
ANNALES
DE LA FACULTÉ

DES SCIENCES

Mathématiques
ARTURO GILES FLORES AND BERNARD TEISSIER

Local polar varieties in the geometric study of singularities

Tome XXVII, no 4 (2018), p. 679-775.

<http://afst.cedram.org/item?id=AFST_2018_6_27_4_679_0>

© Université Paul Sabatier, Toulouse, 2018, tous droits réservés.
L’accès aux articles de la revue « Annales de la faculté des sci-
ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique
l’accord avec les conditions générales d’utilisation (http://afst.cedram.
org/legal/). Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation à fin strictement
personnelle du copiste est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://afst.cedram.org/item?id=AFST_2018_6_27_4_679_0
http://afst.cedram.org/
http://afst.cedram.org/legal/
http://afst.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Annales de la faculté des sciences de Toulouse Volume XXVII, no 4, 2018
pp. 679-775

Local polar varieties in the geometric study of
singularities (∗)

Arturo Giles Flores (1) and Bernard Teissier (2)

ABSTRACT. — This text presents several aspects of the theory of equisingularity
of complex analytic spaces from the standpoint of Whitney conditions. The goal is
to describe from the geometrical, topological, and algebraic viewpoints a canonical
locally finite partition of a reduced complex analytic space X into nonsingular strata
with the property that the local geometry of X is constant on each stratum. Local
polar varieties appear in the title because they play a central role in the unification of
viewpoints. The geometrical viewpoint leads to the study of spaces of limit directions
at a given point of X ⊂ Cn of hyperplanes of Cn tangent to X at nonsingular points,
which in turn leads to the realization that the Whitney conditions, which are used to
define the stratification, are in fact of a Lagrangian nature. The local polar varieties
are used to analyze the structure of the set of limit directions of tangent hyperplanes.
This structure helps in particular to understand how a singularity differs from its
tangent cone, assumed to be reduced. The multiplicities of local polar varieties are
related to local topological invariants, local vanishing Euler–Poincaré characteristics,
by a formula which turns out to contain, in the special case where the singularity is
the vertex of the cone over a reduced projective variety, a Plücker-type formula for
the degree of the dual of a projective variety.

RÉSUMÉ. — Ce texte présente plusieurs aspects de la théorie de l’équisingularité
des espaces analytiques complexes telle qu’elle est définie par les conditions de Whit-
ney. Le but est de décrire des points de vue géométrique, topologique et algébrique
une partition canonique localement finie d’un espace analytique complexe réduit X
en strates non singulières telles que la géométrie locale de X soit constante le long de
chaque strate. Les variétés polaires locales apparaissent dans le titre parce qu’elles
jouent un rôle central dans l’unification des points de vue. Le point de vue géomé-
trique conduit à l’étude des directions limites en un point donné de X ⊂ Cn des
hyperplans de Cn tangents à X en des points non singuliers. Ceci amène à réaliser
que les conditions de Whitney, qui servent à définir la stratification, sont en fait de
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nature lagrangienne. Les variétés polaires locales sont utilisées pour analyser la struc-
ture de l’ensemble des positions limites d’hyperplans tangents. Cette structure aide à
comprendre comment une singularité diffère de son cône tangent, supposé réduit. Les
multiplicités des variétés polaires locales sont reliées à des invariants topologiques
locaux, des caractéristiques d’Euler–Poincaré évanescentes, par une formule qui se
révèle, dans le cas particulier où la singularité est le sommet du cône sur une variété
projective réduite, donner une formule du type Plücker pour le calcul du degré de la
variété duale d’une variété projective.

1. Introduction

The origin of these notes is a course imparted by the second author in
the “2ndo Congreso Latinoamericano de Matemáticos” celebrated in Cancun,
Mexico on July 20 -26, 2004. The first redaction was subsequently elaborated
by the authors.

The theme of the course was the local study of analytic subsets of Cn,
which is the local study of reduced complex analytic spaces. That is, we will
consider subsets defined in a neighbourhood of a point 0 ∈ Cn by equations:

f1(z1, . . . , zn) = · · · = fk(z1, . . . , zn) = 0
fi ∈ C{z1, . . . , zn}, fi(0) = 0, i = 1, . . . , k.

Meaning that the subset X ⊂ Cn is thus defined in a neighbourhood U
of 0, where all the series fi converge. Throughout this text, the word “lo-
cal” means that we work with “sufficiently small” representatives of a germ
(X,x). For simplicity we assume throughout that the spaces we study are
equidimensional; all their irreducible components have the same dimension.
The reader who needs the general case of reduced spaces should have no
substantial difficulty in making the extension.

The purpose of the course was to show how to stratify X. In other words,
partition X into finitely many nonsingular (1) complex analytic manifolds
{Xα}α∈A, which will be called strata, such that:

(i) The closure Xα is a closed complex analytic subspace of X, for all
α ∈ A.

(ii) The frontier Xβ \Xβ is a union of strata Xα, for all β ∈ A.
(iii) Given any x ∈ Xα, the “geometry” of all the closures Xβ containing

Xα is locally constant along Xα in a neighbourhood of x.

(1) We would prefer to use regular to emphasize the absence of singularities, but this
term has too many meanings.
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The stratification process being such that at each step one can take connected
components, one usually assumes that the strata are connected and then the
closures Xα are equidimensional.

Recall that two closed subspaces X ⊂ U ⊂ Cn and X ′ ⊂ U ′ ⊂ Cn,
where U and U ′ are open, have the same embedded topological type if there
exists a homeomorphism φ : U → U ′ such that φ(X) = X ′. If X and X ′ are
representatives of germs (X,x) and (X ′, x′) we require that φ(x) = x′ and
we say the two germs have the same embedded topological type.

If by “geometry” we mean the embedded local topological type at x ∈ Xα

of Xβ ⊂ Cn and of its sections by affine subspaces of Cn of general direc-
tions passing near x or through x, which we call the total local topological
type, there is a minimal such partition, in the sense that any other parti-
tion with the same properties must be a subpartition of it. Characterized
by differential-geometric conditions, called Whitney conditions, bearing on
limits of tangent spaces and of secants, it plays an important role in gen-
eralizing to singular spaces geometric concepts such as Chern classes and
integrals of curvature. The existence of such partitions, or stratifications,
without proof of the existence of a minimal one, and indeed the very con-
cept of stratification(2) , are originally due to Whitney in [124, 125]. In these
papers Whitney also initiated the study in complex analytic geometry of
limits of tangent spaces at nonsingular points. In algebraic geometry the
first general approach to such limits is due to Semple in [100].

In addition to topological and differential-geometric characterizations, the
partition can also be described algebraically by means of Polar Varieties, and
this is one of the main points of these lectures.

Apart from the characterization of Whitney conditions by equimulti-
plicity of polar varieties, one of the main results appearing in these lec-
tures is therefore the equivalence of Whitney conditions for a stratification
X =

⋃
αXα of a complex analytic space X ⊂ Cn with the local topological

triviality of the closures Xβ of strata along each Xα which they contain,
to which one must add the local topological triviality along Xα of the in-
tersections of the Xβ with (germs of) general nonsingular subspaces of Cn

containing Xα.

Other facts concerning Whitney conditions also appear in these notes,
for example that the Whitney conditions are in fact of a Lagrangian nature,
related to a condition of relative projective duality between the irreducible
components of the normal cones of the Xβ along the Xα and of some of their
subcones, on the one hand, and the irreducible components of the space of

(2) Which was subsequently developed, in particular by Thom in [116] and Mather
in [76].
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limits of tangents hyperplanes to Xβ at nonsingular points approaching Xα,
on the other. This duality, applied to the case where Xα is a point, gives
a measure of the geometric difference between a germ of singular space at
a point and its tangent cone at that point, assumed to be reduced. Among
the important facts concerning polar varieties of a germ (X,x) is that their
multiplicity at a point depends only on the total local topological type of the
germ. This is expressed by a formula (see Theorem 6.5) relating the multi-
plicities of polar varieties to local vanishing Euler–Poincaré characteristics.

Applying this formula to the cone over a projective variety V gives an
expression for the degree of the projective dual variety V̌ which depends
only on the local topological characters of the incidences between the strata
of the minimal Whitney stratification of V and the Euler characteristics of
these strata and their general linear sections. In particular we recover with
topological arguments the formula for the class (another name for the degree
of the dual variety) of a projective hypersurface with isolated singularities.

The original idea of the course was to be as geometric as possible. Since
many proofs in this story are quite algebraic, using in particular the notion
of integral dependence on ideals and modules (see [36, 112]), they are often
replaced by references. Note also that in this text, intersections with linear
subspaces of the nonsingular ambient space are taken as reduced intersec-
tions.

We shall begin by trying to put into historical context the appearance of
polar varieties, as a means to give the reader a little insight and intuition
into what we will be doing. A part of what follows is taken from [114]; see
also [89].

It is possible that the first example of a polar variety is in the treatise
on conics of Apollonius. The cone drawn from a point 0 in affine three-space
outside of a fixed sphere around that sphere meets the sphere along a circle
C. If we consider a plane not containing the point, and the projection π from
0 of the affine three-space onto that plane, the circle C is the set of critical
points of the restriction of π to the sphere. Fixing a plane H, by moving the
point 0, we can obtain any circle drawn on the sphere, the great circles being
obtained by sending the point to infinity in the direction perpendicular to
the plane of the circle.

Somewhat later, around 1680, John Wallis asked how many tangents
can be drawn to a nonsingular curve of degree d in the plane from a point
in that plane and conjectured that this number should always be 6 d2. In
modern terms, he was proposing to compare the visual complexity of a curve
(or surface) as measured by the number of “critical” lines of sight with its
algebraic complexity as measured by the degree. Given an algebraic surface S
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of degree d in affine three-space and a point 0 outside it, the lines emanating
from 0 and tangent to S touch S along an algebraic curve P . Taking a general
hyperplane H through 0, we see that the number of tangents drawn from 0
to the curve S∩H is the number of points in P ∩H and therefore is bounded
by the degree of the algebraic curve P drawn on S. This algebraic curve is
an example of a polar curve; it is the generalization of Apollonius’ circles.
Wallis’ question was first answered by Goudin and Du Séjour who showed
in 1756 that this number is 6 d(d− 1) (see [62]) and later by Poncelet, who
saw (without writing a single equation; see [91, p. 68, p. 361 and ff.]) that
the natural setting for the problem which had been stated in the real affine
plane by Wallis was the complex projective plane and that the number of
tangents drawn from a point with projective coordinates (ξ : η : ζ) to the
curve C with homogeneous equation F (x, y, z) = 0 is equal to the number
of intersection points of C with a curve of degree d− 1. The equation of this
curve was written explicitly later by Plücker (see [90, 122]):

ξ
∂F

∂x
+ η

∂F

∂y
+ ζ

∂F

∂z
= 0. (1.1)

This equation is obtained by polarizing the polynomial F (x, y, z) with respect
to (ξ : η : ζ), a terminology which comes from the study of conics; it is the
method for obtaining a bilinear form from a quadratic form (in characteristic
6= 2).

It is the polar curve of C with respect to the point (ξ : η : ζ), or rather, in
the terminology of [112], the projective curve associated to the relative polar
surface of the map (C3, 0) → (C2, 0) given by (F, ξx + ηy + ζz). The term
emphasizes that it is attached to a morphism, unlike the polar varieties à la
Todd, which in this case would be the points on the curve C where the tan-
gent line contains the point (ξ : η : ζ). In any case, it is of degree d−1, where
d is the degree of the polynomial F and by Bézout’s theorem, except in the
case where the curve C is not reduced, i.e., has multiple components, the
number of intersection points counted with multiplicities is exactly d(d− 1).
So we conclude with Poncelet that the number (counted with multiplicities)
of points of the nonsingular curve C where the tangent goes through the
point with coordinates (ξ : η : ζ) is equal to d(d− 1). The equations written
by Plücker shows that, as the point varies in the projective plane, the equa-
tion (1.1) describes a linear system of curves of degree d − 1 in the plane,
which cuts out a linear system of points on the curve C, of degree d(d− 1).
It is the most natural linear system after that which comes from the lines
(hyperplanes)

λx+ µy + νz = 0, (λ : µ : ν) ∈ P2

and comes from the linear system of points in the dual space P̌2 while the
linear system (1.1) can be seen as coming from the linear system of lines
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in P̌2. The projective duality between P2 and the space P̌2 of lines in P2

exchanges the two linear systems. The dual curve Č ∈ P̌2 is the closure of
the set of points in P̌2 corresponding to lines in P2 which are tangent to C
at a nonsingular point. Its degree is called the class of the curve C. It is the
number of intersection points of Č with a general line of P̌2, and that, by
construction, is the number of tangents to C passing through a given general
point of P2.

In the theory of algebraic curves, there is an important formula called
the Riemann–Hurwitz formula. Given an algebraic map f : C → C ′ between
compact nonsingular complex algebraic curves, which is of degree degf = d
(meaning that for a general point c′ ∈ C ′, f−1(c′) consists of d points, and
is ramified at the points xi ∈ C, 1 6 i 6 r, which means that near xi, in
suitable local coordinates on C and C ′, the map f is of the form t 7→ tei+1

with ei ∈ N, ei > 1. The integer ei is the ramification index of f at xi.
Then we have the Riemann–Hurwitz formula relating the genus of C and
the genus of C ′ via f and the ramification indices:

2g(C)− 2 = d(2g(C ′)− 2) +
∑
i

ei.

If we apply this formula to the case C ′ = P1, knowing that any compact
algebraic curve is a finite ramified covering of P1, we find that we can cal-
culate the genus of C from any linear system of points made of the fibers of
a map C → P1 if we know its degree and its singularities: we get

2g(C) = 2− 2d+
∑

ei.

The ramification points xi can be computed as the so-called Jacobian divisor
of the linear system, which consists of the singular points, properly counted,
of the singular members of the linear system. In particular if C is a plane
curve and the linear system is the system of its plane sections by lines through
a general point x = (ξ : η : ζ) of P2, the map f is the projection from C to
P1 from x; its degree is the degree m of C and its ramification points are
exactly the points where the line from x is tangent to C. Since x is general,
these are simple tangency points, so the ei are equal to 1, and their number
is equal to the class m̌ of C; the formula gives

2g(C)− 2 = −2m+ m̌ ,

thus giving for the genus an expression linear in the degree and the class.

This is the first example of the relation between the “characteristic
classes” (in this case only the genus) and the polar classes; in this case the
curve itself, of degree m and the degree of the polar locus, or apparent con-
tour from x, in this case the class m̌. After deep work by Zeuthen, C. Segre,
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Severi, it was Todd who in three fundamental papers ([118, 119, 120]) found
the correct generalization of the formulas known for curves and surfaces.

More precisely, given a nonsingular d-dimensional variety V in the com-
plex projective space Pn−1, for a linear subspace D ⊂ Pn−1 of dimension
n− d+ k − 3, i.e., of codimension d− k + 2, with 0 6 k 6 d, let us set

Pk(V ;D) = {v ∈ V/ dim(TV,v ∩D) > k − 1}.

This is the Polar variety of V associated to D; if D is general, it is either
empty or purely of codimension k in V . If n = 3, d = 1 and k = 1, we find
the points of the projective plane curve V where the tangent lines go through
the point D ∈ P2. A tangent hyperplane to V at a point v is a hyperplane
containing the tangent space TV,v. The polar variety Pk(V,D) with respect
to a general D of codimension d − k + 2 consists of the points of V where
a tangent hyperplane contains D, a condition which is equivalent to the
dimension inequality. We see that this construction is a direct generalization
of the apparent contour. The eye 0 is replaced by the linear subspace D!

Todd shows that (rational equivalence classes of) (3) the following formal
linear combinations of varieties of codimension k, for 0 6 k 6 d:

Vk =
j=k∑
j=0

(−1)j
(
d− k + j + 1

j

)
Pk−j(V ;Dd−k+j+2) ∩Hj ,

where Hj is a linear subspace of codimension j and Dd−k+j+2 is of codi-
mension d − k + j + 2, are independent of all the choices made and of the
embedding of V in a projective space, provided that the D′s and the H’s
have been chosen general enough. Our Vk are in fact Todd’s Vd−k. The in-
tersection numbers arising from intersecting these classes and hyperplanes
in the right way to obtain numbers contain a wealth of numerical invariants,
such as Euler characteristic and genus. Even the arithmetic genus, which is
the generalization of the differential forms definition of the genus of a curve,
can be computed. Around 1950 it was realized that the classes of Todd,
which had also been considered independently by Eger, are nothing but the
Chern classes of the tangent bundle of V .

On the other hand, the basic topological invariant of the variety V , its
Euler–Poincaré characteristic (also called Euler characteristic for short) sat-
isfies the equality:

χ(V ) = deg Vd =
d∑
j=0

(−1)j(j + 1)(Pd−j(V ).Hj), (1.2)

(3) Which he invents for the occasion.
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where Pd−j(V ) is the polar variety of codimension d − j with respect to a
general D of codimension j+2, which is omitted from the notation, and (a.b)
denotes the intersection number in Pn−1. In this case, since we intersect with
a linear space of complementary dimension, (Pd−j(V ).Hj) is just the degree
of the projective variety Pd−j(V ).

So Todd’s results give a rather complete generalization of the genus for-
mula for curves, both in its analytic and its topological aspects. This circle
of ideas was considerably extended, in a cohomological framework, to gen-
eralized notions of genus and characteristic classes for nonsingular varieties;
see [52] and [92, Chap. 48, 49]. Todd’s construction was modernized and
extended to the case of a singular projective variety by R. Piene (see [87]).

What we use here is a local form, introduced in [70], of the polar varieties
of Todd, adapted to the singular case and defined for any equidimensional
and reduced germ of a complex analytic space. The case of a singular pro-
jective variety which we have just seen can be deemed to be the special case
where our singularity is a cone.

We do not take classes in (Borel–Moore) homology or elsewhere because
the loss of geometric information is too great, but instead look at “sufficiently
general” polar varieties of a given dimension as geometric objects. The hope
is that the equisingularity class (up to a Whitney equisingular deformation)
of each general polar variety of a germ is an analytic invariant.(4) What is
known is that the multiplicity is, and this is what we use below.

Since the stratification we build is determined by local conditions and
is canonical, the stratifications defined in the open subsets of a covering of
a complex analytic space X will automatically glue up. Therefore it suf-
fices to study the stratifications locally assuming X ⊂ Cn, as we do here.
We emphasize that the result of the construction for X, unlike its tools, is
independent of the embedding X ⊂ Cn.

Dedicatory.This paper is dedicated to those administrators of research
who realize how much damage is done by the evaluation of mathematical re-
search solely by the rankings of the journals in which it is published, or more
generally by bibliometric indices. We hope that their lucidity will become
widespread in all countries.

(4) Indeed, the statement at the end of Remark 3.2 in [112] should be entitled “Prob-
lem” and not “Theorem”.
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2. Limits of tangent spaces, the conormal space and the tangent
cone.

To set the working grounds, let us fix a reduced and pure-dimensional
germ of analytic subspace (X, 0) ⊂ (Cn, 0). That is, we are assuming that
X is given to us by an ideal I of C{z1, . . . , zn} generated say by (f1, . . . , fk),
containing all analytic functions vanishing on X, and also that all the ir-
reducible components of X, corresponding to the minimal prime ideals of
C{z1, . . . , zn} which contain I, have the same dimension d.

By definition, a singular point of a complex analytic space is a point
where the tangent space cannot be defined as usual. As a substitute, we can
look at all limit positions of tangent spaces at nonsingular points tending to
a given singular point.

Definition 2.1. — Given a closed d-dimensional analytic subset X in
an open set of Cn, a d-plane T of the Grassmannian G(d, n) of d-dimensional
vector subspaces of Cn is a limit at x ∈ X of tangent spaces to the analytic
space X if there exists a sequence {xi} of nonsingular points of X and a
sequence of d-planes {Ti} of G(d, n) such that for all i, the d-plane Ti is the
direction of the tangent space to X at xi, the sequence {xi} converges to x
and the sequence {Ti} converges to T .

How can we determine these limit positions? Recall that if X is an ana-
lytic space then SingX, the set of singular points of X, is also an analytic
space and the nonsingular part X0 = X \ SingX is dense in X and has the
structure of a complex manifold.

Let X be a representative of (X, 0). Consider the application (the Gauss
map)

γX0 : X0 −→ G(d, n)
x 7−→ TX0,x,

where TX0,x denotes the direction in G(d, n) of the tangent space to the
manifold X0 at the point x. Let NX be the closure of the graph of γX0 in
X×G(d, n). It can be proved that NX is an analytic subspace of dimension d
([125, Thm. 16.4],).
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Definition 2.2. — The morphism νX : NX −→ X induced by the first
projection of X ×G(d, n) is called the Semple–Nash modification of X.

NX ⊂ X ×G(d, n)
νX

{{

γX

%%
X G(d, n)

It is an isomorphism over the nonsingular part ofX and is proper since the
Grassmannian is compact and the projection X × G(d, n) → X is proper.
It is therefore a proper birational map. It seems to have been first intro-
duced by Semple (see the end of [100]) who also asked whether iterating
this construction would eventually resolve the singularities of X, and later
rediscovered by Whitney (see ([125]) and also by Nash, who asked the same
question as Semple. It is still without answer except for curves.

The notation NX is justified by the fact that the Semple–Nash modifica-
tion is independent, up to a unique X-isomorphism, of the embedding of X
into a nonsingular space. See [109, §2], where the abstract construction of the
Semple–Nash modification is explained in terms of the Grothendieck Grass-
mannian associated to the module of differentials of X. The fiber ν−1

X (0) is a
closed algebraic subvariety of G(d, n); set-theoretically, it is the set of limit
positions of tangent spaces at points of X0 tending to 0.

For an exposition of basic results on limits of tangent spaces in the case
of germs of complex analytic surfaces, good references are [2] and [103]; the
latter makes connections with the resolution of singularities. For a more
computational approach, see [84].

In [47], H. Hennings has announced a proof of the fact that if x is an iso-
lated singular point of X, the dimension of ν−1

X (x) is dimX−1, generalizing
a result of A. Simis, K. Smith and B. Ulrich in [102].

The Semple–Nash modification is somewhat difficult to handle from the
viewpoint of intersection theory because of the complexity due to the rich
geometry of the Grassmannian. There is a less intrinsic but more amenable
way of encoding the limits of tangent spaces. The idea is to replace a tangent
space to X0 by the collection of all the hyperplanes of Cn which contain it.
Tangent hyperplanes live in a projective space, namely the dual projective
space P̌n−1, which is easier to deal with than the Grassmannian.
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2.1. Some symplectic Geometry

In order to describe this set of tangent hyperplanes, we are going to use
the language of symplectic geometry and Lagrangian submanifolds. Let us
start with a few definitions.

Let M be any n-dimensional manifold, and let ω be a de Rham 2-form
on M, that is, for each p ∈M , the map

ωp : TM,p × TM,p → R

is skew-symmetric bilinear on the tangent space to M at p, and ωp varies
smoothly with p. We say that ω is symplectic if it is closed and ωp is non-
degenerate for all p ∈ M . Non degeneracy means that the map which to
v ∈ TM,p associates the homomorphism w 7→ ω(v, w) ∈ R is an isomorphism
from TM,p to its dual. A symplectic manifold is a pair (M,ω), where M is a
manifold and ω is a symplectic form. These definitions extend, replacing R
by C, to the case of a complex analytic manifold i.e., nonsingular space.

For any manifoldM , its cotangent bundle T ∗M has a canonical symplec-
tic structure as follows. Let

π : T ∗M −→M

p = (x, ξ) 7−→ x,

where ξ ∈ T ∗M,p, be the natural projection. The Liouville 1-form α on T ∗M
may be defined pointwise by:

αp(v) = ξ ((dπp)v) , for v ∈ TT∗M,p.

Note that dπp maps TT∗M,p to TM,x, so that α is well defined. The canonical
symplectic 2-form ω on T ∗M is defined as

ω = −dα.

And it is not hard to see that if (U, x1, . . . , xn) is a coordinate chart for
M with associated cotangent coordinates (T ∗U, x1, . . . , xn, ξ1, . . . , ξn), then
locally:

ω =
n∑
i=1

dxi ∧ dξi.

Definition 2.3. — Let (M,ω) be a 2n-dimensional symplectic manifold.
A submanifold Y of M is a Lagrangian submanifold if at each p ∈ Y , TY,p is
a Lagrangian subspace of TM,p, i.e., ωp|TY,p ≡ 0 and dimTY,p = 1

2 dimTM,p.
Equivalently, if i : Y ↪→ M is the inclusion map, then Y is Lagrangian if
and only if i∗ω = 0 and dimY = 1

2 dimM .
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LetM be a nonsingular complex analytic space of even dimension equipped
with a closed non degenerate 2-form ω. If Y ⊂M is a complex analytic sub-
space, which may have singularities, we say that it is a Lagrangian subspace
of M if it is purely of dimension 1

2 dimM and there is a dense nonsingu-
lar open subset of the corresponding reduced subspace which is a Lagrangian
submanifold in the sense that ω vanishes on the tangent space.

Example 2.4. — The zero section of T ∗M
X := {(x, ξ) ∈ T ∗M | ξ = 0 in T ∗M,x}

is an n-dimensional Lagrangian submanifold of T ∗M .

Exercise 2.5. — Let f(z1, . . . , zn) be a holomorphic function on an open
set U ⊂ Cn. Consider the differential df as a section df : U → T ∗U of
the cotangent bundle. Verify that the image of this section is a Lagrangian
submanifold of T ∗U . Explain what it means. What is the image in U by the
natural projection T ∗U → U of the intersection of this image with the zero
section?

2.2. Conormal space.

Let now M be a complex analytic manifold and X ⊂ M be a possibly
singular complex subspace of pure dimension d, and let as before X0 =
X \ SingX be the nonsingular part of X, which is a submanifold of M .

Definition 2.6. — Set
N∗X0,x = {ξ ∈ T ∗M,x | ξ(v) = 0, ∀ v ∈ TX0,x};

this means that the hyperplane {ξ = 0} contains the tangent space to X0 at
x. The conormal bundle of X0 is

T ∗X0M = {(x, ξ) ∈ T ∗M | x ∈ X0, ξ ∈ N∗X0,x}.

Proposition 2.7. — Let i : T ∗X0M ↪→ T ∗M be the inclusion and let α
be the Liouville 1-form in T ∗M as before. Then i∗α = 0. In particular the
conormal bundle T ∗X0M is a conic Lagrangian submanifold of T ∗M , and has
dimension n.

