)

 = ι(m)

which proves Assertion (1). In particular, if we set mι = mι(1), we have
mι = w0(m) and Assertion (2) follows. �

Similarly, we may consider the probability measure (pι)⊗` on B(πκ)⊗`
defined by

(pι)⊗`(π1 ⊗ · · · ⊗ π`) = pι(π1) · · · pι(π`) = τ `κ−w0(π1(1)+···π`(1))

Sκ(τ)`

= τ `κ−w0(wt(b))

Sκ(τ)` . (4)

By the Kolmogorov extension theorem, the family of probability mesures
((pι)⊗`)` admits a unique extension Pι := (pι)⊗Z>0 to the space B(πκ)⊗Z>0 .
For any ` > 1, let Y` : B(πκ)⊗Z>0 −→ B(πκ) be the canonical projection on
the `th coordinate; by construction, the variables Y1, Y2, · · · are independent
and identically distributed with the same law as Y . We denote by Wι the
random path defined by

Wι(t) := Y1(1) + Y2(1) + · · ·+ Y`−1(1) + Y`(t− `+ 1) for t ∈ [`− 1, `].

Then Wι is defined on the probability space Ωι = (B(πκ)⊗Z>0 ,Pι); notice
that the set of trajectories of Ωι is the same as the one of Ω but the proba-
bility Pι is defined from pι. We have in particular

Pι(Ωιtyp) = 1.

We also define the random walk W ι = (W ι
` )`>1 such that W ι

` = Wι(`)
for any ` > 1. Let Hι be the random process Hι =P(Wι) and define
Hι = (Hι

`)`>1 such that Hι
` = Hι(`) for any ` > 1. We then have (see [9,

Proposition 4.6])

(4) We now have two probability measures p⊗` and (pι)⊗` on B(πκ)⊗`. Observe that
for any event E ⊂ B(πκ)⊗`, we get

(pι)⊗`(E) = p⊗`(ι(E)). (8.4)
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Theorem 8.5.
(1) For any β, η ∈ P , one has

Pι(W ι
`+1 = β |W ι

` = η) = Kκ,β−η
τκ−w0(β−η)

Sκ(τ) .

(2) The random sequence Hι is a Markov chain with the same law as
H, that is with transition matrix

Π(µ, λ) = Sλ(τ)
Sκ(τ)Sµ(τ)τ

κ+µ−λmλ
µ,κ

where λ, µ ∈ P+.
(3) For any path π ∈ H`

λ,we have

Pι(Hι = π) = P(H = π) = τ `κ−λSλ(τ)
Sκ(τ)` .

8.4. Asymptotic behavior in a fixed component

Consider π ∈ B(πκ)⊗` and η ∈ Ω such that 1
L 〈η(L), α∨i 〉 converges to a

positive limit for any positive root αi, i = 1, . . . n. For any L, set ΠL(η) = ηL
so that we have ηL ∈ B(πκ)⊗L. Since π ∈ B(πκ)⊗`, the path ηL⊗π is defined
on [0, ` + L]. More precisely, we have ηL ⊗ π(t) = ηL(t) for t ∈ [0, L[ and
ηL ⊗ π(t) = ηL(L) + π(t− L) for t ∈ [L, `+ L].

Lemma 8.6. — With the previous notation, we get
P(ηL ⊗ π) = P(ηL)⊗ π

for L sufficiently large.

Proof. — Recall that P=Pαi1 · · · Pαir . One proves by induction that for
any s = 1, . . . , r, there exists a nonnegative integer Ls such that

Pαis · · · Pαir (ηL ⊗ π) = Pαis · · · Pαir (ηL)⊗ π
for any L > Ls and lim

L→+∞
〈Pαis · · · Pαir (η)(L), α∨〉 = +∞ for any simple

root α. The lemma then follows by putting s = 1. �

Let H = (H`)`>1 be a random process in ΩC ⊂ Ω with distribution
Qm. Since H takes value in Ω, we can write H` = T1 ⊗ · · · ⊗ T` for any
` > 1, where the random variable Ti takes values in B(πκ) for any i > 1.
By Corollary 6.6, there exists a random process W with values in Ω and
distribution Pm such that H and P(W) coincide Pm -almost surely. Notice
that we also have W` = X1 ⊗ · · · ⊗X` for any ` > 1, where X` is a random
variable with values in B(πκ) with the law defined in (4.5).
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Proposition 8.7. — Pm-almost surely, the random variables T` and X`

coincide for any large enough `.

