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Symmetric powers of Severi–Brauer varieties (∗)

János Kollár (1)

ABSTRACT. — We classify products of symmetric powers of a Severi–Brauer
variety, up to stable birational equivalence. The description also includes Grassman-
nians, flag varieties and moduli spaces of genus 0 stable maps.

RÉSUMÉ. — Nous classons les produits de puissances symétriques d’une variété de
Severi–Brauer, à équivalence birationnelle stable près. Notre classification concerne
aussi les grassmanniennes, les variétés de drapeaux et les espaces de modules d’ap-
plications stables de genre 0.

1. Introduction

Let P be a Severi–Brauer variety over a field k. That is,
Pks := P ×Spec k Spec ks ∼= PdimP ,

where ks denotes a separable closure of k; see Definition 2.1 for related
notions and basic properties of Severi–Brauer varieties.

There are several ways to associate other varieties to P . These include

• the Grassmannians Grass(Pm−1, P ),
• the flag varieties Flag(Pm1−1, . . . ,Pmr−1, P ),
• the symmetric powers Symm(P ) and
• the moduli spaces M̄0(P, d) of genus 0 stable maps of degree d to P ;

see Definitions 2.2–2.5. While all these varieties are geometrically rational,
they are usually not rational over the ground field and it is an interesting
problem to understand their birational properties over k. The results of
this note are partly weaker than birational classification, since we describe
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only the stable birational equivalence classes, but partly stronger, since we
also describe the products of these varieties. Birational equivalence of two
varieties is denoted by X bir∼ Y and stable birational equivalence by X stab∼ Y .
The latter holds iff X × Pm bir∼ Y × Pn for some n,m ∈ N.

Thus let MSym(P ) denote the multiplicative monoid generated by stable
birational equivalence classes of Grassmannians, flag varieties, symmetric
powers of P and the moduli spaces M̄0(P, d). We show that MSym(P ) is
finite, identify its elements and also the multiplication rules.

Theorem 1.1. — Let P be a Severi–Brauer variety of index i(P ) (see
Definition 2.1(2)) over a field k. Then

(1) MSym(P ) = {Grass(Pd−1, P ) : d | i(P )} and products are given by
(2) Grass(Pd−1, P )×Grass(Pe−1, P ) stab∼ Grass(P(d,e)−1, P ), where (d, e)

is the greatest common divisor. The identity is Grass(Pi(P )−1, P ) stab∼
P0.

The class of a flag variety is given by the rule

(3) Flag(Pm1−1, . . . ,Pmr−1, P ) stab∼ Grass(Pe−1, P ) where e := (m1, . . . ,

mr, i(P )). In particular, Grass(Pd−1, P ) stab∼ Grass(Pe−1, P ) where
e = (d, i(P )).

The class of a symmetric power is given by the rules

(4) Symd(P ) stab∼ Sym(d,i(P ))(P ) for every d > 0,
(5) Symd(P ) bir∼ Grass(Pd−1, P )× Pd(d−1) for d 6 n+ 1 and
(6) Symd(P )× Syme(P ) stab∼ Sym(d,e)(P ).

The class of M̄0(P, d) is determined by the parity of d.

(7) M̄0(P, 2e) stab∼ P except when dimP = e = 1 in which case
M̄0(P, 2) ∼= P2.

(8) M̄0(P, 2e + 1) stab∼ Grass(P1, P ). Note that Grass(P1, P ) is rational
iff i(P ) ∈ {1, 2} and stably birational to P iff i(P ) is odd.

Remark 1.2. — Several key special cases of these results have been known.
[18] shows that SymdimP+1(P ) is rational and the statement 1.1(3) on flag
varieties is proved in [17, 4.2].