Proof. — See [101, Prop. 3.6]. �

In the same context we can define the conormal space of X in M as the
closure T ∗XM of T ∗X0M in T ∗M , with the conormal map κX : T ∗XM → X,
induced by the natural projection π : T ∗M →M . The conormal space is of
dimension n. It may be singular and by Proposition 2.7, α vanishes on every
tangent vector at a nonsingular point, so it is by construction a Lagrangian
subspace of T ∗M .
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The fiber κ−1
X (x) of the conormal map κX : T ∗XM → X above a point

x ∈ X consists, if x ∈ X0, of the vector space Cn−d of all the equations of
hyperplanes tangent to X at x, in the sense that they contain the tangent
space TX0,x. If x is a singular point, the fiber consists of all equations of
limits of hyperplanes tangent at nonsingular points of X tending to x.

Moreover, we can characterize those subvarieties of the cotangent space
which are the conormal spaces of their images in M .

Proposition 2.8 (see [86, Chap. II, §10]). — Let M be a nonsingular
analytic variety of dimension n and let L be a closed conical irreducible
analytic subvariety of T ∗M . The following conditions are equivalent:

(1) The variety L is the conormal space of its image in M .
(2) The Liouville 1-form α vanishes on all tangent vectors to L at every

nonsingular point of L.
(3) The symplectic 2-form ω = −dα vanishes on every pair of tangent

vectors to L at every nonsingular point of L.

Since conormal varieties are conical, in the sense that their fibers κ−1
X (x)

are invariant under multiplication by an element of C∗ in the fibers of T ∗M ,
we may as well projectivize with respect to vertical homotheties of T ∗M and
work in PT ∗M . This means that we consider hyperplanes and identify all
linear equations defining the same hyperplane. In T ∗M it still makes sense
to be Lagrangian since α is homogeneous by definition(5) .

Going back to our original problem we have X ⊂ M = Cn, so T ∗M =
Cn × Čn and PT ∗M = Cn × P̌n−1. So we have the (projective) conormal
space κX : C(X) → X with C(X) ⊂ X × P̌n−1, where C(X) denotes the
projectivization of the conormal space T ∗XM . Note that we have not changed
the name of the map κX after projectivizing since there is no ambiguity, and
that the dimension of C(X) is n−1, which shows immediately that it depends
on the embedding of X in an affine space.

When there is no ambiguity we shall often omit the subscript in κX . We
have the following result:

Proposition 2.9. — The (projective) conormal space C(X) is a closed,
reduced, complex analytic subspace of X× P̌n−1 of dimension n−1. For any
x ∈ X the dimension of the fiber κ−1

X (x) is at most n− 2.

Proof. — These are classical facts. See [101, Chap. III] or [112, Prop. 4.1,
p. 379]. �

(5) In symplectic geometry it is called Legendrian with respect to the natural contact
structure on PT ∗M .
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2.3. Conormal spaces and projective duality

Let us assume for a moment that V ⊂ Pn−1 is a projective algebraic
variety. In the spirit of last section, let us takeM = Pn−1 with homogeneous
coordinates (x0 : . . . : xn−1), and consider the dual projective space P̌n−1

with coordinates (ξ0 : . . . : ξn−1); its points are the hyperplanes of Pn−1

with equations
∑n−1
i=0 ξixi = 0.

Definition 2.10. — Define the incidence variety I ⊂ Pn−1 × P̌n−1 as
the set of points satisfying:

n−1∑
i=0

xiξi = 0,

where (x0 : . . . : xn−1; ξ0 : . . . : ξn−1) ∈ Pn−1 × P̌n−1

Lemma 2.11 (Kleiman [60, §4]). — The projectivized cotangent bundle
of Pn−1 is naturally isomorphic to I.

Proof. — Let us first take a look at the cotangent bundle of Pn−1:
π : T ∗Pn−1 −→ Pn−1.

Remember that the fiber π−1(x) over a point x in Pn−1 is by definition
isomorphic to Čn−1, the vector space of linear forms on Cn−1. Recall that
projectivizing the cotangent bundle means projectivizing the fibers, and so
we get a map:

Π : PT ∗Pn−1 −→ Pn−1

where the fiber is isomorphic to P̌n−2. So we can see a point of PT ∗Pn−1 as
a pair (x, ξ) ∈ Pn−1× P̌n−2. On the other hand, if we fix a point x ∈ Pn−1,
the equation defining the incidence variety I tells us that the set of points
(x, ξ) ∈ I is the set of hyperplanes of Pn−1 that go through the point x,
which we know is isomorphic to P̌n−2.

Now to explicitly define the map, take a chart Cn−1 × {Čn−1 \ {0}} of
the manifold T ∗Pn−1 \ {zero section}, where the Cn−1 corresponds to a
usual chart of Pn−1 and Čn−1 to its associated cotangent chart. Define the
map:

φi : Cn−1 × {Čn−1 \ {0}} −→ Pn−2 × P̌n−2

(z1, . . . , zn−1; ξ1, . . . , ξn−1) 7−→ (ϕi(z), (ξ1 : . . . : ξi−1 : −
∑n−1∗i
j=1 zjξj :

ξi+1 : . . . : ξn−1))

where ϕi(z) = (z1 : . . . : zi−1 : 1 : zi+1 : . . . : zn−1) and the star means that
the index i is excluded from the sum.

– 692 –



Local polar varieties in the geometric study of singularities

An easy calculation shows that φi is injective, has its image in the inci-
dence variety I and is well defined on the projectivization Cn−1×P̌n−2. It is
also clear, that varying i from 1 to n− 1 we can reach any point in I. Thus,
all we need to check now is that the φj ’s paste together to define a map. For
this, the important thing is to remember that if ϕi and ϕj are charts of a
manifold, and h := ϕ−1

j ϕi = (h1, . . . , hn−1) then the change of coordinates
in the associated cotangent charts ϕ̃i and ϕ̃j is given by:

T ∗M
ϕ̃j
−1

&&
Cn−1 × Čn−1

ϕ̃i

88

h
// Cn−1 × Čn−1

(x1, . . . , xn−1; ξ1, . . . , ξn−1) 7−→ (h(x); (Dh−1|x)T (ξ)) �

By Lemma 2.11 the incidence variety I inherits the Liouville 1-form α (:=∑
ξidxi locally) from its isomorphism with PT ∗Pn−1. Exchanging Pn−1

and P̌n−1, I is also isomorphic to PT ∗P̌n−1 so it also inherits the 1-form
α̌(:=

∑
xidξi locally).

Lemma 2.12 (Kleiman [60, §4]). — Let I be the incidence variety as
above. Then α+ α̌ = 0 on I.

Proof. — Note that if the polynomial
∑n−1
i=0 xiξi defined a function on

Pn−1×P̌n−1, we would obtain the result by differentiating it. The idea of the
proof is basically the same, it involves identifying the polynomial

∑n−1
i=0 xiξi

with a section of the line bundle p∗OPn−1(1) ⊗ p̌∗OP̌n−1(1) over I, where p
and p̌ are the natural projections of I to Pn−1 and P̌n−1 respectively and
OPn−1(1) denotes the canonical line bundle, introducing the appropriate flat
connection on this bundle, and differentiating. �

In particular, this lemma tells us that if at some point z ∈ I we have that
α = 0, then α̌ = 0 too. Thus, a closed conical irreducible analytic subvariety
of T ∗Pn−1 as in Proposition 2.8 is the conormal space of its image in Pn−1

if and only if it is the conormal space of its image in P̌n−1. So we have
PT ∗V Pn−1 ⊂ I ⊂ Pn−1 × P̌n−1 and the restriction of the two canonical
projections:

PT ∗V Pn−1 ⊂ I
p

ww

p̌

''
V ⊂ Pn−1 P̌n−1 ⊃ V̌
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Definition 2.13. — The dual variety V̌ of V ⊂ Pn−1 is the image by
the map p̌ of PT ∗V Pn−1 ⊂ I in P̌n−1. So by construction V̌ is the closure in
P̌n−1 of the set of hyperplanes tangent to V 0.

We immediately get by symmetry that ˇ̌
V = V . What is more, we see

that establishing a projective duality is equivalent to finding a Lagrangian
subvariety in I; its images in Pn−1 and P̌n−1 are necessarily dual.

Lemma 2.14. — Let us assume that (X, 0) ⊂ (Cn, 0) is the cone over a
projective algebraic variety V ⊂ Pn−1. Let x ∈ X0 be a nonsingular point of
X. Then the tangent space TX0,x, contains the line ` = 0x joining x to the
origin. Moreover, the tangent map at x to the projection π : X \ {0} → V
induces an isomorphism TX0,x/` ' TV,π(x).

Proof. — This is due to Euler’s identity for a homogeneous polynomial
of degree m:

m.f =
n∑
i=1

xi
∂f

∂xi

and the fact that if {f1, . . . , fr} is a set of homogeneous polynomials defining
X, then TX0,x is the kernel of the matrix:df1

...
dfr


representing the differentials dfi in the basis dx1, . . . , dxn. �

It is also important to note that the tangent space to X0 is constant along
all nonsingular points x of X in the same generating line since the partial
derivatives are homogeneous as well, and contains the generating line. By
Lemma 2.14, the quotient of this tangent space by the generating line is the
tangent space to V at the point corresponding to the generating line.

So, PT ∗XCn has an image in P̌n−1 which is the projective dual of V.

PT ∗V Pn−1

zz $$

PT ∗XCn ⊂ P̌n−1 ×Cn

ww ''
V ⊂ Pn−1 P̌n−1 ⊃ V̌ X ⊂ Cn

The fiber over 0 of PT ∗XCn → X is equal to V̌ as subvariety of P̌n−1: it
is the set of limit positions at 0 of hyperplanes tangent to X0.

For more information on projective duality, in addition to Kleiman’s pa-
pers one can consult [115].
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A relative version of the conormal space and of projective duality will
play an important role in these notes. Useful references are [49, 60, 112].
The relative conormal space is used in particular to define the relative polar
varieties.

Let f : X → S be a morphism of reduced analytic spaces, with purely d-
dimensional fibers and such that there exists a closed nowhere dense analytic
space such that the restriction to its complement X0 in X :

f |X0 : X0 −→ S

has all its fibers smooth. They are manifolds of dimension d = dimX−dimS.
Let us assume furthermore that the map f is induced, via a closed embedding
X ⊂ Z by a smooth map F : Z → S. This means that locally on Z the map
F is analytically isomorphic to the first projection S ×CN → S. Locally on
X, this is always the case because we can embed the graph of f , which lies
in X × S, into CN × S.

Let us denote by πF : T ∗(Z/S)→ Z the relative cotangent bundle of Z/S,
which is a fiber bundle whose fiber over a point z ∈ Z is the dual T ∗Z/S,x of
the tangent vector space at z to the fiber F−1(F (z)). For x ∈ X0, denote
by M(x) the submanifold f−1(f(x))∩X0 of X0. Using this submanifold we
will build the conormal space of X relative to f , denoted by T ∗X/S(Z/S), by
setting

N∗M(x),x = {ξ ∈ T ∗Z/S, x | ξ(v) = 0, ∀ v ∈ TM(x),x}
and

T ∗X0/S(Z/S) = {(x, ξ) ∈ T ∗(Z/S) | x ∈ X0, ξ ∈ N∗M(x),x},
and finally taking the closure of T ∗X0/S(Z/S) in T ∗(Z/S), which is a com-
plex analytic space T ∗X/S(Z/S) by general theorems (see [57, 94]). Since
X0 is dense in X, this closure maps onto X by the natural projection
πF : T ∗(Z/S)→ Z.

Now we can projectivize with respect to the homotheties on ξ, as in the
case where S is a point we have seen above. We obtain the (projectivized)
relative conormal space Cf (X) ⊂ PT ∗(Z/S) (also denoted by C(X/S)),
naturally endowed with a map

κf : Cf (X) −→ X.

We can assume that locally the map f is the restriction of the first projection
to X ⊂ S × U , where U is open in Cn. Then we have T ∗(S × U/S) =
S × U × Čn and PT ∗(S × U/S) = S × U × P̌n−1. This gives an inclusion
Cf (X) ⊂ X × P̌n−1 such that κf is the restriction of the first projection,
and a point of Cf (X) is a pair (x,H), where x is a point of X and H is a
limit direction at x of hyperplanes of Cn tangent to the fibers of the map f
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at points of X0. By taking for S a point we recover the classical case studied
above.

Definition 2.15. — Given a smooth morphism F : Z → S as above,
the projection to S of Z = S × U , with U open in Cn, we shall say that a
reduced complex subspace W ⊂ T ∗(Z/S) is F -Lagrangian (or S-Lagrangian
if there is no ambiguity on F ) if the fibers of the composed map q :=
(πF ◦ F )|W : W → S are purely of dimension n = dimZ − dimS and the
differential ωF of the relative Liouville differential form αF on Cn × Čn

vanishes on all pairs of tangent vectors at smooth points of the fibers of the
map q.

With this definition it is not difficult to verify that T ∗X/S(Z/S) is F -
Lagrangian, and by abuse of language we will say the same of Cf (X). But
we have more:

Proposition 2.16 (Lê–Teissier, [72, Prop. 1.2.6]). — Let F : Z → S be
a smooth complex analytic map with fibers of dimension n. Assume that S is
reduced. Let W ⊂ T ∗(Z/S) be a reduced closed complex subspace and set as
above q = πF ◦ F |W : W → S. Assume that the dimension of the fibers of q
over points of dense open analytic subsets Ui of the irreducible components
Si of S is n.

(1) If the Liouville form on T ∗F−1(s) = (πF ◦ F )−1(s) vanishes on the
tangent vectors at smooth points of the fibers q−1(s) for s ∈ Ui
and all the fibers of q are of dimension n, then the Liouville form
vanishes on tangent vectors at smooth points of all fibers of q.

(2) The following conditions are equivalent:
• The subspace W ⊂ T ∗(Z/S) is F -Lagrangian;
• The fibers of q, once reduced, are all purely of dimension n and
there exists a dense open subset U of S such that for s ∈ U
the fiber q−1(s) is reduced and is a Lagrangian subvariety of
(πF ◦ F )−1(s);
If moreover W is homogeneous with respect to homotheties on
T ∗(Z/S), these conditions are equivalent to:
• All fibers of q, once reduced, are purely of dimension n and each
irreducible component Wj of W is equal to T ∗Xj/S(Z/S), where
Xj = πF (Wj).

Assuming that W is irreducible, the gist of this proposition is that if W
is, generically over S, the relative conormal of its image in Z, and if the
dimension of the fibers of q is constant, then W is everywhere the relative
conormal of its image. This is essentially due to the fact that the vanishing of
a differential form is a closed condition on a cotangent space. In Section 4.4
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we shall apply this, after projectivization with respect to homotheties on
T ∗(Z/S), to give the Lagrangian characterization of Whitney conditions.

2.4. Tangent cone

At the very beginning we mentioned how the limit of tangent spaces can
be thought of as a substitute for the tangent space at singular points. There
is another common substitute for the missing tangent space, the tangent
cone.

Let us start by the geometric definition. Let X ⊂ Cn be a representative
of (X, 0). The canonical projection Cn \ {0} → Pn−1 induces the secant line
map

sX : X \ {0} −→ Pn−1,

x 7−→ [0x],

where [0x] is the direction of the secant line 0x ⊂ Cn. Denote by E0X the
closure in X × Pn−1 of the graph of sX . E0X is an analytic subspace of
dimension d, and the natural projection e0X : E0X → X induced by the
first projection is called the blowing up of 0 in X. The fiber e−1

0 (0) is a
projective subvariety of Pn−1 of dimension d − 1, not necessarily reduced
(see [125, §10]).

Definition 2.17. — The cone with vertex 0 in Cn corresponding to the
subset |e−1

0 (0)| of the projective space Pn−1 is the set-theoretic tangent cone.

The construction shows that set-theoretically e−1
0 (0) is the set of limit

directions of secant lines 0x for points x ∈ X \ {0} tending to 0. This means
more precisely that for each sequence (xi)i∈N of points of X \ {0}, tending
to 0 as i → ∞ we can, since Pn−1 is compact, extract a subsequence such
that the directions [0xi] of the secants 0xi converge. The set of such limits
is the underlying set of e−1

0 (0) (see [124, Thm. 5.8]).

The algebraic definition is this: let O=OX,0 = C{z1, . . . , zn}/ 〈f1, . . . , fk〉
be the local algebra of X at 0 and let m = mX,0 be its maximal ideal. There
is a natural filtration of OX,0 by the powers of m:

OX,0 ⊃ m ⊃ · · · ⊃ mi ⊃ mi+1 ⊃ . . . ,

which is separated in the sense that
⋂∞
i=om

i = (0) because the ring OX,0
is local and Nœtherian. Thus, for any non zero element h ∈ OX,0 there is
a unique integer ν(h) such that h ∈ mν(h) \ mν(h)+1. It is called the m-adic
order of h and the image of h in the quotient mν(h)/mν(h)+1, which is a
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finite dimensional C-vector space, is called the initial form of h for the m-
adic filtration. Initial forms are the elements of a ring, which we now define
in the case of immediate interest. The general definition 2.20 is given below:

Definition 2.18. — We define the associated graded ring of O with
respect to m, written grmO to be the graded ring

grmO : =
⊕
i>0

mi/mi+1,

where m0 = O and the multiplication is induced by that of O.

Note that grmO is generated as C-algebra by m/m2, which is a finite
dimensional vector space. Thus, grmO is a finitely generated C-algebra, to
which we can associate a complex analytic space Specan grmO. It is noth-
ing but the affine algebraic variety Spec grmO viewed as a complex analytic
space with the sheaf of holomorphic functions replacing the sheaf of alge-
braic functions. Moreover, since grmO is graded and finitely generated in
degree one, the associated affine variety Specan grmO is a cone. (For more
on Specan, see [50, Appendix I, 3.4 and Appendix III, 1.2] or additionally [57,
p. 172]).

Definition 2.19. — We define the tangent cone CX,0 as the complex
analytic space Specan(grmO).

We have yet to establish the relation between the geometric and algebraic
definitions of the tangent cone. In order to do that we will need to introduce
the specialization of X to its tangent cone, which is a very interesting and
important construction in its own right.

Take the representative (X, 0) of the germ associated to the analytic
algebra O from above. Now, the convergent power series f1, . . . , fk define
analytic functions in a small enough polycylinder P (α) := {z ∈ Cn : |zi| <
αi} around 0. Suppose additionally that the initial forms of the fi’s generate
the homogeneous ideal of initial forms of elements of I = 〈f1, . . . , fk〉.
Let fi = fi,mi(z1, . . . , zn)+fi,mi+1(z1, . . . , zn)+fi,mi+2(z1, . . . , zn)+ . . . , and
set

Fi := v−mifi(vz1, . . . , vzn)
= fi,mi(z1, . . . , zn) + vfi,mi+1(z1, . . . , zn) + v2fi,mi+2(z1, . . . , zn) + . . .

∈ C[[v, z1, . . . , zn]].

Note that the series Fi, actually converge in the domain of Cn ×C defined
by the inequalities |vzi| < αi thus defining analytic functions on this open
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set. Take the analytic space X ⊂ Cn×C defined by the Fi’s and the analytic
map defined by the projection to the t-axis.

X⊂ Cn ×C
p

��
C

Now we have a family of analytic spaces parametrized by an open subset
of the complex line C. Note that for v 6= 0, the analytic space p−1(v) is
isomorphic to X and in fact for v = 1 we recover exactly the representative
of the germ (X, 0) with which we started. But for v = 0, the analytic space
p−1(0) is the closed analytic subspace of Cn defined by the homogeneous
ideal generated by the initial forms of elements of I.

We need a short algebraic parenthesis in order to explain the relation
between this ideal of initial forms and our definition of tangent cone (Defi-
nition 2.19).

Let R be a Noetherian ring, and I ⊂ J ⊂ R ideals such that
R ⊃ J ⊃ · · · ⊃ J i ⊃ J i+1 ⊃ · · · .

is a separated filtration in the sense that
⋂∞
i=o J

i = (0) (see [13, Chap. III,
§3, no. 2]).

Take the quotient ring A = R/I, define the ideal J̃i := (J i + I)/I ⊂ A
and consider the induced filtration

A ⊃ J̃ ⊃ · · · ⊃ J̃i ⊃ J̃i+1 ⊃ · · · .
Note that in fact J̃i is the image of J i in A by the quotient map.

Consider now the associated graded rings

grJ R =
∞⊕
i=0

J i/J i+1,

grJ̃ A =
∞⊕
i=0

J̃i/J̃i+1.

Definition 2.20. — Let f ∈ I. Since
⋂∞
i=o J

i = (0), there exists a
largest natural number k such that f ∈ Jk. Define the initial form of f with
respect to J as

inJ f := f (mod Jk+1) ∈ grJ R.

Using this, define the ideal of initial forms, or initial ideal of I as the
ideal of grJ R generated by the initial forms of all the elements of I.

InJ I := 〈inJ f〉f∈I ⊂ grJ R.
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Lemma 2.21. — Using the notation defined above, the following sequence
is exact:

0 // InJ I �
� // grJ R

φ // grJ̃ A // 0
that is, grJ̃ A ∼= grJ R/ InJ I.

Proof. — First of all, note that

J̃i/J̃i+1 ∼=
Ji+I
I

Ji+1+I
I

∼=
J i + I

J i+1 + I
∼=

J i

I ∩ J i + J i+1 ,

where the first isomorphism is just the definition, the second one is one of the
classical isomorphism theorems and the last one comes from the surjective
map J i → Ji+I

Ji+1+I defined by x 7→ x+ J i+1 + I. This last map tells us that
there are natural surjective morphisms:

ϕi : J i

J i+1 −→
J̃i

J̃i+1
∼=

J i

I ∩ J i + J i+1 ,

x+ J i+1 7−→ x+ I ∩ J i + J i+1,

which we use to define the surjective graded morphism of graded rings φ :
grJ R→ grJ̃ A. Now all that is left to prove is that the kernel of φ is exactly
InJ I.

Let f ∈ I be such that inJ f = f + Jk+1 ∈ Jk/Jk+1, then
φ(inJ f) = ϕk(f + Jk+1) = f + I ∩ Jk + Jk+1 = 0.

because f ∈ I ∩ Jk. Since by varying f ∈ I we get a set of generators of the
ideal InJ I, we have InJ I ⊂ Kerφ.

To prove the other inclusion, let g =
⊕
gk ∈ Kerφ, where we use the

notation gk := gk+Jk+1 ∈ Jk/Jk+1. Then, φ(g) = 0 implies by homogeneity
φ(gk) = ϕk(gk + Jk+1) = 0 for all k. Suppose that gk 6= 0 then

ϕ(gk + Jk+1) = gk + I ∩ Jk + Jk+1 = 0
implies gk = f + h, where 0 6= f ∈ (I ∩ Jk) \ Jk+1 and h belongs to Jk+1.
This means that gk ≡ f (mod Jk+1), which implies gk + Jk+1 = inJ f and
concludes the proof. �

In order to relate our definition of the tangent cone with the space we
obtained in our previous description of the specialization, just note that in
our case the roles of R and J ⊂ R are played by the ring of convergent
power series C{z1, . . . , zn}, and its maximal ideal m respectively, while I
corresponds to the ideal 〈f1, . . . , fk〉 defining the germ (X, 0) ⊂ (Cn, 0) and
A to its analytic algebra OX,0.

More importantly, the graded ring grmR, with this choice of R, is natu-
rally isomorphic to the ring of polynomials C[z1, . . . , zn] in such a way that
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Definition 2.20 coincides with the usual concept of initial form of a series
and tells us that

grmOX,0 ∼=
C[z1, . . . , zn]

Inm I
.

We would like to point out that there is a canonical way of working out
the specialization in the algebraic setting that, woefully, cannot be translated
word for word into the analytic case, but which can easily be adapted to
give a useful statement for germs of complex spaces. Suppose that X is an
affine algebraic variety, that is, the fi’s are polynomials in z1, . . . , zn. Set
R = C[z1, . . . , zn]/ 〈f1, . . . , fm〉 and consider the extended Rees Algebra(6)

of R with respect to m = 〈z1, . . . , zn〉 (see [127, Appendix], or [30, §6.5]):

R =
⊕
i∈Z

miv−i ⊂ R[v, v−1],

where we set mi = R for i 6 0. Note that R ⊃ R[v] ⊃ C[v], in fact it is a
finitely generated R-algebra and consequently a finitely generated C-algebra
(See [78, p. 120–122]). Moreover we have:

Proposition 2.22. — Let R be the extended Rees algebra defined above.
Then:

(1) The C[v]-algebra R is torsion free.
(2) R is faithfully flat over C[v].
(3) The map φ : R → grmR sending xv−i to the image of x in mi/mi+1

is well defined and induces an isomorphism R/(v · R) ' grmR.
(4) For any v0 ∈ C \ {0} the map of C-algebras R → R determined by

xv−i 7→ xv−i0 induces an isomorphism R
(v−v0)·R ' R.

Proof. — See the appendix written by the second author in [127], [30,
p. 171], or additionally in the exercises for [14, Chap. VIII, §6]. �

The proposition may be a little technical, but what it says is that the
extended Rees algebra is a way of producing flat degenerations of a ring to
its associated graded ring, since the inclusion morphism C[v] ↪→ R is flat.
Now taking the space X associated to R and the map X→ C associated to
the inclusion C[v] ↪→ R, we obtain a map:

ϕ : X −→ C

such that

• The map ϕ is faithfully flat.

(6) This algebra was introduced for an ideal J ⊂ R by D. Rees in [93], in the form
R[v, Jv−1] ⊂ R[v, v−1].
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• The fiber ϕ−1(0) is the algebraic space associated to grmR, that is,
the tangent cone CX,0.
• The space ϕ−1(v0), is isomorphic to X, for all v0 6= 0.

Thus, we have produced a 1-parameter flat family of algebraic spaces specia-
lizing X to CX,0.

Recall that flatness means that the fibers of the map vary continuously;
in this case, it means that every point in any fiber is the limit of a sequence
of points in the nearby fibers. Faithful flatness means that in addition the
map is surjective; in our case surjectivity is automatic, but for example the
inclusion of an open set in X is flat but not faithfully flat.

Note that in this construction we may replace the maximal ideal m by
any ideal J to obtain a faithfully flat specialization of R to grJ R.