Proof. — Consider a trajectory ω ∈ Ωtyp. For any ` > 1 and set Π`(ω) =
π1⊗ · · ·⊗π`. We can apply Lemma 8.6 to π1⊗ · · ·⊗π`−1⊗π` since we have
ω ∈ Ωtyp. Hence, for ` sufficiently large, we have

P(π1 ⊗ · · · ⊗ π`−1 ⊗ π`) = P(π1 ⊗ · · · ⊗ π`−1)⊗ π` .

We thus have lim`→+∞(T` − X`) = 0 on Ωtyp. We are done since
Pm(Ωtyp) = 1. �

8.5. The transformations P and E on infinite paths

The transformations P and E defined on B(πκ)⊗` can be extended to Ω
and Ωtyp

C , respectively. For any η ∈ Ω and any simple root α, set

Pα(η)(t) = η(t)− inf
s∈[0,t]

〈η(s), α∨〉α and P(η) = Pαi1 · · · Pαir (η) .

Similarly, for any η ∈ Ω and any simple root α such that limt→∞〈η(t), α∨〉 =
+∞, the path Eα(η) such that

Eα(η)(t) = η(t)− inf
s∈[t,+∞[

〈η(s), α∨〉α+ inf
s∈[0,+∞[

〈η(s), α∨〉α

for any t > 0 is well defined.

Proposition 8.8. — Consider η in Ωtyp
C . Then E(η) = Eαi1 · · · Eαir (η)

is well defined and belongs to Ωιtyp.

Proof. — We proceed by induction and show that E(η) = Eαia · · · Eαir (η)
is well-defined for any a = 1, . . . , r. It suffices to prove that

lim
t→∞
〈η(t), αr〉 = +∞ and lim

t→∞
〈Eαia+1

· · · Eαir η(t), αa〉 = +∞

for any a = 1, . . . r − 1. We get limt→∞〈η(t), αr〉 = +∞ directly from the
definition of Ωtyp

C . Now for any a = 1, . . . , r − 1, and any integer ` > 0, we
have that Eαia+1

· · · Eαir η(`) is the weight of the path Π`(η). So we obtain
by (4.9)

〈Eαia+1
· · · Eαir η(`), αa〉 = 〈sia+1 · · · sirη(`), αa〉 = 〈η(`), sir · · · sia+1(αa)〉 .

Since w0 is an involution, w0 = sir · · · si1 is also a minimal length decom-
position. By (3.1), we know that sir · · · sia+1(αa) = α is a positive root. It
follows that

lim
`→∞
〈η(`), sir · · · sia+1(αa)〉 = lim

`→∞
〈Eαia+1

· · · Eαir η(`), αa〉 = +∞ .
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We finally get limt→∞〈Eαia+1
· · · Eαir η(t), αa〉 = +∞ because∥∥∥Eαia+1

· · · Eαir (η(t))− Eαia+1
· · · Eαir (η(`))

∥∥∥ with ` = btc

is bounded by the common length of the elementary paths of B(πκ), uni-
formly in `. This proves that E(η) is well-defined. Since η ∈ Ωtyp

C , the path
η` = Π`(η) is of highest weight. Thus, the path E(η`) is of lowest weight.
Comparing their weights, we get E(η)(`) = w0(η(`)) which implies that
E(η) ∈ Ωιtyp. �

Observe we have P(η) = lim`→+∞ P(η`) and E(η) = lim`→+∞ E(η`)
where η` = Π`(η).

8.6. Composition of the transformations P and E

Consider π ∈ B(πκ)⊗`, η ∈ Ωtyp
C , and ξ ∈ Ωιtyp. For any positive integer

L, set ΠL(η) = ηL and ΠL(ξ) = ξL.

Lemma 8.9. — With the above notation we have for L sufficiently large
(1) PE(π ⊗ ηL) = π ⊗ ηL when π ⊗ ηL is a highest weight path,
(2) EP(π ⊗ ξL) = π ⊗ E(ξL).