The most natural description seems to be in terms of symmetric powers,
so we start with them. The relationship with Grassmannians and flag vari-
eties is easy to establish. The moduli spaces M̄0(P, d) end up birationally
the simplest but understanding them is more subtle.
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The case dimP = e = 1 is quite exceptional for the moduli space of
genus 0 stable maps. M̄0(P, 2) aims to classify double covers of P ramified
at 2 points. The coarse moduli space is Sym2(P ) ∼= P2. However, if P � P1

then there are no such double covers defined over k. The problem is that
every double cover has an order 2 automorphism. In all other cases, a dense
open subset of M̄0(P, d) parametrizes maps without automorphisms, even
embeddings if dimP > 3.

It is possible that the stable birational equivalences in Theorem 1.1 can
be replaced by birational equivalences. For instance, it is possible that

Symd(P ) bir∼ Grass(P(d,i(P ))−1, P )× Pm for suitable m,
but I do not even know how to show that

Symn+2(P ) bir∼ P × Pn(n+1) for n = dimP .
Several steps in the proof naturally give only stable birational equivalences
and the difference between stable birational equivalence and birational equiv-
alence is not even understood for Severi–Brauer varieties.

Acknowledgments. I thank A. Auel, I. Coskun, P. Gille, D. Krashen,
M. Lieblich, D. Saltman and T. Szamuely for helpful comments. I am grate-
ful to C. Böhning and H.-C. von Bothmer for calling my attention to [5].
Partial financial support was provided by the NSF under grant number DMS-
1362960.

2. Basic definitions

Definition 2.1 (Severi–Brauer varieties I). — Let k be a field with
separable closure ks. A k-scheme P is called a Severi–Brauer variety if
Pks := P ×Spec k Spec ks ∼= Pn for some n. The following basic results go
back to Severi and Châtelet, see [7, Chap. 5] or [15] for modern treatments
and references.

(1) P is trivial, that is P ∼= Pn, iff P (k) 6= ∅.
(2) The index of P is the gcd of the degrees of all 0-cycles on P ; it

is denoted by i(P ). Its value divides dimP + 1 and P contains a
reduced, effective 0-cycle Z of degree i(P ). Thus P has a k′ point
for some separable field extension k′/k of degree i(P ).

(3) A subscheme L ⊂ P is called twisted linear if Lks is a linear sub-
space of Pks ∼= Pn. Thus L is also a Severi–Brauer variety. The
minimal twisted linear subvarieties have dimension i(P )−1 and they
are isomorphic to each other; call this isomorphism class Pmin.
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(4) Given Pmin and r > 1 there is a unique (up-to isomorphism) Severi–
Brauer variety Pr of dimension r(dimPmin + 1) − 1 such that
(Pr)min ∼= Pmin.

(5) Pr
bir∼ Pmin × Pm for m = (r − 1)(dimPmin + 1).

(6) Two Severi–Brauer varieties P1, P2 are Brauer equivalent, denoted
by P1 ∼ P2, iff Pmin

1
∼= Pmin

2 . This holds iff the smaller dimensional
one is isomorphic to a twisted linear subvariety of the other.

Definition 2.2 (Grassmannians and flag varieties). — Let P be a
Severi–Brauer variety of dimension n. Fix natural numbers 0 < m1 < · · · <
mr < n. The flag variety Flag(Pm1−1, . . . ,Pmr−1, P ) is the k-scheme that
represents the functor that associates to a scheme S the set of all nested
subschemes

L1 ⊂ · · · ⊂ Lr ⊂ PS
where, for every i, the projection Li → S is flat and its geometric fibers are
linear subspaces of P of dimension mi. For r = 1 we set Grass(Pm1−1, P ) :=
Flag(Pm1−1, P ).

The flag varieties Flag(Pm1−1, . . . ,Pmr−1,Pn) are rational; in fact they
can be written as finite, disjoint unions of affine spaces; see [9, Chap. XIV]
or [3, 19].

Definition 2.3 (Symmetric powers). — Let X be a quasi-projective k-
scheme. Its nth symmetric power is the k-scheme SymnX := Xn/Sn, the
quotient of the nth power Xn by the action of the symmetric group Sn per-
muting the coordinates.

