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Permanental Point Processes on Real Tori, Theta
Functions and Monge–Ampère Equations (∗)

Jakob Hultgren (1)

ABSTRACT. — Inspired by constructions in complex geometry we introduce a
thermodynamic framework for Monge–Ampère equations on real tori. We show con-
vergence in law of the associated point processes and explain connections to complex
Monge–Ampère equations on abelian varieties and optimal transport.

RÉSUMÉ. — On introduit un cadre thermodynamique pour des équations Monge–
Ampères sur des tores réelles, qui est inspiré par des constructions en géometrie
complexe. On démontre la convergence en loi pour les processus aléatoires corres-
pondants, expliquant les liens avec des équations de Monge–Ampères complexes sur
des variétés abéliennes et le transport optimal.

1. Introduction

In a series of papers culminating in [4] Berman introduced a thermody-
namic framework for complex Monge–Ampère equations. In particular, he
showed how the Monge–Ampère measures of solutions to complex Monge–
Ampère equations can be seen as limits of canonically defined (so called
temperature-deformations of) determinantal point processes. Inspired by
this we will introduce a thermodynamic framework for real Monge–Ampère
equations on the real torus X = Rn/Zn. Using certain families of functions
analogous to theta functions on Abelian varieties we construct permanen-
tal point processes on X. Our first result (Theorem 1.2) is that, as long as
the Monge–Ampère equation admits a unique solution, the point processes
defined by the statistic mechanical framework converges in law towards the
Monge–Ampère measure of this unique solution. Equivalently, and in the

(*) Reçu le 19 mai 2016, accepté le 19 février 2017.
(1) Chalmers University of Technology, Chalmersplatsen 4, 412 96 Gothenburg

(Sweden) — Current address: University of Oslo, P.O. Box 1072 Blindern, 0316 Oslo
(Norway) — jakobhu@math.uio.no

Article proposé par Vincent Guedj.

– 11 –

mailto:jakobhu@math.uio.no


Jakob Hultgren

language of thermodynamics, under absence of first order phase transitions
the microscopic setting admits a macroscopic limit that is determined by the
Monge–Ampère equation. (See [28] for a general reference on the relations
between the theory of large deviations used here and statistical mechanics.
See also [2] for relations between statistical mechanics and complex geome-
try).

The real torus should be seen as one of several settings where strong con-
nections between complex geometry, real Monge–Ampère equations and op-
timal transport are manifested (the related case of toric manifolds is treated
in [3]). We will exploit these connections to produce semi-explicit approxi-
mations of optimal transport maps on X (see Corollary 6.6). As such, this
work ties in with the works by McCann [24] and Cordero-Erasquin [12] on
optimal transport on Riemannian manifolds.

Moreover, motivated by the difficult problem of singular Kähler–Einstein
metrics of (almost everywhere) positive curvature on complex varieties we
propose a corresponding real Monge–Ampère equation on X (see equa-
tion (1.3) below). The assumption of no first order phase transition always
holds for positive temperature. However, a reflection of the fact that the
related complex geometric problem is one of positive curvature is that the
statistical mechanic setting for (1.3) is of negative temperature. As a second
result, by proving a uniqueness theorem for Monge–Ampère equations of
independent interest (see Theorem 1.4), we rule out first order phase transi-
tions down to the critical temperature of −1. In a future paper we hope to
address the question of uniqueness for temperatures smaller than −1, which
might be seen as the analog of the problem studied in [23] (in particular The-
orem 1.2 in [23]). We stress that the point processes and real Monge-Ampère
equations treated here are only analogous to the related complex geometric
objects. In particular, Theorem 1.2 and Theorem 1.4 are independent of cor-
responding statements about convergence, existence and uniqueness in the
complex geometric setting (see Section 6 for more on this).

1.1. Setup

Let dx be the standard volume measure on X induced from Rn. Let β be
a real constant and µ0 a probability measure on X, absolutely continuous
and with smooth, strictly positive density with respect to dx. Given the data
(µ0, β) we will consider the real Monge–Ampère equation on X given by

MA(φ) = eβφdµ0. (1.1)
Here MA is the Monge–Ampère operator defined by

φ 7→ det(φij + δij)dx. (1.2)
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where (φij) is the Hessian of φ with respect to the coordinates on X induced
from Rn and δij is the Kronecker delta. As usual we demand of a solution
φ : X → R that it is twice differentiable and quasi-convex in the sense that
(φij + δij) is a positive definite matrix.

We will pay specific attention to the case when µ0 is chosen as the measure

γ =
∑
m∈Zn

e−|x−m|
2/2dx.

We get the equation
MA(φ) = eβφγ. (1.3)

As mentioned above this equation has an interpretation in terms of complex
geometry. For β = −1, (1.3) arises as the "push forward" of a twisted Kähler–
Einstein equation on the Abelian variety Cn/4πZn + iZn. A more detailed
exposition of this relation will follow in Section 6.1.

1.2. Construction of the Point Processes

The point processes we will study arise as the so called "temperature -
deformations" of certain permanental point processes (see [19] for a survey).
Let’s first recall the general setup of a permanental point process with N
particles. We begin by fixing a set of N functions on X

S(N) = {Ψ(N)
1 , . . . ,Ψ(N)

N }.

This defines a matrix valued function on XN

(x1, . . . , xN )→ (Ψ(N)
i (xj)).

Recall that the permanent of a matrix A = (aij) is the quantity∑
σ

∏
i

ai,σ(i)

where the sum is taken over all permutations of the set {1 . . . , N}. Together
with the background measure µ0 this defines a symmetric probability mea-
sure on XN

perm(Ψ(N)
i (xj))dµ⊗N0 /ZN , (1.4)

where ZN is a constant ensuring the total mass is one. This is a permanental
point process.

Now, for each positive integer k, let N = kn and PN be the set of points
in X given by the image under the quotient map of the lattice 1

kZ
n ⊂ Rn.

Note that the number of points in PN is N . Then let
S(N) = {Ψ(N)

p : p ∈ PN}
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where
Ψ(N)
p (x) =

∑
m∈Zn+p

e−k|x−m|
2/2.

We make the following definition:

Definition 1.1. — Let k ∈ N, N = kn, β be a real number, µ0 a
probability measure on X and S(N) = {Ψ1, . . . ,ΨN} be defined as above. We
define µ(N)

β to be the symmetric probabily measure on XN given by

µ
(N)
β =

(
perm(Ψ(N)

i (xj)
)β/k

dµ⊗N0 /Zβ,N (1.5)

where Zβ,N is a constant ensuring the total mass is one.

Note that µ(N)
β is not formally a permanental point process. It differs

from (1.4) by an exponent β/k in the density. We will call point processes
of this form temperature-deformation of permanental point processes. In the
case when β = k, and hence (1.5) reduces to (1.4) we will use the term true
permanental point process to emphasize that µ(N)

β is really a permanental
point process.

Finally, we make two remarks on the definitions. In [25] permanental point
processes are used to model a bosonian many particle system in quantum
mechanics. In that interpretation Ψ(N)

i defines a 1-particle wave function and
the permanent above is the corresponding N -particle wave function defined
by Ψ(N)

1 , . . . ,Ψ(N)
N . Secondly, we will explain in Section 6.2 how the functions

in S(N) arise as the "push forward" of θ-functions on Cn/(4πZn + iZn).

1.3. Main Results

Denote the space of probability measures on X byM1(X) and consider
the map δ(N) : XN →M1(X)

δ(N)(x) = δ(N)(x1, . . . , xN ) = 1
N

N∑
i=1

δxi .

Let x = (x1, . . . , xN ) ∈ XN be the random variable with law µ
(N)
β . The

image of x under δ(N), δ(N)(x), is the empirical measure. This is a random
measure with law given by the push-forward measure

Γ(N)
β =

(
δ(N)

)
∗
µ

(N)
β ∈M1(M1(X)) (1.6)

Our results concern the weak* limit (the limit in the topology induced by
weak convergence of measures) of Γ(N)

β asN →∞. In particular we will show,
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in some cases, that the limit is a Dirac measure concentrated at a certain
µ∨ ∈ M1(X) related to (1.1) or (1.3). Loosely speaking, this means µ∨ can
be approximated by sampling larger and larger point sets on X according to
µ

(N)
β .

Theorem 1.2. — Let µ0 ∈ M1(X) be absolutely continuous and have
smooth, strictly positive density with respect to dx. Let Γ(N)

β be defined as
above and let β ∈ R. Assume also that (1.1) admits a unique solution, φ∨.
Then

Γ(N)
β → δµ∨ (1.7)

in the weak* topology ofM1(M1(X)), where µ∨ = MA(φ∨).

Remark 1.3. — The assumption that (1.1) admits a unique solutions is
always satisfied when β > 0. This follows from standard arguments (see
Theorem 5.6). However, the case β < 0 is a lot more subtle. In our second
result we show that, in the special case µ0 = γ, the assumption holds for
certain negative values of β as well.

Theorem 1.4. — Assume µ0 = γ and β ∈ [−1, 0). Then equation (1.3)
admits a unique solution.

Remark 1.5. — The complex Monge–Ampère equation analogous to Equa-
tion (1.3) was considered by Lin andWang in [23]. Theorem 1.4 can be seen as
the real analog of Theorem 1.2 in [23]. However, solutions to Equation (1.3)
do not induce solutions to the corresponding complex Monge–Ampère equa-
tion (see Section 6.1). Hence Theorem 5.6 does not follow from the results
in [23].

Note that if β 6= 0 and µ∨ = MA(φ∨)dx where φ∨ is a solution to (1.1),
then φ∨ can be recovered from µ∨ as φ∨ = 1

β log ρ where ρ is the density of
µ∨ with respect µ0. In fact we get the following corollary of Theorem 1.2.

Corollary 1.6. — Let µ0 ∈M1(X) be absolutely continuous and have
smooth, strictly positive density with respect to dx. Let β 6= 0. Assume also
that (1.1) admits a unique solution, φ∨. Let φN : X → R be the function
defined by

φN (x1) = 1
β

log
∫
XN−1

(
perm(Ψ(N)

pi (xj)
)β/k

dµ
⊗(N−1)
0 (x2, . . . , xn)/Zβ,N .

Then φN converges uniformly to φ∨.

If we put β = 0 in (1.1) we get the inhomogenous Monge–Ampère equa-
tion. Solutions then determine optimal transport maps on X. Now, although
Corollary 1.6 does not cover the case β = 0, by considering µ(N)

βN
for the

sequence of constants βN = 1/N we will be able to produce semi-explicit
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approximations of optimal transport maps. However, when working with op-
timal transport it is natural to consider a more general setting than the one
proposed for equation (1.1). Because of this we will not state this corollary
here but postpone it to Section 6.3.

