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One-sided convergence
in the Boltzmann–Grad limit (∗)

Thierry Bodineau (1), Isabelle Gallagher (2),
Laure Saint-Raymond (3) and Sergio Simonella (4)

ABSTRACT. — We review various contributions on the fundamental work of Lan-
ford [21] deriving the Boltzmann equation from (reversible) hard-sphere dynamics
in the low density limit.

We focus especially on the assumptions made on the initial data and on how they
encode irreversibility. The impossibility to reverse time in the Boltzmann equation
(expressed for instance by Boltzmann’s H-theorem) is related to the lack of con-
vergence of higher order marginals on some singular sets. Explicit counterexamples
single out the sets with vanishing measure where the initial data should converge in
order to produce the Boltzmann dynamics.

RÉSUMÉ. — Ce papier présente diverses contributions basées sur le travail fon-
damental de Lanford [21] qui a permis d’obtenir l’équation de Boltzmann à partir
de la dynamique (réversible) des sphères dures dans la limite de densité faible.

On s’intéresse en particulier aux hypothèses sur la donnée initiale et sur la fa-
çon dont elles codent l’irréversibilité. On montre que l’impossibilité de renverser le
sens du temps dans l’équation de Boltzmann (qui est exprimée notamment dans le
théorème H) est liée à l’absence de convergence des marginales d’ordre supérieur
sur des ensembles singuliers. Un contre exemple explicite permet de caractériser les
ensembles, de mesure asymptotiquement nulle, où la donnée initiale doit converger
pour obtenir la dynamique de Boltzmann.
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1. Introduction

1.1. Goals

The Boltzmann equation was introduced at the end of the nineteenth
century to predict the almost sure behavior of a perfect gas out of ther-
modynamic equilibrium. This equation expresses the ballistic transport and
collisions of microscopic particles (atoms) which are supposed to interact in
essence as elastic hard spheres.

However the resulting dynamics exhibits very different features compared
to the reversible deterministic system of hard spheres, which is a Hamilton-
ian system. The Boltzmann equation generates indeed a semi-group with
a Lyapunov functional (the entropy increases along the evolution), and an
attractor as time goes to infinity (the density converges to thermodynamic
equilibrium). These discrepancies between the microscopic and the macro-
scopic descriptions were the starting point of some violent controversy op-
posing for instance Boltzmann to Loschmidt [9, 10, 12, 24]. There is still
an important challenge in understanding the origin of the non-reversible
Boltzmann equation and the conditions under which it can provide a good
approximation of the microscopic dynamics. We refer to [16, 23] for a review
on the irreversibility and on the key role played by entropy and to [33] for
a modern perspective on Loschmidt’s argument. In this paper, we will focus
on a more quantitative analysis of the mathematical aspects leading to the
emergence of irreversibility.

The convergence result describing at best, up to now, the transition from
the reversible microscopic dynamics to irreversible kinetic equations is due
to Lanford [21]. It states that the Boltzmann equation can be obtained as
the limit of the deterministic dynamics in a box of size 1

• in the low density regime, i.e. as the number of particles N → ∞,
their size ε→ 0, with the additional condition that the inverse mean
free path Nεd−1 remains of order 1 (where d is the space dimension);
• up to excluding some pathological situations which occur with van-
ishing probability in this limit;
• provided that initially the particles are distributed independently.

One important restriction is that this convergence result holds only for short
times, which is not enough to observe any relaxation towards equilibrium.
Despite many efforts, this restriction has not been removed to this day.
There is no attempt in the present paper to improve the convergence time.
Our goal here is to study the appearance of irreversibility which already
occurs for short times.
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One-sided convergence and irreversibility

More precisely, we intend to discuss in detail the assumptions on the
initial data in Lanford’s theorem, as they encode all the information on the
future evolution. The statement is the following.

Theorem 1.1 ([21]). — Consider a system of N hard spheres of diam-
eter ε on the d-dimensional periodic box Td = [0, 1]d (with d > 2), initially
“independent” and identically distributed with continuous density f0 such
that ∥∥∥∥f0 exp

(
µ+ β

2 |v|
2
)∥∥∥∥

L∞(Tdx×Rdv)
6 1 , (1.1)

for some β > 0, µ ∈ R. More precisely, we choose the initial distribution
of N particles with minimal correlations, due only to the non overlapping
conditions :

fN,0(x1, v1, . . . , xN , vN ) := 1
ZN

N∏
i=1

f0(xi, vi)
∏
i 6=j

1|xi−xj |>ε , (1.2)

denoting by ZN the partition function, that is the normalizing constant for
fN,0 to be a probability.

In the Boltzmann–Grad limit N → ∞ with Nεd−1 = 1, the one particle
distribution f

(1)
N = f

(1)
N (t, x, v) converges almost everywhere to the solution

of the Boltzmann equation
∂tf + v · ∇xf = Q(f, f) ,

Q(f, f)(v) :=
∫∫

Sd−1×Rd
[f(v′)f(v′1)− f(v)f(v1)]

(
(v1 − v) · ν

)
+ dv1dν ,

v′ = v + ν · (v1 − v) ν , v′1 = v1 − ν · (v1 − v) ν ,
(1.3)

with initial data f0, on a time interval [0, t∗] where t∗ depends only on the
parameters β, µ of (1.1).

Extensions of this result to other potentials than hard-sphere interactions
have been recently achieved in [3, 15, 27].

As asserted by Boltzmann himself, the absence of contradiction between
reversible microscopic (Newton) equations and the non-reversible Boltzmann
equation is due to the fact that only “typical” solutions to the former equa-
tions are well approximated by f . The way to give a precise meaning to this
typicality is to introduce a statistical description of the initial state, which
is in fact the point of view of Theorem 1.1 [22, 32].

The goal of the present paper is to analyze in detail the proof of Lanford’s
theorem in order to point out where irreversibility shows up. We shall see that
part of the information is lost in the convergence process as some pathological

– 987 –



T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella

sets of configurations with vanishing measure are neglected. These sets turn
out to be not time-reversal invariant and the possibility to retrace one’s steps
fades in the limit.

Furthermore note that, in Theorem 1.1, the weak notion of convergence
at time t prevents us from iterating the result as written. Describing more
precisely the geometry of the microscopic sets, we shall introduce a notion
of one-sided convergence holding at positive times as well as at time zero.
Thus we will obtain a refined statement of the theorem (Theorem 2.9) com-
patible both with the irreversibility and the time-concatenation (semigroup)
properties of the limiting equation (Section 3). A similar notion of one-sided
convergence has been introduced by Denlinger in [14], see also [19] for a first,
non quantitative version.

In order to characterize precisely the (small) sets where the convergence
of the initial data is essential, we shall finally construct explicit examples of
measures which are badly behaved exclusively in those regions, leading to a
violation of Theorem 1.1 (Section 4).

1.2. Microscopic dynamics

In the following we denote, for 1 6 i 6 N , zi := (xi, vi) and ZN :=
(z1, . . . , zN ). With a slight abuse we say that ZN belongs to TdN × RdN
if XN := (x1, . . . , xN ) belongs to TdN and VN := (v1, . . . , vN ) to RdN . The
phase space is denoted by

DNε :=
{
ZN ∈ TdN × RdN / ∀ i 6= j , |xi − xj | > ε

}
,

where | · | stands for the distance on the torus. We now distinguish pre-
collisional configurations from post-collisional ones by defining for indexes
1 6 i 6= j 6 N

∂DN±ε (i, j)

:=
{
ZN ∈ TdN × RdN / |xi − xj | = ε , ±(vi − vj) · (xi − xj) > 0

and ∀ (k, `) ∈ [1, N ]2 \ {(i, j)} with k 6= ` , |xk − x`| > ε

}
.

Given a post-collisional configuration ZN on ∂DN+
ε (i, j), we define Z ′N ∈

∂DN−ε (i, j) as the (pre-collisional) configuration having the same positions
(xk)16k6N , the same velocities (vk)k 6=i,j for non interacting particles, and
the following pre-collisional velocities for particles i and j

v′i := vi −
1
ε2 (vi − vj) · (xi − xj)(xi − xj)

v′j := vj + 1
ε2 (vi − vj) · (xi − xj)(xi − xj) .
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One-sided convergence and irreversibility

Defining the Hamiltonian

HN (VN ) := 1
2

N∑
i=1
|vi|2 , (1.4)

we consider the Liouville equation in the 2Nd-dimensional phase space DNε
∂tfN + {HN , fN} = 0 , (1.5)

with specular reflection on the boundary, meaning that if ZN belongs to
∂DN+

ε (i, j) then

∀ t > 0 , fN (t, ZN ) = fN (t, Z ′N ) . (1.6)

We have denoted { · , · } the Poisson bracket defined by

{f, g} := ∇VN f · ∇XN g −∇XN f · ∇VN g .

The Liouville equation (1.5) writes therefore

∂tfN + VN · ∇XN fN = 0 ,

with initial data given by (1.2) and the condition (1.1). Note that fN is
symmetric with respect to permutations (which corresponds to the relabeling
of particles).

Remark 1.2. — Note that although the boundary condition (1.6) seems to
introduce a symmetry between pre-collisional and post-collisional configura-
tions, what has to be prescribed for the system to be well-posed is the density
on post-collisional configurations for positive times, and for pre-collisional
configurations for negative times, which are the incoming configurations for
the transport equation (1.5).