It is easy to see that Symn P1 ∼= Pn. For n, r > 2 the symmetric powers
Symn Pr are singular (hence not isomorphic to a projective space) but they
are rational; see [20] for a short proof.

The following result says that stable birational equivalence is preserved
by symmetric powers.

Lemma 2.4. — Let U be a positive dimensional, geometrically irreducible
k-variety. Then Symm(U × Pr) bir∼ Symm(U)× Prm.

Therefore, if U, V are positive dimensional, geometrically irreducible k-
varieties such that U stab∼ V then Symm(U) stab∼ Symm(V ) for every m.

Proof. — There is a natural projection map Symm(U×Pr)→ Symm(U).
We claim that its generic fiber Fgen is rational. To construct it, set L :=
k(Symm(U)) and K := k(Symm−1(U) × U). Here we think of Symm(U)
as Um/Sm and Symm−1(U) × U as Um/Sm−1 where Sm−1 ⊂ Sm are the
permutations that fix the last factor. Thus K/L is a degree m field extension
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and Fgen
bir∼ <K/L(Pr), the Weil restriction of Pr from K to L. Thus Fgen is

rational. �

Definition 2.5 (Spaces of maps). — Let X,Y be k-schemes and LX , LY
line bundles on them. Let Mor((X,LX), (Y, LY )) denote the k-scheme that
represents the functor that associates to a scheme S the set of all morphisms
φ : XS → YS such that φ∗(LY )S ∼= (LX)S. See [13, Sec. I.1] for details where
the notation Hom( · , · ) is used instead.

If X ∼= P1 and we fix an ample line bundle LY on Y then Aut(P1) acts
on the space of maps by precomposition and

M◦0 (Y, d) := Mor((P1,OP1(d)), (Y,LY ))/Aut(P1)
is called the open moduli space of genus 0 stable maps of degree d to Y .

We refer to [6] for a general introduction to stable maps and the definition
of the “true” moduli space M̄g(Y, d) of genus g stable maps of degree d.

For m > 2 the open moduli spaceM◦0 (Pm, d) is dense in the “true” moduli
space M̄0(Pm, d); cf. [2, Sec. 4]. So we do not lose any birational information
by working with M◦0 (Pm, d).

It is easy to see (we in fact prove this in Lemma 4.7) that the moduli
spaces M̄0(Pm, d) are unirational. They are even rational but this is harder
to prove; see [11, 8, 12].

3. Symmetric powers

A key step in understanding symmetric powers is the following.

Theorem 3.1 ([18]). — Let P be a Severi–Brauer variety of dimen-
sion n. Then Symn+1(P ) is rational.

The following is a geometric proof. The Euler number of Pn is n + 1,
thus a general section of the tangent bundle TPn vanishes at n + 1 points.
For any Severi–Brauer variety this gives a rational map π : H0(P, TP ) 99K
Symn+1(P ).

Let Z ⊂ P be a reduced 0-cycle of degree n+1 whose linear span equals P .
Then π−1(Z) is the linear space H0(P, TP (−Z)) ⊂ H0(P, TP ) of dimension
n. Let V ⊂ H0(P, TP ) be a general affine-linear subspace of codimension n.
Then π|V : V 99K Symn+1(P ) is birational.

Corollary 3.2. — Let P be a Severi–Brauer variety of index i(P ).
Then Symd(P ) is stably rational iff i(P ) | d.
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Proof. — If d is not divisible by i(P ) then Symd(P )(k) = ∅ by 2.1(2),
hence Symd(P ) is not stably rational.