We could have made the same construction replacing R by the local ring
O = Rm but then R, while still finitely generated over O, would no longer
be a finitely generated algebra over C. However, it is still essentially finitely
generated over C.

As you can see, the problem when trying to translate this into the analytic
case is first of all, that in general the best thing we can say is that the algebra
R is finitely generated over O, but not even essentially finitely generated over
C, which means that it cannot be viewed as corresponding to an open set
in an affine algebraic variety.

Given any finitely generated algebra over an analytic algebra such as O,
there is a “smallest” analytic algebra which contains it, in the sense that any
map of C-algebras from our algebra to an analytic algebra factors uniquely
through this “analytization”. The proof: our algebra is a quotient of a polyno-
mial ring O[z1, . . . , zs] by an ideal I; take the quotient of the corresponding
convergent power series ring O{z1, . . . , zs}, which is an analytic algebra, by
the ideal generated by I; it is again an analytic algebra. So we can use this
to translate our result into a similar one which deals with germs of analytic
spaces.

If we start with an analytic algebra O and construct the extended Rees
algebra R corresponding to the maximal ideal m of O, taking the analytic
algebra Rh associated to R, and the analytic germ X associated to Rh, we
have a germ of map induced by the inclusion C{t} ↪→ Rh:

ϕ : (X, 0) −→ (D, 0)

which preserves all the properties established in the algebraic case, that is:

• The map ϕ is faithfully flat.
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• The fiber ϕ−1(0) is the germ of analytic space associated to grmO,
that is the tangent cone CX,0
• The fiber ϕ−1(v0) is a germ of analytic space isomorphic to (X, 0),
for all v0 6= 0.

This means that we have produced a 1-parameter flat family of germs of
analytic spaces specializing (X, 0) to (CX,0, 0). The way this construction
relates to our previous analytic construction is explained in the next exercise.

Exercise 2.23.

(1) Suppose (X, 0) is a germ of hypersurface. Then O = C{z1, . . . , zn}/
〈f(z1, . . . , zn)〉.

Show that Rh = C{v, z1, . . . , zn}/
〈
v−mf(vz1, . . . , tzn)

〉
. Note

that this makes sense since, as we saw above, writing
f = fm(z1, . . . , zn) + fm+1(z1, . . . , zn) + . . . ,

where fk is an homogeneous polynomial of degree k, then:

v−mf(vz1, . . . , vzn)
= fm(z1, . . . , zn) + vfm+1(z1, . . . , zn) + · · · ∈ C{v, z1, . . . , zn}.

(2) More generally, take I ⊂ C{z1, . . . , zn} and choose generators fi
such that their initial forms fi,mi generate the ideal of all initial
forms of elements of I. Then:

Rh = C{v, z1, . . . , zn}/
〈
v−mifi(vz1, . . . , vzn)

〉
.

Let D∗ be the punctured disk. It is important to note that this compu-
tation implies that the biholomorphism Cn×D∗ → Cn×D∗ determined by
(z, v) 7→ (vz, v) induces an isomorphism ϕ−1(D∗) ' X ×D∗.

Finally, we can use this construction to prove that our two definitions of
the tangent cone are equivalent.

Proposition 2.24. — Let |CX,0| be the underlying set of the analytic
space CX,0. Then, generating lines in |CX,0| are the limit positions of secant
lines 0xi as xi ∈ X \ {0} tends to 0.

Proof. — Since ϕ : (X, 0) → (D, 0) is faithfully flat, the special fiber of
the map ϕ is contained in the closure of ϕ−1(D∗) (see [33, Prop. 3.19]). The
isomorphism ϕ−1(D∗) ' X×D∗ which we have just seen shows that for every
point x ∈ ϕ−1(0) = CX,0 there are sequences of points (xi, vi) ∈ X × D∗
tending to x. Thus x is in the limit of secants 0xi. �

So, we finally know that our two concepts of tangent cone coincide, at
least set-theoretically. In general the tangent cone contains very little infor-
mation about (X, 0), as shown by the next example.
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Example 2.25. — For all curves y2 − xm, m > 3, the tangent cone is
y2 = 0 and it is non-reduced.

We shall see below in Proposition 3.3 that the constancy of multiplicity
along a nonsingular subspace does contain useful geometric information.

Remark 2.26. — A collection of functions in I whose initial forms gen-
erate the initial ideal inm I certainly generates I. The converse is not true
(exercise) and if the initial forms of the fi do not generate the initial ideal,
the equations v−mifi(vz1, . . . , vzn) = 0 seen above do not describe the spe-
cialization to the tangent cone because the special fiber is not the tangent
cone; in fact they do not describe a flat degeneration. We have seen how
important this condition is in the proof of Proposition 2.24 and shall see it
again in Section 7. A set of elements of I whose initial forms generate the
initial ideal is called a standard basis of I.

2.5. Multiplicity

Nevertheless the analytic structure of CX,0 = Specan grmO does carry
some significant piece of information on (X, 0), its multiplicity.

For a hypersurface f = fm(z1, . . . , zn) + fm+1(z1, . . . , zn) + . . . , the mul-
tiplicity at 0 is just m = the degree of the initial polynomial. And, from
the example above, its tangent cone is also a hypersurface with the same
multiplicity at 0 in this sense. Although the algebraic relation between a
germ and its tangent cone is more complicated in general, this equality of
multiplicities is preserved as we are going to see.

Let O be the analytic algebra of (X, 0) ⊂ (Cn, 0), with maximal ideal
m as before. We have the following consequences of the fact that O is a
Noetherian C-algebra:

(a) For each i > 0, the quotient O/mi+1 is a finite dimensional vector
space over C, and the generating function∑

i>0
(dimC O/mi+1)T i = Q(T )

(1− T )d

is a rational function with numerator Q(T ) ∈ Z[T ], and Q(1) ∈ N.
See [7, p. 117–118], or [14, Chap. VIII, §4, no. 3, Thm. 2].

(b) For large enough i:

dimCO/mi+1 = em(O) i
d

d! + lower order terms,
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and em(O) = Q(1) is called the multiplicity of X at 0, which we will
denote by m0(X). See [14, Chap. VIII, §7] and [78, §14].

(c) A linear space Ld + t of dimension n − d at a sufficiently small
distance |t| > 0 from the origin and of general direction has the
property that for a sufficiently small ball B(0, ε) centered at 0 in
Cn, if ε is small enough and |t| small enough with respect to ε,
Ld + t meets X ∩B(0, ε) transversally at m0(X) nonsingular points
of X, which tend to 0 with |t|. See [50, p. 510–555].

(d) The multiplicity of X at 0 coincides with the multiplicity of CX,0
at 0. This follows from the fact that the generating function de-
fined above is the same for the C-algebra O and for grmO. See [14,
Chap. VIII, §7], and also [50, Thm. 5.2.1 & Cor.].

(e) If grmO = C[T1, . . . , Tn]/ 〈F1, . . . , Fc〉 where the Fi are homoge-
neous polynomials of respective degrees di forming a regular se-
quence in the polynomial ring, in the sense that for each i, the
image of Fi in the quotient C[T1, . . . , Tn]/ 〈F1, . . . , Fi−1〉 is not a
zero divisor, then em(O) = d1 . . . dc. See [14, Chap. VIII, §7, no. 4].

3. Normal Cone and Polar Varieties: the normal/conormal
diagram

The normal cone is a generalization of the idea of tangent cone, where
the point is replaced by a closed analytic subspace, say Y ⊂ X. If X and
Y were nonsingular it would be the normal bundle of Y in X. We will only
consider the case where Y is a nonsingular subspace of X and denote by t its
dimension (an integer, and not a vector of Cn as in the previous section!).

We will take a global approach here. Let (X,OX) be a reduced complex
analytic space of dimension d and Y ⊂ X a closed complex subspace defined
by a coherent sheaf of ideals J ⊂ OX . It consists, for every open set U ⊂ X
of all elements of OX(U) vanishing on Y ∩ U , and as one can expect the
structure sheaf OY is isomorphic to (OX/J)|Y . Analogously to the case of
the tangent cone, let us consider grJ OX , but now as the associated sheaf of
graded rings of OX with respect to J :

grJ OX =
⊕
i>0

J i/J i+1 = OX/J ⊕ J/J2 ⊕ · · · .

Definition 3.1. — We define the normal cone CX,Y of X along Y , as
the complex analytic space SpecanY (grJ OX).

Note that we have a canonical inclusion OY ↪→ grJ OX , which gives
grJ OX the structure of a locally finitely presented graded OY -algebra and
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consequently, by the Specan construction, a canonical analytic projection
CX,Y

Π−→ Y , in which the fibers are cones. The natural surjection grJ OX →
OX/J = OY obtained by taking classes modulo the ideal

⊕
i>1 J

i/J i+1

corresponds to an analytic section Y ↪→ CX,Y of the map Π sending each
point y ∈ Y to the vertex of the cone Π−1(y).

To be more precise, note that the sheaf of graded OX -algebras grJ OX is
a sheaf on X with support Y . Using the fact that J and all its powers are co-
herent OX -modules and that every point x ∈ X has a basis of neighborhoods
Uα such that OX(Uα) is noetherian it is not difficult to prove that grJ OX
is a locally finitely presented graded OY -algebra: the space Y is covered by
open sets V where the restriction of grJ OX has a presentation of the form:

grJ OX(V ) ∼=
OY (V ) [T1, . . . , Tr]
〈g1, . . . , gs〉

where the gi’s are homogeneous polynomials in OY (V ) [T1, . . . , Tr] and the
images of the Tj in the quotient by 〈g1, . . . , gs〉 are a system of generators
of the OY (V )-module (J/J2)(V ), the image in the quotient of a system of
generators of the ideal J(U) ⊂ OX(U), where U is an open set of X such
that U ∩ Y = V . The ideal 〈g1, . . . , gs〉 then defines a closed subset CX,Y |V
of V ×Cr which is invariant by homotheties on the T ′js and is the restriction
Π−1(V ) over V of the normal cone.

Let us now build, in analogy to the case of the tangent cone, the special-
ization of X to the normal cone of Y .

Let us first take a look at it in the algebraic case, when we suppose that
X is an algebraic variety, and Y ⊂ X a closed algebraic subvariety defined
by a coherent sheaf of ideals J ⊂ OX .

Keeping the analogy with the tangent cone and the Rees algebra tech-
nique, we consider the locally finitely presented sheaf of graded OX -algebras

R =
⊕
n∈Z

Jnv−n ⊂ OX [v, v−1], where Jn = OX,0 for n 6 0.

Note that we have C[v] ⊂ OX [v] ⊂ R, where C denotes the constant sheaf,
thus endowing R(X) with the structure of a C[v]-algebra that results in an
algebraic map

p : SpecR −→ Spec C[v]
Moreover, the C[v]-algebra R has all the analogous properties of Proposi-
tion 2.22, which in turn gives the corresponding properties to p, defining a
faithfully flat 1-parameter family of varieties such that:

(1) The fiber over 0 is Spec(grJ OX).
(2) The general fiber is an algebraic space isomorphic to X.
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Thus, the map p gives a specialization of X to its normal cone CX,Y along Y .

Let us now look at the corresponding construction for germs of analytic
spaces. Going back to the complex space (X,OX), and the closed subspace
Y of X, take a point 0 ∈ Y , and a local embedding (Y, 0) ⊂ (X, 0) ⊂ (Cn, 0).
Let OX,0 = C{z1, . . . , zn}/

〈
f1, . . . , fk

〉
be the analytic algebra of the germ,

and J the ideal defining Y in X. Consider now the finitely generated OX,0-
algebra:

R =
⊕
n∈Z

Jnv−n, where Jn = OX,0 for n 6 0.

So again, taking the analytic algebra Rh associated to R and the analytic
germ Z associated to Rh, we have a germ of map induced by the inclusion
C{v} ↪→ Rh:

p : (Z, 0) −→ (D, 0)

which preserves all the properties established in the algebraic case, that is:

• The map p is faithfully flat.
• The special fiber p−1(0) is the germ of analytic space associated to

grJ OX,0, that is the germ of the normal cone CX,Y .
• The fibers p−1(v) are germs of analytic spaces isomorphic to (X, 0)
for all v 6= 0.

Thus, we have produced a 1-parameter flat family of germs of analytic spaces
specializing (X, 0) to (CX,Y , 0).

Using this it can be shown as in the case of the tangent cone that if Y
is non singular, after choosing a local retraction ρ : (X, 0) → (Y, 0), the
underlying set of the normal cone (CX,Y , 0) can be identified with the set of
limit positions of secant lines xiρ(xi) for xi ∈ X \ Y as xi tends to y ∈ Y
(for a proof of this, see [51, §2]). We shall see more about this specialization
in the global case a little later.

Keeping this germ approach, with (Y, 0) ⊂ (X, 0) ⊂ Cn, and assuming
that Y a linear subspace of dimension t of Cn we can now interpret Defini-
tion 2.20 and Lemma 2.21 in the following way:

Using the notation of Section 2.4, let R := C{z1, . . . , zn−t, y1 . . . , yt},
J = 〈z1, . . . , zn−t〉 ⊂ R the ideal defining Y , I = 〈f1, . . . , fk〉 ⊂ R the ideal
defining X and A = R/I = OX,0. Then, the ring R/J is by definition OY,0
which is isomorphic to C{y1, . . . , yt}, and it is not hard to prove that

grJ R ∼= OY,0[z1, . . . , zn−t].
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More precisely, take an element f ∈ I ⊂ R. Then we can write

f =
∑

(α,β)∈Nt×Nn−t

cαβy
αzβ .

Now define νY f = min{|β| | cαβ 6= 0}. One can prove that

inJ f =
∑

|β|=νY f

cαβy
αzβ ,

which after rearranging the terms with respect to z gives us a polynomial in
the variables zk with coefficients in OY,0, that is, an element of grJ R. Note
that these “polynomials” define analytic functions in Y ×Cn−t = Ct×Cn−t,
and thus realize, by the Specan construction, the germ of the normal cone
(CX,Y , 0) as a germ of analytic subspace of (Cn, 0) with a canonical analytic
map to (Y, 0). Let us clarify all this with an example.

Example 3.2. — Take (X, 0) ⊂ (C3, 0) defined by x2−y2z = 0, otherwise
known as Whitney’s umbrella. Then from what we have discussed we obtain:

(1) The tangent cone at 0, CX,0 ⊂ C3, is the analytic subspace defined
by x2 = 0.

(2) For Y = z-axis, the normal cone CX,Y ⊂ C3 of X along Y is the
analytic subspace defined by x2−y2z = 0, that is the space X itself,
which is a cone with vertex Y .

(3) For Y = y-axis, the normal cone CX,Y ⊂ C3 of X along Y is the
analytic subspace defined by y2z = 0.

Proposition 3.3 (Hironaka, Teissier). — Given a t-dimensional closed
nonsingular subspace Y ⊂ X and a point y ∈ Y , let TY,y denote the tangent
space to Y at y. For any local embedding (Y, 0) ⊂ (X, 0) ⊂ Cn, the following
conditions are equivalent:

(1) The multiplicity my(X) of X at the points y ∈ Y is locally constant
on Y near 0.

(2) The dimension of the fibers of the maps CX,Y → Y is locally con-
stant on Y near 0.

(3) For every point y ∈ Y there exists a dense Zariski open set D of
the Grassmannian of (n−d+ t)-dimensional linear subspaces of Cn

containing TY,y such that if W is a representative in an open U ⊂
Cn of a germ (W, y) at y of a nonsingular (n− d+ t)-dimensional
subspace of Cn containing Y and whose tangent space at y is in D,
there exists an open neighborhood B ⊂ U of y in Cn such that:

|W ∩X ∩B| = Y ∩B,
where |Z| denotes the reduced space of Z. In short, locally the in-
tersection with X of a general subspace containing Y and whose
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intersection with X is of dimension t, is Y and nothing more. Any
other component of this intersection would “bring more multiplicity”
to X at the origin.

Proof. — See [51, §6], [50, Appendix III, Thm. 2.2.2], and for (3) see [112,
Chap. I, 5.5]. The meaning of the last statement is that if the equality is not
satisfied, there are t-dimensional components of the intersection |W ∩X∩B|,
distinct from Y ∩ B, meeting Y at the point y; the multiplicity of X at y
must then be larger than at general nearby points of Y . �

Example 3.4. — To illustrate the equivalence of (1) and (3), let us look
again at Whitney’s umbrella (X, 0) ⊂ (C3, 0) defined by x2 − y2z = 0, and
let Y be the y-axis, along which X is not equimultiple at the origin. Taking
W as the nonsingular 2-dimensional space defined by z = ax gives for the
intersection with X

z − ax = 0, x(x− ay2) = 0,
so that whenever a 6= 0 the intersection W ∩ X has two irreducible com-
ponents at the origin: the y-axis and the curve defined by the equations
x = ay2, z = ax.

We can do the same taking for Y the z-axis, along whichX is equimultiple
at the origin, and W defined by y = ax. We obtain

y − ax = 0, x2(1− az2) = 0,
which locally defines the z-axis.

In order to understand better the normal cone and Proposition 3.3, we
are going to introduce the blowing up of X along Y . As in the case of the
tangent cone, let us start by a geometric description.

Let (Y, 0) ⊂ (X, 0) be germ of nonsingular subspace of dimension t as
before. Choose a local analytic retraction ρ : Cn → Y , a decomposition
Cn ' Y ×Cn−t such that ρ coincides with the first projection and use it to
define a map:

φ : X \ Y −→ Pn−1−t

x 7−→ direction of xρ(x) ⊂ Cn−t.

Then consider its graph in (X \Y )×Pn−1−t. Note that, since we can assume
that Y is a linear subspace, in a suitable set of coordinates the map ρ is just
the canonical linear projection ρ : Cn → Ct. Moreover, the map φ maps
x = (x1, . . . , xn) ∈ X \ Y 7→ (xt+1 : . . . : xn) ∈ Pn−1−t.

Just as in the case of the blow-up of a point, the closure of the graph is
a complex analytic space EYX ⊂ X × Pn−1−t and the natural projection

– 709 –



Arturo Giles Flores and Bernard Teissier

map eY := p ◦ i:

EYX
� � i //

eY
&&

X ×Pn−1−t

p

��
X

is proper. Moreover the map eY induces an isomorphism EYX \ e−1
Y (Y ) →

X \Y . Note that if we take an open cover of the complex space X, consisting
only of local models, we can do an analogous construction in each local model
(see the proof of Proposition 3.6 below) and then paste them all up to obtain
a global blow-up. There is an algebraic construction which will save us the
effort of pasting by doing it all at once. Let J ⊂ OX be the ideal defining
Y ⊂ X as before.

Definition 3.5. — The Rees algebra, or blowing up algebra of J in
OX is the graded OX-algebra:

P (J) =
⊕
i>0

J i = OX ⊕ J ⊕ J2 ⊕ · · · .

Note that P (J)/JP (J) ∼= grJ OX , the associated graded ring of OX with
respect to J . Moreover, since J is locally generated by n−t coordinates of Cn

whose vanishing defines Y ⊂ Cn, P (J) is a locally finitely presented graded
OX -algebra, generated in degree 1, and as such, it has locally a presentation,
for suitable open sets U ⊂ X,

OX|U [z1, . . . , zn−t]
〈g1, . . . , gm〉

∼= P (J)|U,

where the gi are homogeneous polynomials in z1, . . . , zn−t with coefficients
in OX |U .

Defining ẼYX as the projective analytic spectrum of P (J), ẼYX =
ProjanP (J) (see [50, Appendix III, 1.2.8]), we can view this as defining
a family of projective varieties parametrized by X, as a result of the OX -
algebra structure.

ẼYX ⊂ X ×Pn−1−t

��
X

To check that these two spaces are the same it is enough to check that
they are the same locally for each open set of an appropriate open cover of
X, and this is where the next proposition comes into play:
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Proposition 3.6. — Take a point x ∈ X and a sufficiently small neigh-
borhood U ⊂ X of x such that the ideal J(U) ⊂ OX(U) is finitely generated.
Then choosing a system of generators J = 〈h1, . . . , hs〉 gives an embedding
EYX ⊂ X ×Ps−1 and an embedding ẼYX ⊂ X ×Ps−1. Their images are
equal.

Proof. — Let Y ⊂ X be the subspace defined by J , which in the following
will mean Y ∩ U ⊂ U ⊂ X to avoid complicated and unnecessary notation,
but always keeping in mind that we are working in a special open set U of
X which allows us to use the finiteness properties of analytic geometry. Now
consider the map:

λ : X \ Y −→ Ps−1

x 7−→ (h1(x) : . . . : hs(x)),

and as before let EYX ⊂ X ×Ps−1 be the closure of the graph of λ.

On the other hand, consider the presentation

OX [z1, . . . , zs]/(g1, . . . , gm) ∼= P (J),

where the isomorphism is defined by zi 7→ hi.

Note that the gi ∈ OX [z1, . . . , zs], i = 1, . . . ,m, generate the ideal of
all homogeneous relations g(h1, . . . , hs) = 0, g ∈ OX [z1, . . . , zs]. Those are
exactly the equations for the closure of the graph. To see why this last
statement is true, recall that:

graph(λ) = {(x, z1 : . . . : zs) ⊂ X ×Ps−1| (z1 : . . . : zs)
= (h1(x) : . . . : hs(x))}.

and remember that the elements g ∈ 〈g1, . . . , gm〉 are homogeneous polyno-
mials in z1, . . . , zs with coefficients in OX , so they define analytic functions
inX×Cs such that the homogeneity in the z’s allows us to look at their zeros
in X ×Ps−1. Moreover, if (x, z1 : . . . : zs) ∈ graph(λ), then [z] = [h(x)] and
thus g(z) = 0. Since the gi generate the ideal of elements of OX [z1, . . . , zs]
such that g(h1, . . . , hs) = 0 they are the equations defining the graph, and
consequently its closure. �

Finally, to relate all this to the normal cone, note that in the map

eY : EYX −→ X

the inverse image of Y is the projective family associated to the family of
cones

CX,Y −→ Y.
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This is clear, set-theoretically, in the geometric description. In the algebraic
description, it follows from the identity(⊕

i>0
J i
)⊗
OX

OX/J ∼=
⊕
i>0

J i/J i+1 = grJ OX

and the fact that fiber product corresponds germ-wise to tensor product:

OX �
� //

��

⊕
i>0 J

i

OX/J

X EYX
eYoo

Y
?�

OO

The real trick comes when, in the analytic setting, we want to build the
specialization to the normal cone in a global scenario. We will describe a
geometric construction for this. Consider the complex space X × C, and
the closed nonsingular complex subspace Y × {0} ⊂ X ×C defined by the
coherent sheaf of ideals 〈J, v〉.

Let π : Z → X ×C denote the blowing up of X ×C along Y ×{0}. Since
v is one of the generators of the ideal Je = 〈J, v〉 defining the blown-up
subspace, there is an open set U ⊂ Z where v generates the pullback of the
ideal Je ⊂ OX×C, which is the ideal defining the exceptional divisor of the
map π. One can verify by a direct computation that our old acquaintance,
the sheaf of OX -algebras R, can be identified with the sheaf of analytic
functions, algebraic in v, over U . Moreover, the composed analytic map

Z ⊃ U π|U−→ X ×C pr2−→ C
is precisely the map which gives us the specialization to the normal cone.

In the next section we prove another specialization result which is very
useful to prove Theorem 3.18 and its generalization in the section of rel-
ative duality. It relates the specialization of (X, 0) to its tangent cone to
the specialization of T ∗XCn to the normal cone of the fiber κ−1(x) over x
in T ∗XCn.

3.1. Specialization to the normal cone of κ−1(x) ⊂ C(X)

Proposition 3.7. — Let X ⊂ Cn be a reduced analytic subspace of
dimension d and for x ∈ X, let ϕ : X→ C be the specialization of X to the
tangent cone CX,x. Let κ = κX : T ∗XCn → X denote the conormal space of
X in Cn × Čn. Then the relative conormal space

q : T ∗X(Cn ×C/C)→ X→ C
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is isomorphic to the specialization space of T ∗XCn to the normal cone
CT∗

X
Cn,κ−1(x) of κ−1(x) in T ∗XCn. In particular, the fibre q−1(0) is isomor-

phic to this normal cone.

Proof. — We shall see a proof in a more general situation below in Sub-
section 4.4. �

Corollary 3.8. — The relative conormal space κϕ : T ∗X(Cn×C)/C)→
X is ϕ-Lagrangian.

Proof. — We will use the notation of the proof of Proposition 4.14. From
Definition 2.15 we need to prove that every fiber q−1(s) is a Lagrangian
subvariety of {s} × Cn × Čn. By Proposition 3.7 we know that for s 6= 0,
the fiber q−1(s) is isomorphic to T ∗XCn and so it is Lagrangian. Thus, by
Proposition 2.16 all we need to prove is that the special fiber q−1(0) has the
right dimension, which in this case is equal to n.

Proposition 3.7 also tells us that the fiber q−1(0) is isomorphic to the
normal cone

CT∗
X

Cn,T∗{x}Cn∩T∗
X

Cn = CT∗
X

Cn,κ−1(x).

Finally, since the projectivized normal cone PCT∗
X

Cn,T∗{x}Cn∩T∗
X

Cn is ob-
tained as the exceptional divisor of the blowing up of T ∗XCn along κ−1

X (x), it
has dimension n−1 and so the cone over this projective variety has dimension
n, which finishes the proof. �

3.2. Local Polar Varieties

In this section we introduce the local polar varieties of a germ of a reduced
equidimensional complex analytic space (X, 0) ⊂ (Cn, 0). The dimension of
X is generally denoted by d but to make the comparison with the case of
projective varieties V of dimension d mentioned in the introduction we must
think of X as the cone with vertex 0 ∈ Cn over V , which is of dimension
d+ 1.

Local polar varieties were first constructed, using the Semple–Nash
modification and special Schubert cycles of the Grassmannian, in [70]. The
description of the local polar varieties in terms of the conormal space used
here is a contribution of Henry–Merle which appears in [48, 49, 112]. In
this subsection we shall get a first glimpse into a special case of what will
be called the normal-conormal diagram. Let us denote by C(X) and E0X
respectively the conormal space of X and the blowing up of 0 in X as before,
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then we have the diagram:

E0C(X) ê0 //

κ′

��

ξ

��

C(X) �
� //

κ

��

λ

%%

X × P̌n−1

pr2
��

P̌n−1

E0X e0
// X

where E0C(X) is the blowing up of the subspace κ−1(0) in C(X), and κ′

is obtained from the universal property of the blowing up, with respect to
E0X and the map ξ.