We recall, as shown in [1] for instance, that the set of initial configurations
leading to ill-defined characteristics (due to grazing collisions, clustering of
collision times, or collisions involving more than two particles) is of measure
zero in DNε .

1.3. Propagation of chaos

We define the marginals on Dnε (extending by zero outside) by

f
(n)
N (t, Zn) :=

∫
fN (t, ZN ) dzn+1 . . . dzN . (1.7)
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Then one can show formally as in [17, 21] and [13, 15] that the first marginal,
which describes the typical evolution of the gas, evolves according to

(∂t + v · ∇x)f (1)
N (t, x, v)

= (N − 1)εd−1

×
∫
Sd−1×Rd

(
f

(2)
N (t, x, v′, x+ εν, v′1)− f (2)

N (t, x, v, x− εν, v1)
)

(
(v1 − v) · ν

)
+dνdv1 , (1.8)

with v′, v′1 as in (1.3). This equation can be interpreted by saying that a
particle at z = (x, v) moves in a straight line until it collides with one of the
remaining N − 1 particles. The velocities are then updated and the source
term is determined by the joint distribution f (2)

N .

The notion of propagation of chaos (Stoßzahlansatz) lies at the heart
of the derivation of Boltzmann’s equation (1.3). Heuristically, one would
like to write that when two particles at configurations z = (x, v) and z1 =
(x+ εν, v1) collide then the marginal distribution factorizes

lim
N→∞

∣∣∣f (2)
N (t, z, z1)− f (1)

N (t, z)f (1)
N (t, z1)

∣∣∣ = 0 . (1.9)

This statement of the Stoßzahlansatz is far from a mathematical assertion
as f (2)

N is only defined almost surely in T2d × R2d and not on sets of codi-
mension 1. A more standard notion of propagation of chaos is given by the
following definition.

Definition 1.3 (Chaos property). — The sequence of measures fN is
said asymptotically chaotic at time t if there exists a measurable f(t) on
Td × Rd such that, almost surely in (z, z1) in (Td × Rd)2,

lim
N→∞

f
(1)
N (t, z) = f(t, z) ,

lim
N→∞

∣∣∣f (2)
N (t, z, z1)− f(t, z)f(t, z1)

∣∣∣ = 0 .
(1.10)

In (1.10) the coordinates z, z1 are fixed independently of N and ε (con-
trary to (1.9)). As a consequence, this notion turns out to be too weak to
derive Boltzmann equation from the microscopic evolution.

We shall see in Section 2 that the proof of Theorem 1.1 is not based on
proving directly the propagation of chaos but on a more global convergence
of all the marginals. One of the goals of this paper is to quantify the refined
notion of convergence (see Theorem 2.9) which is strictly needed in Lanford’s
argument. The propagation of chaos (1.10) can be derived as a byproduct.
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2. Lanford’s proof

In order to understand how the assumptions on the initial data come into
play, we have to look more precisely at the proof of Theorem 1.1, which is ac-
tually the corollary of a more precise result. Lanford’s result indeed provides
the convergence of all marginals f (n)

N defined in (1.7) to the solutions f (n)

of an infinite system of coupled equations, which is the so-called Boltzmann
hierarchy

∂tf
(n) +

n∑
i=1

vi · ∇xif (n) = C0
n,n+1f

(n+1),(
C0
n,n+1f

(n+1)
)

(x1, v1, . . . , xn, vn)

:=
n∑
i=1

∫∫
Sd−1×Rd

(
f (n+1)(x1, v1, . . . , xi, v

′
i, . . . xn, vn, xi, v

′
n+1)

− f (n+1)(x1, v1, . . . , xi, vi, . . . xn, vn, xi, vn+1)
)

(
(vn+1 − vi) · ν

)
+ dvn+1dν ,

(2.1)

with v′i, v
′
n+1 as in (1.3). Note that f (n) is symmetric with respect to per-

mutations and that

f (n)(t, Zn) =
∫
f (n+1)(t, Zn+1) dzn+1 .

Moreover the cross-section
(
(vn+1−vi) ·ν

)
+ is invariant under the exchange

of the velocities vn+1, vi (exchangeability property) and under the collision
transformation (vn+1, vi, ν) → (v′n+1, v

′
i, ν) (micro-reversibility of the colli-

sion process). Chaotic families of the form f (n) = f⊗n with f solution to the
Boltzmann equation are specific solutions to this hierarchy, where

f⊗n(Zn) :=
n∏
i=1

f(zi) .

The connection between the Boltzmann hierarchy and the Boltzmann equa-
tion is discussed in [31].

The starting point of the proof is to write an explicit representation of
the n particle distribution f (n)

N as a superposition of pseudo-dynamics, with
weights depending on the initial data. More precisely, by averaging and it-
erating Duhamel’s formula for the N -particle distribution fN , we end up
with a series expansion for f (n)

N in which the term of order s corresponds
to pseudo-dynamics involving s collisions and is therefore expressed as an
operator acting on the initial (n + s)-particle distribution f

(n+s)
N,0 (see Sec-

tion 2.1).
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The strategy of proof then relies on two main steps.

• First we obtain a uniform bound on the series expansion, which is
responsible for the short time restriction in Theorem 1.1. In the
following, we restrict our attention to times smaller than the radius
of analyticity of the series.
• The convergence to the solution of the Boltzmann hierarchy then
follows from the convergence of the trajectories representing the
different pseudo-dynamics (note that these trajectories are related to
the representation formula and that they do not coincide in general
with the physical trajectories of the particles, e.g. [28] for further
discussions). The convergence of pseudo-trajectories fails to hold
when there are recollisions (see page 997 for a precise definition
of recollisions). A geometric argument shows however that, for any
fixed n, the set of initial configurations with n particles leading to
such recollisions is of vanishing measure in the N →∞ limit.

Note that all the information on these bad sets is forgotten in the limit:
this is related to irreversibility, that is to the impossibility of going back to
the initial state. Furthermore the convergence of the first marginal to the
solution of the Boltzmann equation in the case of factorized initial data such
as (1.2) is due to a uniqueness property for the Boltzmann hierarchy; this
follows from the uniform bound on the hierarchy obtained in the first step
of the above strategy.

2.1. The series expansions

A formal computation based on Green’s formula (see [11, 15, 21] for
instance) leads to the following BBGKY hierarchy for n < N(

∂t +
n∑
i=1

vi · ∇xi

)
f

(n)
N (t, Zn) =

(
Cn,n+1f

(n+1)
N

)
(t, Zn) , (2.2)

on Dnε with the boundary condition as in (1.6)

f
(n)
N (t, Zn) = f

(n)
N (t, Z ′n) on ∂Dn+

ε (i, j) .

Recall that collisions between more than two particles at the same time may
be disregarded as they correspond to a measure zero set of initial values in
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the phase space. The collision term is defined by(
Cn,n+1f

(n+1)
N

)
(Zn) := (N − n)εd−1

×

(
n∑
i=1

∫
Sd−1×Rd

f
(n+1)
N (..., xi, v′i, ..., xi + εν, v′n+1)

(
(vn+1 − vi) · ν

)
+dνdvn+1

−
n∑
i=1

∫
Sd−1×Rd

f
(n+1)
N (..., xi, vi, ..., xi+εν, vn+1)

(
(vn+1−vi)·ν

)
−dνdvn+1

)
,

(2.3)

with v′i := vi − (vi − vn+1) · ν ν, and v′n+1 := vn+1 + (vi − vn+1) · ν ν.

The closure for n = N is given by the Liouville equation (1.5). Note
that the collision integral is split into two terms according to the sign of
(vi− vn+1) · ν and we used the trace condition on ∂DN+

ε (i, n+ 1) to express
all quantities in terms of pre-collisional configurations.

To obtain the Boltzmann hierarchy, we compute the formal limit of the
transport and collision operators when ε goes to 0. Recall that for fixed n,
then (N−n)εd−1 → 1 in the Boltzmann–Grad limit. Thus the limit hierarchy
is given by(

∂t +
n∑
i=1

vi · ∇xi

)
f (n)(t, Zn) =

(
C0
n,n+1f

(n+1))(t, Zn) (2.4)

in (Td×Rd)n, where C0
n,n+1 are the limit collision operators defined by (2.1).

We denote by (f (n)
0 )n∈N a family of initial data for this hierarchy (which will

be specified later as a tensor product, see the statement of Theorem 2.9).

Iterating Duhamel’s formula for the BBGKY hierarchy (2.2), we get

f
(n)
N (t) =

N−n∑
s=0

Qn,n+s(t)f (n+s)
N,0 , (2.5)

where we have defined

Qn,n+s(t)f (n+s)
N,0

:=
∫ t

0

∫ tn+1

0
. . .

∫ tn+s−1

0
Sn(t− tn+1)Cn,n+1Sn+1(tn+1 − tn+2)Cn+1,n+2

. . .Sn+s(tn+s)f (n+s)
N,0 dtn+s . . . dtn+1

denoting by Sn the group associated with free transport in Dnε with specular
reflection on the boundary.
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Remark 2.1. — Note that, for fixed N , the operator Cn,n+1 is a trace
on a manifold of codimension 1 and thus it is a priori not defined on L∞

functions. What makes sense is the combination
∫

dtn+1Cn,n+1Sn+1(tn+1−
tn+2) (see [4, 30, 15] and Figure 2.1).