Remark 1.7. — It might be worthwhile to clarify the relationship between
Theorem 1.2 in this paper and Theorem 1.5 in [4]. In Section 6.2 we explain
that permanental point processes arise as push forwards of determinantal
point processes. This is an indication that convergence in the real setting
would be closely connected to convergence in the complex setting. However,
the theorems above are independent of each other. In other words, Theo-
rem 1.2 does not follow from Theorem 1.5 in [4] and Theorem 1.2 does not
imply a special case of Theorem 1.5 in [4]. The reason for this is that the
push forward relation only holds for true permanental and determinantal
point processes. Theorem 1, as well as Theorem 1.5 in [4], concerns cases
when the densities of the point processes are taken to the power of β/k (i.e.
the point processes are temperature-deformed). As temperature-deforming
and taking push forward are two operations that does not commute, the
convergence in Theorem 1 does not imply, and does not follow from, the
convergence in Theorem 1.5 in [4].

1.4. Outline

Convergence in Theorem 1.2 and a Large Deviation Principle.
Theorem 1.2 will follow from a large deviation principle for the sequence
Γ(N)
β (see Theorem 3.2). This large deviation principle provides a quantita-

tive description of the convergence in Theorem 1.2, recording the speed of
convergence in a rate function G : M1(X) → [0,∞), satisfying inf G = 0
and a rate {rN} ⊂ R such that rN → ∞ as N → ∞. We will give a for-
mal definition of large deviation principles in Section 3. Roughly speaking,
a large deviation principle with rate function G and rate rN holds if, for
U ⊂M1(X), the probability Γ(N)

β (U) behaves as

e−rN infU G

as N →∞. This means Γ(N)
β , for large N , is concentrated where G is small.

In particular, if G admits a unique minimizer, µ∨, (where G = 0) then it
follows that (see Section 4.3) Γ(N)

β converges in the weak* topology to δµ∨ .

Proof of the Large Deviation Principle. It turns out that the rate
function above is related to the Wasserstein metric of optimal transport. In
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Section 2 we will recall some basic facts about optimal transport. In partic-
ular, we explain how Kantorovich’ duality principle gives an explicit formula
for the Legendre transform of the squared Wasserstein distance from a fixed
measure. The proof of the Large Deviation Principle (Theorem 3.2) is given
in Section 3 and it is divided into two parts of which the first part uses this
explicit formula. In the first part, given in Section 3.1, we take a sequence
of constants βN such that βN → ∞ and study the family {Γ(N)

βN
}. In the

thermodynamic interpretation this means we are studying the zero temper-
ature limit of the system. Using the formula given by Kantorovich duality
and the Gärtner–Ellis theorem, relating the moment generating functions of
Γ(N)
βN

to the Legendre transform of a rate function, we prove a large deviation
principle for this family (see Theorem 3.6). In the second part of the proof
we show how the large deviation principle in Theorem 3.2 can be deduced
from this. This is based on essentially well known arguments. However, for
completeness we give a proof of this in Section 3.2. It turns out that the cru-
cial point is the equicontinuity and uniform boundedness of the (normalized)
energy functions

− 1
kN

log perm(Ψ(N)
i (xj)).

These properties will follow from equicontinuity properties and bounds on
the functions Ψ(N)

i and we give a proof of these properties in Section 3.3.

Connection to the Monge–Ampère Equation.The final ingredients
in the proof of Theorem 1.2 are given in Section 4.1 and Section 4.2 (essen-
tially by Lemma 4.1 and Theorem 4.3). These sections connect the large de-
viation principle above with the Monge–Ampère equation (1.1). Note that,
as inf G = 0, G admits a unique point where G = 0 if and only if G admits
a unique minimizer. We apply a variational approach to (1.1). Uniqueness
and existence of solutions is studied by means of a certain energy functional
on C(X) whose stationary points corresponds to weak solutions of (1.1).
The rate function above, G, is closely related to this energy functional. This
relation encodes the fact that minimizers of G arise as the Monge–Ampère
measures of solutions to (1.1). Moreover, it follows from this relation that
G admits a unique minimizer if the energy functional does, which is true if
and only if (1.1) admits a unique solution.

Existence and Uniqueness of Solutions (Theorem 1.4).Existence
of weak solutions will follow from the variational approach and compactness
properties of the space of quasi convex functions on X (see Section 5.1) and
regularity will follow from results by Cafarelli explained in Lemma 5.5. These
type of existence results for Monge–Ampère equations on affine manifolds
was originally proven by Caffarelli and Viaclovsky [10] on the one hand and
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Cheng and Yau [11] on the other. However, we will provide an alternative
proof based on the variational principle above. Uniqueness, which is one
of the main new contributions in this paper is proved in Section 5.3. Here
we look at the space of quasi-convex functions equipped with a geodesic
structure different from the standard one. The geodesic structure we are
using is natural from a convex geometric perspective and it coincides with
the geodesic structure induced by Mabuchi geodesics in the space of Kähler-
Metrics on Abelian varieties. It will then follow from the Prekopa inequality
that the energy functional associated to (1.3) is strictly convex with respect
to this geodesic structure, hence admits no more than one minimizer. This
is an extension of an argument used in [5] to prove uniqueness of Kähler–
Einstein metrics on toric Fano manifolds. Curiously, there does not seem to
be any direct argument for this using the Prekopa theorem on Riemannian
manifolds (see [13]). Instead, we need to lift the problem to the covering
space Rn and use that γ is the push forward of a measure on Rn with strong
log-concavity properties.

Geometric Motivation. In Section 6 we explain the connections to the
point processes on compact Kähler manifolds introduced by Berman in [4].
More precisely, we explain the connection with a complex Monge–Ampère
equations on Cn/(4πZn + iZn) and how the functions in S(N) and perma-
nental point processes defined here are connected to theta-functions and
determinantal point processes on Cn/(4πZn + iZn). Finally, in Section 6.3
we show how the connection to optimal transport can be used to get semi-
explicit approximations of optimal transport maps on X.

We end this section with two comments. While some parts of Section 3
might be well known to readers with a probabilistic background and, likewise,
some parts of Section 4 might be familiar to readers with a background in
geometry or optimal transport we nevertheless want to provide a paper that
is accessible to readers from all three of these fields. This should (at least
partly) explain the length of the paper.

Finally, comparing this paper to [3] where a similar probabilistic frame-
work was set up for the toric settting, we will include a paragraph explaining
some of the differences between the two papers. The setup in [3] is based
on the same idea (namely the push-forward formula in Lemma 6.5) and
Theorem 3.2 and Theorem 3.6 has clear analogs in [3] (Theorem 1.1 and
Proposition 5.3). However, the setup in terms of the functions in S(N) as
analogs of theta functions on Abelian varieties and the part fitting these
into the theory of optimal transport had to be developed specifically for this
paper. This should be contrasted with the toric setting where real analogs
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of metrics on line bundles, sections and their connection to optimal trans-
port is more well-known. Moreover, the process of reducing Theorem 3.2 to
Theorem 3.6, i.e. Theorem 3.12 (compare Theorem 1.4 in [3]) is done in a
more direct way in this paper (based on an argument which is actually out-
lined in Section 4.6 [3]). There are also important differences related to the
case of negative β. From the perspective of complex geometry this is of high
interest. One crucial point in the case of negative β is the finiteness of the
partition functions

ZN,β =
∫
XN

perm(Ψi(xj))β/kµ⊗N0

which, in our setting, follows from compactness. Another, more difficult,
obstacle in the negative setting for us is that in order for the convergence in
Theorem 1.2 to hold we need to establish uniqueness of solutions to (1.1).
In the toric setting this follows from known results. In the setting of this
paper, this is a subtle question which is partly settled in Theorem 1.4 where
we establish this uniqueness in a family of cases. However, we conjecture
that uniqueness does not hold in general for negative β and µ0 satisfying the
assumptions of Theorem 1.2.

Acknowledgements.The author would like to thank Robert Berman
and Yanir Rubinstein for many interesting discussions on the subject of the
paper (see for example Remark 3.10). Moreover, the author is grateful to
Bo Berndtsson who read and commented on an earlier version of the paper
as well as both referees for their many comments and suggestions, greatly
improving the exposition and accuracy of the paper.

2. Preliminaries: Optimal Transport on Real Tori

In this section we will recall some basic theory of optimal transport. The
content of the section is well known. Early contributors to the theory are
Cordera-Erasquin [12] who studied the theory of optimal transport on real
tori and McCann [24] generalized it to Riemannian manifolds. The reason for
this is the close relation between optimal transport and real Monge–Ampère
equations. The most important part is Corollary 2.7. There we explain how
Kantorovich’ duality theorem gives a variational approach to real Monge–
Ampère equations and an explicit formula for the Legendre transform of
the functional µ → W 2(µ, dx), where W 2(·, ·) is the Wasserstein metric, a
distance function onM1(X) defined in terms of optimal transport and which
turn up in the rate function describing the behaviour of the point process
Γ(N)
β as N →∞.
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2.1. Kantorovich’ Problem of Optimal Transport

We will use Kantorovich’ formulation (as opposed to Monge’s formula-
tion) of the optimal transport problem. The given data is a smooth manifold
Y , a cost function c : Y × Y → [0,∞), a source measure, µ ∈ M1(Y ) and
a target measure, ν ∈ M1(Y ). Kantorovich problem of optimal transport is
the problem of minimizing the functional

C(γ) =
∫
Y×Y

c(x, y)dγ(x, y)

over the set of transport plans, Π(µ, ν), consisting of measures γ ∈M1(Y×Y )
such that the first and second marginals of γ equal µ and ν respectively. The
optimal transport distance between µ and ν is the quantity

inf
γ∈Π(µ,ν)

C(γ). (2.1)

In our case Y = X, ν = dx and c = d(·, ·)2/2 where d is the distance function
on X induced from Rn. In other words, if x, y ∈ Rn and π : Rn → X is the
quotient map, then

c(π(x), π(y)) = d(π(x), π(y))2

2 = infm∈Zn |x− y −m|2

2 .

With this choice of cost function, (2.1) is often referred to as the (squared)
Wasserstein distance, W 2(µ, dx), between µ and dx.

2.2. The c-Transform and c-Convex Functions

A cost function in optimal transport defines a c-transform, closely related
to Legendre transform on Rn. Let C(X) be the space of continuous functions
on X. For φ ∈ C(X) the c-transform of φ is

φc(y) = sup
x∈X

(−c(x, y)− φ(x)) = sup
x∈X

(
−d(x, y)2

2 − φ(x)
)

(2.2)

Note that if φ is a smooth function on X such that (φij + δij) is positive
definite, then there is a natural way of associating to φ a convex function on
Rn, namely

Φ(x) = φ ◦ π(x) + |x|
2

2 . (2.3)

Let C(Rn) be the space of continuous functions on Rn and if Φ ∈ C(X)
let Φ∗ denote the Legendre transform of Φ. The map from C(X) to C(Rn)
given by φ 7→ Φ, relates c-transform on X to Legendre transform on Rn in
the sense that
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Lemma 2.1. — Let φ ∈ C(X) and

Φ(x) = φ ◦ π(x) + |x|
2

2 .