It is worth mentioning that E0C(X) lives inside the fiber product
C(X) ×X E0X and can be described in the following way: take the inverse
image of E0X \ e−1

0 (0) in C(X) ×X E0X and close it, thus obtaining κ′ as
the restriction of the second projection to this space.

Let Dd−k+1 ⊂ Cn be a linear subspace of codimension d − k + 1, for
0 6 k 6 d − 1, and let Ld−k ⊂ P̌n−1 be the dual space of Dd−k+1, which
is the linear subspace of P̌n−1 consisting of hyperplanes of Cn that contain
Dd−k+1.

The next proposition provides the relation between the intuitive definition
of local polar varieties as closures of sets of critical points on X0 of linear
projections and the conormal definition, which is useful for proofs.

Proposition 3.9. — For a sufficiently general Dd−k+1, the image
κ(λ−1(Ld−k)) is the closure in X of the set of points of X0 which are
critical for the projection π|X0 : X0 → Cd−k+1 induced by the projection
Cn → Cd−k+1 with kernel Dd−k+1 = (Ld−k )̌.

Proof. — Note that x ∈ X0 is critical for π if and only if the tangent
map dxπ : T 0

X,x −→ Cd−k+1 is not onto, which means dim ker dxπ > k since
dimT 0

X,x = d, and ker dxπ = Dd−k+1 ∩ T 0
X,x.

Note that the conormal space C(X0) of the nonsingular part of X is equal
to κ−1(X0) so by definition:

λ−1(Ld−k) ∩ C(X0) = {(x,H) ∈ C(X) | x ∈ X0, H ∈ Ld−k, T 0
X,x ⊂ H}

equivalently:

λ−1(Ld−k) ∩ C(X0) = {(x,H),∈ C(X) | x ∈ X0, H ∈ Ď, H ∈ (T 0
X,x)̌ }
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thus H ∈ Ď ∩ (T 0
X,x)̌, and from the equality Ď ∩ (T 0

X,x)̌ = (D + T 0
X,x)̌ we

deduce that the intersection is not empty if and only if D+T 0
X,x 6= Cn, which

implies that dimD∩T 0
X,x > k, and consequently κ(H) = x is a critical point.

According to [112, Chap. IV, 1.3], there exists an open dense set Uk in
the Grassmannian of (n− d+ k − 1)-planes of Cn such that if D ∈ Uk, the
intersection λ−1(Ld−k) ∩ C(X0) is dense in λ−1(Ld−k). So, for any D ∈ U ,
since κ is a proper map and thus closed, we have that κ(λ−1(Ld−k)) =
κ(λ−1(Ld−k) ∩ C(X0)) = κ(λ−1(Ld−k)), which finishes the proof. See [112,
Chap. 4, 4.1.1] for a complete proof of a more general statement. �

Remark 3.10. — It is important to have in mind the following easily
verifiable facts:

(a) As we have seen before, the fiber κ−1(x) over a regular point x ∈
X0 in the (projectivized) conormal space C(X) is a Pn−d−1, so
by semicontinuity of fiber dimension we have that dim κ−1(0) >
n− d− 1.

(b) The analytic set λ−1(Ld−k) is nothing but the intersection of C(X)
and Cn × Ld−k in Cn × P̌n−1. The space Cn × Ld−k is “linear”,
defined by n − d + k − 1 linear equations. For a general Ld−k, this
intersection is of pure dimension n− 1− n+ d− k + 1 = d− k if it
is not empty.

The proof of this is not immediate because we are working over
an open neighborhood of a point x ∈ X, so we cannot assume that
C(X) is compact. However (see [112, Chap. IV]) we can take a
Whitney stratification of C(X) such that the closed algebraic subset
κ−1(0) ⊂ P̌n−1, which is compact, is a union of strata. By general
transversality theorems in algebraic geometry (see [58]) a sufficiently
general Ld−k will be transversal to all the strata of κ−1(0) in P̌n−1

and then because of the Whitney conditions Cn × Ld−k will be
transversal in a neighborhood of κ−1(0) to all the strata of C(X),
which will imply in particular the statement on the dimension. Since
κ is proper, the neighborhood of κ−1(0) can be taken to be the in-
verse image by κ of a neighborhood of 0 in X. The meaning of
“general” in Proposition 3.9 is that of Kleiman’s transversality the-
orem. Moreover, since C(X) is a reduced equidimensional analytic
space, for a general Ld−k, the intersection of C(X) and Cn × Ld−k
in Cn × P̌n−1 is generically reduced and since according to our
general rule we remove embedded components when intersecting
with linear spaces, λ−1(Ld−k) is a reduced equidimensional com-
plex analytic space.
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Note that the existence of Whitney stratifications does not
depend on the existence of polar varieties. In [112, Chap. III,
Prop. 2.2.2] it is deduced from the idealistic Bertini theorem.

(c) The fact that λ−1(Ld−k)∩C(X0) is dense in λ−1(Ld−k) means that
if a limit of tangent hyperplanes at points of X0 contains Dd−k+1,
it is a limit of tangent hyperplanes which also contain Dd−k+1. This
equality holds because transversal intersections preserve the frontier
condition; see [23], [112, Rem. 4.2.3].

(d) Note that for a fixed Ld−k, the germ (Pk(X;Ld−k), 0) is empty if
and only if the intersection κ−1(0) ∩ λ−1(Ld−k) is empty. From (a)
we know that dim κ−1(0) = n − d − 1 + r with r > 0. Thus,
by the same argument as in (b), this implies that the polar va-
riety (Pk(X;Ld−k), 0) is not empty if and only if dim(κ−1(0) ∩
λ−1(Ld−k)) > 0 and if and only if r > k.

Definition 3.11. — With the notation and hypotheses from Proposi-
tion 3.9, define for 0 6 k 6 d− 1 the local polar variety.

Pk(X;Ld−k) = κ(λ−1(Ld−k)).

A priori, we have just defined Pk(X;Ld−k) set-theoretically, but since
λ−1(Ld−k) is empty or reduced and κ is a projective fibration over the smooth
part ofX we have the following result, for which a proof can be found in [112,
Chap. IV, 1.3.2].

P1

X

L

O

Proposition 3.12. — The local polar variety Pk(X;Ld−k) ⊆ X is a
reduced closed analytic subspace of X, either of pure codimension k in X or
empty.

We have thus far defined a local polar variety that depends on both the
choice of the embedding (X, 0) ⊂ (Cn, 0) and the choice of the linear space
Dd−k+1. However, an important information we will extract from these polar
varieties is their multiplicities at 0, and these numbers are analytic invariants
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provided the linear spaces used to define them are general enough. This
generalizes the invariance of the degrees of Todd’s polar loci which we saw
in the introduction.

Proposition 3.13 (Teissier). — Let (X, 0) ⊂ (Cn, 0) be as before, then
for every 0 6 k 6 d− 1 and a sufficiently general linear space Dd−k+1 ⊂ Cn

the multiplicity of the polar variety Pk(X;Ld−k) at 0 depends only on the
analytic type of (X, 0).

Proof. — See [112, Chap. IV, Thm. 3.1]. The idea is to construct for a
given local embedding X ⊂ Cn a map π : Z → G where G is the space of
linear projections Cn → Cd−k+1 such that for general g ∈ G the fiber is the
corresponding polar variety, and then to use the analytic semicontinuity of
multiplicity. Given two different embeddings, one puts them in a common
third embedding and uses a similar method. �

This last result allows us to associate to any reduced, pure d-dimensional,
analytic local algebra OX,x a sequence of d integers (m0, . . . ,md−1), where
mk is the multiplicity at x of the polar variety Pk(X;Ld−k) calculated from
any given embedding (X,x) ⊂ (Cn, 0), and a general choice of Dd−k+1. Note
that in practice such a choice is not always easy to determine.

Remark 3.14. — Since for a linear space Ld−k to be “sufficiently general”
means that it belongs to an open dense subset specified by certain conditions,
we can just as well take a sufficiently general flag

L1 ⊂ L2 ⊂ · · · ⊂ Ld−2 ⊂ Ld−1 ⊂ Ld ⊂ P̌n−1

which by definition of a polar variety and Proposition 3.13, gives us a chain

Pd−1(X;L1) ⊂ Pd−2(X;L2) ⊂ · · · ⊂ P1(X;Ld−1) ⊂ P0(X;Ld) = X,

of polar varieties, each with generic multiplicity at the origin. This implies
that if the germ of a general polar variety (Pk(X;Ld−k), 0) is empty for a
fixed k, then it will be empty for all l ∈ {k, . . . , d− 1}. This fact can also be
deduced from 3.10(d) by counting dimensions.

Definition 3.15 (Definition of polar varieties for singular projective
varieties). — Let V ⊂ Pn−1 be a reduced equidimensional projective variety
of dimension d. Let (X, 0) ⊂ (Cn, 0) be the germ at 0 of the cone over V . The
polar varieties Pk(X,Ld−k+1), 0 6 k 6 d, are cones because tangent spaces
are constant along the generating lines (see Lemma 2.14). The associated
projective subvarieties of V are the polar varieties of V and are denoted
by Pk(V ) or Pk(V,Ld−k+1) or Pk(V,Dd−k+2) with Ld−k+1 = (Dd−k+2)̌ ⊂
P̌n−1.
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If V is nonsingular this definition coincides with the definition of
Pk(V,Dd−k+2) given in the introduction. It suffices to take the linear sub-
space Ld−k+1 ⊂ P̌n−1 to be the dual of the subspace Dd−k+2 ⊂ Pn−1 of
codimension d− k + 2 which appears in that definition.

Example 3.16. — Let X := y2 − x3 − t2x2 = 0 ⊂ C3, so dimX = 2, and
thus k = 0, 1. An easy calculation shows that the singular locus of X is the
t-axis, and m0(X) = 2.

t

y

x

P (X,L )

O

1

Note that for k = 0, D3 is just the origin in C3, so the projection

π : X0 → C3

with kernel D3 is the restriction to X0 of the identity map, which is of rank
2 and we get that the whole X0 is the critical set of such a map. Thus,

P0(X,L2) = X.

For k = 1, D2 is of dimension 1. So let us take for instance D2 = y-axis,
so we get the projection

π : X0 −→ C2

(x, y, t) 7−→ (x, t),
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and we obtain that the set of critical points of the projection is given by

P1(X,L1) =
{
x = −t2

y = 0
If we had taken for D2 the line t = 0, αx + βy = 0, we would have found
that the polar curve is a nonsingular component of the intersection of our
surface with the surface 2αy = βx(3x+2t2). For α 6= 0 all these polar curves
are tangent to the t-axis. As we shall see in the next subsection, this means
that the t-axis is an “exceptional cone” in the tangent cone y2 = 0 of our
surface at the origin, and therefore all the 2-planes containing it are limits
at the origin of tangent planes at nonsingular points of our surface.

3.3. Limits of tangent spaces

With the help of the normal/conormal diagram and the polar varieties
we will be able to obtain information on the limits of tangent spaces to X at
0, assuming that (X, 0) is reduced and purely d-dimensional. This method
is based on Whitney’s lemma and the two results which follow it:

Lemma 3.17 (Whitney’s lemma). — Let (X, 0) be a pure-dimensional
germ of analytic subspace of Cn, choose a representative X and let {xn} ⊂
X0 be a sequence of points tending to 0, such that

lim
n→∞

[0xn] = l and lim
n→∞

TxnX = T.

Then l ⊂ T .

This lemma originally appeared in [125, Thm. 22.1], and you can also
find a proof due to Hironaka in [67] and yet another below in assertion (Ia)
of Theorem 3.18.

Theorem 3.18 (Lê–Teissier [72]).

(I) In the normal/conormal diagram

X ×Pn−1 × P̌n−1 ⊃ E0C(X) ê0 //

κ′

��

ξ

��

C(X) �
� //

κ

��

λ

%%

X × P̌n−1

pr2
��

P̌n−1

X ×Pn−1 ⊃ E0X e0
// X

consider the irreducible components {Dα} of D = |ξ−1(0)|. Then:
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(a) Each Dα ⊂ Pn−1 × P̌n−1 is in fact contained in the incidence
variety I ⊂ Pn−1 × P̌n−1.

(b) Each Dα is Lagrangian in I and therefore establishes a projec-
tive duality of its images:

Dα
//

��

Wα ⊂ P̌n−1

Vα ⊂ Pn−1

Note that, from commutativity of the diagram we obtain κ−1(0)=⋃
αWα, and e−1

0 (0) =
⋃
α Vα. It is important to notice that these

expressions are not necessarily the irreducible decompositions of
κ−1(0) and e−1

0 (0) respectively, since there may be repetitions; it
is the case for the surface of Example 3.16, where the dual of the
tangent cone, a point in P̌2, is contained in the projective line dual
to the exceptional tangent. However, it is true that they contain the
respective irreducible decompositions.

In particular, note that if dimVα0 = d−1, then the coneO(Vα0) ⊂
Cn is an irreducible component of the tangent cone CX,0 and its pro-
jective dual Wα0 = V̌α0 is contained in κ−1(0). That is, any tangent
hyperplane to the tangent cone is a limit of tangent hyperplanes to
X at 0. The converse is very far from true and we shall see more
about this below.

(II) For any integer k, 0 6 k 6 d − 1, and sufficiently general Ld−k ⊂
P̌n−1 the tangent cone CPk(X,L),0 of the polar variety Pk(X,L) at
the origin consists of:
• The union of the cones O(Vα) which are of dimension d−k (=

dimPk(X,L)).
• The polar varieties Pj(O(Vβ), L) of dimension d−k, for the pro-
jection p associated to L, of the cones O(Vβ), for dimO(Vβ) =
d− k + j.

Note that Pk(X,L) is not unique, since it varies with L, but we
are saying that their tangent cones have things in common. The Vα’s
are fixed, so the first part is the fixed part of CPk(X,L),0 because it
is independent of L, the second part is the mobile part, since we are
talking of polar varieties of certain cones, which by definition move
with L.

Proof. — The proof of (I), which can be found in [70], is essentially a
strengthening of Whitney’s lemma (Lemma 3.17) using the normal/conormal
diagram and the fact that the vanishing of a differential form (the symplectic
form in our case) is a closed condition.
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The proof of (II), also found in [70], is somewhat easier to explain geo-
metrically. Using our normal/conormal diagram, remember that we can ob-
tain the blowing up E0(Pk(X,L)) of the polar variety Pk(X,L) by taking
its strict transform under the morphism e0, and as such we will get the
projectivized tangent cone PCPk(X,L),0 as the fiber over the origin.

The first step is to prove that set-theoretically the projectivized tangent
cone can also be expressed as

|PCPk(X,L),0| =
⋃
α

κ′(ê−1
0 (λ−1(L) ∩Wα)) =

⋃
α

κ′(Dα ∩ (Pn−1 × L))

Now recall that the intersection Pk(X,L)∩X0 is dense in Pk(X,L), so for
any point (0, [l]) ∈ PCPk(X,L),0 there exists a sequence of points {xn} ⊂ X0

such that the directions of the secants 0xn converge to it. So, by definition
of a polar variety, if Dd−k+1 = Ľ and Tn = TxnX

0 then by Proposition 3.9
we know that dimTn∩Dd−k+1 > k which is a closed condition. In particular
if T is a limit of tangent spaces obtained from the sequence {Tn}, then
T ∩ Dd−k+1 > k also. But if this is the case, since the dimension of T is
d, there exists a limit of tangent hyperplanes H ∈ κ−1(0) such that T +
Dd−k+1 ⊂ H which is equivalent to H ∈ κ−1(0)∩λ−1(L) 6= ∅. Therefore the
point (0, [l], H) is in

⋃
α ê
−1
0 (λ−1(L) ∩Wα), and so we have the inclusion:

|PCPk(X,L),0| ⊂
⋃
α

κ′(ê−1
0 (λ−1(L) ∩Wα)).

For the other inclusion, recall that λ−1(L) \ κ−1(0) is dense in λ−1(L)
and so ê−1

0 (λ−1(L)) is equal set theoretically to the closure in E0C(X) of
ê−1

0 (λ−1(L) \ κ−1(0)). Then for any point (0, [l], H) ∈ ê−1
0 (λ−1(L)∩ κ−1(0))

there exists a sequence {(xn, [xn], Hn)} in ê−1
0 (λ−1(L) \ κ−1(0)) converg-

ing to it. Now by commutativity of the diagram, we get that the sequence
{(xn, Hn)} ⊂ λ−1(L) and as such the sequence of points {xn} lies in the polar
variety Pk(X,L). This implies in particular, that the sequence {(xn, [0xn])}
is contained in e−1

0 (Pk(X,L)\{0}) and the point (0, [l]) is in the projectivized
tangent cone |PCPk(X,L),0|.

The second and final step of the proof is to use that from (Ia) and (Ib)
it follows that each Dα ⊂ I ⊂ Pn−1 × P̌n−1 is the conormal space of Vα in
Pn−1, with the restriction of κ′ to Dα being its conormal morphism.

Note that Dα is of dimension n − 2, and since all the maps involved
are just projections, we can take the cones over the Vα’s and proceed as
in Section 2.3. In this setting we get that since L is sufficiently general, by
Proposition 3.9 and Definition 3.11:
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• For the Dα’s corresponding to cones O(Vα) of dimension d − k (=
dimPk(X,L)), the intersection Dα ∩ Cn × L is not empty and as
such its image is a polar variety P0(O(Vα), L) = O(Vα).
• For the Dα’s corresponding to cones O(Vα) of dimension d− k + j,
the intersection Dα∩ (Cn×L) is either empty or of dimension d−k
and as such its image is a polar variety of dimension d− k, which is
Pj(O(Vα), L).

You can find a proof of these results in [70], [112, Chap. IV] and [113]. �

So for any reduced and purely d-dimensional complex analytic germ
(X, 0), we have a method to “compute” or rather describe, the set of limiting
positions of tangent hyperplanes. Between parentheses are the types of com-
putations involved:

(1) For all integers k, 0 6 k 6 d − 1, compute the “general” polar
varieties Pk(X,L), leaving in the computation the coefficients of
the equations of L as indeterminates. (Partial derivatives, Jacobian
minors and residual ideals with respect to the Jacobian ideal);

(2) Compute the tangent cones CPk(X,L),0 (computation of a standard
basis with parameters; see Remark 2.26);

(3) Sort out those irreducible components of the tangent cone of each
Pk(X,L) which are independent of L (decomposition into irreducible
components with parameters);

(4) Take the projective duals of the corresponding projective varieties
(Elimination).

We have noticed, that among the Vα’s, there are those which are irre-
ducible components of ProjCX,0 and those that are of lower dimension.

Definition 3.19. — The cones O(Vα)’s such that
dimVα < dim ProjCX,0

are called exceptional cones.

Remark 3.20.

(1) We repeat the remark on p. 567 of [72] to the effect that when
(X, 0) is analytically isomorphic to the germ at the vertex of a cone
the polar varieties are themselves isomorphic to cones so that the
families of tangent cones of polar varieties have no fixed components
except when k = 0. Therefore in this case (X, 0) has no exceptional
cones.

(2) The fact that the cone X over a nonsingular projective variety has
no exceptional cones is thus related to the fact that the critical
locus P1(X, 0) of the projection π : X → Cd, which is purely of
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codimension one in X if it is not empty, actually moves with the
projection π; in the language of algebraic geometry, the ramification
divisor of the projection is ample (see [126, Chap. I, Cor. 2.14]) and
even very ample (see [29]).

(3) The dimension of κ−1(0) can be large for a singularity (X, 0) which
has no exceptional cones. This is the case for example if X is the
cone over a projective variety of dimension d − 1 < n − 2 in Pn−1

whose dual is a hypersurface.

Now one may wonder whether having no exceptional tangents makes X
look like a cone. We will give a partial answer to this question in Section 7
in terms of the Whitney equisingularity along the axis of parameters of the
flat family specializing X to its tangent cone.

We are now going to discuss the relation between the conormal space
of (X, 0) ⊂ (Cn, 0) and its Semple–Nash modification, or rather between
their fibers over a singular point. It is convenient here to use the notation of
projective duality of linear spaces.

Given a vector subspace T ⊂ Cn we denote by PT its projectivization,
i.e., the image of T \{0} by the projection Cn\{0} → Pn−1 and by Ť ⊂ P̌n−1

the projective dual of PT ⊂ Pn−1, which is a Pn−d−1 ⊂ P̌n−1, the set of all
hyperplanes H of Pn−1 containing PT .

We denote by Ξ̌ ⊂ G(d, n)×P̌n−1 the cotautological Pn−d−1-bundle over
G(d, n), that is Ξ̌ = {(T,H) | T ∈ G(d, n), H ∈ Ť ⊂ P̌n−1}, and consider
the intersection

E := (X × Ξ̌) ∩ (NX × P̌n−1) �
� //

p2

**
p1

��

X ×G(d, n)× P̌n−1

��
NX X × P̌n−1

and the morphism p2 induced on E by the projection onto X × P̌n−1. We
then have the following:

Proposition 3.21. — Let p2 : E → X × P̌n−1 be as before. The set-
theoretical image p2(E) of the morphism p2 coincides with the conormal space
of X in Cn

C(X) ⊂ X × P̌n−1.

Proof. — By definition, the conormal space of X in Cn is an analytic
space C(X) ⊂ X×P̌n−1, together with a proper analytic map κX : C(X)→
X, where the fiber over a smooth point x ∈ X0 is the set of tangent hy-
perplanes, that is the hyperplanes H containing the direction of the tangent
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space TX,x. That is, if we define E0 = {(x, TX,x, H) ∈ E |x ∈ X0, H ∈ ŤX,x},
then by construction E0 = p−1

1 (ν−1
X (X0)), and p2(E0) = C(X0). Since the

morphism p2 is proper it is closed, which finishes the proof. �

Corollary 3.22. — A hyperplane H ∈ P̌n−1 is a limit of tangent hy-
perplanes to X at 0, i.e., H ∈ κ−1

X (0), if and only if there exists a d-plane
(0, T ) ∈ ν−1

X (0) such that T ⊂ H.

Proof. — Let (0, T ) ∈ ν−1
X (0) be a limit of tangent spaces to X at 0. By

construction of E and Proposition 3.21, every hyperplane H containing T is
in the fiber κ−1

X (0), and so is a limit at 0 of tangent hyperplanes to X0.

On the other hand, by construction, for any hyperplane H ∈ κ−1
X (0)

there is a sequence of points {(xi, Hi)}i∈N in κ−1
X (X0) converging to p =

(0, H). Since the map p2 is surjective, by definition of E, we have a sequence
(xi, Ti, Hi) ∈ E0 with Ti = TxiX

0 ⊂ Hi. By compactness of Grassma-
nnians and projective spaces, this sequence has to converge, up to taking a
subsequence, to (x, T,H) with T a limit at x of tangent spaces to X. Since
inclusion is a closed condition, we have T ⊂ H. �

Corollary 3.23. — The morphism p1 : E → NX is a locally analyti-
cally trivial fiber bundle with fiber Pn−d−1.

Proof. — By definition of E, the fiber of the projection p1 over a point
(x, T ) ∈ NX is the set of all hyperplanes in Pn−1 containing PT . In fact,
the tangent bundle TX0 , lifted to NX by the isomorphism NX0 ' X0,
extends to a fiber bundle over NX, called the Nash tangent bundle of X.
It is the pull-back by γX of the tautological bundle of G(d, n), and E is the
total space of the Pn−d−1-bundle of the projective duals of the projectivized
fibers of the Nash bundle. �

By definition of E, the map p2 is an isomorphism over C(X0) since a
tangent hyperplane at a nonsingular point contains only the tangent space
at that point. Therefore the map p2 : E → C(X) is a modification.

In general the fiber of p2 over a point (x,H) ∈ C(X) is the set of limit
directions at x of tangent spaces to X that are contained in H. If X is a
hypersurface, the conormal map coincides with the Semple–Nash modifica-
tion. In general, the manner in which the geometric structure of the inclusion
κ−1
X (x) ⊂ P̌n−1 determines the set of limit positions of tangent spaces, i.e.,

the fiber ν−1
X (x) of the Semple–Nash modification, is not so simple: by Propo-

sition 3.21 and its corollary, the points of ν−1
X (x) correspond to some of the

projective subspaces Pn−d−1 of P̌n−1 contained in κ−1
X (x). The assertion

made in the observation on p. 553 of [71] is wrong, as the next example
shows.
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Example 3.24. — We use for our purpose the following example due to
J. Snoussi in [104] of a surface singularity (X, 0) where the tangent cone
has no linear component and the normalized Semple–Nash modification is a
singular surface. We warn the reader that what follows requires some know-
ledge of resolution of singularities of surfaces. We recommend [106] and the
very informative paper [12] of R. Bondil.

Snoussi’s example is a germ of a normal surface (X, 0) ⊂ (C5, 0). In its
minimal resolution of singularities π : W → X the inverse image of 0, the
exceptional divisor, has five irreducible components Ei and if one represents
each by a point and connect those points by an edge when the corresponding
components intersect, one obtains the following diagram, called the dual
graph.

−3 −2 −2 −2 −3
• • • • •
E1 E2 E3 E4 E5

Each component Ei is in fact a projective line and the numbers above each
point represent the self intersection in the surface W of the corresponding
component. The pull-back in W of the maximal ideal mX,0 is in this case
an invertible sheaf which defines the divisor Z =

∑5
i=1Ei. From the theory

of resolution of rational surface singularities, one knows that the blowing-up
e0 : X ′ → X of the maximal ideal is obtained by contracting in W the Ei
such that their intersection number inW with the cycle Z is zero, in this case
E2, E3, E4. This contraction gives a map π′ : W → X ′ such that π = e0 ◦ π′,
while the images in X ′ of the components Ei such that Ei.Z < 0, in this case
E1, E5, give the components of the projectivized tangent cone PCX,0 ⊂ P4.
This projectivized tangent cone is the union of two conics meeting at one
point (compare with [12, 8.2]). This point, which we denote by `, is also the
intersection point in P4 of the projective planes P2 containing each conic.
By work of Spivakovsky in [106, §5, Thm. 5.4], we know that the strict
transform of a general polar curve of (X, 0) intersects E1, E3 and E5. So
the tangents to the polar curves are not separated in X ′ and in fact, the
strict transforms in X ′ of some irreducible component of the polar curves
of (X, 0) all go through the point ` which is therefore, by Theorem 3.18, an
exceptional tangent. This means that all the hyperplanes in C5 containing
the line ` are limits of tangent hyperplanes at nonsingular points of X.