To see the converse, assume that i(P ) | d. By 2.1(4)–(5) P is stably
birational to a Severi–Brauer variety P ′ of dimension d − 1. Furthermore,
Symd(P ′) is rational by Theorem 3.1 and it is stably birational to Symd(P )
by Lemma 2.4. �

Proof of Theorem 1.1(1)–(6). — The easiest is 1.1(5). Given d 6 n+ 1
points in linearly general position, they span a linear subspace of dimension
d− 1. This gives a natural map π : Symd(P ) 99K Grass(Pd−1, P ). (A priori,
this map is defined only over ks. However, it is invariant under Gal(ks/k),
thus π is defined over k. This can be seen by applying Weil’s lemma on the
field of definition of a subscheme to the graph of π; see [21, I.7.Lem. 2] or [16,
Sec. 3.4] for proofs.)

Let K be the function field of Grass(Pd−1, P ) and LK ⊂ PK the linear
subspace corresponding to the generic point. Thus LK is a Severi–Brauer
subvariety of dimension d− 1. The generic fiber of π is Symd(LK) which is
rational by Theorem 3.1. Thus Symd(P ) bir∼ Grass(Pd−1, P )× Pd(d−1).

Next we show the stable birational equivalences

Symd(P )× Syme(P )× Pn(d,e) stab∼ Symd(P )× Syme(P )× Sym(d,e)(P )
stab∼ Pnd × Pne × Sym(d,e)(P ).

First let K be the function field of Symd(P ) × Syme(P ). Then PK has 0-
cycles of degrees d and e, thus it also has a 0-cycle of degree (d, e). Thus
Sym(d,e)(PK) is stably rational by Corollary 3.2, proving the first part.

Similarly, let L be the function field of Sym(d,e)(P ). Then Symd(PL) and
Syme(PL) are stably rational by Lemma 3.2, proving the second part. This
implies 1.1(6).

Using this for e = i(P ) gives that

Symd(P )× Symi(P )(P ) stab∼ Sym(d,i(P ))(P ).

Since Symi(P )(P ) is stably rational by Corollary 3.2, we get 1.1(4) and,
together with 1.1(5), it implies 1.1(2).

Next we show, following [17, 4.2], that, with e := (m1, . . . ,mr, i(P )),

Flag(Pm1−1, . . . ,Pmr−1, P ) stab∼ Flag(Pm1−1, . . . ,Pmr−1, P )×Grass(Pe−1, P )
stab∼ Grass(Pe−1, P ).
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Let L be the function field of Flag(Pm1−1, . . . ,Pmr−1, P ). Then PL has
twisted linear subspaces of dimensions m1 − 1, . . . ,mr − 1, hence 0-cycles of
degreesm1, . . . ,mr. Therefore i(PL) | e := (m1, . . . ,mr, i(P )) and Syme(PL)
is stably rational by Lemma 3.2. Thus Grass(Pe−1, PL) is stably rational by
1.1(5).

Conversely, let K be the function field of Grass(Pe−1, P ). We use induc-
tion on r to show that Flag(Pm1−1, . . . ,Pmr−1, PK) is stably rational. Since
e | m1, there is a twisted-linear subvariety RK ⊂ PK of codimension m1.
Then the map

(L1 ⊂ L2 ⊂ · · · ⊂ Lr) 7−→ (L2 ∩RK ⊂ · · · ⊂ Lr ∩RK)× (L1)

determines a birational equivalence

Flag(Pm1−1, . . . ,Pmr−1, PK)
bir∼ Flag(Pm

′
2−1, . . . ,Pm

′
r−1, RK)×Grass(Pm1−1, PK)

where m′i := mi −m1. By induction Flag(Pm′
2−1, . . . ,Pm′

r−1, RK) is stably
rational and so is Grass(Pm1−1, PK) by Lemma 3.2 and 1.1(5). This shows
1.1(3).

We have proved that every flag variety of P is stably birational to a sym-
metric power Symd(P ) for some d | i(P ). Next we show that these Symd(P )
are not stably birational to each other.

Let d < e be different divisors of i(P ). There is thus a prime p such that
d = pad′, e = pce′ where a < c and d′, e′ are not divisible by p. Let pb be the
largest p-power dividing i(P ).