For t > 0, one has tn+1− tn+2 > 0, it is therefore necessary to express the
collision operator in terms of pre-collisional configurations. In a symmetric
way, for t 6 0, one has tn+1− tn+2 6 0, and we have to express the collision
operator in terms of post-collisional configurations (see Remark 1.2).

|xn+1 − xi| = ε

tn+1 − tn+2 ≥ 0

Figure 2.1. The grey domain is an excluded region and its boundary
is the surface |xn+1 − xi| = ε corresponding to a collision between
particles i and n + 1. The admissible configurations are outside this
domain and can be parametrised by a point of the surface and a non
negative time tn+1 − tn+2, provided that the velocities are pre-
collisional.

Similarly for the Boltzmann hierarchy (2.4), provided the initial data
(f (n)

0 )n∈N are continuous, one has

f (n)(t) =
∞∑
s=0

Q0
n,n+s(t)f

(n+s)
0 , (2.6)

where we have defined

Q0
n,n+s(t)f

(n+s)
0

=
∫ t

0

∫ tn+1

0
. . .

∫ tn+s−1

0
S0
n(t− tn+1)C0

n,n+1S0
n+1(tn+1 − tn+2)C0

n+1,n+2

. . .S0
n+s(tn+s)f (n+s)

0 dtn+s . . . dtn+1 ,

denoting by S0
n the group associated with free transport in (Td × Rd)n.

Let us denote |Cs,s+1|, |Qn,n+s| the operators obtained by summing the
absolute values of all the elementary terms. The energy Hs = 1

2
∑s
i=1 |vi|2

is conserved by the transport so
Ss
(
exp (−βHs)1Dsε

)
= exp (−βHs)1Dsε ,
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One-sided convergence and irreversibility

and from the loss estimates on the collision operators (see [15] for instance)

|Cs,s+1|
(

exp (−βHs+1)1Ds+1
ε

)
6 Cβ−d/2

sβ− 1
2 +

∑
16i6s

|vi|

 exp (−βHs)1Dsε ,

we get the Cauchy–Kowalewski type iterated estimate for β̃ < β

|Qn,n+s|(t)
(

exp (−βHn+s)1Dn+s
ε

)
6 Cn+s exp(−β̃Hn) . (2.7)

Using the initial data (1.2) and the condition (1.1), we deduce follow-
ing [35] an upper bound on the marginals from (2.5)

∀ t 6 t∗, f
(n)
N (t) 6 exp((λt− µ)n) exp((λt− β)Hn), (2.8)

where λ, chosen large enough, depends on β, µ, and t∗ is such that λt∗ = β/2
for instance. The convergence time in Lanford’s Theorem 1.1 is given by t∗.

Similar estimates hold for the limit operators Q0
n,n+s and S0

s, as well as
for the solution of the Boltzmann hierarchy. These estimates provide the
wellposedness of the BBGKY and Boltzmann hierarchies.

2.2. Geometrical representation as a superposition of pseudo-
dynamics

The usual way to study the s-th term of the representation formula is
to introduce some pseudo-dynamics describing the action of the operator
Qn,n+s. We first extract combinatorial information on the collision process:
we describe the adjunction of new particles (in the backward dynamics) by
ordered trees.

Definition 2.2 (Collision trees). — Let n > 1, s > 1 be fixed. An (or-
dered) collision tree a ∈ An,n+s is defined by a family (a(i))n+16i6n+s with
a(i) ∈ {1, . . . , i− 1}.

Note that |An,n+s| 6 n(n+ 1) . . . (n+ s− 1).

Once we have fixed a collision tree a ∈ An,n+s, we can reconstruct
pseudo-dynamics starting from any point in the n-particle phase space Zn =
(xi, vi)16i6n at time t.

– 995 –



T. Bodineau, I. Gallagher, L. Saint-Raymond and S. Simonella

Definition 2.3 (Pseudo-trajectory). — Given Zn ∈ Dnε , consider a col-
lection of times, angles and velocities

(Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s) = (ti, νi, vi)n+16i6n+s

with 0 6 tn+s 6 · · · 6 tn+1 6 t. We then define recursively the pseudo-
trajectories in terms of the backward BBGKY dynamics as follows

• in between the collision times ti and ti+1 the particles follow the i-
particle backward flow with specular reflection;
• at time t+i , particle i is adjoined to particle a(i) at position xa(i)+ενi
provided it remains at a distance ε from all the others, and with
velocity vi. If (vi− va(i)(t+i )) · νi > 0, velocities at time t−i are given
by the scattering laws

va(i)(t−i ) = va(i)(t+i )− (va(i)(t+i )− vi) · νi νi ,
vi(t−i ) = vi + (va(i)(t+i )− vi) · νi νi .

(2.9)

We denote by zi(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, τ) the position and ve-
locity of the particle labeled i, at time τ (provided τ < ti). We also define
Gn+1,n+s(a) as the set of parameters (Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s) such
that the pseudo-trajectory Zn+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, τ) ex-
ists up to time 0, meaning that by adjunction of a new particle, there is no
overlap. The configuration obtained at the end of the tree, i.e. at time 0,
is Zn+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, 0). For s = 0, there are no ad-
joined particles and the pseudo-trajectory Zn(∅, Zn, τ), τ ∈ (0, t) is just the
n−particle backward flow with specular reflection.

Similarly, we define the pseudo-trajectories associated with the Boltzmann
hierarchy. These pseudo-trajectories evolve according to the backward Boltz-
mann dynamics as follows

• in between the collision times ti and ti+1 the particles follow the i-
particle backward free flow;

• at time t+i , particle i is adjoined to particle a(i) at exactly the same
position xa(i). Velocities are given by the laws (2.9).

We denote this flow by Z0
n+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, τ).
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With these notations, the representation formulas (2.5) and (2.6) for the
marginals of order n can be rewritten respectively

f
(n)
N (t, Zn) =

N−n∑
s=0

C(N,n,s)
∑

a∈An,n+s

∫
Gn+1,n+s(a)

dTn+1,n+sdΩn+1,n+sdVn+1,n+s

×

(
n+s∏
i=n+1

(
(vi − va(i)(ti)

)
· νi

)
f

(n+s)
N,0

(
Zn+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, 0)

)
,

with C(N,n,s) := (N − n) . . .
(
N − (n + s − 1)

)
ε(d−1)s = 1 + O((n + s)2/N)

and

f (n)(t, Zn) =
∞∑
s=0

∑
a∈An,n+s

∫
Tn+1,n+s

dTn+1,n+s

∫
S(d−1)s

dΩn+1,n+s

∫
R2s

dVn+1,n+s

×

(
n+s∏
i=n+1

(
(vi − v0

a(i)(ti)
)
· νi

)
f

(n+s)
0

(
Z0
n+s(a, Zn, Tn+1,n+s,Ωn+1,n+s, Vn+1,n+s, 0)

)
,

denoting Tn+1,n = ∅ and
Tn+1,n+s :=

{
(ti)n+16i6n+s ∈ [0, t]s / 0 6 tn+s 6 · · · 6 tn+1 6 t

}
.

Note that the variables νi are integrated over spheres and the scalar products
take positive and negative values (corresponding to the positive and negative
parts of the collision operators).

The question is then to describe the asymptotic behavior of the BBGKY
pseudo-trajectories. We actually split them into two classes :

• pseudo-trajectories having no recollision, i.e. such that particles in-
teract only at the times of adjunction of new particles, and are
transported freely between two such times;
• pseudo-trajectories involving recollisions.

Note that no recollision occurs in the Boltzmann hierarchy as the particles
have zero diameter.

2.3. Bad configurations

The transport semigroups Sn (with recollisions) and S0
n (free transport)

play a key role in the discrepancies between the BBGKY series (2.5) and the
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Boltzmann series (2.6). In a given time interval, both transports coincide if
no recollision occurs which will be the typical case for fixed n and ε small.
However, specific configurations lead to recollisions and we define below the
corresponding geometric sets.

Denote by BR the ball of Rd centered at zero and of radius R, and fix a
time T much bigger than the radius of analyticity t∗ given in (2.8) as well
as a parameter ε0 � ε. The sets of bad configurations of n particles are
defined as
Bn−ε0

:= {Zn ∈ (Td ×BR)n, ∃ u ∈ [0, T ] , ∃ i, j, |xi − xj − u(vi − vj)| 6 ε0},

Bn+
ε0

:= {Zn ∈ (Td ×BR)n, ∃ u ∈ [0, T ] , ∃ i, j, |xi − xj + u(vi − vj)| 6 ε0},
(2.10)

where | · | stands for the distance on the torus. This means that, starting
from Bn−ε at time t, the backward free flow on Dnε will involve at least one
recollision between t and t−T , and starting from Bn+

ε , the forward free flow
on Dnε will involve at least one recollision between t and t+ T . In particular
outside these sets, we have(

Sn(t)− S0
n(t)

) (
f

(n)
N,0(1− 1Bn+

ε
)
)

= 0 for t ∈ [0, T ] ,(
Sn(t)− S0

n(t)
) (
f

(n)
N,0(1− 1Bn−ε )

)
= 0 for t ∈ [−T, 0] .