Those hyperplanes in C5 which contain ` form a P3 in the space P̌4

of hyperplanes of C5. On the other hand, to each limit T at 0 of tangent
planes to X0 corresponds a P2(T ) ⊂ P̌4 of tangent hyperplanes. If ` ⊂ T ,
then P2(T ) ⊂ P3. But the space of projective planes contained in P3 is
3-dimensional, while the space of limits of tangent planes, which is the fiber
of the Semple–Nash modification, has to be of dimension 6 1 for a surface.
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In order to understand which projective planes in P3 are actually of the
form P2(T ), let us first consider the analogue for the Semple–Nash modifi-
cation νX : NX → X of the normal/conormal diagram:

E0NX
ẽ0 //

ν′X

��

η

��

NX �
� //

νX

��

γ

((

X ×G(d, n)
pr2��

G(d, n)

E0X e0
// X

We know that the strict transforms of the polar curves ofX are not separated
by e0 since some of their branches all go through the point ` ∈ e−1

0 (0). On
the contrary the strict transforms of the polar curves are separated in NX
because if there was a base point (0, T ) ∈ ν−1(0) for the system of strict
transforms of polar curves, considering the duals P1(ρ) of the kernels of
linear projections ρ : Cn → C2, in view of Corollary 3.22 it would mean
that P2(T ) ∩P1(ρ) 6= ∅ in P4 for general ρ, which cannot be for dimension
reasons.

The same proof generalizes to any dimension to show that there can be
no base point for the system of strict transforms on NX of polar varieties
of any dimension. See also [106, Chap. III, Thm. 1.2].

This implies that the limits of tangent planes to X which contain ` are
limits of tangent planes to X along some branches of the polar curves which
all have the same tangent ` at the origin.

Consider now the space of linear projections π : C5 → C3. At least for a
general projection, the image of X will be a hypersurface Xπ ∈ C3 having
`π = π(`) as an exceptional tangent. To the projection π corresponds an
injection P̌2(π) ⊂ P̌4 which maps a hyperplane in C3 to its inverse image
by π.

The line P1(`π) ⊂ P̌2(π) ⊂ P̌4 consisting of the hyperplanes of C3

containing `π is the intersection in P̌4 of P̌2(π) with the P3 of hyperplanes
containing `. Since `π is an exceptional line in the tangent cone of Xπ, each
point z of P1(`π) corresponds to a limit tangent plane Tπ,z of Xπ which has
to be the image by π of at least one limit tangent plane Tz of X containing `.

Since the images of general polar curves of X are general polar curves of
Xπ we can lift tangent planes to Xπ containing `π to tangent planes of X
containing `. Conversely, any limit tangent plane T of X has an image by π,
at least for general π, which is a limit tangent plane to Xπ.
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The point z is the only intersection point of P2(Tz) with P1(`π) in P3.
Since X is a rational singularity, the one dimensional components of the fiber
ν−1
X (0) must be projective lines so that the tangent planes which contain `
are parametrized by a P1. Thus, the P2(Tz) must form themselves a linear
system in P3, which means that they are the linear system of hyperplanes
of P3 which contain a P1 ⊂ P3. This in turn means that they are the duals
of a system of lines in P4 containing ` and contained in a P2 ⊂ P4.

Since the set of limits at 0 of tangent planes to X0 contains the limits of
tangent spaces to the (reduced) tangent cone at its nonsingular points, this
P2 has to contain the point ` and the two lines through ` representing the
tangents at ` to the two conics. It has to be the P2 spanned by the tangents
at ` to the two conics which form the projectivization of the tangent cone of
X at 0.

In conclusion, the P2(T ) ⊂ P3 ⊂ κ−1(0) which correspond to limits T
of tangent planes to X containing the exceptional tangent ` are those which
contain the P1 ⊂ P̌4 dual to the P2 ⊂ P4 spanned by the tangents at ` to
the two conics. Those P2(T ) do constitute a P1, which is part of the fiber
ν−1
X (0) of the Semple–Nash modification of X.

Problem 3.25. — For a general reduced d-equidimensional germ
(X, 0) ⊂ (Cn, 0) of a complex analytic space, find a way to characterize those
Pn−d−1 ⊂ κ−1(0) which correspond to limits at 0 of tangent spaces to X0.
Perhaps one can use the family of the general projections π : Cn → Cd+1,
which map limits of tangent spaces to X to limits of tangent spaces to the
hypersurface π(X) and behave well on the tangent cone. Except in the case of
curves (see [112, Chap. I, §6]) the equisingularity properties of the family of
general hypersurface projections of a given singularity are largely unexplored
(see [112, Chap. VI, §6]). For generic projections to Cd one can consult [1].

4. Whitney Stratifications

Whitney had observed, as we can see from the statement of Lemma 3.17,
that “asymptotically” near 0 a germ (X, 0) ⊂ (Cn, 0) behaves like a cone
with vertex 0, in the sense that for any sequence (xi)i∈N of nonsingular
points of X tending to zero, the limit (up to restriction to a subsequence)
of the tangent spaces TxiX0 contains the limit of the secants 0xi. Suppose
now that we replace 0 by a nonsingular subspace Y ⊂ X, and we want to
understand what it means for X to “behave asymptotically like a cone with
vertex Y ”.

First let us define what we mean by a cone with vertex Y .
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Definition 4.1. — A cone with vertex Y is a space C equipped with a
map

π : C −→ Y

and homotheties in the fibers, i.e., a morphism η : C ×C∗ → C with π ◦ η =
π ◦ pr1, inducing an action of the multiplicative group C∗ in the fibers of π
which has as fixed set the image of a section σ : Y → C of π; π◦σ = IdY and
σ(Y ) = {c ∈ C | η(c, λ) = c ∀ λ ∈ C∗}. We shall consider only homogeneous
cones, which means that Y is covered by open sets U such that there is an
embedding π−1(U) ⊂ U ×Ck with σ(U) = U ×{0}, the map π is induced by
the first projection and η is induced by the homotheties of Ck.

Let us take a look at the basic example we have thus far constructed.

Example 4.2. — The reduced normal cone |CX,Y | −→ Y , with the
canonical analytic projection mentioned after Definition 3.1.

Now we can state Whitney’s answer to the problem posed at the
beginning of this section, again in terms of tangent spaces and secants.

4.1. Whitney’s conditions

Let X be a reduced, pure dimensional analytic space of dimension d,
let Y ⊂ X be a nonsingular analytic subspace of dimension t containing 0.
Choose a local embedding (X, 0) ⊂ (Cn, 0) around 0, and a local holomorphic
retraction ρ : (Cn, 0) −→ (Y, 0). Note that, since Y is nonsingular we can
assume it is an open subset of Ct, (X, 0) is embedded in an open subset of
Ct ×Cn−t and the retraction ρ coincides with the first projection.

We say that X0 satisfies Whitney’s conditions along Y at 0 if for any
sequence of pairs of points {(xi, yi)}i∈N ⊂ X0×Y tending to (0, 0) we have:

lim
i→∞

[xiyi] ⊂ lim
i→∞

TX,xi

where [xiyi] denotes the line passing through these two points. If we compare
this to Whitney’s lemma, it is just spreading out along Y the fact observed
when Y = {0}.

In fact, Whitney stated two conditions, which together are equivalent to
the above. Letting ρ be the aforementioned retraction, here we state the two
conditions:

(a) For any sequence {xi}i∈N ⊂ X0, tending to 0 we have:
TY,0 ⊂ lim

i→∞
TX,xi .
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(b) For any sequence {xi}i∈N ⊂ X0, tending to 0 we have:

lim
i→∞

[xiρ(xi)] ⊂ lim
i→∞

TX,xi .

We leave it as an interesting exercise for the reader to verify that a homoge-
neous cone with vertex Y satisfies these conditions. One uses the fact that
locally, the equations defining π−1(U) in U×Ck are homogeneous polynomi-
als in z1, . . . , zk whose coefficients are analytic functions on U and then takes
a close look at the consequences of Euler’s identity in terms of relative sizes
of partial derivatives with respect to the coordinates zi and the coordinates
on Y and of the angle, or distance (see Subsection A.1), between the secant
line xπ(x) and the tangent space to X at x ∈ X0. The shortest detailed
proof involves integral dependence on ideals and cannot find its place here.

Whitney’s conditions can also be characterized in terms of the conormal
space and the normal /conormal diagram, as we shall see later.

The fact that the Whitney conditions are independent of the embedding
is not obvious from these definitions. It follows from the algebraic charac-
terization explained in Section 6 below. Note that condition (a) has the
important consequence that a linear space transversal to Y in Cn at a point
y will remain transversal to X0 in a neighborhood of y.

Remark 4.3. — It is convenient, for example when studying resolutions
of singularities, to be able to consider as “similar” singularities which do
not have the same embedding dimension. We point out that the fact that
X satisfies the Whitney conditions along Y does not imply that the embed-
ding dimension of X is constant along Y . The surface defined in C4 by the
equations u2

2 − u3
1 − vu3 = 0, u2

3 − u5
1u2 − 1

16v
2u7

1 = 0 satisfies the Whitney
conditions along the v-axis but its embedding dimension is 2 at the points of
this axis where v 6= 0 and 3 at the origin. Its multiplicity is 4 at each point
of the v-axis. The slice by v = v0 6= 0 is isomorphic to the plane branch
(u2

2− u3
1)2− u5

1u2− 1
16u

7
1 = 0 while the slice by v = 0 is the monomial curve

given parametrically by u1 = t4, u2 = t6, u3 = t13, which has embedding
dimension 3.

It is not difficult to verify that our surface X can be parametrized as
follows: u1 = t4, u2 = t6 + 1

2vt
7, u3 = t13 + 1

4vt
14. If we compose this

parametrization with a sufficiently general linear projection p : X → C2,
given by u1 + λu3, u2 + µu3, with λ, µ ∈ C2, λ 6= 0, we see that the com-
posed map has rank two outside of t = 0. This implies that the general polar
curve of X is empty and therefore equimultiple (of multiplicity 0) along the
v-axis Y in a neighborhood of 0. Since the tangent cone ofX at every point of
Y is defined by the ideal (u2

2, u
2
3), the multiplicity of X is constantly equal to
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4 along Y (see Subsection 2.5(e)). By Theorem 4.13 below, the pair (X0, Y )
satisfies Whitney’s conditions at 0.

Recall that our objective is to “stratify” X. What exactly do we mean
by stratify, and how do Whitney conditions relate to this? What follows in
this Section consists mostly of material from [74, §2] and [112, Chap. III].

Definition 4.4. — A stratification of X is a decomposition into a lo-
cally finite disjoint union X =

⋃
Xα, of non-empty, connected, locally closed

subvarieties called strata, satisfying:

(1) Every stratum Xα is nonsingular (and therefore an analytic mani-
fold).

(2) For any stratum Xα, with closure Xα, both the frontier ∂Xα :=
Xα \Xα and the closure Xα are closed analytic in X.

(3) For any stratum Xα, the frontier ∂Xα := Xα \ Xα is a union of
strata.

Stratifications can be determined by local stratifying conditions as follows.
We consider conditions C = C(W1,W2, x) defined for all x ∈ X and all pairs
(W1, x) ⊃ (W2, x) of subgerms of (X,x) with (W1, x) equidimensional and
(W2, x) smooth. For example, C(W1,W2, x) could signify that the Whitney
conditions hold at x.

For such a C and for any subvarieties W1,W2 of X with W1 closed and
locally equidimensional, and W2 locally closed, set

C(W1,W2) :=
{
x ∈W2

∣∣∣∣W2 is smooth at x, and if x ∈W1
then (W1, x) ⊃ (W2, x) and C(W1,W2, x)

}
,

C̃(W1,W2) := W2 \ C(W1,W2).

The condition C is called stratifying if for any such W1 and W2, the set
C̃(W1,W2) is contained in a nowhere dense closed analytic subset of W2.
In fact, it suffices that this be so whenever W2 is smooth, connected, and
contained in W1.

Going back to our case, it is true that Whitney’s conditions are strati-
fying. See [125, Lem. 19.3, p. 540]. The key point is to prove, given Y ⊂ X
as in Section 4.1, that the set of points of Y where the pair (X0, Y ) satis-
fies Whitney’s conditions contains the complement of a strict closed analytic
subspace of Y . A proof of this different from Whitney’s is given below as a
consequence of Theorem 4.13.

Definition 4.5. — Let X be as above, then by a Whitney stratification
of X, we mean a stratification X =

⋃
Xα, such that for any pair of strata
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Xβ , Xα with Xα ⊂ Xβ, the pair (Xβ , Xα) satisfies the Whitney conditions
at every point x ∈ Xα.

Xβ

X  ,x

Xα
O

x

Ox

β
T

4.2. Stratifications

We will now state two fundamental theorems concerning Whitney’s con-
ditions, the first of which was proved by Whitney himself and the second
by R. Thom and J. Mather. The proofs can be found in [125], and [76]
respectively.

Theorem 4.6 (Whitney). — Let M be a reduced complex analytic space
and let X ⊂M be a locally closed analytic subspace of M . Then, there exists
a Whitney stratification M =

⋃
Mα of M such that:

(1) X is a union of strata.
(2) If Mβ ∩Mα 6= ∅ then Mβ ⊂Mα.

In fact, one can prove that any stratifying condition gives rise to a locally
finite stratification of any space X such that all pairs of strata satisfy the
given condition. See ([74, §2] and [112, p. 478–480]).

Given a germ of t-dimensional nonsingular subspace (Y, 0) ⊂ (Cn, 0), by
a (germ of) local holomorphic retraction ρ : (Cn, 0) → (Y, 0) we mean the
first projection of a product decomposition (Cn, 0) ' (Y, 0)× (Cn−t, 0). By
the implicit function theorem, such retractions always exist. One applies to
such retractions Thom’s first isotopy lemma to prove:
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Theorem 4.7 (Thom–Mather, see [116, Thm. 1G1], [75], [44, Chap. 1,
1.5]). — Taking M = X in the previous statement, let X =

⋃
αXα be a

Whitney stratification of X, let x ∈ X and let Xα ⊂ X be the stratum that
contains x. Then, for any local embedding (X,x) ⊂ (Cn, 0) and any local
retraction ρ : (Cn, 0) → (Xα, x) and a real number ε0 > 0 such that for
all 0 < ε < ε0 there exists ηε such that for any 0 < η < ηε there is a
homeomorphism h

B(0, ε) ∩ ρ−1(B(0, η) ∩Mα) h //

ρ

""

(ρ−1(x) ∩B(0, ε))× (Xα ∩B(0, η))

pr2

zz
Xα ∩B(0, η)

compatible with the retraction ρ, and inducing for each stratum Xβ such that
Xβ ⊃ Xα a homeomorphism

Xβ ∩B(0, ε)∩ρ−1(B(0, η)∩Xα) −→ (Xβ ∩ρ−1(x)∩B(0, ε))×(Xα∩B(0, η))

where B(0, ε) denotes the ball in Cn with center in the origin and radius ε.

In short, each Xβ , or if you prefer, the stratified set X, is locally
topologically trivial along Xα at x. A natural question then arises: is the
converse to the Thom–Mather theorem true? That is, does local topological
triviality implies the Whitney conditions? The question was posed by the
second author in [107] for families of hypersurfaces with isolated singularities.

The answer is NO. In [18], Briançon and Speder showed that the family
of surface germs

z5 + ty6z + xy7 + x15 = 0
(each member, for small t, having an isolated singularity at the origin) is
locally topologically trivial, but not Whitney in the sense that the nonsingu-
lar part of this hypersurface in C4 does not satisfy at the origin Whitney’s
condition along the singular locus, which is the t-axis.

To explain the origin of this example we need to introduce the Milnor
number of an isolated singularity of hypersurface. We shall meet it again in
Example 6.4 below. The Milnor number µ(d+1)(X,x) of an isolated singular-
ity of hypersurface f(z1, . . . , zd+1) = 0 as above is defined algebraically as the
multiplicity in C{z1, . . . , zd+1} of the Jacobian ideal j(f) =

〈
∂f
∂z1

, . . . , ∂f
∂zd+1

〉
,

which is also the dimension of the C-vector space C{z1,...,zd+1}
j(f) since in this

case the partial derivatives form a regular sequence.
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Definition 4.8. — We say that two germs (X, 0)⊂ (Cn, 0) and (X ′, 0)⊂
(Cn, 0) have the same embedded topological type if there exists a germ of
homeomorphism φ : (Cn, 0)→ (Cn, 0) such that φ(X) = X ′.

By the Thom–Mather topological triviality theorem (Theorem 4.7 above),
if a family of germs of spaces with isolated singularities satisfies the Whitney
conditions along its singular locus, all its members have the same embedded
topological type.

In [107, Thm. 1.4] it was shown that the Milnor number is an invariant
of the embedded topological type of the germ of hypersurface and it was
conjectured that the constancy of the Milnor number at the origin in an
analytic family X given by F (t, z1, . . . , zd+1) = 0, with F (t, 0, . . . , 0) = 0,
of hypersurfaces with isolated singularities was equivalent to the Whitney
conditions for the smooth part of X along the t-axis. Part of this conjecture
was the statement that if the Milnor number is constant in an analytic
family of hypersurfaces with isolated singularity, then the whole sequence
of Milnor numbers µ(i)(Xt, 0) = µ(Xt ∩Hd+1−i, 0) of general plane sections
of all dimensions i = 1, . . . , d + 1 (which also have isolated singularities) is
constant. It was proved in [107, Chap. II, §3] that the constancy of all these
Milnor numbers implies the Whitney conditions. The converse was proved
later by Briançon and Speder in [19]. We shall see below in Example 6.4
that this equivalence is now a special case of a general result. Note that the
Milnor number of a general section by a line is the multiplicity minus one.

In the same period, Lê and Ramanujam proved in [68] that the constancy
of the Milnor number implied the topological triviality of X along the t-axis
when d 6= 2 and Lê proved in [66] that when d = 1 the constancy of the
Milnor number implies the constancy of multiplicity.

Therefore, to prove that the local topological triviality does not imply
the Whitney conditions for the nonsingular part of X along the t-axis and
thus give a counterexample to the conjecture of [107] is the same as proving
that the local topological type of the singularity does not determine the local
topological type of a general hyperplane section through the origin, or that
the family obtained by intersecting X by a general hyperplane containing
the t-axis is not topologically trivial. This is what the example of Briançon–
Speder does.

Example 4.9. — Going back to this example, let us consider plane sec-
tions of the hypersurface z5 + ty6z + y7x + x15 = 0 by the hyperplanes
y = ax+ bz which form an Zariski open subset of the family of hyperplanes
in C4 containing the t-axis. The resulting equation is the family of curves in
the (x, z) plane:

z5 + tz(ax+ bz)6 + x(ax+ bz)7 + x15 = 0.
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Using classical Newton polygon methods it is not difficult to see that if
a 6= 0 for t = 0 the germ of curve is irreducible, with a singularity of type
z5 − x8 = 0, while if t 6= 0 the curve has three irreducible components, two
of type z2 − x3 = 0 and one nonsingular component of type z − x2 = 0.

However, a strengthened version of local topological triviality is equiva-
lent to the Whitney conditions. This was proved by Lê and Teissier (see [71,
§5], and [112, Chap. VI]). Let us refer to the conclusion of the Thom–Mather
theorem as condition (TT ) (local topological triviality), so we can restate
Theorem 4.7 as: Whitney implies (TT ).

Let X =
⋃
Xα be a stratification of the complex analytic space X and

let dα = dimXα. We say that a stratification satisfies the condition (TT )∗
(local topological triviality for the general sections) if in addition to the
condition (TT ), for every x ∈ Xα, there exists for every k > dimXα a dense
Zariski open set Ω in G(k− dα, n− dα) such that for any nonsingular space
E containing Xα and such that TxE ∈ Ω, the (set-theoretic) intersection
Xβ ∩ E satisfies (TT ) for all Xβ such that Xβ ⊃ Xα.

Theorem 4.10 (Lê–Teissier), see [71, Thm. 5.3.1]). — For a stratifica-
tion X =

⋃
Xα of a complex analytic space X, the following conditions are

equivalent:

(1) X =
⋃
Xα is a Whitney stratification.

(2) X =
⋃
Xα satisfies condition (TT )∗.

We shall see more about this below in Section 6.

4.3. Whitney stratifications and polar varieties

We now have all the ingredients so it is time to put them together. Let
us fix a nonsingular subspace Y ⊂ X through 0 of dimension t as before,
recall that we are assuming X is a reduced, pure dimensional analytic space
of dimension d. Let us recall the notation of Section 3.1 and take a look at
the normal/conormal diagram:

EY C(X) êY //

κ′

��

ξ

%%

C(X)

κ

��
EYX eY

// Y ⊂ X

Remember that EY C(X) is the blowing up of κ−1(Y ) in C(X), and
κ′ is obtained from the universal property of the blowing up, with respect
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to EYX and the map ξ. Just as in the case where Y = {0}, it is worth
mentioning that EY C(X) lives inside the fiber product C(X) ×X EYX ⊂
X × Pn−1−t × P̌n−1 and can be described in the following way: take the
inverse image of EYX \e−1

Y (Y ) in C(X)×XEYX and close it, thus obtaining
κ′ as the restriction of the second projection to this space.

Looking at the definitions, it is not difficult to prove that, if we consider
the divisor:

D = |ξ−1(Y )| ⊂ EY C(X), D ⊂ Y ×Pn−1−t × P̌n−1,

we have that, denoting by P̌n−1−t the space of hyperplanes containing T0Y :

• The pair (X0, Y ) satisfies Whitney’s condition (a) along Y if and
only if we have the set theoretical equality |C(X)∩C(Y )| = |κ−1(Y )|.
It satisfies Whitney’s condition (a) at 0 if and only if ξ−1(0) ⊂
Pn−1−t × P̌n−1−t.

Note that we have the inclusion C(X)∩C(Y ) ⊂ κ−1(Y ), so it all reduces
to having the inclusion κ−1(Y ) ⊂ C(Y ), and since we have already seen
that every limit of tangent hyperplanes H contains a limit of tangent spaces
T , we are just saying that every limit of tangent hyperplanes to X at a
point y ∈ Y , must be a tangent hyperplane to Y at y. Following this line
of thought, satisfying condition (a) at 0 is then equivalent to the inclusion
κ−1(0) ⊂ {0} × P̌n−1−t which implies ξ−1(0) ⊂ Pn−1−t × P̌n−1−t.

• The pair (X0, Y ) satisfies Whitney’s condition (b) at 0 if and only if
ξ−1(0) is contained in the incidence variety I ⊂ Pn−1−t × P̌n−1−t.

This is immediate from the relation between limits of tangent hyperplanes
and limits of tangent spaces and the interpretation of EY C(X) as the closure
of the inverse image of EYX\e−1

Y (Y ) in C(X)×XEYX since we are basically
taking limits as x → Y of couples (l,H) where l is the direction in Pn−1−t

of a secant line yx with x ∈ X0 \ Y, y = ρ(x) ∈ Y , where ρ is some local
retraction of the ambient space to the nonsingular subspace Y , and H is a
tangent hyperplane to X at x. So, in order to verify the Whitney conditions,
it is important to control the geometry of the projection D → Y of the
divisor D ⊂ EY C(X).

Remark 4.11. — Although it is beyond the scope of these notes, we point
out to the interested reader that there is an algebraic definition of the Whit-
ney conditions for X0 along Y ⊂ X solely in terms of the ideals defining
C(X) ∩ C(Y ) and κ−1(Y ) in C(X). Indeed, the inclusion C(X) ∩ C(Y ) ⊂
κ−1(Y ) follows from the fact that the sheaf of ideals JC(X)∩C(Y ) defining
C(X)∩C(Y ) in C(X) contains the sheaf of ideals Jκ−1(Y ) defining κ−1(Y ),
which is generated by the pull-back by κ of the equations of Y in X. What
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was said above means that condition (a) is equivalent to the second inclu-
sion in:

Jκ−1(Y ) ⊆ JC(X)∩C(Y ) ⊆
√
Jκ−1(Y ).

It is proved in [72, Prop. 1.3.8] that having both Whitney conditions is
equivalent to having the second inclusion in:

Jκ−1(Y ) ⊆ JC(X)∩C(Y ) ⊆ Jκ−1(Y ).

where the bar denotes the integral closure of the sheaf of ideals, which is
contained in the radical and is in general much closer to the ideal than the
radical. The second inclusion is an algebraic expression of the fact that locally
near every point of the common zero set the modules of local generators of
the ideal JC(X)∩C(Y ) are bounded, up to a multiplicative constant depending
only on the chosen neighborhood of the common zero, by the supremum of
the modules of generators of Jκ−1(Y ). See [73, Thm. 7.2]. We shall see more
about it in Section 7.

In the case where Y is a point, the ideal defining C(X)∩C({y}) in C(X)
is just the pull-back by κ of the maximal ideal mX,y, so it coincides with
Jκ−1(Y ) and Whitney’s lemma follows.

Definition 4.12. — Let Y ⊂ X as before. Then we say that the local
polar variety Pk(X;Ld−k) is equimultiple along Y at a point x ∈ Y if the map
y 7→ my(Pk(X;Ld−k)) is constant for y ∈ Y in a neighborhood of x. Note
that this implies that if (Pk(X;Ld−k), x) 6= ∅, then Pk(X;Ld−k) ⊃ Y in a
neighborhood of x since the emptiness of a germ is equivalent to multiplicity
zero.

Now we can state the main theorem of these notes, a complete proof of
which can be found in [112, Chap. V, Thm. 1.2, p. 455].

Theorem 4.13 (Teissier; see also [48] for another proof). — Given 0 ∈
Y ⊂ X as before, the following conditions are equivalent, where ξ is the
diagonal map in the normal/conormal diagram above:

(1) The pair (X0, Y ) satisfies Whitney’s conditions at 0.
(2) The local polar varieties Pk(X,L), 0 6 k 6 d − 1, are equimultiple

along Y (at 0), for general L.
(3) dim ξ−1(0) = n− 2− t.

Note that since dimD = n − 2, condition (3) is open and the theorem
implies that (X0, Y ) satisfies Whitney’s conditions at 0 if and only if it
satisfies Whitney’s conditions in a neighborhood of 0.

Note also that by analytic semicontinuity of fiber dimension (see [33,
Chap. 3, 3.6], [57, §49, Condition 3]) is satisfied outside of a closed analytic
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subspace of Y , which shows that Whitney’s conditions give a stratifying
condition.