Then

Φ∗(y) = φc ◦ π(y) + |y|
2

2 .

Proof. — Note that

sup
x∈Rn

(
−|x− y|

2

2 − φ ◦ π(x)
)

= sup
x∈[0,1]n,m∈Zn

(
−|x− y −m|

2

2 − φ ◦ π(x)
)

= sup
x∈[0,1]n

(
− inf
m∈Zn

(
|x− y −m|2

2

)
− φ ◦ π(x)

)
= sup
x∈X

(
−d(x, π(y))2

2 − φ(x)
)

= φc ◦ π(y).

This means

Φ∗(y) = sup
x∈Rn

(〈x, y〉 − Φ(x))

= sup
x∈Rn

(
−|x− y|

2

2 − φ ◦ π(x)
)

+ |y|
2

2

= φc ◦ π(y) + |y|
2

2 .

which proves the lemma. �

It follows that φ ∈ C(X) satisfies (φc)c = φ if and only if Φ is convex.
The property (φc)c = φ is often referred to as c-convexity and we will denote
the set of functions in C(X) that satisfy this P (X). In other words

P (X) = {φ ∈ C(X) : (φc)c = φ}

= {φ ∈ C(X) : Φ = φ ◦ π + |x|
2

2 convex}.

Since Φ∗ is convex for any Φ ∈ C(Rn) we get that φc ∈ P (X), for any
φ ∈ C(X). Moreover, also from the theory of convex functions on Rn, we get
that the projection φ 7→ (φc)c of C(X) onto P (X) is monotone in the sense
that (φc)c(x) 6 φ(x) for all x ∈ X.

Let P (Rn) be the set of convex functions on Rn. It is easy to verify
that the image of P (X) in P (Rn) under the map φ 7→ Φ (where Φ is given
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by (2.3)) is given by the set

PZn(Rn) = {Φ ∈ P (Rn) : Φ(x+m)− |x+m|2

2 = Φ(x)− |x|
2

2 ∀ m ∈ Zn}

= {Φ ∈ P (Rn) : Φ(x+m) = Φ(x) + 〈x,m〉+ m2

2 ∀ m ∈ Zn}

(2.4)

Now, let φ ∈ P (X) and Φ be the image of φ in PZn(Rn). Then Φ is
differentiable at a point x ∈ Rn if and only if φ is differentiable at π(x).
Since a convex function on Rn is differentiable almost everywhere we get
that any φ ∈ P (X) is differentiable almost everywhere (with respect to dx).
Further, it follows from (2.4) that Φ is differentiable at x and ∇Φ(x) = y
if and only if Φ is differentiable at x + m and ∇Φ(x + m) = y + m. This
means the map ∇Φ : Rn → Rn, where it is defined, factors through to a
map X → X. This map is the so called c-gradient map in optimal transport,
denoted ∇cφ. It satisfies the formula

∇cφ(π(x)) = π(∇Φ(x)).
Further, Φ is differentiable at x and Φ(x) = y if and only if y is the unique
point in Rn such that

Φ(x) + Φ∗(y) = 〈x, y〉 . (2.5)
This holds if and only if

φ ◦ π(x) + φc ◦ π(y) = −d(π(x), π(y))2

2 . (2.6)

We conclude that φ is differentiable and ∇cφ(π(x)) = π(y) if and only if
π(y) is the unique point in X such that (2.6) holds. In fact, this is the usual
definition of the c-gradient and one of its strengths is that it becomes im-
mediately apparent that if φ is differentiable at π(x) and φc is differentiable
at π(y) = ∇cφ(π(x)), then ∇cφc(π(y)) = π(x).

The definition of the Monge–Ampère operator in (1.2) makes sense for
twice differentiable functions. We will now provide an extension of this op-
erator to P (X).

Definition 2.2. — Let φ ∈ P (X). We define the Monge–Ampère mea-
sure, MA(φ), of φ as

MA(φ) = (∇cφc)∗dx.
Consequently, we refer to functions in P (X) satisfying

(∇cφc)∗dx = µ

as weak solutions to
MA(φ) = µ. (2.7)
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The definition above is a priori different from the usual viscosity defini-
tion. The definition is natural from the perspective of optimal transport (see
Theorem 2.4). Moreover, weak solutions to (1.1) in terms of Definition 2.2 is
the natural analog of so called Alexandrov solutions to Monge–Ampère equa-
tions on Rn (see Section 5.2) (which is equivalent to viscosity solutions). In
fact, we will see in Lemma 5.4 that the map φ 7→ Φ where Φ is given by (2.3)
gives a direct link between these two types of solutions. First of all, however,
we include a lemma that shows that smooth weak solutions are classical
solutions.

Lemma 2.3. — Assume φ is smooth and (φij + δij) is strictly positive
definite. Then

det(φij + δij)dx = (∇cφc)∗dx.

Proof. — First of all, we claim that ∇cφc : X → X is one-to-one. To see
this, assume that ∇cφc(x1) = ∇cφc(x2) for x1, x2 ∈ X. Let x̃1, x̃2 ∈ Rn be
lifts of x1 and x2 respectively and Φ∗ be the image of φ∗ in PZn(Rn). We get

∇Φ∗(x̃1) = ∇Φ∗(x̃2) +m

for some m ∈ Zn. By (2.4) we get ∇Φ∗(x̃1) = ∇Φ∗(x̃2 + m). But since φ,
and hence Φ, is smooth Φ∗ must be strictly convex. This means x̃1 = x̃2 +m
and x1 = x2, proving the claim.

The previous claim implies, since π ◦ ∇Φ∗ = ∇cφc ◦ π, that π maps
∇Φ∗([0, 1)n) diffeomorphically to X. Further,

det(φij + δij) ◦ π = det(Φij) = 1
det(Φ∗ij)

(2.8)

and the denominator of the right hand side of (2.8) is the Jacobian determi-
nant of the map ∇Φ∗ : Rn → Rn. Note that the last equality in (2.8) follows
from standard properties of convex functions on Rn. Let h ∈ C(X). Then∫

X

hdet(φij + δij)dx =
∫
∇Φ∗([0,1)n)

h ◦ π
det(Φ∗ij)

dx =
∫

[0,1)n
h ◦ π ◦ ∇Φ∗dx

=
∫

[0,1)n
h ◦ ∇cφc ◦ πdx =

∫
X

h ◦ ∇cφcdx. (2.9)

which proves the lemma. �

2.3. Kantorovich Duality

We now return to the problem of optimal transport. Although it has very
satisfactory solutions providing existence and characterization of minimizers
under great generality, we will only give part of that picture here. For us, the
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important feature of the problem of optimal transport is its dual formulation.
Introducing the functional ξ on C(X) defined by

ξ(φ) =
∫
X

φcdx

we get a functional J on C(X)

J(φ) = −
∫
X

φdµ− ξ(φ).

This functional describes the dual formulation of the problem of optimal
transport in the sense that W 2(µ, dx) can be recovered as the supremum of
J over C(X). Moreover, the maximizers of J are weak solutions to a certain
Monge–Ampère equation. This is recorded in the following theorem.

Theorem 2.4 ([21],[22],[6]). — Let µ ∈M1(X) be absolutely continuous
with respect to dx. Let c = d2/2 where d is the distance function on X induced
from Rn. Then

W 2(µ, dx) = inf
γ∈Π(µ,dx)

C(γ) = sup
φ∈C(X)

J(φ). (2.10)

and there is φµ ∈ P (X) such that
sup

φ∈C(X)
J(φ) = J(φµ). (2.11)

Moreover,
MA(φµ) = µ. (2.12)

Remark 2.5. — Equation 2.10 is called Kantorovich’ duality [21] and
property (2.12) is the Knott-Smith criterion which, in the context of Monge’s
problem of optimal transport in Rn, was discovered independently by Knott
and Smith in 1984 [22] and by Brenier in 1987 [6]. It was established for
general Riemannian manifolds by McCann [24]. In this case (2.12) involves
a curvature term which, since the real torus with the metric induced by Rn
is flat, vanishes.

Proof of Theorem 2.4. — The theorem is essentially given by Theo-
rem 5.10 in [30]. As X is a smooth manifold that can be endowed with a
complete metric, X is indeed a Polish space. Further, d is continuous and
bounded on X. Putting γ′ = µ× dx gives

inf
γ∈P(µ,dx)

C(γ) 6 C(γ′) <∞

hence the assumptions in 5.10.i, 5.10.ii and 5.10.iii in [30] holds. In particular
we get that (2.10) holds and that there is an optimal transport plan γ ∈
Π(µ, dx) and φγ ∈ P (X) such that γ is concentrated on the set

{(x, y) ∈ X ×X : φγ(x) + φcγ(y) = −c(x, y)}. (2.13)
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Let φµ = φγ . To see that (2.11) holds, note that, since the first and second
marginals of γ are µ and ν respectively,

W 2(µ, dx) =
∫
X×X

cγ = −
∫
X×X

(
φµ(x) + φcµ(y)

)
γ

= −
∫
X

φµ(x)dµ−
∫
X

φcµ(y)dx.

To see that (2.12) holds note that φcµ ∈ P (X) is differentiable almost every-
where with respect to dx. Let A ⊂ X be a measurable set and dom∇cφcµ ⊂ X
be the set where φcµ is differentiable. We have

γ(X × dom∇cφcµ) = dx(dom∇cφcµ) = 1.
As γ is concentrated on (2.13) we get that γ is concentrated on the set

{(x, y) : y ∈ dom∇cφcµ, x = ∇cφcµ(y)}.
This means∫

(∇cφcµ)−1(A)
dx =

∫
X×(∇cφcµ)−1(A)

dγ =
∫
A×(∇cφcµ)−1(A)

dγ

=
∫
A×X

dγ =
∫
A

dµ,

in other words (∇cφcµ)∗dx = µ, which proves (2.12). �

2.4. The Variational Approach to Real Monge–Ampère
Equations

We will now reformulate the statement of Theorem 2.4 in terms of the
Legendre transform and Gâteaux differentiability of the functional ξ. Recall
that if A is a functional on C(X), then the Legendre transform of A is
a functional on the dual vector space of C(X), the space of finite signed
measures on X,M(X). This functional is given by

B(µ) = sup
φ∈C(X)

(∫
Y

φdµ−A(φ)
)
.

Recall also that if A is convex, then A is Gâteaux differentiable at a point φ
and has Gâteaux differential µ if µ is the unique point inM(X) such that

B(µ) =
∫
Y

φdµ−A(φ).

A priory W 2(·, dx) is defined onM1(X). However, we may extend the defi-
nition to all ofM(X) by putting W 2(µ, dx) = +∞ for any µ /∈M1(X). We
begin with the following lemma
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Lemma 2.6. — The functional ξ is convex on C(X). Moreover, let φ0, φ1 ∈
C(X) and

φt = tφ1 + (1− t)φ0.