The first term in each series (2.5) and (2.6) involves the transport, both
first terms coincide when ±t > 0 for configurations which are outside the
bad set Bn±ε . We stress the fact that similar sets have been already intro-
duced by Denlinger in [14] and previously identified in [5] as key sets (see [5,
Appendix A] for a discussion on irreversibility).

The following result is an easy calculation.

Proposition 2.4. — The bad sets are ordered

Bn±ε ⊂ Bn±ε′ ∀ ε′ > ε .

Their measure is controlled by

|Bn±ε | 6 (CRd)nn2RTεd−1 ,

and the intersection is much smaller

|Bn+
ε ∩ Bn−ε | 6 (CRd)n

(
n2εd + n4R2T 2ε2(d−1)) .

We now suppose that t > 0 since the situation when t 6 0 can be de-
duced by a simple symmetry in t and v. The next terms in the series ex-
pansion (2.5), (2.6) involve some averaging with respect to the parameters
(ti, vi, νi)n+16i6n+s describing the adjunction of new particles. What can
be proved is that, provided that the n-particle backward flow Ψn on Dnε
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does not lead to a recollision, then the probability of having a recollision
(involving at least one of the added particles) is very small.

2.4. Convergence outside bad configurations

Let us first prove that the solutions are close by eliminating bad trajecto-
ries. By definition, the set of good configurations with k particles will be such
that the particles remain, by backward free flow, at a distance ε0 � ε|log ε|
for a time T � t∗, i.e. that they belong to the set

Gk(ε0) := (Td ×BR)k \ Bk−ε0
.

For particles in Gk(ε0), the backward transport Ψk on Dkε coincides with the
backward free flow Ψ0

k on (Td ×BR)k. Thus, if at time t the configurations
Zk, Z0

k are such that
∀ i 6 k , |xi − x0

i | 6 ε|log ε| , vi = v0
i (2.11)

and Z0
k belongs to Gk(ε0), then the configurations Ψk(u)Zk, Ψ0

k(u)Z0
k will

remain at distance less than O(ε|log ε|) for u ∈ [0, t]. Recall that the distance
| · | is on the torus. The logarithmic factor in (2.11) is due to the fact that
at each adjunction of a new particle, there is a shift in positions of the order
of ε; the number of adjoined particles will be chosen much (logarithmically)
smaller than |log ε|

One can show that good configurations are stable by adjunction of a
(k + 1)th-particle next to a particle labelled by mk 6 k, provided some
bad sets are removed. More precisely, let Z0

k = (X0
k , Vk) be in Gk(ε0) and

Zk = (Xk, Vk) with positions close to X0
k and same velocities (cf. (2.11)).

Then, by choosing the velocity vk+1 and the deflection angle νk+1 of the new
particle k+1 outside a bad set Bmk(Z0

k), both configurations Zk and Z0
k will

remain close to each other. Of course, immediately after the adjunction, the
particlesmk and k+1 will not be at distance ε0, but vk+1, νk+1 can be chosen
such that the particles drift rapidly far apart and after a short time δ > 0
the configurations Zk+1 and Z0

k+1 are again in the good sets Gk+1(ε0/2)
and Gk+1(ε0). Note that the shift in positions at each adjunction of a new
particle in the BBGKY pseudo-trajectories implies that, with respect to the
Boltzmann pseudo-trajectories, there is an extra error ε|log ε| 6 ε0/2 so that
Zk+1 ∈ Gk+1(ε0/2). In the next statement the time of adjunction of a new
particle is chosen to be at time u = 0 because the argument is translation
invariant in time.

Proposition 2.5 ([15]). — We fix parameters ε� ε0, δ � 1 such that
|log ε|ε� ε0 � min(δR, 1) . (2.12)
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Given Z0
k = (X0

k , Vk) ∈ Gk(ε0) and mk 6 k, there is a subset Bmk(Z0
k)

of Sd−1 ×BR of small measure∣∣Bmk(Z0
k)
∣∣ 6 CkRd| log ε|

((
ε

ε0

)d−1
+ (RT )dεd−1

0 +
( ε0

Rδ

)d−1
)
, (2.13)

such that good configurations close to Z0
k are stable by the adjunction of a

collisional particle close to the particle x0
mk

in the following sense.

Let Zk = (Xk, Vk) be a configuration of k particles satisfying (2.11), i.e.
|Xk − X0

k | 6 |log ε|ε. Given (νk+1, vk+1) ∈ (Sd−1 × BR) \ Bmk(Z0
k), a new

particle with velocity vk+1 is added at xmk + ενk+1 to Zk and at x0
mk

to Z0
k .

Two possibilities may arise:

For a pre-collisional configuration νk+1 · (vk+1 − vmk) < 0, there is no
scattering then

∀ u ∈ ]0, t] ,{
∀ i 6= j ∈ [1, k] , |(xi − u vi)− (xj − u vj)| > ε ,

∀ j ∈ [1, k] , |(xmk + ενk+1 − u vk+1)− (xj − u vj)| > ε .
(2.14)

Moreover after the time δ, the k + 1 particles are in a good configuration

∀ u ∈ [δ, t] ,{
(Xk − uVk, Vk, xmk + ενk+1 − u vk+1, vk+1) ∈ Gk+1(ε0/2),
(X0

k − uVk, Vk, x0
mk
− u vk+1, vk+1) ∈ Gk+1(ε0) .

(2.15)

For a post-collisional configuration νk+1 · (vk+1− vmk) > 0, the velocities
are updated then

∀ u ∈ ]0, t] ,
∀ i 6= j ∈ [1, k] \ {mk} , |(xi − u vi)− (xj − u vj)| > ε ,

∀ j ∈ [1, k] \ {mk} , |(xmk + ενk+1 − u v′k+1)− (xj − u vj)| > ε ,

∀ j ∈ [1, k] \ {mk} , |(xmk − u v′mk)− (xj − u vj)| > ε ,

|(xmk − u v′mk)− (xmk + ενk+1 − u v′k+1)| > ε .

(2.16)

Moreover after the time δ, the k + 1 particles are in a good configuration
∀ u ∈ [δ, t],

(
{xj −u vj , vj}j 6=mk , xmk−u v′mk , v

′
mk
, xmk+ ενk+1−u v′k+1, v

′
k+1
)

∈ Gk+1(ε0/2),(
{x0

j − u vj , vj}j 6=mk , x0
mk
− u v′mk , v

′
mk
, x0
mk
− u v′k+1, v

′
k+1
)

∈ Gk+1(ε0).

(2.17)
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We refer to [15] for a complete proof of Proposition 2.5 and simply recall
that it can be obtained from the following control on free trajectories (note
that compared to [15] there is an additional loss of a |log ε| which is due to
the action of the scattering operator and is actually missing in [15]).

Lemma 2.6. — Given T > 0, ε� δ� 1 and ε|log ε| � ε0�min(δR, 1),
consider two points x0

1, x
0
2 in Td such that |x0

1−x0
2| > ε0, and a velocity v1 ∈

BR. Then there exists a subset K(x0
1−x0

2, ε0, ε) of Rd with measure bounded
by

|K(x0
1 − x0

2, ε0, ε)| 6 CRd|log ε|
((

ε

ε0

)d−1
+ (Rt)d εd−1

)
and a subset Kδ(x0

1 − x0
2, ε0, ε) of Rd, the measure of which satisfies

|Kδ(x0
1 − x0

2, ε0, ε)| 6 CRd|log ε|
(( ε0

Rδ

)d−1
+ (Rt)dεd−1

0

)
such that for any v2 ∈ BR and x1, x2 such that |x1−x0

1| 6 |log ε|ε, |x2−x0
2| 6

|log ε|ε, the following results hold:

• If v1 − v2 6∈ K(x0
1 − x0

2, ε0, ε), then
∀ u ∈ [0, t] , |(x1 − u v1)− (x2 − u v2)| > ε.

• If v1 − v2 /∈ Kδ(x0
1 − x0

2, ε0, ε)
∀ u ∈ [δ, t] , |(x1 − u v1)− (x2 − u v2)| > ε0 .

Proposition 2.5 is the elementary step for adding a new particle. This
step can be iterated in order to build inductively good pseudo-trajectories Z
and Z0. Note that after adding a new particle, velocities remain identical at
each time in both configurations, but their positions differ due the exclusion
condition in the BBGKY hierarchy which induces a shift of ε at each creation
of a new particle.

To estimate Qn,n+s(t)f (n+s)
N,0 − Q0

n,n+s(t)f
(n+s)
0 , we then split the inte-

gration domain in several pieces:

• pseudo-trajectories with large energy Hn+s(Zn+s) > R2 � 1;
• pseudo-trajectories with collisions separated by a time less than
δ � 1;
• pseudo-trajectories (with moderate energy and collisions well sepa-
rated in time) having recollisions;
• good pseudo-trajectories in the sense of Proposition 2.5.

Bad pseudo-trajectories have a small contribution to the integrals thanks
to (2.13) while good pseudo-trajectories of the BBGKY and Boltzmann hi-
erarchies can be coupled.
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2.5. Convergence of initial data

To estimate the contribution of good pseudo-trajectories, we have then
to combine the continuity of f (n+s)

0 together with an estimate on the dif-
ference f (n+s)

N,0 − f (n+s)
0 between initial data on the set of initial configura-

tions which may be reached by such pseudo-dynamics: since we only consider
pseudo-trajectories leading to good configurations, what we need to compute
is (f (s)

N,0 − f
⊗s
0 )(1− 1Bs+

ε ∩Bs−ε ).