Proof. — (1) Since π ⊗ ηL is a highest weight path, E(π ⊗ ηL) is the
lowest weight path of B(π⊗ ηL), the crystal associated to π⊗ ηL. Therefore
PE(π ⊗ ηL) = π ⊗ ηL is the highest weight path of B(π ⊗ ηL).

(2) Since ξ ∈ Ωιtyp, we have for any i = 1, . . . , n, lim
L→+∞

〈ξL(L), α∨i 〉 =
−∞. We get by (8.2)

〈ι(ξL)(L), α∨i 〉 = 〈w0(ξL(L)), α∨i 〉 = 〈ξL(L), w0(α∨i )〉 = −〈ξL(L), α∨i∗〉

for any i = 1, . . . , n. So lim
L→+∞

〈ι(ξL)(L), α∨i 〉 = +∞ for any i = 1, . . . , n.
Recall the ιP = Eι and ιE = Pι by Lemma 8.3. We have the equivalences

E(π ⊗ ξL) = π ⊗ E(ξL)⇐⇒ ιE(π ⊗ ξL) = ι(π ⊗ E(ξL))
⇐⇒ P(ι(ξL)⊗ ι(π)) = P(ι(ξL))⊗ ι(π) .

But the last equality holds by Lemma 8.6 for L sufficiently large. This proves
that E(π⊗ ξL) = π⊗E(ξL) for L sufficiently large. Now, observe that π⊗ ξL
and E(π⊗ξL) = π⊗E(ξL) both belong to the crystal B(π⊗ξL). In this crystal
the transforms P and E return the highest and lowest paths, respectively.
Therefore, we have EP(π⊗ ξL) = EP(π⊗E(ξL)). But π⊗E(ξL) = E(π⊗ ξL)
is the lowest path of B(π ⊗ ξL). This implies that EP(π ⊗ ξL) = π ⊗ E(ξL)
for L sufficiently large as desired. �
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Theorem 8.10.
(1) For any η ∈ Ωtyp

C , we have PE(η) = η.
(2) For any ξ ∈ Ωιtyp, we have EP(ξ) = ξ.

Proof. — Consider a positive integer `. For any integer L > ` we can write
ΠL(η) = Π`(η)⊗ ηL and ΠL(ξ) = Π`(ξ)⊗ ξL with ηL and ξL in B(πκ)⊗L−`.
Since η ∈ Ωtyp

C and ξ ∈ Ωιtyp, we have for any simple root αi,
lim

L→+∞
〈ηL(L), α∨i 〉 = +∞ and lim

L→+∞
〈ξL(L), α∨i 〉 = −∞ .

So by applying Lemma 8.9, we get for L sufficiently large (depending on `)
PE(ΠL(η)) = Π`(η)⊗ ηL and EP(ΠL(ξ)) = Π`(ξ)⊗ E(ξL)

for any ` 6 L. This shows that PE(η) = η and EP(ξ) = ξ by taking the
limit when ` tends to infinity. �

Remark 8.11. — It is possible to state a slightly stronger statement of
the previous theorem where Ω is replaced by L∞ (see §8.2) in the definition
of Ωtyp

C and Ωιtyp.

Write Wι = Y1 ⊗ Y2 · · · the dual random path with drift ι(m). The
following theorem shows that the transformation E defined on Ωtyp

C can be
regarded as the inverse of the generalized Pitman transform P. Recall that
for both random trajectories Wι and W, we have H = P(W) = P(Wι).

Theorem 8.12. — Assume m ∈ Dκ. Then we have
(1) EP(Wι) =Wι Pι-almost surely,
(2) We have E(H) = Y1⊗Y2⊗· · · where the sequence of random variables

(Y`)`>1 is i.i.d. and each variable Y`, ` > 1, has law Y as defined
in (8.3).

(3) PE(H) = H Q-almost surely.

Proof. — (1) Write Wι = Y1 ⊗ Y2 · · · . Since Pι(Ωιtyp) = 1, we get
EP(Wι) = Wι Pι-almost surely by Assertion (2) of Theorem 8.10. Since
P(Wι) = H, we have E(H) = EP(Wι). By Assertion (1), this means that
E(H) =Wι which proves Assertion (2).

To obtain Assertion (3), it suffices to observe that PE(H) = H Q-almost
surely by Assertion (1) of Theorem 8.10 since we have Q(Ωtyp

C ) = 1. �
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