Then, if ξ(φt) is affine in t,

∇cφc0 = ∇cφc1
almost everywhere with respect to dx.

Proof. — First of all, for any y ∈ X, the quantity

φct(y) = sup
x∈X

(−c(x, y)− φt(x)) (2.14)

is a supremum of functions that are affine in t, hence it is convex in t.
This implies ξ(φt) is convex in t. Now, assume ξ(φt) is affine in t. This
implies (2.14) is affine in t for almost all y. Assume y is a point such that
∇cφc0(y), ∇cφc1/2(y) and ∇cφc1(y) are defined and (2.14) is affine. Let x1/2 =
∇cφc1/2(y). This means

φc1/2(y) = −c(x1/2, y)− φ1/2(x1/2).

By construction
φct(y) > −c(x1/2, y)− φt(x1/2)

for any t ∈ [0, 1]. As φct and −c(x1/2, y) − φt(x1/2) are affine functions (in
t) that coincide in one point in the interior of their domains, this inequality
implies that they coincide. This means ∇cφc0(y) = ∇cφc1/2(y) = ∇cφc1(y).
As ∇cφc0, ∇cφc1/2 and ∇cφc1 are defined almost everywhere, this proves the
lemma. �

This allows us to draw the following conclusions from Theorem 2.4:

Corollary 2.7. — The functional onM(X) defined by (−µ) 7→W 2(µ, dx)
is the Legendre transform of ξ. Moreover, for any µ ∈M1(X) there is φ such
that

W 2(µ, dx) + ξ(φ) = −
∫
X

φdµ.

Finally, ξ is Gâteaux differentiable on C(X) and

dξ|φ = −MA(φ). (2.15)

Proof. — The first statement is, as long as µ ∈ M1(X), a direct conse-
quence of (2.10). If µ /∈M1(X) then putting φC = φ+C for some φ ∈ C(X)
and C ∈ R gives (φC)c = φc − C and

−
∫
X

φCdµ− ξ(φC) = −
∫
X

φdµ− ξ(φ) + C(1− µ(X)).
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Letting C →∞ if µ(X) < 1 and C → −∞ if µ(X) > 1 gives

sup
φ∈C(X)

(∫
X

φdµ− ξ(φ)
)

= +∞,

proving the first statement. The second statement is also a direct conse-
quence of Theorem 2.4. We will now prove that ξ is Gâteaux differentiable
and that (2.15) holds. Let φ ∈ C(X). We claim that there is µ ∈M(X) such
that

ξ(φ) +W 2(µ, dx) = −
∫
φdµ, (2.16)

in other words µ is a supporting hyperplane of ξ at φ. To see this, note that
since W 2(−·, dx) is the Legendre transform of ξ we get that W 2(·, dx) is
lower semi-continuous and

ξ(φ) +W 2(µ, dx) > −
∫
φdµ (2.17)

for all µ ∈ M(X). By lemma 2.6, ξ is convex on C(X). By the involutive
property of Legendre transform

ξ(φ) = sup
µ∈M(X)

(
−
∫
X

φdµ−W 2(µ, dx)
)
.

Let {µi} ⊂ M(X) be a sequence such that

−
∫
X

φdµi −W 2(µi, dx)→ ξ(φ).

We may assume, sinceW 2(µi, dx) =∞ if µi /∈M1(X), that µi ∈M1(X) for
all i. SinceM1(X) is compact we may take a subsequence {µik} converging
weakly to some µ ∈ M1(X). By the lower semi-continuity of W 2(·, dx) we
get

−
∫
X

φµ−W 2(µ, dx) > lim inf
k→∞

−
∫
X

φµik −W 2(µik , dx) = ξ(φ).

which, together with (2.17), proves the claim. We will now prove that this
implies

(∇cφc)∗dx = µ. (2.18)
As this relation determines µ we get that µ must be the unique supporting
hyperplane at φ. This implies ξ is Gâteaux differentiable at φ and dξφ = µ,
proving the third statement in the corollary.

Now, to see that (2.18) holds, note that (2.16) implies W 2(µ, dx) < ∞
and hence µ ∈M1(X). By Theorem 2.4 there is a function φµ ∈ P (X) such
that MA(φµ) = µ and

W 2(µ, dx) + ξ(φµ) = −
∫
φµdµ.
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This means µ is a supporting hyperplane of ξ both at φ and at φµ. This
implies ξ(tφ+ (1− t)φµ) is affine. By Lemma 2.6, ∇cφc and ∇cφcµ coincide
almost everywhere with respect to dx and hence (2.18) holds. �

3. A Large Deviation Principle

This section is devoted to Theorem 3.2 which will be the key part in
the proof of Theorem 1.2. Before we state Theorem 3.2 we will recall the
definition of the relative entropy function.

Definition 3.1. — Assume µ, µ0 ∈ M(X) and, if µ is absolutely con-
tinuous with respect to µ, let µ/µ0 denote the density of µ with respect to
µ0. The relative entropy of µ with respect to µ0 is

Entµ0(µ) =


∫
X
µ log µ

µ0
if µ is a probability measure and absolutely
continuous with respect to µ0

+∞ otherwise,

We recall the basic property that Entµ0(µ) > 0 with equality if and only
if µ = µ0.

Theorem 3.2. — Let µ0 ∈ M1(X) be absolutely continuous and have
positive density with respect to dx. Let β ∈ R. Assume Γ(N)

β is defined as in
Section 1.2. Then {

Γ(N)
β

}
satisfy a Large Deviation Principle with rate rN = N and rate function

G(µ) = βW 2(µ, dx) + Entµ0(µ) + Cµ0,β

where W 2(µ, dx) is the squared Wasserstein 2-distance between dx and µ0
(defined in the previous section) and Cµ0,β is a constant ensuring infM1(X)G =
0.

Before we move on we will recall the definition of a Large Deviation
Principle.

Definition 3.3. — Let χ be a topological space, {ΓN} a sequence of
probability measures on χ, G a lower semi continuous function on χ and
rN a sequence of numbers such that rN → ∞. Then {ΓN} satisfies a large
deviation principle with rate function G and rate rN if, for all measurable
E ⊂ χ,

− inf
E◦
G 6 lim inf

N→∞

1
rN

log ΓN (E) 6 lim sup
N→∞

1
rN

log ΓN (E) 6 − inf
Ē
G

where E◦ and Ē are the interior and the closure of E.
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In our case χ =M1(X). As we may endowM1(X) with the Wasserstein
1-metric, metricizing the topology of weak* convergence on χ, we may think
of M1(X) as a metric space. Further, by Prohorov’s Theorem, M1(X) is
compact. In this setting there is an alternative, and well known, criteria for
when a large deviation principle exist.

Lemma 3.4. — Let χ be a compact metric space, {ΓN} a sequence of
probability measures on χ, G a function on χ and rN a sequence of numbers
such that rN → ∞. Let Bd(µ) denote the open ball in χ with center µ and
radius d. Then {ΓN} satisfies a large deviation principle with rate function
G and rate rN if and only if, for all µ ∈ χ

G(µ) = lim
δ→0

lim sup
N→∞

− 1
rN

log ΓN (Bδ(µ))

= lim
δ→0

lim inf
N→∞

− 1
rN

log ΓN (Bδ(µ))

Proof. — Let B be the basis of the topology on χ given by
B = {Bd(µ) : d > 0, µ ∈ χ}.

By Theorem 4.1.11, Theorem 4.1.18 and Lemma 1.2.18 (recall that χ is
compact by assumption) in [15], {ΓN} satisfies a large deviation principle
with rate function G and rate rN if and only if

G(µ) = sup
B∈B:µ∈B

(
lim sup
N→∞

− 1
rN

log ΓN (Bδ(µ))
)

= sup
B∈B:µ∈B

(
lim inf
N→∞

− 1
rN

log ΓN (Bδ(µ))
)
.

Now, if µ ∈ B ∈ B then Bd(µ) ⊂ B for d small enough. This means, since

lim
d→0

(
lim sup
N→∞

− 1
rN

log ΓN (Bδ(µ))
)

(3.1)

is increasing as d→ 0, that

(3.1) > sup
B∈B:µ∈B

(
lim sup
N→∞

− 1
rN

log ΓN (Bδ(µ))
)
. (3.2)

Since, for any d > 0, Bd(µ) is a candidate for the supremum in the right hand
side of (3.2) we get that equality must hold in (3.2). The same argument
goes through with lim sup replaced by lim inf. This proves the lemma. �

Finally we recall the well known

Theorem 3.5 (Sanov’s theorem, see for example 6.2.10 in [15]). — Let
µ0 ∈M1(X). Then the family{(

δ(N)
)
∗
µ⊗N0

}
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satisfies a large deviation principle with rate rN = N and rate function
Entµ0 .

3.1. The Zero Temperature Case and the Gärtner–Ellis Theorem

Recall that N = kn. For each β ∈ R we get a family of probability
measures {Γ(N)

β }k∈N. Theorem 1.2 and Theorem 3.2 are both concerned with
the behavior of these families. In this section we will consider the family
{Γ(N)

k }k∈N (in other words, we will let β = k). We will prove a large deviation
principle for this family (see Theorem 3.6) which, in Section 3.2, will be used
to prove Theorem 3.2.

Theorem 3.6. — Let µ0 ∈ M1(X) be absolutely continuous and have
positive density with respect to dx. Assume Γ(N)

β is defined as in Section 1.2.
Then

{Γ(N)
k }

satisfies a large deviation principle with rate rN = kN and rate function
G(µ) = W 2(·, dx).

Recall that if Γ is a probability measure on a topological vector space
χ, then the moment generating function of Γ is the functional on the dual
vector space χ∗ given by

ZΓ(φ) =
∫
χ

e−〈φ,µ〉dΓ(µ)

where 〈·, ·〉 is the pairing of χ and χ∗. The significance of this for our purposes
lies in the Gärtner–Ellis theorem. Before we state this theorem, recall that a
sequence of (Borel) probability measures {ΓN} on a space χ is exponentially
tight if for each ε ∈ R there is a compact Kε ⊆ χ such that for all N

lim sup
N→∞

1
N

log ΓN (χ \Kε) 6 ε. (3.3)

In our case, when χ is compact, this is automatically satisfied since choosing
Kε = χ for any ε gives that the left hand side of (3.3) is −∞ for all N .

Theorem 3.7 (The Gärtner–Ellis Theorem. See for example Corollary 4.5.27
in [15]). — Let χ be a locally convex topological vector space, {ΓN} an ex-
ponentially tight sequence of probability measures on χ and rN a sequence
such that rN → ∞. Let ZΓN be the moment generating function of ΓN and
assume

F (φ) = lim
N→∞

1
rN

logZΓN (rNφ)

– 30 –



Permanental Point Processes on Real Tori, Theta Functions and Monge–Ampère Equations

exist, is finite valued, lower semi continuous and Gâteaux differentiable.
Then ΓN satisfies a large deviation principle with rate rN and rate func-
tion given by the Legendre transform of F .