With the specific choice of initial data (1.2) in Theorem 1.1, one can prove
(see [15] for instance) that the initial data of both hierarchies are close, in
the sense that for s > 2∣∣∣(f (s)

N,0 − f
⊗s
0

)(
1− 1Bs+

ε ∩Bs−ε

)∣∣∣ 6 Cs exp(−βHs)ε . (2.18)

This condition implies that f (s)
N,0 is almost chaotic on the singular sets Bs+

ε \
Bs−ε (which are relevant for the forward equation) and Bs−ε \Bs+

ε (which are
relevant for the backward equation). Note that, compared to Definition 1.3,
this is much stronger as it provides a quantitative description of the factor-
ization on sets depending on ε.

It remains to gather all error estimates and to use the continuity prop-
erty (2.7) for the operators Qn,s+n. We define the weighted norm

‖fn‖L∞
β,n

:= ‖fn exp(βHn)‖L∞ ,

with Hn the Hamiltonian (1.4). Fixing the parameters ε0, δ, s, n such that
|log ε|ε� ε0 � min(δR, 1) , n+ s 6 |log ε| ,

and choosing R 6 C|log ε|, the error term from Proposition 2.5 converges
to 0. The term by term convergence is then obtained from the following
estimate, thanks to the previous analysis and (2.18).

Proposition 2.7. — Under the assumptions of Theorem 1.1 and as-
suming that f0 is Hölder continuous in space, then for all β′ < β there is a
constant C > 0 and γ(ε, ε0) going to zero with ε such that∣∣∣(Qn,n+s(t)f (n+s)

N,0 −Q0
n,n+s(t)f

⊗(n+s)
0

)
(1−1Bn−ε0

)
∣∣∣6Cn+stse−β

′Hnγ(ε, ε0) .

2.6. A refined convergence statement

The previous argument shows that once recollisions have been discarded,
pseudo-trajectories are stable as ε → 0, in the sense that their distance to
the corresponding Boltzmann pseudo-trajectory converges to 0. The only
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assumptions used to obtain the convergence of the marginals for times t ∈
[0, t∗] are that the initial data f0 has some regularity in space and the initial
marginals satisfy the uniform growth condition

sup
N
f

(n+s)
N,0 6 Cn+s exp(−βHn+s) (2.19)

together with the convergence∣∣∣(f (n+s)
N,0 − f⊗(n+s)

0

)(
1− 1B(n+s)−

ε0

)∣∣∣ 6 Cn+s exp(−βHn+s)ε .

Actually any positive power of ε would do in the above estimate. Note that
not all configurations in Dn+s

ε \ B(n+s)−
ε0 are reached by the good pseudo-

trajectories. Actually a very small subset V +
n+s,n ⊂ Dn+s

ε \ B(n+s)−
ε0 of these

configurations can be reached since one has the condition that, looking at the
forward flow, if one particle disappears at each collision, we should end up
with n particles within a time T (see Figure 2.2). This imposes s conditions
on the configuration Zn+s. Note that, by definition, configurations of V +

n+s,n
have at least one collision when evolved by the free flow Ψn+s. Taking into
account the additional constraint on the order of collisions, we can prove the
following result.

Proposition 2.8. — The set of admissible initial configurations (reached
by pseudo-dynamics associated with the forward BBGKY hierarchy) satisfies

|V +
n+s,n| 6 (CR)s+n(n+ s− 1) . . . n(RTε(d−1))s .

Furthermore,
V +
n+s,n ⊂ B(n+s)+

ε \ B(n+s)−
ε .

We thus can state the following refined version of Lanford’s theorem
which provides quantitative convergence estimates outside the bad sets.

Theorem 2.9. — Consider a system of N hard spheres of diameter ε
on Td = [0, 1]d (with d > 2), initially distributed according to some density
fN,0 satisfying the growth condition (2.19) for some β > 0, together with the
convergence

∀ n ∈ [1, N ] ,
∣∣∣(f (n)

N,0 − f
⊗n
0

)(
1− 1Bn−ε0

)∣∣∣ 6 Cn exp(−βHn)εa , (2.20)

for some a > 0 and for |log ε|ε � ε0 � 1. Denote by f the solution of
the Boltzmann equation (1.3). Then, in the Boltzmann–Grad limit N → ∞
with Nεd−1 = 1, the marginal f (n)

N converges to f⊗n uniformly on
(Dnε \ Bn−ε0

)× [0, t∗], i.e. there exists γ′(ε, ε0) converging to 0 such that uni-
formly in t ∈ [0, t∗],∣∣∣(f (n)

N (t)− f⊗n(t)
)(

1− 1Bn−ε0

)∣∣∣ 6 Cn exp(−β′Hn)γ′(ε, ε0) ,

with β′ < β and t∗ introduced in (2.8).
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Figure 2.2. Admissible initial configurations.

Compared to [5], this theorem provides a description of the geometry of
the bad sets along the evolution, and quantitative estimates of their mea-
sures. Note that a similar notion of one-sided convergence has been intro-
duced by Denlinger in [14].

3. Irreversibility and time concatenation

Note that the very same proof shows that, in the Boltzmann–Grad limit,
the marginal f (n)

N converges to f̃⊗n where f̃ is the solution of the reverse
Boltzmann equation

∂tf̃ + v · ∇xf̃ = −Q(f̃ , f̃),

Q(f, f)(v) :=
∫∫

Sd−1×Rd
[f(v′)f(v′1)− f(v)f(v1)]

(
(v1 − v) · ν

)
+ dv1dν ,

(3.1)
uniformly on (Dnε \Bn+

ε0
) and times from 0 to −t∗. This convergence requires

only the growth condition (2.19) and the initial convergence∣∣∣(f (n)
N,0 − f

(n)
0

)(
1− 1Bn+

ε0

)∣∣∣ 6 Cn exp(−βHn)εa, (3.2)

for some a > 0.

We thus have a symmetric situation for negative and positive times, which
indicates once more that the initial data play a very special role distinguish-
ing between the direct and reverse Boltzmann dynamics.
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3.1. Irreversibility

3.1.1. At the macroscopic level

Recall that the Boltzmann dynamics admits a Lyapunov functional. In-
deed, using the well-known facts (see [13]) that the mappings (v, v1) 7→ (v1, v)
(microscopic exchangeability) and (v, v1, ν) 7→ (v′, v′1, ν) (microscopic re-
versibility) have unit Jacobian determinants and preserve the cross-section,
one can show that formally for any test function ϕ∫

Q(f, f)ϕdv

= 1
4

∫∫∫
[f ′f ′1 − ff1](ϕ+ ϕ1 − ϕ′ − ϕ′1)((v1 − v) · ν)+ dvdv1dν , (3.3)

with the short notation f ′ = f(v′), f ′1 = f(v′1), f1 = f(v1), and similarly
for ϕ.

Disregarding integrability issues, we choose ϕ = log f in (3.3), and use
the properties of the logarithm, to find

D(f) ≡ −
∫
Q(f, f) log fdv

= 1
4

∫
Rd×Rd×Sd−1

(f ′f ′1 − ff1) log f
′f ′1
ff1

((v − v1) · ν)+ dvdv1dν > 0 .
(3.4)

The so-defined entropy production is therefore a nonnegative functional in
agreement with the second principle of thermodynamics.

This leads to Boltzmann’s H-theorem, stating that the entropy is (at least
formally) a Lyapunov functional for the Boltzmann equation.

Proposition 3.1. — Let f = f(t, x, v) be a smooth solution to the Boltz-
mann equation (1.3) with initial data f0 of finite relative entropy with respect
to some Gaussian (equilibrium) distribution M = M(v)∫

f0 log f0

M
(x, v)dvdx < +∞ .

Then, for all t > 0 formally∫
f log f

M
(t, x, v)dvdx+

∫ t

0

∫
D(f)(τ, x)dxdτ

=
∫
f0 log f0

M
(x, v)dvdx . (3.5)
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The classical interpretation of the H-theorem is that entropy measures the
quantity of microscopic information that is known on the system. The mi-
croscopic dynamics itself is reversible, but the entropy is not a deterministic
quantity associated to one realization of the dynamics. Entropy is a statisti-
cal quantity which measures the volume of the set of all possible microscopic
configurations corresponding to the macroscopic information retained in the
kinetic description. Irreversibility is therefore related to a loss of information
in our description of the dynamics, not to the dynamics itself.

Note that, for negative times, the distribution is evolved according to the
reverse Boltzmann dynamics, and we have∫
f log f

M
(−t, x, v)dvdx−

∫ −t
0

∫
D(f)(τ, x)dxdτ =

∫
f0 log f0

M
(x, v)dvdx ,

so that the global picture for the entropy should look like Figure 3.1.

��
����

������

��
��

��

�	��

Figure 3.1. Variations of the entropy S := −
∫
f log f

M dvdx.