Moreover, since a blowing up does not lower dimension, the condition
dim ξ−1(0) = n−2− t implies dim κ−1(0) 6 n−2− t. So that, in particular
κ−1(0) 6⊃ P̌n−1−t, where P̌n−1−t denotes as before the space of hyperplanes
containing T0Y . This tells us that a general hyperplane containing T0Y is
not a limit of tangent hyperplanes to X. This fact is crucial in the proof that
Whitney conditions are equivalent to the equimultiplicity of polar varieties
since it allows the start of an inductive process. In the actual proof of [112],
one reduces to the case where dimY = 1 and shows by a geometric argument
that the Whitney conditions imply that the polar curve has to be empty,
which gives a bound on the dimension of κ−1(0). Conversely, the equimulti-
plicity condition on polar varieties gives bounds on the dimension of κ−1(0)
by implying the emptiness of the polar curve and on the dimension of e−1

Y (0)
by Hironaka’s result, hence a bound on the dimension of ξ−1(0).

It should be noted that Hironaka had proved in [51, Cor. 6.2] that the
Whitney conditions for X0 along Y imply equimultiplicity of X along Y .

Finally, a consequence of the theorem is that given a complex analytic
space X, there is a unique minimal (coarsest) Whitney stratification; any
other Whitney stratification of X is obtained by adding strata inside the
strata of the minimal one. A detailed explanation of how to construct this
“canonical” Whitney stratification using Theorem 4.13, and a proof that
this is in fact the coarsest one can be found in [112, Chap. VI, §3]. The
connected components of the strata of the minimal Whitney stratification
give a minimal “Whitney stratification with connected strata”

4.4. Relative Duality

There still is another result which can be expressed in terms of the relative
conormal space and therefore in terms of relative duality. We first need the:

Proposition 4.14 (Versions of this appear in [65] and [95]). — Let X ⊂
Cn be a reduced analytic subspace of dimension d and let Y ⊂ X be a
nonsingular analytic proper subspace of dimension t. Let ϕ : X → C be the
specialization of X to the normal cone CX,Y of Y in X, and let C(X), C(Y )
denote the conormal spaces of X and Y respectively, in Cn × Čn. Then the
relative conormal space

q := κϕ ◦ ϕ : Cϕ(X)→ X→ C
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is isomorphic, as an analytic space over C, to the specialization space of
C(X) to the normal cone CC(X),C(Y )∩C(X) of C(Y ) ∩ C(X) in C(X). In
particular, the fibre q−1(0) is isomorphic to this normal cone.

Proof. — Let I ⊂ J be the coherent ideals of the structure sheaf of Cn

that define the analytic subspaces X and Y respectively, and let p : D→ C
be the specialization space of C(X) to the normal cone of C(Y ) ∩ C(X) in
C(X). Note that, in this context, both spaces D and Cϕ(X) are analytic
subspaces of C × Cn × Čn. Let us consider a local chart, in such a way
that Y ⊂ X ⊂ Cn locally becomes Ct ⊂ X ⊂ Cn with associated local
coordinates

(v, y1, . . . , yt, zt+1, . . . , zn, a1, . . . , at, bt+1, . . . , bn)

in C×Cn × Čn.

Let J := 〈zt+1, . . . , zn〉 be the ideal defining Y in Cn. One can verify that,
just as in the case of the tangent cone (see Exercise 2.23(2)), if f1, . . . , fr,
are local equations for X in Cn such that their initial forms inJ fi generate
the ideal of grJ OX defining the normal cone of X along Y , the equations
Fi := v−kifi(y, vz), i = 1, . . . , r, where ki = sup{k | fi ∈ Jk}, locally define
in C×Cn the specialization space ϕ : X→ C of X to the normal cone CX,Y .
Furthermore, if you look closely at the equations, you will easily verify that
the open set X \ϕ−1(0) is isomorphic over C∗ to C∗×X, via the morphism
Φ defined by the map (v, y, z) 7→ (v, y, vz).

We can now consider the relative conormal space,

q : Cϕ(X)→ X→ C,

and thanks to the fact that X \ ϕ−1(0) is an open subset with fibers X(v)
isomorphic to X, the previous isomorphism Φ implies that Cϕ(X) \ q−1(0)
is isomorphic over C∗ to C∗ × C(X).

On the other hand, note that, since J = 〈zt+1, . . . , zn〉 in OCn , the conor-
mal space C(Y ) is defined in Cn× P̌n−1 by the sheaf of ideals JC generated
(in OCn×Čn) by (zt+1, . . . , zn, a1, . . . , at).

Thus, if we chose local generators (g1, . . . , gs) for the sheaf of ideals defin-
ing C(X) ⊂ Cn × P̌n−1, whose JCOC(X)-initial forms generate the initial
ideal, the equations Gi(v, y, z, a, b) = v−ligi(v, y, vz, va, b) locally define a
subspace D ⊂ C × Cn × P̌n−1 with a faithfully flat projection D p→ C,
where the fiber p−1(0) is the normal cone CC(X),C(Y )∩C(X). Note that in
this case the li’s are defined with respect to the ideal JCOC(X).

The open set D \ p−1(0) is isomorphic to C∗ × C(X) via the morphism
defined by (v, y, z, a, b) 7→ (v, y, vz, va, b).
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This last morphism is a morphism of the ambient space to itself over C
ψ : C×Cn × Čn −→ C×Cn × Čn,

(v, y, z, a, b) 7−→ (v, y, vz, va, b),
which turns out to be an isomorphism when restricted to the open dense set
C∗×Cn× Čn. So, if we take the analytic subspace C∗×C(X) in the image,
as a result of what we just said, we have the equality ψ−1(C∗ × C(X)) =
D \ p−1(0).

Finally, recall that both morphisms defining q, are induced by the natural
projections

C×Cn × Čn → C×Cn → C,
and therefore we have a commutative diagram:

Cϕ(X) �
� //

q

99

κϕ

��

C×Cn × Čn ψ //

π

��

C×Cn × Čn

π

��
X
� � //

ϕ
--

C×Cn φ //

$$

C×Cn

zz
C

To finish the proof, it is enough to check that the image by ψ of Cϕ(X)\q−1(0)
is equal to C∗ × C(X), since we already know that ψ−1(C∗ × C(X)) =
D \ p−1(0) and so we will find an open dense set common to both spaces,
which are faithfully flat over C, and consequently the closures will be equal.

Let (y, z) ∈ X be a smooth point. The vectors

∇fi(y, z) :=
(
∂fi
∂y1

(y, z), . . . , ∂fi
∂yt

(y, z), ∂fi
∂zt+1

(y, z), . . . , ∂fi
∂zn

(y, z)
)
,

representing the 1-forms dfi in the basis dyj , dzi, generate the linear subspace
of Čn encoding all the 1-forms that vanish on the tangent space T(y,z)X

0,
i.e. the fiber over the point (y, z) in C(X). Analogously, let (v, y, z) ∈ X be
a smooth point in X \ ϕ−1(0). Then the vectors

∇Fi(v, y, z) :=
(
∂Fi
∂y1

(v, y, z), ..., ∂Fi
∂yt

(v, y, z), ∂Fi
∂zt+1

(v, y, z), ..., ∂Fi
∂zn

(v, y, z)
)

generate the linear subspace of Čn encoding all the 1-forms that vanish on
the tangent space T(v,y,z)X(v)0, i.e. the fiber over the point (v, y, z) in Cϕ(X).
According to our choice of (v, y, z), we know that φ(v, y, z) = (v, y, vz) is a
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smooth point of C∗ × X and in particular (y, vz) is a smooth point of X.
Moreover, notice that

∂Fi
∂yj

(v, y, z) = v−ni
∂fi
∂yj

(y, vz),

∂Fi
∂zk

(v, y, z) = v−ni+1 ∂fi
∂zk

(y, vz),

and therefore the image of the corresponding point

ψ

(
v, y, z,

∂Fi
∂yj

(v, y, z), ∂Fi
∂zk

(v, y, z)
)

=
(
v, y, vz, v−ni+1 ∂fi

∂yj
(y, vz), v−ni+1 ∂fi

∂zk
(y, vz)

)
= (v, y, vz, v−ni+1∇fi(y, vz))

is actually a point in C∗ × C(X). Since v 6= 0, the v−ni+1∇fi(y, vz) also
generate the fiber over the point (v, y, vz) ∈ C∗×X by the map C∗×C(X)→
C∗ × X induced by κϕ and the isomorphism ϕ−1(C∗) ' C∗ × X, which
implies that ψ sends Cϕ(X) \ q−1(0) onto C∗ × C(X). �

Going back to our normal-conormal diagram:

EY C(X) êY //

κ′

��

ξ

%%

C(X)

κ

��
EYX eY

// Y ⊂ X

Consider the irreducible components Dα ⊂ Y ×Pn−1−t × P̌n−1 of D =
|ξ−1(Y )|, that is D =

⋃
Dα, and its images:
Vα = κ′(Dα) ⊂ Y ×Pn−1−t,

Wα = êY (Dα) ⊂ Y × P̌n−1.

We have:

Theorem 4.15 (Lê–Teissier [72, Thm. 2.1.1]). — The equivalent state-
ments of Theorem 4.13 are also equivalent to the following one.

For each α, the irreducible divisor Dα is the relative conormal space of
its image of Vα ⊂ CX,Y ⊂ Y ×Cn−t under the canonical analytic projection
Y ×Cn−t → Y restricted to Vα, and all the fibers of the restriction ξ : Dα →
Y have the same dimension near 0.

In particular, Whitney’s conditions are equivalent to the equidimension-
ality of the fibers of the mapDα → Y , plus the fact that eachDα is contained
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in Y ×Pn−1−t× P̌n−1−t, where P̌n−1−t is the space of hyperplanes contain-
ing the tangent space TY,0, and the contact form on the incidence variety
I ⊂ Pn−1−t × P̌n−1−t vanishes on the smooth points of Dα(y) for y ∈ Y .
This means that each Dα is Y -Lagrangian and is equivalent to a relative (or
fiberwise) duality:

Dα
//

��

Wα = Y -dual of Vα ⊂ Y × P̌n−1−t

Y ×Pn−1−t ⊃ Vα

The proof uses that the Whitney conditions are stratifying, and that The-
orem 4.13 and the result of Remark 4.11 imply(7) that Dα is the conormal of
its image over a dense open set of Y . The condition dim ξ−1(0) = n− 2− t
then gives exactly what is needed, in view of Proposition 2.16, for Dα to be
Y -Lagrangian.

Finally, we want to state another result relating Whitney’s conditions to
the dimension of the fibers of some related maps. A complete proof of this
result can be found in [72, Prop. 2.1.5 and Cor. 2.2.4.1].

Corollary 4.16. — Using the notation above we have:

(1) The pair (X0, Y ) satisfies Whitney’s conditions at 0 if and only if
for each α the dimension of the fibers of the projection Wα → Y is
locally constant near 0.

(2) The pair (X0, Y ) satisfies Whitney’s conditions at 0 if and only if
for each α the dimension of the fibers of the projection Vα → Y is
locally constant near 0.

Remark 4.17. — The fact that the Whitney conditions, whose original
definition translates as the fact that ξ−1(Y ) is in Y × Pn−1−t × P̌n−1−t

and not just Y × Pn−1−t × P̌n−1 (condition (a)) and moreover lies in the
product Y × I of Y with the incidence variety I ⊂ Pn−1−t× P̌n−1−t (condi-
tion (b)), are in fact of a Lagrangian, or Legendrian, nature, explains their
stability by general sections (by nonsingular subspaces containing Y ) and
linear projections.

Problem 4.18. — The fact that the Whitney conditions are of an al-
gebraic nature, since they can be translated as an equimultiplicity condition

(7) The proof of this in [72] uses a lemma, p. 559, whose proof is incorrect, but easy to
correct. There is an unfortunate mixup in notation. One needs to prove that

∑N

t+1 ξkdzk =
0 and use the fact that the same vector remains tangent after the homothety ξk 7→
λξk, t + 1 6 k 6 N . Since we want to prove that L1 is Y -Lagrangian, we must take
dyi = 0.
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for polar varieties by Theorem 4.13 leads to the following question: given a
germ (X,x) ⊂ (Cn, 0) of a reduced complex analytic space, endowed with its
minimal Whitney stratification, does there exist a germ (Y, 0) ⊂ (CN , 0) of
an algebraic variety and a germ (H, 0) ⊂ (CN , 0) of a nonsingular analytic
variety transversal to the stratum of 0 in the minimal Whitney stratification
of (Y, 0) such that (X, 0) with its minimal Whitney stratification is ana-
lytically isomorphic to the intersection of (Y, 0), with its minimal Whitney
stratification, with (H, 0) in (CN , 0)?

5. Whitney stratifications and tubular neighborhoods

In differential geometry, a very useful tool is the existence of a tubular
neighborhood of a closed submanifold X of a differentiable manifold Z. It
is a diffeomorphism, inducing the identity on X, from a neighborhood of X
in its normal bundle in Z to a neighborhood of X in Z; here X is viewed
as the zero section of its normal bundle. If X is a point x, it is just a
diffeomorphism from a neighborhood of the origin in the tangent space TZ,x
to a neighborhood of x in Z. In this sense a tubular neighborhood of X in
Z is a linearization “transversally to X” of a neighborhood of X in Z. Since
the normal bundle TZ,X is a fiber bundle one can choose a positive definite
quadratic form gx(u, u), or metric, on its fibers depending differentiably on
the points x ∈ X and if one chooses some differentiable function ε(x) on X
which is everywhere > 0 one can carry over via the diffeomorphism the tube
in the normal bundle defined by gx(u, u) 6 ε(x), to get a tube Tε ⊂ Z with
core X. The natural projection to X in the normal bundle carries over to a
retraction ρ : Tε → X and ε(y) defines a radius of the tube, or distance to X
from the frontier of the tube. All this carries over to the complex analytic
case, replacing metric by hermitian metric.

When X is singular the situation becomes more complicated, but Thom
and Mather (see [116] and the excellent exposition in [75, §6]) discovered that
a Whitney stratification of a nonsingular space Z such that X is a union of
strata allows one to build an adapted version of tubular neighborhoods of X
in Z.

Let X =
⋃
α∈AXα be a closed Whitney stratified subset of a chart Rn

of Z, where the Xα are differentiable submanifolds. There exists a family of
triplets (Tα, πα, ρα) such that:

• Tα is the intersection withX of a tubular neighborhood ofXα in Rn.
• The map ρα : Tα → Xα is a C∞ retraction; in particular ρα(x) = x
for x ∈ Xα.
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• The function δα : Tα → R>0 is a C∞ function (the distance to the
stratum) such that δ−1

α (0) = Xα.
• Whenever Xα ⊂ Xβ , the restriction of (ρβ , δβ) to Tα ∩Xβ is a C∞
submersion Tα ∩Xβ → Xβ ×R>0.
• Whenever Xα ⊂ Xβ , we have for all x ∈ Tα ∩ Tβ the inclusion
ρβ(x) ∈ Tα and the equalities ρα(ρβ(x)) = ρα(x) and δα(ρβ(x)) =
δα(x).

All this says that you have a tubular neighborhood of each stratum in such a
way that when you approach the frontier of a stratum, you enter the tubular
neighborhood of a frontier stratum in a way which is compatible with the
tubular neighborhood of that stratum.

A careful description of this in the complex analytic case can be found
in [98, 99] if you think of radial vector fields as transversal to the boundaries
of tubular neighborhoods. By taking the viewpoint of “fundamental systems
of good neighborhoods” as in [71, Def. 2.2.9], one should obtain a more an-
alytic version; in particular the function δ could be taken to be subanalytic.
However, it seems the last condition for tubular neighborhoods may be too
strict to be realized in the complex analytic case and one might think of
weaker conditions such as the existence, locally on X, of constants C1, C2
such that |δα(ρβ(x))− δα(x)| < C1δβ(x) and |ρα(ρβ(x))−ρα(x)| < C2δβ(x).
This means that one requests that the last condition for tubular neighbor-
hoods should only be satisfied asymptotically as one approaches each Xβ .

After Example 4.2 we stated that Whitney conditions mean that X is
locally “cone like” along each stratum Xα. Conicity indeed suggests the ex-
istence of tubular neighborhoods as above, since we can expect that there are
“tubes” everywhere transversal to the cones, but nevertheless the existence of
tubular neighborhoods of a Whitney stratified set, due to Thom and Mather
in the differentiable framework, is quite delicate to prove. Again, see [75,
§6]. By methods also due to Thom and Mather, the tubular neighborhoods
provide the local topological triviality along the strata which we shall see in
the next section. We note that, compared to the distance in Rn or Cn to
the stratum Xα, the radius of the tubular neighborhood Tβ must in general
tend to zero as we approach the frontier of Xβ ; see [98]. Recently, strong
equisingularity theorems in the same general direction have been proved by
Parusiński and Paunescu in the complex analytic case; see [85].

Exercise 5.1.

(1) Describe the minimal Whitney stratification and associated tubular
neighborhoods for the singularity x1. . . . xk = 0 in Cn.
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(2) Describe the minimal Whitney stratification (in the real and in the
complex case) and associated tubular neighborhoods for the singu-
larity of Example 3.16.

(3) Do the same for the surface y2 − tx2 = 0. What is the difference?

The purpose of this section is to introduce the following:

Problem 5.2. — By Proposition 3.3(3), we know that for X =
⋃
αXα ⊂

Cn, if some polar variety Pk(Xβ) is not equimultiple along a stratum Xα at
a point x ∈ Xα then for a general subspace W of codimension dβ − dα − k
locally containing Xβ, the intersection with the polar variety Pk(Xβ) is of
the same dimension as Xα but not set theoretically equal to Xα near x. Let
us assume that we have embedded X in Cn in such a way that Xα is a
linear subspace and we consider linear subspaces W of Cn of codimension
dβ−dα−k containing Xα. If in a neighborhood of x we take a tube Tε around
Xα in Cn whose radius (distance of the frontier to Xα in Cn) tends to zero
fast enough as we approach x, it will not meet the extra components of the
intersection W ∩ Pk(Xβ), i.e., those which do not coincide with Xα.

The problem is to determine whether this condition for tubes of not
meeting the extra components of the intersections of general linear spaces
W of the right codimension with the non-equimultiple polar varieties, for
each pair of strata Xα ⊂ Xβ , plus the requirement of not meeting the
closures Xγ of the strata such that Xα is not contained in Xγ , plus some
adjustment of the retractions, is sufficient to provide a system of tubular
neighborhoods in the weaker sense mentioned above. A possible approach is
to use the part of [71] already mentioned. Other probably useful references
are the books of Marie-Hélène Schwartz [98] (where tubular neighborhoods
appear as mentioned above) and [99].

This problem is related to another one. An embeddingX ⊂ U ⊂ Cn, with
U open in Cn, determines a metric on X, called the outer metric d(x, y),
which is the restriction of the ambient metric. A homeomorphism F : X ′ →
X between two metrized spaces is called bilipschitz if there exists a constant
C > 0 such that 1

C d(x, y) 6 d(F (x), F (y)) 6 Cd(x, y). Following Neumann–
Pichon in [82], we say that the Lipschitz geometry of X is its geometry up
to bilipschitz homeomorphism; it is independent of the embedding X ⊂ Cn.
See [41, 82].

Problem 5.3. — Does the Lipschitz geometry of a complex analytic
space X determine its minimal Whitney stratification in the sense that a
bilipschitz homeomorphism between complex analytic spaces endowed with
their minimal Whitney stratifications must carry strata to strata? And if
that is true, perhaps under the assumption that the Lipschitz constants are
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close to 1 as in [24], with what additional structure does one need to enrich
the minimal Whitney stratification of X in order to determine its Lipschitz
geometry (or its Lipschitz geometry with Lipschitz constants close to 1)? For
example optimal shrinking rates of the radii of tubular neighborhoods Tβ as
functions of δα whenever Xα ⊂ Xβ, plus the local Lipschitz geometry of
sections of the Xβ by nonsingular spaces transversal to the Xα ⊂ Xβ? The
results of [17] and [82] indicate that one may have to refine the stratifica-
tion in order for this transversal Lipschitz geometry to be constant along the
strata.

There are encouraging results in the direction of the first question: by [97]
a bilipschitz homeomorphism must send nonsingular points to nonsingular
points so that the first stratum (or strata if we insist that strata should be
connected) of the minimal Whitney stratification is (are) preserved. It must
induce bilipschitz homeomorphisms of the tangent cones by [11], and pre-
serve multiplicities at least in the case of hypersurfaces by [32]. The general
question of whether a bilipschitz homeomorphism preserves the Lipschitz
geometry of general hyperplane sections seems to be open.

One way of understanding how much geometric information is lost in
the singular case by taking homology or cohomology classes of local po-
lar varieties is to make precise the idea that as the linear projections vary,
some branches of the polar curves of normal surfaces having a fixed tan-
gent, for example, span special regions of the surface in the sense of the
geometric decomposition of [82]. The generic contact of the branches with
their common fixed tangent, or at least some weaker version of this contact,
is an invariant of the Lipschitz geometry of the surface. This follows from
the work of Neumann–Pichon in [82] and gives hints for the solution of the
problems just mentioned.

6. Whitney stratifications and the local total topological type

Warning. — In this section and Section 8, we modify the notation for
polar varieties; the general linear space defining each polar variety becomes
implicit, while the point at which the polar variety is defined appears in the
notation Pk(X,x).

We have seen how to associate to a reduced equidimensional germ (X,x)
of a d-dimensional complex analytic space a generalized multiplicity (recall
that (X,x) = P0(X,x)):

(X,x) 7→
(
mx(X,x),mx(P1(X,x)), . . . ,mx(Pd−1(X,x))

)
.
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We know from Subsection 2.5 that the multiplicity mx(X) of a reduced germ
(X,x) of a d-dimensional complex analytic space has a geometric interpre-
tation as follows: given a local embedding (X,x) ⊂ (Cn, 0) there is a dense
Zariski open set U of the Grassmannian of (n − d)-dimensional linear sub-
spaces L ⊂ Cn such that for L ∈ U , with equation `(z) = 0, there exist
ε > 0 and η(ε, `) > 0 such that the affine linear space Lt′ = `−1(t′) in-
tersects X transversally in mx(X) points inside the ball B(0, ε) whenever
0 < |t′| < η(ε, `). Taking t ∈ B(0, ε) such that `(t) = t′, we can write Lt′ as
L+ t.

L

O

X

L    = L + tt

We may ask whether there is a similar interpretation of the other polar
multiplicities in terms of the local geometry of (X,x) ⊂ (Cn, 0). The idea,
as in many other instances in geometry, is to generalize the number of inter-
section points card{Lt ∩X} by the Euler–Poincaré characteristic χ(Lt ∩X)
when the dimension of the intersection is > 0 because the dimension of Lt
is > n− d.

Proposition 6.1 (Lê–Teissier [71, §3]). — Let X =
⋃
αXα be a Whit-

ney stratified complex analytic set of dimension d. Given x ∈ Xα, choose
a local embedding (X,x) ⊂ (Cn, 0). Set dα = dimXα. For each integer
i ∈ [dα + 1, d] there exists a Zariski open dense subset Wα,i in the Grass-
mannian G(n − i, n) and for each Li ∈ Wα,i a semi-analytic subset ELi of
the first quadrant of R2, of the form {(ε, η) | 0 < ε < ε0, 0 < η < φ(ε)}
with φ(ε) a certain Puiseux series in ε, such that the homotopy type of the
intersection X ∩ (Li + t) ∩ B(0, ε) for t ∈ Cn is independent of Li ∈ Wα,i

and (ε, t) provided that (ε, |t|) ∈ ELi . Moreover, this homotopy type depends
only on the stratified set X and not on the choice of x ∈ Xα or the local em-
bedding. In particular the Euler–Poincaré characteristics χi(X,Xα) of these
homotopy types are invariants of the stratified analytic set X.
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Definition 6.2. — The Euler–Poincaré characteristics χi(X,Xα), i ∈
[dα + 1, d] are called the local vanishing Euler–Poincaré characteristics of X
along Xα.

Corollary 6.3 (Kashiwara [55, 56]). — The Euler–Poincaré character-
istics χ(X,Xα) = χdα+1(X,Xα) of the corresponding homotopy types when
i = dα + 1 depend only on the stratified set X and the stratum Xα.

The invariants χ(X,Xα) appeared for the first time in [55], in connection
with Kashiwara’s index theorem for maximally overdetermined systems of
linear differential equations.

Note that if the codimension of the affine spaces is 6 dα they meet Xα

so that the intersection we study is contractible by Whitney’s Lemma 3.17,
and if the codimension is > d the intersection with X is empty.

Example 6.4.

• Let d be the dimension of X. Taking Xα = {x}, which is permissible
by Whitney’s lemma (Lemma 3.17), and i = d gives χd(X, {x}) =
mx(X), as we saw above.
• Assume that (X,x) ⊂ (Cd+1, 0) is a hypersurface with isolated
singularity at the point x (taken as origin in Cd+1), defined by
f(z1, . . . , zd+1) = 0. By Whitney’s lemma (Lemma 3.17), in a suffi-
ciently small neighborhood of x, the minimal Whitney stratification
(see the end of Section 4.3) is (X \ {x}) ∪ {x}, and we have

χi(X, {x}) = 1 + (−1)d−iµ(d+1−i)(X,x), (∗)

where µ(k)(X,x) is the Milnor number of the restriction of the func-
tion f to a general linear space of dimension k through x.

Let us recall that the Milnor number µ(d+1)(X,x) of an iso-
lated singularity of hypersurface as above is defined algebraically
as the multiplicity in C{z1, . . . , zd+1} of the Jacobian ideal j(f) =〈
∂f
∂z1

, . . . , ∂f
∂zd+1

〉
, which is also the dimension of the C-vector space

C{z1,...,zd+1}
j(f) since in this case the partial derivatives form a regu-

lar sequence. Topologically it is defined by the fact that for 0 <
|λ| � ε � 1 the Milnor fiber f−1(λ) ∩ B(0, ε) has the homo-
topy type of a bouquet of µ(d+1)(X,x) spheres of dimension d.
In fact this is true of any smoothing of (X,x) that is, any non-
singular fiber in an analytic family F (v, z1, . . . , zd+1) = 0 with
F (0, z1, . . . , zd+1) = f(z1, . . . , zd+1), within a ball B(0, ε) and for
0 < |v| � ε � 1. This is a consequence of the fact that the basis
of the miniversal deformation of an isolated singularity of hypersur-
face (or more generally, complete intersection) is nonsingular, and
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thus irreducible, and the smooth fibers are the fibers of a locally
trivial fibration over the (connected) complement of the discrimi-
nant; see [109, §4]. Since f−1(0)∩B(0, ε) is contractible the Milnor
fiber has µ(d+1)(X,x) vanishing cycles of dimension d. For all this,
see [79].