By 2.1(2) P has a k′ point for some field extension k′/k of degree i(P ).
Let k′′/k be the Galois closure of k′/k and K the invariant subfield of a
p-Sylow subgroup of Gal(k′′/k). Set K ′ = k′K. Note that p does not divide
deg(K/k) and deg(K ′/K) = pb, hence i(PK) = pb.

Although K ′/K need not be Galois, the Galois group of its Galois closure
is a p-group, hence nilpotent. Thus there is a subextension K ′ ⊃ L ⊃ K of
degree pb−a. It is enough to show that Symd(PL) and Syme(PL) are not
stably birational over L. By 1.1(4),

Symd(PL) stab∼ Sympa

(PL) and Syme(PL) stab∼ Sympc

(PL).

Note that PL has a point in K ′ and deg(K ′/L) = pa, hence i(PL) = pa and
so Sympa

(PL) is stably rational by Corollary 3.2. By contrast Sympc

(PL)
does not have any L-points. Indeed, an L-point on Sympc

(PL) would mean
a 0-cycle of degree pc on PL hence a 0-cycle of degree pb−apc = pb−a+c on
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PK . This is impossible since i(PK) = pb and b− a+ c < b. Thus Sympa

(PL)
and Sympc

(PL) are not stably birational. �

4. Moduli of Severi–Brauer subvarieties

We need some results on twisted line bundles and maps between Severi–
Brauer varieties; see [7, Chap. 5] or [15] for proofs and further references.

Definition 4.1 (Twisted line bundles). — Let X be a geometrically nor-
mal, proper k-variety. A twisted line bundle of X is a line bundle L on Xks

such that Lσ ∼= L for every σ ∈ Gal(ks/k). For example, if P is a Severi–
Brauer variety then OPks (r) is a twisted line bundle for every r. Let |L|
denote the irreducible component of the Hilbert scheme (or Chow variety) of
X parametrizing subschemes H ⊂ X such that Hks is in the linear system
|Lks |. (See [13, Chap. I.] for the Hilbert scheme or the Chow variety.) This
is clearly a Severi–Brauer variety. There is a natural map ιL : X 99K |L|∨
given by x 7→ {H : H 3 x}.

The dual of a Severi–Brauer variety P is defined as P∨ := |OPks (1)|.

Let φ : X 99K Y be a map between geometrically normal, proper varieties
and LY a twisted line bundle on Y . Assume that either φ is a morphism or
X is smooth. Then φ∗LY is a twisted line bundle on X and |φ∗LY | ∼ |LY |.

Let X,Y be geometrically normal, proper varieties and LX , LY twisted
line bundles on them. Definition 2.5 extends to give Mor((X,LX), (Y,LY )),
the moduli space of all maps φ : X 99K Y such that φ∗LY ∼= LX . For Severi–
Brauer varieties we write

Mord(Q,P ) := Mor((Q,OQ(d)), (P,OP (1))).

Composing with ιL gives an isomorphism

Mor((X,L), (P,OP (1))) ∼= Mor1(|L|∨, P ).

Results 4.2 (Severi–Brauer varieties II). — Let P,Q be Severi–Brauer
varieties. We use the following results; see [7] or [15] for proofs and further
references.

(1) Their product is defined as |OP∨×Q∨(1, 1)| ∼= |OP×Q(1, 1)|∨. I de-
note this by P ⊗Q. It is better to think of this as defined on Brauer
equivalence classes. The set of Brauer equivalence classes forms the
Brauer group with product P ⊗ Q, identity P0 ∼ Pm and inverse
P 7→ P∨. The group is torsion; the order of P is called the period
of P and denoted by per(P ). The period divides the index.
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(2) Mor1(Q,P ) ∼ Q∨ ⊗ P . The natural map is φ 7→ {(x,H) : φ(x) ∈
H} ∈ |OQ×P∨(1, 1)|.