It is important to realize that the loss of reversibility is already present at
the level of the Boltzmann hierarchy and does not come from some averaging
or projection in phase space. In particular, it is not directly related to the
chaos assumption. Indeed, it can be shown that the Boltzmann hierarchy is
irreversible: from the Hewitt–Savage theorem (see [18]) and the symmetry
assumption on the labels, we indeed know that the initial data can be de-
composed as a superposition of chaotic initial data, i.e. that there exists a
measure π on the space of probability densities such that

f
(n)
0 =

∫
g⊗n0 dπ(g0) for any n ∈ N∗ .
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Then, by linearity of the Boltzmann hierarchy (2.1), we deduce that the
family (f (n)(t))n∈N∗ defined by

f (n)(t) =
∫

(g(t))⊗ndπ(g0)

where g(t) is the solution to the Boltzmann equation with initial data g0, is
a solution to the Boltzmann hierarchy. Since the entropy is nondecreasing
for each solution of the Boltzmann equation, we deduce that

S(t) := −
∫

(g(t) log g(t))dπ(g0)

is nondecreasing, which encodes irreversibility.

This result means that microscopic information has been lost in the lim-
iting process.

3.1.2. At the microscopic level

Let us now consider an intermediate time τ , positive but strictly smaller
than Lanford’s time t∗ in Theorem 1.1.

�� ��τ

���

��

��	
�	�����������

��

��

τ�

Figure 3.2. Irreversibility. The measure at time zero leads to the Boltz-
mann equation, but it is not possible to apply Lanford’s theorem on
[τ ′, τ ] taking the measure at time τ as initial condition.

Proposition 3.2. — Let f be a non constant solution of the Boltzmann
equation (1.3) on [0, τ ]. By definition, f solves the backward Boltzmann equa-
tion on [τ, 0], but it cannot coincide with the solution of the reverse Boltz-
mann equation (3.1) on [τ, 0].
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The proof of the proposition follows by noticing that the entropy, along
the flow of the Boltzmann equation, is increased by the reverse dynamics
and decreased by the backward evolution.

Now we turn to the appearance of irreversibility in the limiting process.
We fix two times 0 < τ ′ < τ < t∗. Consider the representation formula (2.5)
for the marginals f (n)

N

f
(n)
N (τ ′) =

N−n∑
s=0

∫ τ ′

0

∫ tn+1

0
. . .∫ tn+s−1

0
Sn(τ ′ − tn+1)Cn,n+1Sn+1(tn+1 − tn+2)Cn+1,n+2

. . .Sn+s(tn+s)f (n+s)
N,0 dtn+s . . . dtn+1 .

It can be written starting from time τ instead of 0, meaning

f
(n)
N (τ ′) =

N−n∑
s=0

∫ τ ′

τ

∫ tn+1

τ

. . .∫ tn+s−1

τ

Sn(τ ′ − tn+1)Cn,n+1Sn+1(tn+1 − tn+2)Cn+1,n+2

. . .Sn+s(tn+s − τ)f (n+s)
N (τ) dtn+s . . . dtn+1 ,

since the Liouville equation (1.5) satisfied by fN is reversible and autonomous
with respect to time (it generates a group of evolution). As usual for analytic
functions, the radius of convergence of the series at τ is at least t∗− τ . Note
that the limitation on the convergence time t∗ in Lanford’s theorem comes
from the fact that we use the Cauchy–Kowalewski theorem to get a uniform
estimate of the radius of convergence of the previous series expansion. In
particular, the same argument shows that this radius of convergence at time
τ is at least t∗ − τ .

What we would need to apply the refined version of Lanford’s theorem
(Theorem 2.9) starting from time τ and moving back to τ ′ is the convergence
of f (n+s)

N (τ) on the sets V −n+s,n which consist of the configurations of n + s
particles at time τ reached by good pseudo-dynamics having s collisions on
[τ ′, τ ]. Note that these pseudo-trajectories are built forward as they go from
time τ ′ to τ and that we have

V −n+s,n ⊂ B(n+s)−
ε \ B(n+s)+

ε ,

which is the symmetric counterpart of Proposition 2.8.

Recollisions of the backward dynamics are indeed exactly collisions of the
forward pseudo-dynamics. This implies that we have no information about
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the convergence of f (n)
N (τ) on the sets V −n+s,n, and that we cannot prove the

convergence to the reverse Boltzmann dynamics on [τ ′, τ ] starting from τ
(which is consistent with the fact that the reverse Boltzmann dynamics is
not the backward Boltzmann dynamics!). For the same reasons the argument
behind the so-called Loschmidt’s paradox fails. Indeed if at time τ we invert
all the velocities and consider f (n)

N (τ,Xn,−Vn) as initial data, we cannot
apply Theorem 2.9 so that there is no contradiction with the backtracking
of marginals. The same argument was already put forward in [5]. This means
therefore that the structure of the family

(
f

(n)
N (τ)

)
n6N

is very different from
the chaotic structure of the initial data.

Remark 3.3. — Evolving a chaotic data by the reverse Boltzmann
dynamics gives a systematic method to construct data for which the
Boltzmann–Grad limit fails to hold, even though we do have a weak chaos
property in the sense of Definition 1.3. In Section 4, we show a more explicit
construction leading to an almost chaotic initial data, with modifications of
the second order correlations on a small set, such that the limiting dynamics
is free transport (far from the Boltzmann dynamics).

3.2. Time-concatenation

Another important feature of the limiting equation is that one can iterate
in the sense of the following proposition.

Proposition 3.4. — Let f be a smooth solution of the Boltzmann equa-
tion (1.3) on [0, τ ] with initial data f0, and assume there is a smooth solution
f of the Boltzmann equation on [τ, t∗] with data f(τ) at τ . Then, f is the
same solution of the Boltzmann equation on [0, t∗].

This property is a simple consequence of the fact that the Boltzmann
equation is a local in time partial differential equation, with no memory
effect. It is a kind of Markov property of the underlying process.

Let τ < τ ′ denote intermediate times, positive but strictly smaller than
Lanford’s time t∗. As previously, we denote by fN the solution to the Liou-
ville equation with chaotic initial data in the sense of Theorem 1.1. If we want
to iterate Lanford’s convergence proof on [τ, τ ′], what we need (in addition
to the uniform L∞ a priori estimate) is the convergence of f (n+s)

N (τ) on the
sets V +

n+s,n reached by good (backward) pseudo-trajectories. By definition,
we have V +

n+s,n ⊂ Dn+s
ε \ B(n+s)−

ε0 .
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�� ��τ

���

��

��	
�	�����������

��

��

τ�

Figure 3.3. Time-concatenation. The measure at time zero leads to the
Boltzmann equation on [0, τ ] and it is possible to re-apply Theorem 2.9
on [τ, τ ′] taking the measure at τ as initial condition.

And from the refined version of Lanford’s theorem (Theorem 2.9), we
have that ∥∥∥(f (n)

N (τ)− f⊗n(τ)
)(

1− 1Bn−ε0

)∥∥∥
∞
→ 0 as ε→ 0 .

Combining both properties, we deduce that we can iterate the conver-
gence as long as the growth condition (2.19) is satisfied.

Remark 3.5. — Note that the main limiting factor to extend the conver-
gence time is the loss with respect to β in the estimate (2.7). The previous
iteration argument fails therefore to improve the time of convergence in
Lanford’s theorem for initial data of the form (1.2). For initial data close to
equilibrium, it is proved in [7, 8] that one can actually reach times of the
order O(log log logN). The proof relies on global a priori bounds, it consists
in designing a subtle pruning procedure to get rid of the contribution of
super-exponential collision trees and then to express the contribution of all
other dynamics in terms of the initial data.

4. Chaotic initial data leading to different dynamics

At large scales, the propagation of chaos (1.10) holds and the measure
factorizes, but the memory of the Hamiltonian dynamics remains encoded
in fN (t) on very specific configuration sets of size vanishing with ε. We
are not yet able to describe the refined structure of the correlations in the
density fN (t), but we are going to introduce an example which illustrates
how constraints on very small sets may change the nature of the dissipative
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dynamics. Unlike the one obtained by reversing velocities (see Remark 3.3),
this example will be totally explicit.

Using the notation (2.10) of the bad sets, we consider the initial data

f̂N,0(ZN ) := 1
ẐN

N∏
i=1

f0(xi, vi)1{ZN /∈BN+
ε } , (4.1)

where BN+
ε is the set such that some collision occurs between the N par-

ticles within a time T . Contrary to the definition (2.10), we choose T as
a short time and set T = δ > 0. By construction the measure f̂N,0 will
evolve according to free transport on the time interval [0, δ] as there are no
interactions between the particles. In particular, the evolution of the first
marginal f̂ (1)

N,0 is no longer approximated by the Boltzmann equation in the
time interval [0, δ] and there is no dissipation.

In the following, we are even going to argue that, at a macroscopic scale,
the structure of the measure (4.1) behaves essentially as the one of the initial
data fN,0 given in (1.2) for which Lanford’s Theorem holds. In particular,
we deduce that a chaos property (1.10) holds for the measure f̂N,0. The key
point is that the two measures differ on very singular sets which are exactly
the relevant sets for the microscopic evolution.

To prove this, it is convenient to rephrase the measure (4.1), which has
a fixed number of particles, in a slightly different setting where N is vary-
ing. The terminology “canonical” and “grand canonical” ensemble (inherited
from statistical physics) is used, respectively, for the two pictures. The canon-
ical ensemble is the setting introduced in Section 1 of this paper, where N
is fixed, while the grand canonical ensemble is defined in Section 4.1 be-
low. In this new setting, one introduces “rescaled correlation functions” f (j)

ε,0
describing the same macroscopic behaviour as the marginals f̂ (j)

N,0. For our
present purpose the f (j)

ε,0 have some remarkable advantage, as they can be
dealt with by using standard methods of expansion developed in different
contexts [20, 25] (for the problem of adapting cluster expansion techniques
to a canonical setting, we refer to [26]).