Theorem 3.6 will follow from the Gärtner–Ellis theorem and the crucial
point will be the following lemma.

Lemma 3.8. — Let µ0 ∈ M1(X) be absolutely continuous and have
strictly positive density with respect to dx. Assume Γ(N)

β is defined as in
Section 1.2. Then

lim
N→∞

1
kN

logZΓ(N)
k

(kNφ) = ξ(−φ).

Proof. — Note that if µN is a measure on XN and F is a function on
M1(X), then, since Γ(N)

k = (δ(N))∗µ(N)
k ,∫

M1(X)
F (µ)Γ(N)

k =
∫
XN

F
(
δ(N)(x)

)
dµ

(N)
k .

Moreover, 〈
kNφ, δ(N)(x)

〉
= kN

∫
X

φ
1
N

∑
δxi = k

∑
φ(xi).

This means

ZΓ(N)
k

(kNφ) =
∫
M1(X)

e〈rNφ,µ〉Γ(N)
k =

∫
XN

ek
∑

φ(xi)dµ
(N)
k .

Using the symmetries in the explicit form of µ(N)
k we get

ZΓ(N)
k

(kNφ) =
∫
XN

perm (Ψpi(xj)) ek
∑

φ(xj)µ⊗N0 /Zk,N

=
∫
XN

∑
σ

∏
i

Ψ(N)
pi (xσ(i))ekφ(xσ(i))dµ⊗N0 /Zk,N

=
∑
σ

∫
σ−1(XN )

∏
i

Ψ(N)
pi (xi)ekφ(xi)dµ⊗N0 /Zk,N

= N !
∫
XN

∏
i

Ψ(N)
pi (xi)ekφ(xi)dµ⊗N0 /Zk,N

= N !
∏
i

∫
X

Ψ(N)
pi (x)ekφ(x)dµ0/Zk,N (3.4)

Introducing the notation

c(N)
p = −1

k
log Ψ(N)

p
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we get

ZΓ(N)
k

(kNφ) = N !
∏
p∈PN

∫
X

ek(−c(N)
p +φ)dµ0/Zk,N . (3.5)

Now, we claim that
c(N)
p → d(x, p)2/2 (3.6)

uniformly in p and x. To see this, note first that
d(x, p)2 = inf

m∈Zn+p
|x−m|2

and

c(N)
p (x) = −1

k
log

∑
m∈Zn+p

e−k|x−m|
2/2

6 −1
k

log sup
m∈Zn+p

e−k|x−m|
2/2 = inf

m∈Zn+p
|x−m|2/2.

On the other hand, by the exponential decay of e−|x−m|2 there is a large
constant, C, (independent of x and p) such that∑

m∈Zn+p
e−k|x−m|

2/2 6 C sup e−k|x−m|
2/2

and

c(N)
p (x) = −1

k
log

∑
m∈Zn+p

e−k|x−m|
2/2 > −1

k
log
(
C sup
m∈Zn+p

e−k|x−m|
2/2
)

= − logC
k

+ inf
m∈Zn+p

|x−m|2/2.

This proves the claim. We claim further that
1
k

log
∫
X

ek(−c(N)
p +φ)dµ0 → (−φ)c(p) (3.7)

uniformly in p. To see this, note first that (3.6) together with the fact that
the family {d(·, p)2/2 : p ∈ X} is equi-continuous implies that

{c(N)
p : k ∈ N, p ∈ X}

is equi-continuous. This means for any ε > 0 there is d > 0 such that for all
k ∈ N and p, x∗ ∈ X

|c(N)
p (x)− φ(x)− (c(N)

p (x∗)− φ(x∗))| 6 ε (3.8)

as long as x ∈ Bd(x∗). Further, as µ0 has full support, is absolutely contin-
uous and has smooth density with respect to dx there is a large constant C
such that

Cµ0(Bd(x∗)) > 1 (3.9)
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for all x∗ ∈ X. We get trivially
1
k

log
∫
X

ek(−c(N)
p +φ)dµ0 6

1
k

log sup
x∈X

ek(−c(N)
p +φ)

= sup
x∈X

(
−c(N)

p (x) + φ(x)
)

(3.10)

For each N , let x(N)
∗ satisfy

−c(N)
p (x(N)

∗ ) + φ(x(N)
∗ ) = sup

x∈X

(
−c(N)

p (x) + φ(x)
)
.

Using (3.8) and (3.9) gives
1
k

log
∫
X

ek(−c(N)
p +φ)dµ0 >

1
k

log
∫
Bd(x(N)

∗ )
ek supx∈X(−c(N)

p +φ−ε)dµ0

= 1
k

log
∫
Bd(x(N)

∗ )
dµ0 + sup

x∈X

(
−c(N)

p (x) + φ(x)
)
− ε

>
1
k

log 1
C

∫
X

dµ0 + sup
x∈X

(
−c(N)

p (x) + φ(x)
)
− ε.

(3.11)
Finally, letting k → +∞, hence N → +∞, and ε → 0 in (3.10) and (3.11)
proves (3.7). Recalling equation (3.5), we have

1
kN

logZΓ(N)
k

(kNφ) = 1
kN

logN !
∏
p∈PN

∫
X

ek(−c(N)
p +φ)dµ0/Zk,N

= logN !
kN

+ 1
N

∑
p∈PN

1
k

log
∫
X

ek(−c(N)
p +φ)dµ0 − logZk,N

(3.12)
By Sterling’s formula, logN ! 6 N logN +O(logN). This means, since N =
kn, that the first term in (3.12) is bounded by (log kn)/k +O(log kn)/kn+1

which vanishes as k →∞. Moreover, using (3.7) we get, since 1
N

∑
p∈Pn δp →

dx in the weak* topology, that the second term converges to∫
(−φ)c(p)dx = ξ(−φ).

Finally, applying this to the third term

Zk,N =
∫
XN

perm (Ψpi(xj))µ⊗N0

gives that Zk,N converges to ξ(0). Since the zero-function is mapped to itself
under c-transform we get that Zk,N vanishes as N → ∞. This proves the
lemma. �

When proving Theorem 3.6 we will also need the following lemma.
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Lemma 3.9. — The functional ξ is continuous on C(X).

Proof. — We will prove that for any φ0, φ1 ∈ C(X)

sup
X
|φc0 − φc1| 6 sup

X
|φ1 − φ0|. (3.13)

Once this is established the lemma follows from the dominated convergence
theorem. To see that (3.13) holds, let y ∈ X. By compactness and continuity
there is xy ∈ X such that

φc0(y) = sup
x∈X

(−c(x, y) + φ0(x)) = −c(xy, y)− φ0(xy).

By construction

φc1(y) = sup
x∈X

(−c(x, y) + φ1(x)) > −c(xy, y)− φ1(xy).

We get
φc0(y)− φc1(y) 6 φ1(xy)− φ0(xy) 6 sup

X
|φ1 − φ0|.

By interchanging the roles of φ0 and φ1 we get

φc1(y)− φc0(y) 6 sup
X
|φ1 − φ0|

and hence that (3.13) holds. �

Proof of Theorem 3.6. — We want to apply the Gärtner–Ellis theo-
rem. As χ =M1(X) is compact, tightness of Γ(N) holds automatically. By
Lemma 3.8

lim
N→∞

1
rN

log ΛΓ(N)
k

(rNφ) = ξ(−φ).

Further, ξ is finite valued since φc is continuous, and hence bounded, for
any φ ∈ C(X). By Lemma 3.9, ξ is continuous. Finally, by Corollary 2.7,
ξ is Gâteaux differentiable. As W 2(−·, dx) is the Legendre transform of ξ,
and hence W 2(·, dx) is the Legendre transform of ξ(−·), the theorem follows
from the Gärtner-Ellis theorem. �

Remark 3.10. — As pointed out by Yanir Rubinstein, there is an alter-
native proof of Theorem 3.6 bypassing the use of the Gärtner-Ellis theorem.
We give a brief sketch of it here because it provides a good intuitive picture.
By Lemma 3.4 it suffices to verify that

lim
δ→0

lim sup
N→∞

− 1
kN

log
∫
B

(N)
δ

(µ)
perm (Ψpi(xj)) dµ⊗N0 = W 2(µ, dx) (3.14)

and similarly with lim sup is replaced by lim inf. Here, Bd(µ) is the ball in
M1(X) of (Wasserstein-1) radius d centered at µ and B

(N)
d (µ) is its pre-

image in XN under δ(N). For large N , the logarithm of the permanent
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in (3.14) can be approximated by its tropical counterpart

sup
σ

∑
i

log Ψ(N)
pi

(
xσ(i)

)
.

It follows from (3.6) that this is close to kN times the Wasserstein-2 distance
between 1

N

∑
i δpi and

1
N

∑
i δxi . By general theory, this is approximated by

the right hand side of (3.14) as long as 1
N

∑
i δxi is close to µ in Wasserstein-

1 distance. Approximating the integrand in (3.14) like this and applying
Sanov’s theorem to get

lim sup− 1
kN

log
∫
B

(N)
δ

(µ)
dµ⊗N0 = 0

proves Theorem 3.6.

3.2. A Thermodynamic Interpretation and Reduction to the Zero
Temperature Case

The proof of Theorem 3.2 is based on a result on large deviation principles
for Gibbs measures (see Theorem 3.12 below). This result is closely related to
the main result in [17]. Before we go deeper into this we explain how {µ(N)

β }
can be seen as the Gibbs measures of certain thermodynamic systems. If we
introduce the N -particle Hamiltonian

H(N)(x1, . . . , xN ) = −1
k

log perm(Ψpi(xj))

we may write µ(N)
β in the form

µ
(N)
β = e−βH

(N)
dµ⊗N0 /Zβ,N .

This means µ(N)
β admits a thermodynamic interpretation as the Gibbs mea-

sure, or canonical ensemble, of the system determined by the Hamiltonian
H(N) and the background measure µ0. In this interpretation µ

(N)
β is the

equilibrium state of the system when the temperature is assumed fixed at
Temp = 1/β. In Theorem 3.6, Temp = 1/β = 1/k → 0, hence Theorem 3.6
describes the zero-temperature limit. Theorem 3.2 will follow from Theo-
rem 3.6 and a theorem on equi-continuous and uniformly bounded Hamilto-
nians. To state that theorem we need to define what it means for the family
{H

(N)

N } to be equi-continuous. Let d(·, ·) be the distance function induced
by the standard Riemannian metric on X. This defines distance functions,
d(N)(·, ·), on XN given by

d(N)(x, y) = d(N)(x1, . . . , xN , y1, . . . , yN ) = 1
N

inf
σ

∑
i

d(xi, yσ(i)) (3.15)
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where the infimum is taken over all permutations σ of the set {1, . . . , N}.
We will say that the family of functions H(N)

N on XN is (uniformly) equi-
continuous if for every ε > 0 there is d > 0 such that for all N∣∣∣∣ 1

N
H(N)(x)− 1

N
H(N)(y)

∣∣∣∣ 6 ε (3.16)

whenever d(N)(x, y) 6 d. Before we move on to state Theorem 3.12 we prove
the following well known lemma.