(3) If |L| is non-empty then |Lm| ∼ |L|⊗m; this comes from identify-
ing the symmetric power of a vector space V with the subspace of
symmetric tensors in V ⊗m.

(4) Mord(Q,P ) ∼ (Q∨)⊗d⊗P ; this follows from the previous two claims.

Putting together 4.2(1) and 4.2(4) we obtain the following.

Corollary 4.3. — Let P ∼ P ′, Q ∼ Q′ be Severi–Brauer subvarieties
and d, d′ ∈ N such that d ≡ d′ mod per(Q). Then

Mord(Q,P ) ∼ Mord′(Q′, P ′).

Proof. — This follows from the chain of Brauer equivalences

Mord(Q,P ) ∼ (Q∨)⊗d ⊗ P ∼ (Q′∨)⊗d
′
⊗ P ′ ∼ Mord′(Q′, P ′). �

We next define the spaces of Severi–Brauer subvarieties of a Severi–Brauer
variety. That is, given a Severi–Brauer variety P we look at the subset of the
Chow variety Chow(P ) parametrizing subvarieties X ⊂ P whose normaliza-
tion X̄ is a Severi–Brauer variety. For technical reasons it is better to work
with X̄ → P .

Definition 4.4. — Fix integers 0 6 m 6 n, 1 6 d and a Severi–Brauer
variety P of dimension n. LetM◦Pm(P, d) denote the moduli space parametriz-
ing morphisms φ : Q→ P satisfying the following assumptions.

(1) Q is a Severi–Brauer variety of dimension m.
(2) φ∗OP (1) ∼= OQ(d).
(3) Either m < n and φ : Q → φ(Q) is birational or m = n and every

automorphism of the triple (φ : Q→ P ) that is the identity on P is
also the identity on Q.

(4) Two such morphisms φi : Qi → P are identified if there is an iso-
morphism τ : Q1 ∼= Q2 such that φ1 = φ2 ◦ τ .

The spacesM◦Pm(P, d) are quasi-projective. They should be thought of as open
subschemes of the projective moduli spaces of stable maps M̄Pm(P, d) [1].
Since we are interested in their birational properties, these compactifications
are not important to us.

(Comment on the notation. The moduli space of stable maps from a genus
g curve to Y is usually denoted by Mg(Y, β), where β is the homology class
of the image. If Y = Pn then β is usually replaced by deg β. Thus M◦Pm(P, d)
follows mostly the stable maps convention, except that the degree of φ(Q) is
dm.)
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Note that if φ : Q → φ(Q) is birational then every automorphism of
φ : Q → P that is the identity on P is also the identity on Q. This is why
the most naive way of identifying two maps is adequate in (4):

(φ1 : Q1 → P )k̄ ∼= (φ2 : Q2 → P )k̄ ⇔ (φ1 : Q1 → P ) ∼= (φ2 : Q2 → P ).

(As we discussed in Remark 1.2, failure of this is one of the problems with
M̄0(P, 2) if dimP = 1.)

If d = 1 then we get M◦Pm(P, 1) = Grass(Pm, P ) and if m = 1 then the
M◦P1(P, d) are open subschemes of the space of genus 0 stable maps M̄0(P, d).

These moduli spaces are related to the spaces of maps from Definition 4.1:

M◦Pm(P, d) bir∼ Mord(Pm, P )/Aut(Pm).

The resulting map Π : Mord(Pm, P ) 99K M◦Pm(P, d) is not a product, not
even birationally. Indeed the fiber of Π over a given φ : Q→ P is the space
of isomorphisms Isom(Pm, Q). This is a principal homogeneous space under
Aut(Pm) but it is not isomorphic to Aut(Pm) unless Q is trivial since a
k-point of Isom(Pm, Q) is exactly an isomorphism Pm ∼= Q.

Our aim is to understand the spacesM◦Pm(P, d) for arbitrary ground fields.
This is achieved only for m = 1 but we have the following general periodicity
property.