4.1. The grand canonical formalism

The grand canonical phase space is
Dε = ∪n>0Dnε

(actually Dnε = ∅ for n large, due to the exclusion). Given (fn,0)n>0 we
assign the collection of probability densities for the configuration Zn ∈ Dnε ,
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n = 0, 1, . . . :
1
n!W

n
ε,0(Zn) := 1

Zε
µnε
n! fn,0(Zn) ,

where µε = ε−d+1 and fn,0 is yet to be specified. The normalization constant
Zε is given by

Zε :=
∑
n>0

µnε
n! Ẑn with Ẑn :=

∫
dZnfn,0 .

{Wn
ε,0}n>0 defines the grand canonical state on Dε, normalized as∑

n>0

1
n!

∫
Wn
ε,0(Zn)dZn = 1 .

The total number of particles N is random and distributed according to
a Poisson law

Pµε
(
N = n

)
= 1
Zε

µnε
n! Ẑn .

The choice µε = ε−d+1 ensures that the average number of particles grows
as ε−d+1, hence the inverse mean free path remains of order 1 (Boltzmann–
Grad scaling)

lim
ε→0

Eµε
(
N
)
εd−1 = κ > 0 . (4.2)

We postpone this check to the end of the section.

Let us define the j-particle correlation function, j = 1, 2, . . . . The idea is
to count how many groups of j particles fall, in average, in a given configu-
ration Zj = (z1, . . . , zj):

ρ
(j)
ε,0(z1, . . . , zj) =

〈 ∑
ki 6=kj

δζk1
(z1) . . . δζkj (zj)

〉
,

where we are labelling the particles and indicating their (random) configura-
tion by ζ1, . . . , ζn, and the brackets denote average with respect to the grand
canonical state. Expressing the correlation function in terms of the densities
and using the symmetry in the particle labels we get

ρ
(j)
ε,0(Zj) =

∞∑
n=j

n(n− 1) · · · (n− j + 1)
∫

dzj+1 · · · dzn
1
n!W

n
ε,0(Zn)

=
∞∑
n=0

1
n!

∫
dzj+1 · · · dzj+nW j+n

ε,0 (Zj+n) .
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In the case with minimal correlations, i.e. when

fn,0 :=
n∏
i=1

f0(xi, vi)
∏
k 6=j

1|xk−xj |>ε , (4.3)

one has
f

(j)
ε,0 (Zj) := µ−jε ρ

(j)
ε,0(Zj)

=

f⊗j0

∏
16i<k6j

1|xi−xk|>ε


× 1
Zε

∑
n>0

µnε
n!

∫
dzj+1 · · · dzj+nf⊗n0

 j∏
i=1

j+n∏
k=j+1

1|xi−xk|>ε


 ∏
j+16i<k6j+n

1|xi−xk|>ε


6 f⊗j0 , (4.4)

where the last inequality follows by removing the constraint between the
j particles and the rest of the system. Note that the rescaled correlation
functions f (j)

ε,0 are quantities of order 1 in ε.

The Boltzmann equation can be derived for both ensembles [5, 32, 29].

Theorem 4.1 ([5]). — Consider a system of hard spheres of diameter ε
on the d-dimensional periodic box Td = (R/Z)d (with d > 2), initially in the
grand canonical state with fn,0 given by (4.3) and f0 satisfying (1.1).

Then, as ε → 0, the rescaled correlation function f
(1)
ε converges al-

most everywhere to the solution of the Boltzmann equation (1.3) with initial
data f0, on a time interval [0, t∗] where t∗ depends only on the parameters
β, µ of (1.1).

4.2. A counterexample

A natural reformulation of (4.1) with varying number of particles is ob-
tained as follows. Define

1
n!W

n
ε,0(Zn) := 1

Zε
µnε
n! f

⊗n
0 (Zn)1{Zn /∈Bn+

ε }

= 1
Zε

µnε
n! f

⊗n
0 (Zn)

∏
i<j

(1 + ζij) ,
(4.5)
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where µε = ε−d+1 and ζij = ζ(zi, zj) = −1C(zi, zj) with C the set leading to
a collision
C :=

{
(zi, zj) ∈ (Td × Rd)2, ∃ s ∈ [0, δ],

∣∣xi − xj + s(vi − vj)
∣∣ 6 ε}.

The normalization constant Zε is given as above by

Zε :=
∑
n>0

µnε
n! Ẑn with Ẑn :=

∫
dZnf⊗n0

∏
i<j

(1 + ζij) .

By construction, the grand canonical density (4.5) evolves according to
the free transport dynamics in the time interval [0, δ],

∀ t 6 δ, f (j)
ε (t, Zj) := µ−jε ρ(j)

ε (t, Zj) = S0
j (t)f

(j)
ε,0 (Zj) . (4.6)

The rescaled correlation functions f (j)
ε,0 obey some of the assumptions re-

quired to apply Lanford’s theorem, in particular the key L∞ bound holds
thanks to (4.4). Moreover, we will see in Proposition 4.2 below that a chaos
property holds in a sense stronger than (1.10). Nevertheless the correlation
functions are irregular at the microscopic scale on the sets Bj+ε so that Lan-
ford’s proof cannot apply and there is no contradiction with (4.6). Note that
the constraints are imposed only in the forward direction, thus we get the
reverse Boltzmann equation for negative times.

To conclude this example, we will show that the state is chaotic.

Proposition 4.2. — The measure {Wn
ε,0}n>0 is asymptotically chaotic,

uniformly outside a bad set of configurations in Dε. More precisely, there
exists f (1) : Td × Rd → R+ such that

lim
ε→0

sup
z

∣∣∣f (1)
ε,0 (z)− f (1)(z)

∣∣∣ = 0 ,

lim
ε→0

sup
Zj 6∈Bj+

ε|log ε|

∣∣∣f (j)
ε,0 (Zj)− f (1)

ε,0 (z1) · · · f (1)
ε,0 (zj)

∣∣∣ = 0 ,
(4.7)

for all j > 2.

The result for j = 2 will follow by applying Theorem 2.3 of [25] (re-
called below) where the decay of correlations has been estimated by means
of cluster expansion.

Theorem 4.3 ([25]). — Assume that there exist non negative functions
a and b such that

∀ n, ∀ (z1, . . . , zn) ,
∏

16i<j6n
(1 + ζij) 6

n∏
i=1

eb(zi) ,

∀ zi , ε1−d
∫
f0(zj)|ζij |ea(zj)+2b(zj)dzj 6 a(zi) .

(4.8)
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Then, for almost all z1, z2,∣∣∣f (2)
ε,0 (z1, z2)− f (1)

ε,0 (z1)f (1)
ε,0 (z2)

∣∣∣
6 f0(z1)f0(z2)ea(z1)+a(z2)+2b(z1)+2b(z2)

×
{
|ζ12|+

∑
m>1

µmε

∫
dZ ′mf⊗m0 (Z ′m)

|ζ(z1, z
′
1)ζ(z′1, z′2) · · · ζ(z′m, z2)|

∏
ea(z′i)+2b(z′i)

}
.

Proof of Proposition 4.2 when j = 2. — Assumptions (4.8) of Theo-
rem 4.3 hold by choosing b = 0 and a(v) = cδ(1 + |v|) with δ small enough,
for some constant c (depending on β, µ, d of (1.1)). As a consequence, The-
orem 4.3 leads to∣∣∣f (2)

ε,0 (z1, z2)− f (1)
ε,0 (z1)f (1)

ε,0 (z2)
∣∣∣

6 f⊗2
0 ecδ(2+|v1|+|v2|)

×
{
|ζ12|+

∑
m>1

µmε

∫
dZ ′mf⊗m0 (Z ′m)

|ζ(z1, z
′
1)ζ(z′1, z′2) · · · ζ(z′m, z2)|ecδm+cδ

∑m

i=1
|v′i|
}
.

In what follows we will denote by c, C generic positive constants (possibly
varying along the text).

For δ small, the prefactor in the previous formula is bounded by c e−
β
4 |v|

2

with |v|2 = |v1|2 + |v2|2, as f0 satisfies (1.1). Moreover, for (z1, z2) outside
B2+
ε|log ε|, the first term ζ12 is equal to 0. Then the proof of (4.7) boils down

to showing that

lim
ε→0

∑
m>1

cmεm(1−d)
∫

dZ ′m|ζ(z1, z
′
1)ζ(z′1, z′2) · · · ζ(z′m, z2)|

e−
β
4 (v2

1+v2
2+
∑m

i=1
|v′i|

2) = 0 (4.9)

uniformly out of B2+
ε|log ε|. Given a velocity v, we define a cylinder associated

with z1 = (x1, v1) by

R(z1, v) :=
{
x ∈ Td, ∃ s ∈ [0, δ],

∣∣x− x1 + s(v − v1)
∣∣ 6 ε} .