Lemma 3.11. — Let x = (x1, . . . , xN ) ∈ XN and y = (y1, . . . , yN ) ∈
XN . Then (3.15) is the optimal transport cost with respect to the cost func-
tion d(·, ·), of transporting the measure δ(N)(x) = 1

N

∑
δxi to the measure

δ(N)(y) = 1
N

∑
δyi .

Proof. — We need to prove that

(3.15) = inf
γ

∫
X×X

d(x, y)γ (3.17)

where the infimum is taken over all γ ∈ M1(X ×X) with first and second
marginal given by δ(N)(x) and δ(N)(y) respectively. We will refer to any
γ ∈M1(X ×X) satisfying this as a feasible transport plan. The conditions
on the marginals imply that any feasible transport plan is supported on the
intersection of the sets {xi} × X and X × {yi}, in other words on the set
{xi} × {yi}. We conclude that the set of feasible transport plans is given by∑

i,j

aijδ(xi,yj) : aij > 0,
∑
i

aij = 1/N,
∑
j

aij = 1/N

 , (3.18)

in other words a polytope inM1(X×X). It follows that the infimum in (3.17)
is attained on one or more of the vertices of (3.18). Moreover, any permuta-
tion, σ, of N elements induce a feasible transport plan

γσ = 1
N

∑
i

δ(xi,yσ(i))

with transport cost∫
X×X

d(x, y)γσ = 1
N

∑
i

d(xi, yσ(i)).

It is easy to verify that any vertex of (3.18) occur as γσ for some permutation
σ. This proves the lemma. �

Note that this lemma implies that if we equipM1(X) with the Wasser-
stein 1-metric, which metricizes the weak* topology on M1(X), then the
distance function defined in (3.15) makes the embeddings

δ(N) : XN ↪→M1(X)
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isometric embeddings.

Theorem 3.12. — Assume X is a compact manifold, µ0 ∈ M1(X),
{H

(N)

N } is a uniformly bounded and equi-continuous family of functions on
XN and βN is a sequence of numbers tending to infinity. Assume also that(

δ(N)
)
∗
e−βNH

(N)
dµ⊗N0 /ZβN ,N

satisfies a Large Deviation Principle with rate NβN and rate function E.
Then, for any β ∈ R, (

δ(N)
)
∗
e−βH

(N)
dµ⊗N0 /Zβ,N

satisfies a Large Deviation Principle with rate N and rate function βE +
Entµ0 .

For completeness, we will include a proof of Theorem 3.12 here. The key
point is the following result from [17].

Proposition 3.13 ([17] Theorem 3.2, page 1028). — Assume X is a
compact manifold, µ0 ∈ M1(X), β ∈ R, {H

(N)

N } is a family of functions
on XN . Assume also that there is a lower semi-continuous functional E on
M1(X) satisfying

sup
XN

∣∣∣∣H(N)

N
− E ◦ δ(N)

∣∣∣∣→ 0 (3.19)

as N →∞. Then (
δ(N)

)
∗
e−βH

(N)
µ⊗N0 /Zβ,N

satisfies a Large Deviation Principle with rate N and rate function

βE + Entµ0 + CE,µ0,β (3.20)

where CE,µ0,β is a constant making sure the infimum of (3.20) is 0.

Proof. — Let µ ∈M1(X) and Bd(µ) be the ball of (Wasserstein-1) radius
d centred at µ and

B
(N)
d (µ) = (δ(N))−1(Bd(µ)) ⊂ XN .
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Using (3.19) we get

lim
d→0

lim inf
N→∞

− 1
N

(δ(N))∗e−βH
(N)
µ⊗N0 (Bd(µ))/Zβ,N

= lim
d→0

lim inf
N→∞

− 1
N

log
∫
B

(N)
d

(µ)
e−βH

N (x)dµ⊗N0 /Zβ,N

= lim
d→0

lim inf
N→∞

− 1
N

log
∫
B

(N)
d

(µ)
e−βN(E◦δ(N)(x)+o(1))dµ⊗N0 /Zβ,N

= βE(µ) + lim
d→0

lim inf
N→∞

(
− 1
N

log
∫
B

(N)
d

(µ)
dµ⊗N0 + 1

N
logZβ,N

)
. (3.21)

and similarily with lim inf replaced by lim sup (here o(1) → 0 uniformly in
x as N → ∞). By Sanov’s theorem (δ(N))∗µ⊗N0 satisfies a large deviation
principle with rate N and rate function Entµ0 . Hence, by Lemma 3.4, the
first term in the parenthesis of (3.21) converges to Entµ0(µ). To handle the
second term in the parenthesis, note that

lim inf
N→∞

1
N

logZβ,N = lim inf
N→∞

1
N

log
∫
XN

e−βH
N (x)dµ⊗N0

> lim inf
N→∞

1
N

log
∫
B

(N)
d

(µ)
e−βH

N (x)dµ⊗N0

for all d > 0. Letting d→ 0, the argument above gives

lim inf
N→∞

1
N

logZβ,N > −βE(µ)− Entµ0(µ). (3.22)

for all µ. On the other hand, fixing d > 0 we may take a finite subset
{µ1, . . . , µm} inM1(X) such that {Bd(µi)} coversM1(X). Then

1
N

logZβ,N 6
1
N

log
∑
i

∫
B

(N)
d

(µi)
e−βH

(N)
µ⊗N0

= 1
N

log
∑
i

e−Nad,i(N)

where

ad,i(N) = − 1
N

log
∫
B

(N)
d

(µi)
e−βH

(N)
µ⊗N0 .

By the argument above

lim inf
N→∞

ad,i(N)→ βE(µi) + Entµ0(µi) + od,i

– 38 –



Permanental Point Processes on Real Tori, Theta Functions and Monge–Ampère Equations

where od,i is a number (independent of N) that vanishes as d → 0. This
implies

lim inf
N→∞

1
N

logZβ,N = lim inf
N→∞

1
N

log
∑
i

e−Nad,i(N)

6 lim inf
N→∞

1
N

logm sup
i
e−Nad,i(N)

= lim inf
N→∞

(
logm
N
− inf

i
ad,i(N)

)
6 − inf

i
(βE(µi) + Entµ0(µi) + od,i) . (3.23)

By lower semi-continuity of βE + Entµ0 , (3.22) and (3.23) we get

lim
d→0

lim inf
N→∞

ZβN = − inf
M1(X)

βE + Entµ0

and similarly with lim inf replaced by lim sup. Using Lemma 3.4 again, this
proves the proposition. �

It turns out that in the compact setting, under the assumptions of uni-
form boundedness and equi-continuity, the assumption of convergence in
Proposition 3.13 always holds for some functional U onM1(X).

Lemma 3.14. — Assume X is a compact manifold, µ0 ∈ M1(X) and
{H

(N)

N } is a uniformly bounded and equi-continuous family of functions on
XN . Then there is a function U onM1(X) such that, after possibly passing
to a subsequence,

sup
XN
|H

(N)(x)
N

− U ◦ δ(N)(x)| → 0 (3.24)

as N →∞.

Proof. — Using the embeddings δ(N) : Xn ↪→M1(X) the functionsH(N)

define a sequence of functionals, H(N), defined on the subspaces δ(N)(XN ) ⊂
M1(X). By a standard procedure (we will explain it below) it is possible to
define an equi-continuous family of extensions, {U (N)}, of H

(N)

N onM1(X).
By Arzelà-Ascoli theorem U (N), after possibly passing to a subsequence, will
converge to a functional U satisfying (3.24). To define the extensions U (N),
recall that a real valued function f on a metric space with distance function
(·, ·) is said to satisfy a modulus of continuity ω : [0,∞)→ [0,∞) if

|f(x)− f(y)| 6 ω(d(x, y))

for all x and y in the domain of f . Note that by assumption the func-
tions H(N)

N all satisfy the same modulus of continuity, ω. We define U (N) :
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M1(X)→ R as

U (N)(µ) = inf
ν∈δ(N)(XN )

H(N)(ν)
N

+ ω(d(µ, ν))

where d(·, ·) is the Wasserstein 1-distance on M1(X). It follows from the
definition of moduli of continuity that U (N) = H(N)

N on δ(N)(XN ). AsM1(X)
is compact we may take ω to be sub-additive. It follows that the function
ω(d(µ, ·)) satisfies ω as modulus of continuity. This means U (N), being an
infimum of functions satisfying ω, also satisfy ω. In particular the family
{U (N)} is equi-continuous. �

We can now prove Theorem 3.12.

Proof of Theorem 3.12. — As above, let B(N)
d (µ) = (δ(N))−1(Bd(µ)) ⊂

XN , where Bd(µ) is the ball inM1(X) centered at µ with radius d. By the
assumed Large Deviation Principle and Lemma 3.4, for any µ ∈M1(X),

E(µ) = lim
d→0

lim inf
N→∞

− 1
NβN

log
∫
B

(N)
d

(µ)
e−βNH

N

µ⊗N0 .

On the other hand, by Lemma 3.14 there is a function U on M1(X) such
that, after possibly passing to a subsequence, (3.24) holds. This means

E(µ) = lim
d→0

lim inf
N→∞

− 1
NβN

log
∫
B

(N)
d

(µ)
e−NβN (U◦δ(N)+o(1))dµ⊗N0

= U(µ) + lim
d→0

lim inf
N→∞

− 1
NβN

log
∫
B

(N)
d

(µ)
dµ⊗N0 (3.25)

= U(µ).

where the second term in (3.25) is zero by Sanov’s theorem. This means
E = U and since E is the rate function of a large deviation principle and
thus lower semi-continuous, the theorem follows from Proposition 3.13. �

3.3. Proof of Theorem 3.2

To use Theorem 3.12 we need to verify that the family {H
(N)

N } is equi-
continuous. We will use the following two lemmas

Lemma 3.15. — The functions in P (X) are Lipschitz with the Lipschitz
constant L = 1.

Proof. — As the diameter of X is 1 we get that the set

{d(·, y)2/2 : y ∈ X}
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is Lipschitz with the Lipschitz constant L = 1. Now, assume φ ∈ P (X) and
x1, x2 ∈ X. By definition

φ(x) = sup
y∈X

(
−d(x, y)2/2− φc(y)

)
.

for all x. By compactness and continuity there is y1 such that
φ(x1) = −d(x1, y1)2/2− φc(y1).