Moreover (see [107, Chap. I]), the Milnor number of the restric-
tion of the function f to a general i-dimensional linear space through
0 is well defined and does not depend on the choice of the embed-
ding (X,x) ⊂ (Cd+1, 0) or the general linear space in Cd+1 but only
on the analytic algebra OX,x. It is denoted by µ(i)(X,x). Note that
µ(1)(X,x) is the multiplicity of (X,x) minus one, and µ(0)(X,x) = 1.

These numbers are related to limits at x of tangent hyperplanes
to the hypersurfaceX by the following result found in [107, Chap. II,
1.6]: For all hyperplanes (H, 0) ⊂ (Cd+1, 0) we have µ(X ∩H,x) >
µ(d)(X,x) and equality holds if and only if H is not a limit at x
of tangent hyperplanes to X. Here µ(X ∩H,x) = ∞ if (X ∩H,x)
is not an isolated singularity. This result has been generalized by
Gaffney to isolated singularities of complete intersections in [35,
Prop. 2.6] and more general situations in [37, Thm. 3.3], [39, p. 129–
130], [40]. For non isolated singularities a criterion in terms of Segre
numbers is given in [42, Thm. 4.13]. Another generalization, in a
more topological framework, to a large class of Whitney stratified
complex analytic spaces containing isolated singularities, is due to
M. Tibăr in [117].

Let p : E → P̌n−1, with E ⊂ P̌n−1 × Cn, be the tautological
bundle of the projective space P̌n−1 of hyperplanes in Cn; given
H ∈ P̌n−1, the fiber p−1(H) ⊂ Cn is the hyperplaneH ⊂ Cn. Start-
ing with our germ of hypersurface (X, 0) ⊂ (Cn, 0) with isolated
singularity, let us consider the intersection H = (P̌n−1 × X) ∩ E.
The germ of H along Y = P̌n−1×{0}, endowed with the projection
p1 : H → P̌n−1 induced by p, is the family of hyperplanes sections
of (X, 0). It is shown in [111, Appendice] that the open subset of Y
where the Milnor number of the corresponding fiber of p1 is minimal,
and thus equal to µ(d)(X, 0), coincides with the subset whereH0 sat-
isfies the Whitney conditions along Y . This shows that the family of
hyperplane sections is quite special since in general the constancy of
the Milnor number in a family of isolated hypersurface singularities
does not imply the Whitney conditions (see Example 4.9 above).

Let us now prove the equality (∗). By the results of [107, Chap.II],
it suffices to prove the equality for i = 1. We know by Proposition 2.9
that a general hyperplane L1 through x is not a limit of tangent hy-
perplanes to X at nonsingular points. Thus, if 0 < |t| � ε, the
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intersection X ∩ (L1 + t) ∩ B(0, ε) is nonsingular because it is a
transversal intersection of nonsingular varieties. For the same rea-
son, the intersection L1 ∩X ∩B(0, ε) is nonsingular outside of the
origin, which means that the hypersurface f(0, z2, . . . , zd+1) = 0
has an isolated singularity at the origin. Choosing coordinates so
that L1 is given by z1 = 0, we see that the intersections with a
sufficiently small ball B(0, ε) around x of f(t, z2, . . . , zd+1) = 0 and
f(0, z2, . . . , zd+1) = λ, for small |t|, |λ|, are two smoothings of the
hypersurface with isolated singularity f(0, z2, . . . , zd+1) = 0. They
are therefore diffeomorphic and thus have the same Euler charac-
teristic. The first one is our χ1(X, {x}) and the second one is the
Euler characteristic of a Milnor fiber of f(0, z2, . . . , zd+1), which is
1 + (−1)d−1µ(d)(X,x) in view of the bouquet description recalled
above.

It is known from [70, 4.1.8] (see also just after Theorem 6.5 below) that
the image of a general polar variety Pk(X,x) by the projection p : (Cn, 0)→
(Cd−k+1, 0) which defines it has at the point p(x) the same multiplicity as
Pk(X,x) at x. This is because for a general projection p the kernel of p is
transversal to the tangent cone CPk(X,x),x of the corresponding polar variety.
Using this in the case of isolated singularities of hypersurfaces, it is known
from ([107, Chap. II, Prop. 1.2 and Cor. 1.4] or [108, Cor. p. 610] that the
multiplicities of the polar varieties can be computed from the µ(k)(X,x); we
have the equalities(8)

mx(Pk(X,x)) = µ(k+1)(X,x) + µ(k)(X,x).
At this point it is important to note that the equality mx(Pd−1(X,x)) =
µ(d)(X,x) + µ(d−1)(X,x) which, by what we have just seen, implies the
equality

χ1(X, {x})− χ2(X, {x}) = (−1)d−1mx(Pd−1(X,x)),
implies the general formula

χd−k(X, {x})− χd−k+1(X, {x}) = (−1)kmx(Pk(X,x)),
simply because an affine space Ld−k + t can be viewed as the intersection
of an L1 + t for a general L1 with a general vector subspace Ld−k−1 of
codimension d− k − 1 through the point x taken as origin of Cn, and

mx(Pk(X,x)) = mx(Pk(X,x) ∩ Ld−k−1) = mx(Pk(X ∩ Ld−k−1), x).

(8) The fact that the constancy of the numbers µ(i)(Xt, 0) in a family (Xt, 0)t∈D of
germs of hypersurfaces with isolated singularities is equivalent to the Whitney condi-
tions along the singular locus follows from these equalities and Theorem 4.13. See [112,
Chap. VI]. It has been stressed, in particular by T. Gaffney in [39] and Gaffney–Kleiman
in [43], that this is a condition bearing only on the fibers of the family, and not its total
space.
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The first equality follows from general results on multiplicities since Ld−k−1
is general, and the second from general results on local polar varieties found
in ([70, 4.18], [112, 5.4]). This sort of argument is used repeatedly in the
proofs.

The formula for a general stratified set is the following:
Theorem 6.5 (Lê–Teissier [70, Thm. 6.1.9], [71, 4.11]). — With the con-

ventions just stated, and for any Whitney stratified complex analytic set
X =

⋃
αXα ⊂ Cn, we have for x ∈ Xα the equality

χdα+1(X,Xα)− χdα+2(X,Xα)

=
∑
β 6=α

(−1)dβ−dα−1mx(Pdβ−dα−1(Xβ , x))(1− χdβ+1(X,Xβ)),

where it is understood that mx(Pdβ−dα−1(Xβ , x)) = 0 if x /∈Pdβ−dα−1(Xβ , x).

The main ingredients of the proof are the topological properties of
descriptible maps between stratified spaces (see [71, §2]) and the trans-
versality theorem already mentioned above which states that the kernel of
the projection defining a polar variety Pk(X,L) is transversal to the tan-
gent cone CPk(X.L),0 at the origin provided that the projection is general
enough. Thus, the image of that polar variety by this projection, a hyper-
surface called the polar image, has the same multiplicity as the polar variety
(see [70], 4.1.8).

This is useful because one considers the intersections X∩(Li+t)∩B(0, ε)
as intersections with X ∩B(0, ε) of the fibers of linear projections Cn → Ci

over a “general” point close to the image of the point x ∈ Xα. Because we are
in complex analytic geometry the variations of Euler–Poincaré characteristics
can be computed as the number of intersection points of a general line with
the polar image, which is its multiplicity. This is where the “descriptible”
character of general projections from the stratified space X to Ci, which
lies beyond the scope of these notes, plays a key role in the computation of
Euler–Poincaré characteristics; see [71, Prop. 2.1.3]. The basic fact here is
that in complex analytic geometry the complement of a closed union of strata
in its “tubular neighborhood” as provided by the Whitney conditions (see
Section 5), has zero Euler–Poincaré characteristic. In addition, the existence
of fundamental systems of good neighborhoods of a point of Cn relative to
a Whitney stratification also plays an important role.

Remark 6.6. — A computation of vanishing Euler characteristics for iso-
lated determinantal singularities is provided in [83].

Let us now go back to the definitions of stratifications and stratifying
conditions (see Definition 4.4). Given a complex analytic stratification X =
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⋃
αXα of a complex analytic space, we can consider the following incidence

conditions:

(1) “Punctual Whitney conditions”, the incidence condition Ŵx(Xα,
Xβ): For any α, any point x ∈ Xα, any stratum Xβ such that Xβ

contains x and any local embedding (X,x) ⊂ (Cn, 0), the pair of
strata (Xβ , Xα) satisfies the Whitney conditions at x.

(2) “Local Whitney conditions”, the incidence condition Wx(Xα, Xβ):
same as above except that the Whitney conditions must be satisfied
at every point of some open neighborhood of x in Xα.

(3) “(Local Whitney conditions)∗”: For each α, for every x ∈ Xα and
every local embedding (X,x) ⊂ (Cn, 0), for every i 6 n − dα there
exists a dense Zariski open set Ui of the Grassmannian G(n − i −
dα, n − dα) of linear spaces of codimension i of Cn containing the
tangent space TXα,x such that for every germ of nonsingular sub-
space (Hi, x) ⊂ (Cn, 0) of codimension i containing (Xα, x) and
such that THi,x ∈ Ui, we have Wx(Xα, Xβ ∩Hi).

(4) “Local Topological equisingularity”, the incidence condition (TT )x:
For any α, any point x ∈ Xα, any stratum Xβ such that Xβ contains
x and any local embedding (X,x) ⊂ (Cn, 0), there exist germs of
retractions ρ : (Cn, 0) → (Xα, x) and positive real numbers ε0 such
that for all ε, 0 < ε 6 ε0 there exists ηε such that for all η, 0 <
η 6 ηε, there is an homeomorphism B(0, ε) ∩ ρ−1(B(0, η) ∩Xα) '
(ρ−1(x) ∩ B(0, ε)) × (B(0, η) ∩ Xα) which is compatible with the
retraction ρ and the projection to B(0, η)∩Xα and, for each stratum
Xβ such that Xβ contains x, induces an homeomorphism:

Xβ ∩B(0, ε) ∩ ρ−1(B(0, η) ∩Xα)
' (Xβ ∩ ρ−1(x) ∩B(0, ε))× (B(0, η) ∩Xα).

This embedded local topological triviality, meaning that locally
around x each Xβ is topologically a product of the nonsingular
Xα by the fiber ρ−1(x), in a way which is induced by a topological
product structure of the ambient space, will be denoted by
TTx(Xα, Xβ) for each specified Xβ .

(5) “(Local Topological equisingularity)∗”, the incidence condition
(TT ∗)x: For each α, for every x ∈ Xα and every local embedding
(X,x) ⊂ (Cn, 0), for every i 6 n − dα there exists a dense Zariski
open set Ui of the Grassmannian G(n − i − dα, n − dα) of linear
spaces of codimension i of Cn containing the tangent space TXα,x
such that for every germ of nonsingular subspace (Hi, x) ⊂ (Cn, 0)
of codimension i containing (Xα, x) and such that THi,x ∈ Ui, we
have TTx(Xα, Xβ ∩Hi).
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(6) “χ∗ constant”: For each α, for every x ∈ Xα, every stratum Xβ such
thatXα ⊂ Xβ , and every local embedding (X,x) ⊂ (Cn, 0), the map
which to every point y ∈ Xα in a neighborhood of x associates the se-
quence χ∗(Xβ , y) = (χdα+1(Xβ , {y}), . . . , χdβ (Xβ , {y})) is constant
on Xα in a neighborhood of x. Recall from Proposition 6.1 that
χi(Xβ , {y}) is the Euler characteristic of the intersection, within a
small ball B(0, ε) around y in Cn, of Xβ with an affine subspace
of codimension i of the form Li + t, where Li is a vector subspace
of codimension i of general direction and 0 < |t| < η for a small
enough η, depending on ε.

(7) “M∗ constant”: For each α, for every x ∈ Xα, for every stratum Xβ

such thatXα ⊂ Xβ , and every local embedding (X,x) ⊂ (Cn, 0), the
map which to every point y ∈ Xα in a neighborhood of x associates
the sequence

M∗(Xβ , y) =
(
my(Xβ),my(P1(Xβ , y)), . . . ,my(Pdβ−1(Xβ , y))

)
∈ Ndβ

is constant in a neighborhood of x.
This condition is equivalent to saying that the polar varieties

Pk(Xβ , x) which are not empty contain Xα and are locally around
x equimultiple along Xα.

[71, Thm. 5.3.1] is that for a stratification in the sense of Definition 4.4
all these conditions are equivalent, except 4, which we know to be weaker.

Theorem 6.5, which relates the multiplicities of polar varieties with local
topological invariants, plays a key role in the proof.

Recall that we saw in Subsection 4.2 the result of Thom–Mather (see
Theorem 4.7) that Whitney stratifications have Property 4 of local topolog-
ical equisingularity defined above. We also mentioned that the converse is
known to be false since Briançon–Speder gave in [18] a counterexample to
a conjecture of [107, Préambule]. The result just mentioned provides among
other things the correct converse.

7. Specialization to the Tangent Cone and Whitney
equisingularity

Let us now re-examine the question of how much does a germ of singu-
larity (X, 0) without exceptional cones resembles a cone. The obvious choice
is to compare it with its tangent cone CX,0, assuming that it is reduced,
and we can rephrase the question by asking does the absence of exceptional
cones implies that (X, 0) is Whitney-equisingular to its tangent cone?
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To be more precise, let (X, 0) ⊂ (Cn, 0) be a reduced germ of an analytic
singularity of pure dimension d, and let ϕ : (X, 0) → (C, 0) denote the
specialization of X to its tangent cone CX,0. Let X0 denote the open set
of smooth points of X, and let Y denote the smooth subspace 0 × C ⊂ X.
Our aim is to study the equisingularity of X along Y . More precisely, we
want to determine whether the absence of exceptional cones will allow us to
construct a Whitney stratification of X in which the parameter axis Y is a
stratum.

The first result in this direction was obtained by Lê and Teissier in [69,
Thm. 2.2.1] and says that for a surface (S, 0) ⊂ (C3, 0) with a reduced
tangent cone the absence of exceptional cones is equivalent to {X0,SingX \
Y, Y } being a Whitney stratification of X. In particular (S, 0) is Whitney
equisingular to its tangent cone (CS,0, 0).

In the general case, we only have a partial answer which we will now
describe. The first step to find out if such a stratification is possible, is to
verify that the pair (X0, Y ) satisfies Whitney’s conditions. Since X \X(0) is
isomorphic to the product C∗ ×X, Whitney’s conditions are automatically
verified everywhere in {0} ×C, with the possible exception of the origin.

Theorem 7.1 ([34, Thm. 8.11]). — Let (X, 0) be a reduced and equidi-
mensional germ of a complex analytic space. Suppose that its tangent cone
CX,0 is reduced. The following statements are equivalent:

(1) The germ (X, 0) does not have exceptional cones.
(2) The pair (X0, Y ) satisfies Whitney’s condition (a) at the origin.
(3) The pair (X0, Y ) satisfies Whitney’s conditions (a) and (b) at the

origin.
(4) The germ (X, 0) does not have exceptional cones.

We would like to explain a little how one goes about proving this result.
To begin with, we know that Whitney’s condition (b) is stronger than the
condition (a). The equivalence of statements (2) and (3) tells us that in this
case they are equivalent for the pair of strata (X0, Y ) at the origin. The
special geometry of X plays a crucial role in this result.

Proposition 7.2 ([34, Prop. 6.1]). — If the pair (X0, Y ) satisfies Whit-
ney’s condition (a) at the origin, it also satisfies Whitney’s condition (b) at
the origin.

Remark 7.3.

(1) For any point y ∈ Y sufficiently close to 0, the tangent cone CX,y is
isomorphic to CX,0×Y , and the isomorphism is uniquely determined
once we have chosen a set of coordinates. The reason is that for
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any f(z) vanishing on (X, 0), the function F (z, v) = v−mf(vz) =
fm + vfm+1 + v2fm+2 + . . . , vanishes in (X, 0) and so for any point
y = (0, v0) with |v0| small enough the series F (z, v − v0) converges
for z, v − v0 small enough and the initial form of F (z, v − v0) in
C{z1, . . . , zn, v − v0} with respect to the ideal (z1, . . . , zn) is equal
to the initial form of f at 0. That is in(0,v0) F = in0 f , which is
independent of v.

(2) The projectivized normal cone PCX,Y is isomorphic to Y ×PCX,0.
This can be seen from the equations used to define X (Section 2,
exercise 2.23), where the initial form of Fi with respect to Y , is
equal to the initial form of fi at the origin: we have inY Fi = in0 fi.

(3) There exists a natural morphism ω : EY X → E0X, making the
following diagram commute:

EY X
ω //

eY

��

E0X

eo

��
X

φ
// X

Moreover, when restricted to the exceptional divisor e−1
Y (Y ) =

PCX,Y it induces the natural map PCX,Y = Y ×PCX,0 → PCX,0.
Algebraically, this results from the universal property of the blowing
up E0X and the following diagram:

EY X

eY

��

E0X

eo

��
X

φ
// X

Note that, for the diagram to be commutative the morphism ω must
map the point ((v, z), [z]) ∈ EY X \ {Y ×Pn−1} ⊂ X×Pn−1 to the
point ((vz), [z]) in E0X ⊂ X ×Pn−1.

Now we can proceed to the proof of Proposition 7.2.

Proof of Proposition 7.2. — We want to prove that the pair (X0, Y ) sat-
isfies Whitney’s condition (b) at the origin. We are assuming that it already
satisfies condition (a), so in particular we have that ζ−1(0) is contained in
{0} × Pn−1 × P̌n−1. By the remarks made at the beginning of Section 4.3
it suffices to prove that any point (0, l,H) ∈ ζ−1(0) is contained in the in-
cidence variety I ⊂ {0} × Pn−1 × P̌n−1. This is done by considering the
normal/conormal diagram of X augmented by the map ω : EY X → E0X
of the remarks above and the map ψ : C(X) → C(X) × C defined by
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((z1, . . . , zn, v), (a1 : . . . : an : b)) 7→ ((vz1, . . . , vzn), (a1 : . . . : an), v)

EY C(X) êY //

κ′X
��

ζ

%%

C(X)

κX

��

ψ // C(X)×C

EY X eY
//

ω

��

X

E0X

By construction, there is a sequence (zm, vm, lm, Hm) in EY C(X) ↪→
C(X) ×X EY X tending to (0, l,H), where (zm, vm) is not in Y . Through
κ′X, we obtain a sequence (zm, vm, lm) in EY X tending to (0, l), and through
êY a sequence (zm, vm, Hm) tending to (0, H) in C(X).

In this case the condition (a) means that b = 0 and so through ψ we obtain
the sequence (tmzm, H̃m) tending to (0, H̃) in C(X). Analogously, both the
sequence (vmzm, lm) obtained through the map ω and its limit (0, l) are in
E0X. Finally, Whitney’s Lemma 3.17 tells us that in this situation we have
that l ⊂ H̃ and so the point (0, l,H) is in the incidence variety. �

Lemma 7.4 ([34, Lem. 6.4]). — If the tangent cone CX,0 is reduced and
the pair (X0, Y ) satisfies Whitney’s condition (a), the germ (X, 0) does not
have exceptional cones.

Proof. — Since (X0, Y ) satisfies Whitney’s condition (a), by Proposi-
tion 7.2 it also satisfies Whitney’s condition (b). Recall that the auréole
of (X, 0) along Y is a collection {Vα} of subcones of the normal cone CX,Y

whose projective duals determine the set of limits of tangent hyperplanes
to X at the points of Y in the case that the pair (X0, Y ) satisfies Whitney
conditions (a) and (b) at every point of Y (see [72, Thm. 2.1.1, Cor. 2.1.2,
p. 559-561]). Among the Vα there are the irreducible components of |CX,Y |.
Moreover we have:

(1) By Remark 7.3 we have that CX,Y = Y × CX,0 so its irreducible
components are of the form Y × Ṽβ where Ṽβ is an irreducible com-
ponent of |CX,0|.

(2) For each α the projection Vα → Y is surjective and all the fibers are
of the same dimension (see [72, Prop. 2.2.4.2, p. 570]).

(3) The hyperplane H corresponding to the point (0 : 0 : . . . : 0 : 1) ∈
P̌n+1, which is v = 0, is transversal to (X, 0) by hypothesis, and so
by [72, Thm. 2.3.2, p. 572] the collection {Vα ∩H} is the auréole of
X ∩H along Y ∩H.
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Notice that (X∩H,Y ∩H) is equal to (X(0), 0), which is isomorphic to the
tangent cone (CX,0, 0) and therefore does not have exceptional cones. This
means that for each α either Vα∩H is an irreducible component of CX,0 or it
is empty. But the intersection cannot be empty because the projections Vα →
Y are surjective. Finally since all the fibers of the projection are of the same
dimension, the Vα’s are only the irreducible components of CX,Y .

This means that if we define the affine hyperplane Hv as the hyperplane
with the same direction as H and passing through the point y = (0, v) ∈ Y
for v small enough; Hv is transversal to (X, y). So we have again that the
collection {Vα ∩ Hv} is the auréole of X ∩ Hv along Y ∩ Hv, that is, the
auréole of (X, 0), so it does not have exceptional cones. �

At this point it is not too hard to prove the equivalence of statements (3)
and (4) of Theorem 7.1, namely that the pair (X0, Y ) satisfies both Whit-
ney conditions at the origin if and only if the germ (X, 0) does not have
exceptional cones (see [34, Prop. 6.5]).

The idea is that on the one hand we have that the Whitney conditions
imply that (X, 0) has no exceptional cones and b = 0, but this means that
the map ψ : C(X) → C(X) ((z, v), [a : b]) 7→ ((vz), [a]) is defined every-
where. Thus, the set of limits of tangent hyperplanes to (X, 0) is just the
dual of the tangent cone. On the other hand since CX,0 = CX,0 × C the
absence of exceptional cones implies b = 0 which is equivalent to Whitney’s
condition (a).

The key idea to prove Whitney’s condition (a) starting from the
assumption that (X, 0) is without exceptional cones is to use its algebraic
characterization given by the second author in [107] for the case of hyper-
surfaces and subsequently generalized by Gaffney in [36] in terms of integral
dependence of modules. To give an idea of how it is done let us look at the
hypersurface case.

If (X, 0) ⊂ (Cn, 0) is a hypersurface then (X, 0) ⊂ (Cn+1, 0) is also a
hypersurface. Let us say that it is defined by F = 0, F ∈ C{z1, . . . , zn, v}.
Note that in this case the conormal space C(X) coincides with the Semple–
Nash modification and thus every arc

γ : (C,C \ {0}, 0)→ (X,X0, 0)

lifts uniquely to an arc

γ̃ : (C,C \ {0}, 0)→ (C(X), C(X0), (0, T ))

given by

τ 7→
(
γ(τ), Tγ(τ)X :=

(
∂F

∂z0
(γ(τ)) : . . . : ∂F

∂zn
(γ(τ)) : ∂F

∂v
(γ(τ))

))
,
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and so the vertical hyperplane {v = 0}, or (0 : . . . : 0 : 1) in projective
coordinates, is not a limit of tangent spaces to X at 0 if and only if ∂F∂v tends
to zero at least as fast as the slowest of the other partials, that is

order ∂F
∂v

(γ(τ)) > min
j

{
order ∂F

∂zj
(γ(τ))

}
,

where here and below “order” means order as a series in τ . The point is that
this is equivalent to ∂F

∂v being integrally dependent on the relative Jacobian
ideal Jϕ :=

〈
∂F
∂zj

〉
in the local ring OX,0 as proved by Lejeune–Jalabert

and the second author in ([73, Thm. 2.1]). True, this is not precisely what
we want, but it is very close because the pair (X0, Y ) satisfies Whitney’s
condition (a) at the origin if and only if ∂F

∂v tends to zero faster than the
slowest of the other partials, that is:

order ∂F
∂v

(γ(τ)) > min
j

{
order ∂F

∂zj
(γ(τ))

}
and according to the definition of strict dependence stated by Gaffney and
Kleiman in [43, §3, p. 555], not only for ideals but more generally for modules,
this is what it means for ∂F∂v to be strictly dependent on the relative Jacobian
ideal Jϕ in OX,0.

As for the proof, note that we already know that the pair (X0, Y ) satisfies
Whitney’s conditions at every point y ∈ Y \ {0}, that is, ∂F

∂v is strictly
dependent on the relative Jacobian ideal Jϕ in OX,y at all these points. That
this condition carries over to the origin can be determined by the principle
of specialization of integral dependence (see [43], [110, Appendix 1], [112,
Chap. 1, §5]) which in this case amounts to proving that the exceptional
divisor E of the normalized blowing up of X along the ideal Jϕ does not
have irreducible components whose image in X is contained in the special
fiber X(0) := ϕ−1(0). Fortunately, this normalized blowing up is isomorphic
to a space we know, namely the normalization of the relative conormal space
Cϕ(X) of 4.14:

κ̃ϕ : C̃ϕ(X)→ X,

and we are able to use the absence of exceptional cones to prove that E has
the desired property.

This ends our sketch of proof of Theorem 7.1.

Corollary 7.5 ([34, Cor. 8.14 and 8.15]). — Let (X, 0) satisfy the hy-
pothesis of Theorem 7.1.

• If (X, 0) has an isolated singularity and its tangent cone is a com-
plete intersection singularity, then the absence of exceptional cones

– 757 –



Arturo Giles Flores and Bernard Teissier

implies that CX,0 has an isolated singularity and {X \ Y, Y } is a
Whitney stratification of X.
• If the tangent cone (CX,0, 0) has an isolated singularity at the origin,
then (X, 0) has an isolated singularity and {X \ Y, Y } is a Whitney
stratification of X.

We have verified that the absence of exceptional cones allows us to start
building a Whitney stratification of X having Y as a stratum. The question
now is how to continue. We can prove ([34, Prop. 8.13]) that in the complete
intersection case, the singular locus of X coincides with the specialization
space Z of |SingX| to its tangent cone.

Suppose now that the germ (|SingX|, 0) has a reduced tangent cone; then
a stratum Xλ containing a dense open set of Z will satisfy Whitney’s condi-
tions along Y if and only if the germ (|SingX|, 0) does not have exceptional
cones.