The measure of R(z1, v) is of order εd−1δ|v − v1| � εd.
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We first treat the term m = 1 and show that for some constant C > 0

ε1−d
∫

dz′1|ζ(z1, z
′
1)ζ(z′1, z2)|e−

β
4 (v2

1+v2
2+|v′1|

2) 6 C

|log ε|1/2 · (4.10)

Given z1, z2, we distinguish two cases to evaluate the measure of the overlap
R(z1, v

′
1)∩R(z2, v

′
1). Let α be the angle between the axis of both cylinders,

i.e. the angle between v′1 − v1 and v′1 − v2.

Suppose that | sin(α)| > ε|log ε|1/2. — Then the angle between both axis
is large enough so that the overlap R(z1, v

′
1) ∩ R(z2, v

′
1) has a volume of

order at most εd−1/|log ε|1/2. We get

ε1−d
∫

dz′11{| sin(α)|>ε|log ε|1/2}|ζ(z1, z
′
1)ζ(z′1, z2)|e−

β
4 (v2

1+v2
2+|v′1|

2)

6
C

|log ε|1/2 · (4.11)

Suppose that | sin(α)| 6 ε|log ε|1/2. — Then the cylinders R(z1, v
′
1) and

R(z2, v
′
1) are almost parallel and they are anchored at x1, x2. Recall that

(z1, z2) is outside B2+
ε|log ε| so that |x1 − x2| > ε|log ε|. The length of both

cylinders is less than δ (|v′1 − v1|+ |v1 − v2|), thus they can overlap only if
θ, the angle between x1 − x2 and v′1 − v1, is small enough.

Suppose first that the lines {x1+λ(v′1−v1) , λ ∈ R} and {x2 + µ(v′1 − v2) ,
µ ∈ R} intersect at some point u (see Figure 4.1). Then the length ` =
min{|u− x1|, |u− x2|} satisfies

` = | sin θ|
| sinα| |x1 − x2| .

For the intersection to occur one needs that ` 6 δ (|v′1 − v1|+ |v1 − v2|) so
that we get the condition on θ

| sin θ| 6 δ (|v′1 − v1|+ |v1 − v2|)
| sinα|
|x1 − x2|

6 δ
|v′1 − v1|+ |v1 − v2|

| log ε|1/2 ·

If the two lines in the picture do not intersect (as will happen in general
for d > 2), the above inequality can be proved by a similar argument. Define
u, v as the points in the first and second lines where the distance 2ε between
both lines is reached. Then we can project all vectors orthogonally to u− v,
and we get exactly the same picture.
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As a conclusion, we get that θ should belong to a solid angle of order(
|v′1−v1|+|v1−v2|
|log ε|1/2

)d−1
. Integrating over x′1 and v′1 − v1, we deduce that

ε1−d
∫

dz′11{| sinα|6ε|log ε|1/2}|ζ(z1, z
′
1)ζ(z′1, z2)|e−

β
4 (v2

1+v2
2+|v′1|

2)

6
C

| log ε|(d−1)/2 ·

Combined with (4.11), this completes (4.10).

x2

x1

u
v′1 − v2

v′1 − v1

θ

α�

Figure 4.1.

We now show that the contribution of the term m is bounded by

εm(1−d)
∫

dZ ′m|ζ(z1, z
′
1)ζ(z′1, z′2) · · · ζ(z′m, z2)|e−

β
4 (v2

1+v2
2+
∑m

i=1
|v′i|

2)

6
Cmδm−1

|log ε|1/2 (4.12)

for some constant C. Summing over m this will complete the derivation
of (4.9) for δ small enough.

To estimate the case m = 1, we simply used the fact that |x1 − x2| >
ε|log ε|. Suppose that x′2 is such that |x1 − x′2| > ε|log ε|. Then integrating
with respect to z′1 leads to

εm(1−d)
∫

dZ ′m1{|x1−x′2|>ε|log ε|} |ζ(z1, z
′
1)ζ(z′1, z′2) · · · ζ(z′m, z2)|

e−
β
4 (v2

1+v2
2+
∑m

i=1
|v′i|

2)

6
C

|log ε|1/2 ε
(m−1)(1−d)

∫
dz′2 . . . dz′m|ζ(z′2, z′3) · · · ζ(z′m, z2)|

e−
β
8 (v2

2+
∑m

i=2
|v′i|

2) ,
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where we applied an estimate as (4.10) using part of the exponential factor,
and removed the constraint 1 in the upper bound. Finally, we can integrate
term by term as the constraint on z′i depends only on z′i+1. This leads to
a contribution of the form Cεd−1δ(|v′i| + |v′i+1|) for each constraint. After
integrating the velocities, we obtain an upper bound

Cm−1δm−1ε(m−1)(d−1)(1 + |v2|)e−
β
8 v

2
2

which implies an estimate as in (4.12).

It remains to consider the set {|x1 − x′2| 6 ε|log ε|}. We first integrate
over z′2

εm(1−d)
∫

dZ ′m1{|x1−x′2|6ε|log ε|} |ζ(z1, z
′
1)ζ(z′1, z′2) · · · ζ(z′m, z2)|

e−
β
4 (v2

1+v2
2+
∑m

i=1
|v′i|

2)

6 εm(1−d)Cεd|log ε|de−
β
4 (v2

1+v2
2)
∫

dz′1|ζ(z1, z
′
1)|e−

β
4 |v
′
1|

2

×
∫

dz′3 . . . dz′m|ζ(z′3, z′4) · · · ζ(z′m, z2)|e−
β
4

∑m

i=3
|v′i|

2
.

This breaks the cluster into two independent parts which can be estimated
separately by the product of the volume of the cylinders, leading to a higher
order contribution ε|log ε|dCmδm−1. This completes the derivation of (4.12)
and the proof of (4.7) for j = 2. �

The statement for j = 1 is also similar and follows from the cluster
expansion of [25]. In fact Theorem 2.2 and Proposition 6.1 in [25] imply that
f

(1)
ε,0 is uniformly bounded by a geometric series for δ small.

Note that, in particular, the scaling condition (4.2) holds, with κ uni-
formly bounded in δ. Indeed, since there exists a (nontrivial) measurable
nonnegative f (1) such that f (1)

ε,0 → f (1) as ε→ 0, it follows that

εd−1Eµε
(
N
)

= εd−1
∫
ρ

(1)
ε,0(z)dz = µ−1

ε

∫
ρ

(1)
ε,0(z)dz =

∫
f

(1)
ε,0 (z)dz → κ

where κ :=
∫
f (1)(z)dz.

The case j > 2 can be treated similarly, however the expressions are more
lengthy and we refer to [34] for details.
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5. Concluding remarks

5.1. Some wrong ideas about irreversibility

The previous analysis brings a more precise understanding of Loschmidt’s
paradox : it indicates where the irreversibility of the Boltzmann description
appears in the limiting process.

We would like first to comment upon some of the possible explanations
which can be found in the literature.

• The direction of time in the Boltzmann dynamics is not related to
an arbitrary choice in writing the collision operator. Once the ini-
tial data is prescribed, one has no choice in expressing the collision
operator in terms of pre-collisional configurations for positive times,
and in terms of post-collisional configurations for negative times. As
explained in Remark 2.1, this is the only way to define properly the
traces by using the transport operator. This is also related to the
fact that only the distribution of ingoing configurations has to be
prescribed for the transport equation (see Remark 1.2).
• Irreversibility is not a direct consequence of chaos. One can indeed
start from a non chaotic initial data, in which case the Boltzmann
hierarchy does not decouple. However, even in this case, we have seen
in Section 3.1 that the limiting evolution is irreversible. We indeed
have a Lyapunov functional, obtained by linear superposition of the
entropy functionals with the Hewitt–Savage measure, which is non
increasing.
• Irreversibility is not due to neglecting the interaction length in the
collision process. In the limit, we forget indeed about the relative
(microscopic) positions of the particles at the time of collisions, but
this information could be kept by introducing an intermediate de-
scription, i.e. a simple modification of the Boltzmann equation re-
ferred to as the Enskog hierarchy [29]. In this equation the collision
operator is still of type (2.3). However, Arkeryd and Cercignani [2]
(see also [6]) prove that the Enskog equation (and thus the Enskog
hierarchy using the previous superposition principle) is irreversible.

5.2. A very singular averaging process

Neglecting spatial micro-translations in the limit induces a first loss of
information. The second loss of information, which is actually responsible
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for the loss of reversibility, consists in neglecting pathological configurations,
i.e. configurations leading to pseudo-trajectories involving recollisions. These
sets B±ε0

defined in (2.10) have a simple geometric definition, and their mea-
sure converges to 0 in the limit. So apparently it seems rather natural not
to care about them.

The point is that the marginals at time t can be computed as weighted
averages of the initial marginals on very singular sets, which have exactly the
same structure and the same measure. Recollisions of the backward dynam-
ics are indeed exactly collisions of the forward pseudo-dynamics. We have
therefore identified very precisely why time-concatenation is possible while
reversing the arrow of time is not. This can be summarized as in Figure 5.1.

����

B 
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B 

B 

B B 

B 
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��

��

���� ��
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����
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Figure 5.1. Convergence and lack of convergence over singular sets

Note that, for a better understanding of the Boltzmann dynamics, it is not
enough to look at the specific initial data (1.2), as its particular form is not
stable under the dynamics. We would need a more systematic classification
of the limiting dynamics depending on the microscopic structure of the n-
particle distribution.
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