Theorem 4.5. — Let P ∼ P ′ be Brauer equivalent Severi–Brauer va-
rieties of dimensions n, n′. Fix 0 6 m 6 min{n, n′} and 1 6 d, d′. Assume
that d ≡ d′ mod (m+ 1). Then

M◦Pm(P, d) stab∼ M◦Pm(P ′, d′).

Proof. — The idea is similar to the “no-name method” explained in [4,
Sec. 4], where it is attributed to Bogomolov and Lenstra.

Let IsomPm(d, P, d′, P ′) denote the scheme parametrizing triples

{(φ : Q→ P ); (φ′ : Q′ → P ′); τ}

where (φ : Q → P ) ∈ M◦Pm(P, d), (φ′ : Q′ → P ′) ∈ M◦Pm(P ′, d′), and
τ : Q → Q′ is an isomorphism. (No further assumptions on φ and φ′ ◦ τ .)
We prove that

M◦Pm(P, d) stab∼ IsomPm(d, P, d′, P ′) stab∼ M◦Pm(P ′, d′),

using the natural projections

π : IsomPm(d, P, d′, P ′) −→M◦Pm(P, d)
and π′ : IsomPm(d, P, d′, P ′) −→M◦Pm(P ′, d′).
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It is sufficient to show that their generic fibers are rational. The roles of d, d′
are symmetrical, thus it is enough to consider π : IsomPm(d, P, d′, P ′) →
M◦Pm(P, d).

Note that the fiber of π over (φ : Q → P ) consists of pairs {(φ′ : Q′ →
P ′); τ} where (φ′ : Q′ → P ′) ∈ M◦Pm(P ′, d′) and τ : Q → Q′ is an isomor-
phism. Specifying such a pair is the same as giving (φ ◦ τ : Q → P ′) ∈
Mord′(Q,P ′). We have thus proved that the fiber of π over (φ : Q → P ) is
isomorphic to Mord′(Q,P ′).

We assumed that d ≡ d′ mod (dimQ+ 1), thus
d ≡ d′ mod per(Q). (4.1)

Therefore Mord′(Q,P ′) ∼ Mord(Q,P ) by Corollary 4.3.

Let nowK be the function field ofM◦Pm(P, d) and φK : QK → PK the cor-
responding map. Then φK gives aK-point of Mord(Q,P ). Thus Mord′(Q,P ′)
also has a K-point hence it is rational by (4.1).

This shows that
M◦Pm(P, d) stab∼ IsomPm(d, P, d′, P ′)

and IsomPm(d, P, d′, P ′) stab∼ M◦Pm(P ′, d′)
follows by interchanging P and P ′. �

Remark 4.6. — Note that the assumption d ≡ d′ mod (m + 1) is used
only through its consequence d ≡ d′ mod per(Q) in (4.1).

There are a few more cases when one can guarantee (4.1). For example,
assume that d, d′ and per(P ) are all relatively prime to m + 1. If there is a
map Q → P of degree d then per(Q) divides d · per(P ). Since per(Q) also
divides dimQ + 1, Q is in fact trivial. Using this observation for d′ = 1 we
obtain that
M◦Pm(P, d) stab∼ M◦Pm(P ′, 1) ∼= Grass(Pm, P ′) if (m+ 1, d · per(P )) = 1.

As a consequence of Theorem 4.5, in order to describe the stable birational
types of M◦Pm(P, d), it is sufficient to understand M◦Pm(P, d) for d 6 m + 1.
There are two cases for which the answer is easy to derive.

Lemma 4.7. — Let P be a Severi–Brauer variety. Then

(1) M◦Pm(P, d) stab∼ Grass(Pm, P ) if d ≡ 1 mod (m+ 1).
(2) M◦Pm(P, d) stab∼ P if d ≡ 0 mod (m+ 1) and (m+ 1) | 420.