We have
φ(x2) > −d(x2, y1)2/2− φc(y1) = φ(x1)− (d(x2, y1)2/2− d(x1, y1)2/2)

> φ(x1)− d(x1, x2).
By interchanging the roles of x1 and x2 we get

φ(x1) > φ(x2)− d(x1, x2)
and hence

|φ(x1)− φ(x2)| 6 d(x1, x2). �

We say that a function, Φ, on Rn is λ-convex if Φ− λ |x|
2

2 is convex.

Lemma 3.16. — Assume Φα is a family of functions on Rn parametrized
over some set A. Assume that for all α ∈ A, Φα is λ-convex. Let σ be a
probability measure on A. Then

log
∫
eΦαdσ(α)

is λ-convex.

Proof. — Assume first λ = 0. By the convexity of Φα in x and Hölder’s
inequality we get∫

A

eΦα(tx1+(1−t)x0)dσ(α) 6
∫
A

etΦα(x1)+(1−t)Φα(x0)dσ(α)

6

(∫
A

eΦα(x1)dσ(α)
)t(∫

A

eΦα(x0)dσ(α)
)(1−t)

and hence, taking the logarithm of both sides of this inequality,

log
∫
A

eΦα(tx1+(1−t)x0)dσ(α)

6t log
∫
A

eΦα(x1)dσ(α) + (1− t) log
∫
X

eΦα(x0)dσ(α).

For the general case, note that

log
∫
A

eΦα(x)dσ(α)− λ |x|
2

2 = log
∫
A

eΦα(x)−λ|x|2/2dσ(α)

which is convex by the case considered above. �
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We get

Corollary 3.17. — The normalized energy functions

{H(N)/N : k ∈ N}

is an equi-continuous family (in the sense of (3.16)).

Proof. — We claim that

c(N)
p = 1

k
log

∑
m∈Zn+p

e−k|x−m|
2/2 ∈ P (X) (3.26)

for all p ∈ X and k ∈ N. To prove the claim it suffices to prove that (3.26)
is λ-convex with λ = −1. This follows from Lemma 3.16 as −|x −m|2/2 is
λ-convex with λ = −1 for all m ∈ Rn. Further, fixing all but one variable
we get a function on X given by

x 7→ H(N)(x1, . . . xi−1, x, xi+1, . . . , xn)

= 1
k

log
∑
σ

e
−kc(N)

pσ(i)
(x)∏

j 6=i
e
−kc(N)

pσ(j)
(xj)

By Lemma 3.16 this function is in P (X). By Lemma 3.15 it satisfies the
Lipschitz constant 1. This means, if x = (x1, . . . xN ) and y = (y1, . . . , yN )
are points in XN , that

| 1
N
H(N)(x1, . . . , xN )− 1

N
H(N)(y1, . . . , yN )|

6
1
N

∑
i

∣∣∣H(N)(x1, . . . , xi−1, yi, . . . yN )−H(N)(x1, . . . , xi, yi+1, . . . yN )
∣∣∣

6
∑
i

d(xi, yi). (3.27)

As H(N) is symmetric we may reorder {xi} so that∑
i

d(xi, yi) = inf
σ

∑
i

d(xi, yσ(i))

and hence the right hand side of (3.27) equals d(N)(x, y). This implies
H(N)/N is equi-continuous in the sense of (3.16). �

Proof of Theorem 3.2. — By Theorem 3.6 and Theorem 3.12 we only
need to verify that the family {H(N)/N} is uniformly bounded and equi-
continuous. The latter was proved in Corollary 3.17. To see that {H(N)/N}
is uniformly bounded recall that in the proof of Theorem 3.6 we proved that
− 1
k log Ψ(N)

p (x) → d(x, p)2/2 uniformly in x and p. Since d(·, ·) is bounded
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on X × X we get that there is constants c, C ∈ R such that, for all but
finitely many N ,

c 6
1
k

log Ψ(N)
p (x) 6 C (3.28)

for all x, p. As the functions { 1
k log Ψ(N)

p } are bounded on X and there is only
finitely many functions for each N , we may choose c and C such that (3.28)
holds for all N . We get

−H(N)(x)/N = 1
kN

log
∑
σ

∏
i

elog Ψpi (x) 6
1
kN

log
∑
σ

∏
i

ekC = logN !
kN

+C

and

−H(N)(x)/N = 1
kN

log
∑
σ

∏
i

elog Ψpi (x) >
1
kN

log
∏
i

ekc = c

for all N and x ∈ XN . This proves the theorem. �

4. The Rate Function and its relation to Monge Ampère
equations

In this section we will show how the rate function, G, in Theorem 3.2
is related to Monge–Ampère equations. More precisely, we will establish a
variational approach to equation (1.1) and then show that, under a certain
condition, the minimizers of the functional G are the Monge–Ampère mea-
sures of solutions to (1.1) (see Lemma 4.3). This will allow us to finish the
proof of Theorem 1.2.

4.1. The Variational Approach to Equation (1.1)

In the variational approach to equation (1.1) it is convenient to consider
its normalized version:

MA(φ) = eβφµ0∫
X
eβφdµ0

. (4.1)

We see that this equation is invariant under the action of R on P (X) given
by

C 7→ (φ 7→ φ+ C). (4.2)
Now, we will say that an equation admits a unique solution modulo R if,
for any two solutions φ1, φ2 ∈ C(X), φ1 − φ2 is constant. It is easy to ver-
ify that (1.1) admits a unique solution if and only if (4.1) admits a unique
solution modulo R. We will consider a certain energy functional (the analog
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of the Ding functional in complex geometry) whose stationary points corre-
spond to weak solutions of (1.1). For given data (µ0, β) this energy functional
has the form

F (φ) = ξ(φ) + 1
β
Iµ0(βφ).

where Iµ0 is defined as

Iµ0(φ) = log
∫
X

eφµ0.

Lemma 4.1. — Let β 6= 0. The functional Iµ0 is Gâteaux differentiable
and

dIµ0 |φ = eφµ0∫
X
eφdµ0

.

Consequently, F is Gatueux differentiable and φ is a stationary point of F
if and only if φ is a weak solution (in the sense of Section 2.2) to (1.1).

Proof. — Let v ∈ C(X). As v is bounded an application of the dominated
convergence theorem gives

d

dt
|t=0I(φ+ tv) =

d
dt |t=0

∫
X
eφ+tvdµ0∫

X
eφdµ0

=
∫
X

d
dt |t=0e

φ+tvdµ0∫
X
eφdµ0

=
∫
X
veφdµ0∫

X
eφdµ0

,

proving the first two statements of the lemma. By Corollary 2.7, ξ is dif-
ferentiable and dξ|φ = −MA(φ). This means F is Gâteaux differentiable
and

dF |φ = −MA(φ) + eφµ0∫
X
eφdµ0

proving the last statements of the lemma. �

4.2. The Minimizers of the Gibbs Free Energy

We will use the following well know property of the relative entropy func-
tion (see for example Lemma 6.2.13 in [15]).

Lemma 4.2. — Let µ ∈M1(X) and φ ∈ C(X). Then

Iµ0(φ) + Entµ0(µ) >
∫
X

φdµ (4.3)

with equality if and only if µ = dIµ0 |φ.
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We can now prove Lemma 4.3.

Lemma 4.3. — Assume β 6= 0, F admits a unique minimizer modulo R
and φ∨ is a minimizer of F . Then

µ∨ = MA(φ∨) (4.4)

is the unique minimizer of the rate function

G(µ) = βW 2(µ, dx) + Entµ0(µ) + Cµ0,β

defined in Theorem 3.2.

Remark 4.4. — Note that φ1 − φ2 = C implies φc1 − φc2 = −C and hence

MA(φ1) = (∇cφc1)∗dx = (∇cφc2)∗dx = MA(φ2).

This means that, under the assumptions of Lemma 4.3, µ∨ is uniquely de-
termined by (4.4).

Proof of Theorem 4.3. — Note that by Corollary 2.7 and Lemma 4.2 we
have, for all µ ∈M1(X) and φ ∈ C(X), the two inequalities

W 2(µ, dx) + ξ(φ) > −
∫
φdµ (4.5)

Entµ0(µ) + Iµ0(φ) >
∫
φdµ (4.6)

where equality in (4.5) is characterized by

dξ|φ = −MA(φ) = −µ (4.7)

and equality in (4.6) is characterized by dI|φ = µ. We will start with the
case β > 0. Let µ ∈ M1(X) and φ∨ be the minimizer of F . Applying (4.5)
to the pair µ and φ∨ and (4.6) to the pair µ and βφ∨ we get

G(µ) = βW 2(µ, dx) + Entµ0(µ) (4.8)

> −β
∫
φ∨dµ− βξ(φ∨) +

∫
βφ∨dµ− I(βφ∨) (4.9)

= −β
(
ξ(φ∨) + 1

β
I(βφ∨)

)
= −βF (φ∨) (4.10)

with equality if and only if dξ|φ∨ = −MA(φ∨) = −µ and µ = dI|φ∨ which,
since dξ|φ∨ + dI|φ∨ = 0, is true if and only if µ = MA(φ∨). For the case
β < 0, let µ ∈ M1(X). By Corollary 2.7 we may take φ to satisfy equality
in (4.5) and hence (4.7). A similar application of (4.5) and (4.6) as above,
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keeping in mind that we have equality in (4.5), give

G(µ) = βW 2(µ, dx) + Entµ0(µ)

> −β
∫
φdµ− βξ(φ) +

∫
βφdµ− I(βφ) (4.11)

= −β
(
ξ(φ) + 1

β
I(βφ)

)
= −βF (φ) > −βF (φ∨). (4.12)

Moreover, equality in (4.12) holds if and only if φ = φ∨. But that means
dI|φ = −dξ|φ = µ, hence we have equality in (4.11) as well. This implies
G(µ) > −βF (φ∨) with equality if and only if µ = MA(φ∨). �

Remark 4.5. — At least formally, Lemma 4.3 is a consequence of a gen-
eral principle for differentiable, strictly convex functions. Namely that if A
and B are differentiable, strictly convex functions, A∗ and B∗ denotes their
respective Legendre transforms and x is a minimizer of A±B, then dA(x) is
a stationary point of A∗±B∗(∓·). This can be verified by differentiating and
using dA◦AF ∗ = dB ◦dB∗ = id. Moreover, in the case of A+B, this princi-
ple expresses the fact that the point where the difference between a convex
and a concave function is minimal defines the element in the dual space such
that the difference between the corresponding tangents is maximal.

4.3. Proof of Theorem 1.2 and Corollary 1.6

Proof of Theorem 1.2. — Let φ∨ be the unique solution to (1.1). It
follows that (4.1) admits a unique solution modulo R and that φ∨ is a solution
to (4.1). Now, we will use two results from the next section. Namely that any
stationary point of F is a smooth solution to (4.1) (see Section 5.2) and that
F always admit a minimizer (see Section 5.1). Under our assumptions, this
implies F admits a unique minimizer modulo R and that φ∨ is a minimizer
of F . Using Lemma 4.3 we get that G admits the unique minimizer µ∨
satisfying µ∨ = MA(φ∨).