In view of this it seems reasonable to start by assuming the existence
of a Whitney stratification {Xλ} of (X, 0) such that for every λ the germ
(Xλ, 0) has a reduced tangent cone and no exceptional cones. In this case,
the specialization space Xλ of (Xλ, 0) is canonically embedded as a subspace
of X, and the partition of X associated to the filtration given by the Xλ is a
good place to start looking for the desired Whitney stratification of X but
this is to our knowledge still an open problem. A precise formulation is the
following:

Questions 7.6.

(1) Let (X, 0) be a germ of reduced equidimensional complex analytic
space, and let X =

⋃
λ∈LXλ be the minimal (Section 4.3) Whitney

stratification of a small representative of (X, 0). Is it true that the
following conditions are equivalent?
• The tangent cones CXλ,0 are reduced and the (Xλ, 0) have no
exceptional cones, for λ ∈ L.
• The specialization spaces (Xλ)λ∈L are the closures of the strata
of the minimal Whitney stratification of X. If {0} is a stratum
in X, we understand its specialization space to be Y = {0} ×
C ⊂ X. Indeed, in this case the algebra R of Proposition 2.22
is k[v].

If that is the case, for a sufficiently small representative X of (X, 0),
the spaces (X, 0) and (CX,0, 0) are isomorphic to the germs, at
(0, v0) and (0, 0) respectively, of two transversal sections, v = 0 and
v = v0 6= 0 of a Whitney stratification of X ⊂ Cn ×C, and so are
Whitney-equisingular. Conversely, if Y is a stratum of a Whitney
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stratification of X, it is contained in a stratum of the minimal Whit-
ney stratification of X, whose strata are the specialization spaces
Xλ of the strata Xλ of the minimal Whitney stratification of X. It
follows from Theorem 7.1 that the Xλ have a reduced tangent cone
and no exceptional cones.

(2) Given an algebraic cone C, reduced or not, which systems of irre-
ducible closed subcones can be obtained as exceptional cones for some
complex analytic deformation of C having C as tangent cone?

8. Polar varieties, Whitney stratifications, and projective duality

Warning. — See the warning concerning notation at the beginning of
Section 6. In this section we go back and forth between a projective variety
V ⊂ Pn−1 of dimension d, the germ (X, 0) at 0 of the cone X ⊂ Cn over V ,
and the germ (V, v) of V at a point v ∈ V , so that we also use the notation
of Section 3.2. Note that Pk(V ), 0 6 k 6 d denotes the polar varieties in
the sense of Definition 3.15.

The formula of Theorem 6.5 can be applied to the special singular point
which is the vertex 0 of the cone X in Cn over a projective variety V of
dimension d in Pn−1, which we assume not to be contained in a hyperplane.
The dual variety V̌ of V was defined in Subsection 2.3. Remember that every
complex analytic space, and in particular V , has a minimal Whitney strat-
ification (see the end of Section 4.3). We shall use the following facts, with
the notation of Proposition 6.1 and those introduced after Proposition 2.9:

Proposition 8.1 (Compare with [113, end of §5]). — Let V ⊂ Pn−1 be
a projective variety of dimension d.

(1) If V =
⋃
Vα is a Whitney stratification of V , denoting by Xα ⊂ Cn

the cone over Vα, we have that X = {0}
⋃
X∗α, where X∗α = Xα \

{0}, is a Whitney stratification of X. It may be that (Vα) is the
minimal Whitney stratification of V but {0}

⋃
X∗α is not minimal,

for example if V is itself a cone.
(2) If Li + t is an i-codimensional affine space in Cn it can be written

as Li−1∩(L1 +t) with vector subspaces Li and for general directions
of Li we have, denoting by B(0, ε) the closed ball with center 0 and
radius ε, for small ε and 0 < |t| � ε :

χi(X, {0}) := χ(X ∩ (Li + t) ∩B(0, ε)) = χ(V ∩Hi−1)− χ(V ∩Hi−1 ∩H1),

where Hi = PLi ⊂ Pn−1.
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(3) For every stratum X∗α of X, we have the equalities χi(X,X∗α) =
χi(V, Vα).

(4) If the dual V̌ ⊂ P̌n−1 is a hypersurface, its degree is equal to
m0(Pd(X, 0)), which is the number of non singular critical points of
the restriction to V of a general linear projection Pn−1 \ L2 → P1.

Note that we will apply statements (2) and (3) not only to the cone X
over V but also to the cones Xβ over the closed strata Vβ .

Proof. — The first statement follows from the product structure of the
cones along their generating lines outside of the origin, and the fact that
Vβ × C satisfies the Whitney conditions along Vα × C at a point (x, λ) ∈
Vα ×C∗ if and only if Vβ satisfies those conditions along Vα at the point x.

To prove the second one, we first remark that it suffices to prove the result
for i = 1 since we can then apply it to X ∩ Li−1. Assuming that i = 1 we
may consider the minimal Whitney stratification of V and by an appropriate
choice of coordinates assume that the hyperplane of Pn−1 defined by z1 = 0
is transversal to the strata. Then, we use an argument very similar to the
proof of the existence of fundamental systems of good neighborhoods in [71].
In Pn−1 with homogeneous coordinates (z1 : . . . : zn), we choose the affine
chart An−1 ' Cn−1 ⊂ Pn−1 defined by z1 6= 0. The distance function to
0 ∈ An−1 is real analytic on the strata of V .

Let us denote by D(0, R) the ball centered at 0 and with radius R in
An−1. By Bertini–Sard’s theorem and Thom’s isotopy theorem, we obtain
that there exists a radius R0, the largest critical value of the distance function
to the origin restricted to the strata of V , such that the homotopy type of
V ∩D(0, R) is constant for R > R0 and equal to that of V \ V ∩H, where
H is the hyperplane z1 = 0. Thus, χ(V \ V ∩ H) = χ(V ) − χ(V ∩ H) =
χ(V ∩ D(0, R)). In fact, by the proof of the Thom–Mather theorem, the
intersection V ∩D(0, R) is then a deformation retract of V \ V ∩H.

Since all that is required from our hyperplane z1 = 0 is that it should
be transversal to the strata of V , we may assume that the hyperplane L1
is defined by z1 = 0. Given t 6= 0 and ε, the application (z1 : . . . : zn) 7→
(t, t z2

z1
, . . . , t znz1

) from An−1 to L1 + t maps isomorphically V ∩D(0, ε|t| ) onto
X ∩ (L1 + t) ∩B(0, ε). It suffices now to take |t| so small with respect to ε
that ε

|t| > R0.

The third statement follows from the fact that locally at any point of X∗α,
the coneX, together with its stratification, is the product of V , together with
its stratification, by the generating line through x of the cone, and product
by a disk does not change the Euler characteristic.
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Finally, we saw in Lemma 2.14 that the fiber κ−1(0) of the conormal
map κ : C(X) → X is the dual variety V̌ . The last statement then follows
from the very definition of polar varieties. Indeed, given a general line L1 in
P̌n−1, the corresponding polar curve in X is the cone over the points of V
where a tangent hyperplane belongs to the pencil L1; it is a finite union of
lines and its multiplicity is the number of these lines, which is the number
of corresponding points of V . �

Using Proposition 8.1, we can rewrite in this case the formula of The-
orem 6.5 as a generalized Plücker formula for any d-dimensional projective
variety V ⊂ Pn−1 whose dual is a hypersurface:

Proposition 8.2 (Teissier [113, §5]). — Given the projective variety
V ⊂ Pn−1 equipped with a Whitney stratification V =

⋃
α∈A Vα, denote by

dα the dimension of Vα. We have, if the projective dual V̌ is a hypersurface
in P̌n−1:

(−1)d deg V̌ = χ(V )− 2χ(V ∩H1) + χ(V ∩H2)

−
∑
dα<d

(−1)dα degn−2 Pdα(Vα)(1− χdα+1(V, Vα)),

where H1, H2 denote general linear subspaces of Pn−1 of codimension 1 and
2 respectively, degn−2 Pdα(Vα) is the number of nonsingular critical points
of a general linear projection Vα → P1, which is the degree of V̌α if it is a
hypersurface and is set equal to zero otherwise. It is equal to 1 if dα = 0.

Here we remark that if (Vα)α∈A is the minimal Whitney stratification of
the projective variety V ⊂ Pn−1, and H is a general hyperplane in Pn−1,
the Vα ∩ H that are not empty constitute the minimal Whitney stratifi-
cation of V ∩ H; see [112, Chap. III, Lem. 4.2.2] and use the fact that
the minimal Whitney stratification is defined by equimultiplicity of polar
varieties (see [112, Chap. VI, §3]) and that the multiplicity of polar
varieties of dimension > 1 is preserved by general hyperplane sections as
we saw before Theorem 6.5.

The formula, (−1)d deg V̌ = χ(V )−2χ(V ∩H1)+χ(V ∩H2) in the special
case where V is nonsingular, already appears in [59, (IV, 72)].

The formula of Proposition 8.2 is a priori different in general from the
very nice generalized Plücker formula given by Ernström in [31], which also
generalizes the formula (IV, 72) to the singular case, even when the dual
variety is not a hypersurface.

Theorem 8.3 (Ernström [31]). — Let V ⊂ Pn−1 be a projective variety
and let k be the codimension in P̌n−1 of the dual variety V̌ . We have the
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following equality:

(−1)d deg V̌
= kχ(V,EuV )− (k + 1)χ(V ∩H1,EuV ∩H1) + χ(V ∩Hk+1,EuV ∩Hk+1),

where the Hi are general linear subspaces of Pn−1 of codimension i and
χ(V,EuV ) is a certain linear combination with coefficients in Z of Euler
characteristics of subvarieties of V , which is built using the properties of
the local Euler obstruction Eu(V, v) ∈ Z associated to any point v of V ,
especially that it is constructible i.e., constant on constructible subvarieties
of V .

The local Euler obstruction is a local invariant of singularities which plays
an important role in the theory of Chern classes for singular varieties, due
to M.-H. Schwartz and R. MacPherson (see [16]). Its definition is outside of
the scope of these notes but we shall give an expression for it in terms of
multiplicities of polar varieties below.

Coming back to our formula, if V̌ is not a hypersurface, the polar curve
Pd−1(X,L) is empty, but the degree of V̌ is still the multiplicity at the origin
of a polar variety of the cone X over V . We shall come back to this below.

8.1. The case where V has isolated singularities

Let us first treat the hypersurface case. Let f(z1, . . . , zn) be a homo-
geneous polynomial of degree m defining a hypersurface V ⊂ Pn−1 with
isolated singularities, which is irreducible if n > 3. The degree of V̌ is
the number of points of V where the tangent hyperplane contains a given
general linear subspace L of codimension 2 in Pn−1. By Bertini’s theorem
we can deform V into a nonsingular hypersurface V ′ of the same degree, by
considering the hypersurface defined by Fv0 = f(z1, . . . , zn) + v0z

m
1 = 0,

where the open set z1 6= 0 contains all the singular points of V and v0 is
small and non zero.

Taking coordinates such that L is defined by z1 = z2 = 0, the class of
V ′ is computed as the number of intersection points of V ′ with the curve
of Pn−1 defined by the equations ∂Fv0

∂z3
= · · · = ∂Fv0

∂zn
= 0, which express

that the tangent hyperplane to V ′ at the point of intersection contains L.
This is the relative polar curve of [112](9) . For general z1 this is a complete

(9) Or rather the projectivization of the relative polar surface of the homogeneous map
Fv0 : Cn → C. The distinction between absolute local polar varieties, which are defined
as critical subsets of projections of a singular germ to a nonsingular one, and relative
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intersection and Bézout’s theorem combined with Proposition 8.2 gives

deg V̌ ′ = (−1)n−2(χ(V ′)− 2χ(V ′ ∩H1) + χ(V ′ ∩H2)) = m(m− 1)n−2.

Now as V ′ degenerates to V when v0 → 0, by what we saw in Example 6.4,
the topology changes only by µ(n−1)(V, xi) vanishing cycles in dimension n−2
attached to each of the isolated singular points xi ∈ V (Example 6.4). This
gives χ(V ) = χ(V ′)−

∑
i(−1)n−2µ(n−1)(V, xi).

We have χ(V ∩H1) = χ(V ′∩H1) and χ(V ∩H2) = χ(V ′∩H2) sinceH1 and
H2, being general, miss the singular points and are transversal to V and V ′ so
that V ′∩H1 (resp. V ′∩H2) is diffeomorphic to V ∩H1 (resp. V ∩H2). It follows
from a theorem of Ehresmann that all nonsingular projective hypersurfaces
of the same degree are diffeomorphic.

We could have taken H2 general in H1 and H1 to be z1 = 0, and then
V ∩H1 = V ′ ∩H1, V ∩H2 = V ′ ∩H2.

On the other hand, in our formula theWhitney strata of dimension< n−2
are the {xi} so all the d{xi} are equal to zero while the χ1(V, {xi}) are equal
to 1+(−1)n−3µ(n−2)(V, xi), corresponding to the Milnor number of a generic
hyperplane section of V through xi, as we saw in Example 6.4.

Substituting all this in our formula of Proposition 8.2 gives:

(−1)n−2 deg V̌

= (−1)n−2m(m− 1)n−2 −
∑
i

(−1)n−2µ(n−1)(V, xi)

−
∑
i

(1− (1 + (−1)n−3µ(n−2)(V, xi))).

Simplifying and rearranging we obtain:

deg V̌ = m(m− 1)n−2 −
∑
i

(µ(n−1)(V, xi) + µ(n−2)(V, xi)).

This formula was previously established in [110, Appendix II] (see also [64])
by algebraic methods based on the fact that the multiplicity in the ring
OV,xi of the Jacobian ideal is equal to µ(n−1)(V, xi)+µ(n−2)(V, xi) (see [107,
Chap. II, §1]). This equality is called the restriction formula because it shows

local polar varieties, whose nature is that of families of polar varieties of the fibers of a
morphism, was established in [112]. The idea was to extend to the local case the distinction
between the polar curves used by Plücker and Poncelet to prove Plücker formulas, say
for a projective plane curve, and the polar loci of Todd, which are a high dimensional
generalization of the intersection of the polar curve with the given projective plane curve.
This leads of course to the definition of relative Nash modification and relative conormal
space for a morphism.
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that while the multiplicity of the Jacobian ideal in the ambient space at the
point xi is µ(n−1)(V, xi), the multiplicity of its restriction to the hypersurface
is µ(n−1)(V, xi)+µ(n−2)(V, xi). This multiplicity is also the intersection mul-
tiplicity of the relative polar curve with the hypersurface, which counts the
number of intersection points of the polar curve with a Milnor fiber of the
hypersurface singularity. By the very definition of the relative polar curve,
these points are those where the tangent hyperplane to the Milnor fiber is
parallel to a given hyperplane of general direction or, in the projective case,
belongs to a given general pencil of hyperplanes.

This shows that the “diminution of class”(10) the due to the singularity
is the number of hyperplanes containing L and tangent to a smoothing of
the singularity which are “absorbed” by the singularity as the Milnor fiber
specializes to the singular fiber; see [110, Appendix II].

See [87, Cor. 3.8] for a proof in terms of characteristic classes, closer to the
approach of Todd. Yet another proof, relating the degree of the dual variety
to integrals of curvature and based on the relationship between (relative)
polar curves and integrals of curvature brought to light by Langevin in [63],
can be found in [45, §5].

The same method works for complete intersections with isolated singula-
rities, since they can also be smoothed in the same way, and the generalized
Milnor numbers also behave in a similar way. Using the results of Navarro
Aznar in [81] on the computation of the Euler characteristics of nonsingular
complete intersections and the results of Lê in [67] on the computation of
Milnor numbers of complete intersections, as well as a direct generalization
of the small trick of Example 6.4 for the computation of χ1(X, {x}) (see
also [38]), one can produce a topological expression for the degrees of the
duals of complete intersections with isolated singularities, in terms of the
degrees of the equations and generalized Milnor numbers. We leave this to
the reader as an interesting exercise. The answer, obtained by a different
method, can be found in [62, §2] and a proof inspired by [31] can also be
found in [77]. The correction term coming from the singularities has the same
form as in the hypersurface case.

In the general isolated singularities case (see [62, §3]), both the com-
putation of Euler characteristics and the topological interpretation of local
invariants at the singularities offer new challenges.

(10) That is, what one must add to the degree of the dual of V to obtain the degree of
the dual of a nonsingular variety of the same degree as V .
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8.2. Conclusion

Given a projective variety V of dimension d endowed with its minimal
Whitney stratification V =

⋃
α∈A Vα, we can write the formula of Proposi-

tion 8.2 as follows:

(−1)d deg V̌ = χ(V )− 2χ(V ∩H1) + χ(V ∩H2)

−
∑
dα<d

(−1)dα degn−2 V̌α(1− χdα+1(V, Vα)),

where we agree that degn−2 V̌α = deg V̌α if dim V̌α = n − 2, and is 0 if
dim V̌α < n− 2. Then we see by induction on the dimension that:

Proposition 8.4. — The degree of the dual variety, when it is a hyper-
surface, ultimately depends on the Euler characteristics of the Vα (or the Vα,
since it amounts to the same by additivity of the Euler characteristic) and
their general linear sections, and the local vanishing Euler characteristics
χi(Vβ , Vα).

Problem 8.5. — Given V as above with a defining homogeneous ideal,
describe an algebraic method to produce an ideal defining the union of V
and the duals of the other strata of the minimal Whitney stratification of the
dual V̌ .

For example, the dual of a general plane algebraic curve has only cusps
and double points as singularities. The construction described above adds
to the curve all its “remarkable tangents”, namely its double tangents and
inflection tangents.

Using the properties of polar varieties and Theorem 6.5 one can prove a
similar formula in the case where the dual V̌ is not a hypersurface, and thus
extend Proposition 8.4 to all projective varieties. The degree of V̌ is then
the multiplicity at the origin of the smallest polar variety of the cone X over
V which is not empty. Now one uses the equalities

mx(Pk(X,x)) = mx(Pk(X,x) ∩ Ld−k−1) = mx(Pk(X ∩ Ld−k−1), x),

which we have seen before Theorem 6.5. They tell us that the degree of V̌
is the degree of the dual of the intersection of V with a linear space of the
appropriate dimension for this dual to be a hypersurface.

More precisely, when H is general hyperplane in Pn−1, the following
facts are consequences of the elementary properties of projective duality (see
Remark 3.10(c)), and the property that tangent spaces are constant along
the generating lines of a cone (see Lemma 2.14):
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• If V̌ is a hypersurface, the dual of V ∩ H is the cone with vertex
Ȟ over the polar variety P1(V̌ , Ȟ), the closure in V̌ of the critical
locus of the restriction to V̌ 0 of the projection π : P̌n−1 → P̌n−2

from the point Ȟ ∈ P̌n−1. Since we assume that V is not contained
in a hyperplane, the degree of the hypersurface V̌ is > 2, hence
this critical locus is of dimension n − 3 and the dual of V ∩H is a
hypersurface. In appropriate coordinates its equation is a factor of
the discriminant of the equation of V̌ .
• Otherwise, the dual of V ∩H is the cone with vertex Ȟ over V̌ , i.e.,
the join V̌ ∗ Ȟ in P̌n−1 of V̌ and the point Ȟ.

Although they were suggested to us by the desire to extend Proposition 8.4
to the general case, these statements are not new. The authors are grateful to
Steve Kleiman for providing the following references: for the first statement,
[123, Lemma d, p. 5], and for the second one [46, Thm. (4.10(a)), p. 164]. One
should also consult [61] and compare with [53, Prop. 1.9], and [3, Prop. 2.2].

Assuming that H is general, it is transversal to the stratum V 0 and to
verify these statements one may consider only what happens at nonsingular
points of V ∩ H, which are dense in V ∩ H. At such a point v ∈ V ∩ H,
the space of hyperplanes containing the tangent space TV,v is of codimension
one in the space of hyperplanes containing TV ∩H,v and does not contain the
point Ȟ since H is general. Any hyperplane containing TV ∩H,v and distinct
from H determines with H a pencil. Because of the codimension one, the
line in P̌n−1 representing this pencil must contain a point representing a
hyperplane tangent to V at v. The closure in P̌n−1 of the union of the lines
representing such pencils is the dual of V ∩ H. It is a cone with vertex Ȟ
and because tangent spaces are constant along generating lines of cones, a
tangent hyperplane to this cone must be tangent to V̌ .

If dim V̌ = n − 3 this cone is a hypersurface in P̌n−1. Otherwise we
repeat the operation by intersecting V ∩ H with a new general hyper-
plane, and so on; we need to repeat this as many times as the dual defect
δ(V ) = codimP̌n−1 V̌ − 1. We can then apply Proposition 8.4 to V ∩Hδ(V )

because its dual is a hypersurface. The cone Ȟ ∗ V̌ on a projective variety V̌
from a point Ȟ in P̌n−1 \ V̌ has the same degree as V̌ . To see this, remem-
ber that the degree is the number of points of intersection with a general
(transversal) linear space of complementary dimension. If a general linear
space L of codimension dim V̌ +1 intersects Ȟ ∗ V̌ transversally in m points,
the cone Ȟ ∗L will intersect transversally V̌ in m points. Thus, the iterated
cone construction does not change the degree so that the degree of the dual
of V ∩Hδ(V ) is the degree of V̌ .
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The smallest non empty polar variety of the cone (X, 0) over V is
Pd−δ(V )(X, 0).

This suffices to show that Proposition 8.4 is valid in general: Obtaining
a precise formula for the degree of V̌ in the general case is reduced to the
computation of Euler–Poincaré characteristics and local vanishing Euler–
Poincaré characteristics of general linear sections of V and of the strata of
its minimal Whitney stratification.

It would be interesting to compare this with the viewpoints of [4, 5, 31,
87]. The comparison with [31] would hinge on the following two facts:

• By Corollary 5.1.2 of [70] we have at every point v ∈ V the equality

Eu(V, v) =
d−1∑
k=0

(−1)kmv(Pk(V, v)).

• As an alternating sum of multiplicities of polar varieties, in view of
Theorem 4.13, the Euler obstruction is constant along the strata of
a Whitney stratification.

Indeed, if we expand the formula written above Proposition 8.4 in terms of
the Euler characteristics of the strata Vα and their general linear sections,
and then remove the symbols χ in front of them, we obtain a linear com-
bination of the Vα and their sections, with coefficients depending on the
local vanishing Euler–Poincaré characteristics along the Vα, which has the
property that taking formally the Euler characteristic gives (−1)d deg V̌ .
Redistributing the terms using Theorem 6.5 should then give Ernström’s
theorem. We leave this as a problem for the reader. Another interesting
problem is to work out in the same way formulas for the other polar classes,
or ranks (see [87, §2]).

Finally, by Proposition 8.1 the formula of Theorem 6.5 appears in a new
light, as containing an extension to the case of non-conical singularities of the
generalized Plücker formulas of projective geometry. Interesting connections
between the material presented here and the theory of characteristic classes
for singular varieties are presented in [4, 6, 15, 16].

Appendix. Some complements

A.1. Whitney’s conditions and the condition (w)

In the vector space Cn equipped with its hermitian metric corresponding
to the bilinear form (u, v) =

∑n
i=1 uivi, let us consider two non zero vector
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subspaces A,B and define the distance from A to B, in that order, as:

dist(A,B) = sup
u∈B⊥\{0},
v∈A\{0}

|(u, v)|
‖u‖‖v‖

,

where B⊥ = {u ∈ Cn | (u, b) = 0 for all b ∈ B} and ‖u‖2 = (u, u).

Note that dist(A,B) = 0 means that we have the inclusion B⊥ ⊂ A⊥,
that is A ⊂ B. Note also that (A,B) 7→ dist(A,B) defines a real analytic
function on the product of the relevant Grassmannians, and that Schwarz’s
inequality implies dist(A,B) 6 1.

In [51, Lem. 5.2], Hironaka proved that if the pair (X0, Y ) satisfies the
Whitney conditions at every point y of Y in a neighborhood of 0, there exists
a positive real number e such that

lim
x→y, x∈X0

dist(TY,y, TX,x)
dist(x, Y )e = 0.

This is a “strict”, or analytic, version of condition (a). There is a similar
statement for condition (b).

In [121], Verdier defined another incidence condition: the pair (X0, Y ),
with Y ⊂ X nonsingular, satisfies the condition (w) at a point y ∈ Y if there
exist a neighborhood U of y in X and a constant C > 0 such that for all
x ∈ X0 ∩ U, y′ ∈ Y ∩ U , we have:

dist(TY,y′ , TX,x) 6 C‖y′ − x‖.
This is to Hironaka’s strict Whitney condition (a) as Lipschitz is to Hölder.
These metric conditions also make sense in Rn endowed with the Euclidean
metric.

Condition (w) implies both Whitney conditions (see [121, Thm. 1.5]).

Verdier showed that (w) is a stratifying condition, also in the subanalytic
case (see [121, Thm. 2.2]).

In [112, Chap. V, Thm. 1.2] (where (w) is called “condition a) stricte avec
exposant 1”), it is shown, using the algebraic characterization of Whitney
conditions, that in the complex-analytic case, (w) is in fact equivalent to the
Whitney conditions. Brodersen and Trotman showed in [20] that this is not
true in real algebraic geometry.

In the subanalytic world, and in particular in semialgebraic geometry,
Comte and Merle showed in [26] that one could define local polar
varieties, and that one could define real analogues of the local vanishing
Euler–Poincaré characteristics as well as local real analogues of the multi-
plicities of polar varieties, relate them by a real analogue of Theorem 6.5
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and prove that they are continuous along the strata of a (w) stratification
of a subanalytic set.

A.2. Other applications

According to Ragni Piene in “Polar varieties revisited” (see [88, 89]),
polar varieties have been applied to study:

• Singularities (Lê–Teissier, Teissier, Merle, Comte. . . ; see the refer-
ences to Lê, Teissier, Gaffney, Kleiman, and [25, 26]).
• The topology of real affine varieties (Giusti, Heinz et al., see [8, 9,
10], Safey El Din–Schost; see [96]).
• Real solutions of polynomial equations (Giusti, Heinz, et al., see [10])
• Complexity questions (see [80] for the complexity of computations
of Whitney stratifications, and [21]).
• Foliations (Soares, Corral, see [27, 105]).
• Focal loci and caustics of reflection (Catanese–Trifogli, Josse–Pène,
see [22, 54]).
• Euclidean distance degree. The Euclidean distance degree of a va-
riety is the number of critical points of the squared distance to a
generic point outside the variety. (J. Draisma et al., see [28]).
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