Proof. — If d ≡ 1 mod (m+ 1) then M◦Pm(P, d) stab∼ M◦Pm(P, 1) by The-
orem 4.5 and, essentially by definition, M◦Pm(P, 1) = Grass(Pm, P ).
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For the second claim we check the stable birational isomorphisms

M◦Pm(P,m+ 1) stab∼ M◦Pm(P,m+ 1)× P stab∼ P.

First let K be the function field of M◦Pm(P,m + 1). We need to show that
PK is trivial. By assumption, there is a K-map φK : QK → PK for some
Severi–Brauer variety QK of dimension m. By 4.2(4) this corresponds to a
K-point of (Q∨K)⊗m+1 ⊗ PK . By 4.2(1) Q⊗m+1

K is trivial and so is PK .

For the second part, let L be the function field of P . Then PL is trivial,
hence

M◦Pm(PL,m+ 1)
∼= M◦Pm(PnL,m+ 1) bir∼ P(H0(PmL ,OPm(m+ 1))n+1)/PGLm+1 .

It is conjectured that this quotient if always stably rational, but this seems
to be known only when (m + 1) | 420; see [5, p. 316] and the references
there. �

Next we give a geometric proof of Lemma 4.7.2 for m = 1. That is, we
show that M̄0(P, 2) bir∼ P for dimP > 2.

Results 4.8 (Conics in Severi–Brauer varieties). — We compute, in two
different ways, the space T parametrizing triples (C, `1, `2) where C ⊂ P is
a conic and the `i are secant lines of C.

Forgetting the lines gives a map to M̄0(P, 2). Let CK be the conic cor-
responding to the generic point of M̄0(P, 2). The linear span of CK is a 2-
dimensional Severi–Brauer variety that contains a conic, hence isomorphic
to P2

K . A secant line of CK is determined by a point in the dual (P2
K)∨ ∼= P2

K .
Thus T bir∼ M̄0(P, 2)× P4.

Generically the secants lines `i meet at a unique point; this gives a map
T 99K P . Given p ∈ P , the fiber is obtained by first picking 2 points in
P(TpP ) ∼= Pn−1

k(p). Once we have 2 lines, they determine a plane 〈`1, `2〉 and
the 5-dimensional linear system |`1+`2| on the plane 〈`1, `2〉 gives the conics.
Thus T bir∼ P × P2 dimP+3 and hence M̄0(P, 2) stab∼ P .

Proof of Theorem 1.1(7)–(8). — If d = 2e is even then

M̄0(P, 2e) bir∼ MP1(P, 2e) stab∼ MP1(P, 2) bir∼ M̄0(P, 2),

where the birational equivalences are by definition and the stable birational
equivalence holds by Theorem 4.5. Next M̄0(P, 2) stab∼ P follows either from
Lemma 4.7(2) or from Paragraph 4.8. This gives 1.1(7).
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Similarly, if d = 2e+ 1 is odd then 1.1(8) follows from

M̄0(P, 2e+ 1) bir∼ MP1(P, 2e+ 1) stab∼ MP1(P, 1) = Grass(P1, P ). �

Remark 4.9. — So far we have worked with a fixed Severi–Brauer variety
P , but it would be interesting to understand how the MSym(P ) for different
Severi–Brauer varieties interact with each other.

For example, assume that P,Q are Severi–Brauer varieties such that
index(P ) and index(Q) are relatively prime. We claim that Symd(P ) and
Syme(Q) are stably birational to each other iff they are both stably rational.

To see this, assume that Syme(Q) is not stably rational. By Corollary 3.2
this holds iff index(Q) - e. Set K := k(P ). Since index(P ) and index(Q)
are relatively prime, index(QK) = index(Q), thus Syme(QK) is not stably
rational by Corollary 3.2. By contrast, PK is trivial hence Symd(PK) is stably
rational; even rational by [20]. Thus Symd(P ) and Syme(Q) are not stably
birational to each other.

See also [14, 10] for related questions.
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