We want to prove that Γ(N)
β → δµ∨ in the weak* topology onM1(M1(X)).

By the Portmanteau Theorem (see for example Theorem D.10 in [15]) it suf-
fices to verify that

lim sup
N→∞

Γ(N)
β (F ) 6 δµ∨(F ) (4.13)

for all closed F ⊂ M1(X). If µ∨ ∈ F then (4.13) holds trivially. Assume
µ∨ /∈ F . Recall that M1(X) is compact. This means the closed subset F
is compact. Since G is lower semi-continuous there is µF ∈ F such that
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infF G = G(µF ). As µ∨ /∈ F is the unique point where G = inf G = 0 we get
that G(µF ) = infF G > 0. By the large deviation principle in Theorem 3.2

lim sup
N→∞

1
rN

log Γ(N)
β (F ) 6 − inf

F
G < 0.

As rN →∞ we get that lim sup log Γ(N)
β (F ) = −∞ and lim sup Γ(N)

β (F ) = 0.
This proves the theorem. �

Proof of Corollary 1.6. — Equation (1.7) implies the first marginals of
µ

(N)
β , ∫

XN−1
µ

(N)
β ,

converges to µ∨ in the weak* topology ofM1(X) (see Proposition 2.2 in [27]).
Now, eβφN is the density with respect to µ0 of the first marginal of µ(N)

β .

We claim that the collection {φ(N) : k ∈ N} is equi-continuous and uni-
formly bounded. To see this, note that by Lemma 3.16, φ(N) is λ-convex with
λ = −1 and hence in P (X). By Lemma 3.15 the functions {φ(N), k ∈ N}
satisfy the Lipschitz constant L = 1. As∫

X

eβφNµ0 =
∫
XN

µ
(N)
β = 1

for all N , this means there are constants c, C ∈ R, independent of N , such
that c 6 φN 6 C. This proves the claim. By the Arzelà-Ascoli theorem there
is some function φ∞ ∈ C(X) such that

φN → φ∞

uniformly. As
eβφNµ0 =

∫
XN−1

µ
(N)
β → µ∨ = eβφ∨µ0

in the weak* topology of M1(X) we get that φ∞ = φ∨ almost everywhere
with respect to µ0. As µ0 has full support and φ∞, φ ∈ C(X), this means
φ∞ = φ∨. �

5. Existence and Uniqueness of Solutions

In this section we will treat questions of existence and uniqueness of
solutions to (1.1) for different data (µ0, β). First of all we will prove that,
for any data (µ0, β 6= 0), (1.1) admit a weak solution. We will then explain
how to reduce the problem of regularity to the case considered in [5], where
the authors use Caffarelli’s interior regularity theory for Monge–Ampère
equations. In the last part of the section we treat uniqueness. We first prove
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the claim made in Remark 1.3, namely that as long as β > 0 equation (1.1)
admits at most one solution. Finally we prove Theorem 1.4 regarding β ∈
[−1, 0) and µ0 = γ.

5.1. Existence of Weak Solutions

First of all, Lemma 3.15 implies P (X) satisfies the following (relative)
compactness property:

Lemma 5.1. — Let {φk} be a sequence of functions in P (X) such that
infX φk = 0 for all k, then there is φ ∈ C(X) such that, after passing to a
subsequence, φk → φ uniformly.

Proof. — By lemma 3.15, {φk} are Lipschitz with a uniform Lipschitz
constant. As X has finite diameter and infX φk = 0 for all k this means
{φk} is also uniformly bounded, hence the lemma follows from the Arzelà-
Ascoli theorem. �

Lemma 5.2. — Let φ ∈ C(X) and

F (φ) = ξ(φ) + 1
β
Iµ0(βφ).

Then
F ((φc)c) 6 F (φ). (5.1)

Moreover, if µ0 has full support, then equality holds in (5.1) if and only if
φ ∈ P (X).

Proof. — Recall that φc ∈ P (X), and hence ((φc)c)c = φc for all φ ∈
C(X). Also, (φc)c 6 φ for all φ ∈ C(X). This means ξ(φ) = ξ((φc)c) and

Iµ0((φc)c) = 1
β

log
∫
X

eβ(φc)cdµ0 6
1
β

log
∫
X

eβφdµ0 = Iµ0(φ). (5.2)

and hence
F ((φc)c) 6 F (φ). (5.3)

Assume µ0 has full support. Then, if φ /∈ P (X) and hence (φc)c(x) < φ(x)
for some x ∈ X, then, as both (φc)c and φ are continuous and µ0 has full
support, strict inequality holds in (5.2) and (5.3). This proves the lemma. �

Lemma 5.3. — Let β ∈ R \ {0}. Then F admits a minimizer. In other
words, (1.1) admits a weak solution.

Proof. — By the Dominated Convergence Theorem 1
β I(βφ) is continuous

in φ. By Lemma 3.9, ξ is continuous. This means F is continuous. Let φk
be a sequence such that F (φk) → inf F . By Lemma 5.2 we may assume
φk ∈ P (X) for all k. As F is invariant under the action of R given in (4.2)

– 48 –



Permanental Point Processes on Real Tori, Theta Functions and Monge–Ampère Equations

we may assume φk satisfies inf φk = 0 for all k. By Lemma 5.1, after possibly
passing to a subsequence, φk → φ for some φ ∈ C(X). By continuity F (φ) =
limk→∞ F (φk) = inf F , hence φ is a minimizer of F . �

5.2. Regularity

In a numbers of papers (see [7], [8], [9]) Caffarelli developed a regularity
theory for various types of weak solutions to Monge–Ampère equations. In
particular, Caffarelli’s theory applies to so called Alexandrov solutions. Recall
that if f is a smooth function on Rn, then a convex function Φ on Rn is an
Alexandrov solution to the equation

det(Φij) = f

if, for any Borel measurable E ⊂ Ω,∫
E

fdx =
∫
∂Φ(E)

dx

where ∂Φ(E) is the image of E under the multivalued gradient mapping, in
other words

∂Φ(E) = {y ∈ Rn : Φ(x) + Φ∗(y) = 〈x, y〉 for some x ∈ E}.

We have the following lemma:

Lemma 5.4. — Assume µ0 is absolutely continuous with density f with
respect to dx, β ∈ R and

MA(φ) = eβφµ0. (5.4)
in the sense of Definition 2.2. Then Φ = φ ◦ π + |x|2/2 is an Alexandrov
solution to the equation

det(Φij) = eβ(Φ−|x|2/2)f ◦ π (5.5)

on Rn. Moreover, Φ is proper.

Proof. — Assume E is a Borel measurable subset of Rn. To prove the
first point in the lemma we need to prove∫

E

eβ(Φ−|x|2/2)f ◦ πdx =
∫
∂Φ(E)

dx.

Let C0 = [0, 1)n ⊂ Rn and {Ci} be a collection of disjoint translates of C0
such that E ⊂ ∪Ci. Let Ei = E ∩ Ci. We have∫

E

eβ(Φ−|x|2/2)f ◦ πdx =
∑
i

∫
Ei

eβ(Φ−|x|2/2)f ◦ πdx =
∑
i

∫
π(Ei)

eβφfdx
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and by (5.4) ∑
i

∫
π(Ei)

eβφfdx =
∑
i

∫
(∇cφc)−1(π(Ei))

dx.

Now, we claim that π maps (∇Φ∗)−1(Ei) bijectively onto
(∇cφc)−1(π(Ei))

for all i. To see this note that if y ∈ (∇Φ∗)−1(Ei), then
∇cφc ◦ π(y) = π ◦ ∇Φ∗(y) ∈ π(Ei),

hence π(y) ∈ (∇cφc)−1(π(Ei)). On the other hand, if y ∈ (∇cφc)−1(π(Ei)),
let x̃ be the unique lift of ∇cφc(y) in Ei. Moreover, let ỹ be a lift of y in Rn.
Since ∇cφc(y) = x we have ∇Φ∗(ỹ) = x̃ + m0 for some m0 ∈ Zn. We have
that

π−1(y) = {ỹ +m : m ∈ Zn}
and by (2.4)

∇Φ∗(ỹ +m) = ∇Φ∗(ỹ) +m = x̃+m0 +m.

We conclude that∇Φ∗(ỹ+m) ∈ Ei if and only ifm = −m0 and then∇Φ∗(ỹ+
m) = x̃. This means π maps (∇Φ∗)−1(Ei) bijectively onto (∇cφc)−1(π(Ei))
as claimed. We get∑

i

∫
(∇cφc)−1(π(Ei))

dx =
∑
i

∫
(∇Φ∗)−1(Ei)

dx =
∫

(∇Φ∗)−1(E)
dx

where the second inequality holds since the sets (∇Φ∗)−1(Ei) are disjoint.
Now, let dom∇Φ∗ be the set where ∇Φ∗ is defined. We have

dom∇Φ∗ ∩ ∂Φ(E) = {y ∈ Rn : ∇Φ∗(y) = x for some x ∈ E}
= (∇Φ∗)−1(E).

Since Ω \ dom∇Φ∗ is a zero-set with respect to dx we have∫
(∇Φ∗)−1(E)

dx =
∫
∂Φ(E)

dx

which proves the first part of the lemma.

To see that Φ is proper, note that since φ is continuous it is bounded on
X. Let C = infX φ. We get

Φ(x) = φ ◦ π(x) + |x|
2

2 > C − 1 + |x|. �

Lemma 5.5. — Assume µ0 is absolutely continuous with smooth density
with respect to dx and φ ∈ P (X) satisfies (1.1) in the sense of Definition 2.2.
Then φ is smooth.
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Proof. — We refer to [5] (more precisely, step three in the proof of The-
orem 1.1) where the authors explain why, by Caffarelli’s regularity theory,
proper Alexandrov solutions on Rn to the equation

det(Φij) = F (Φ, x), (5.6)

where F is smooth, are smooth. Strictly speaking the authors use an ad-
ditional assumption of ”finite energy”, but the only way this is used is to
guarantee properness of Φ. By Lemma 5.4, Φ = φ ◦ π + |x|2/2 is proper
and satisfies (5.5) in the Alexandrov sense. As (5.5) is indeed a special case
of (5.6) this proves the lemma. �

5.3. Uniqueness

We first prove the claim made in Remark 1.3.

Theorem 5.6. — Let µ0 ∈M1(X) be absolutely continuous with smooth
density with respect to dx and β > 0. Then (1.1) admits a unique solution.

Proof. — By Lemma 5.3 and Lemma 5.5 there always exist a solution
to (1.1). To prove uniqueness it suffices to prove that the normalized equa-
tion (4.1) admits a unique solution modulo R, in other words that F admits
a unique minimizer modulo R. Assume then φ0 and φ1 satisfies

F (φ0) = F (φ1) = inf
C(X)

F. (5.7)

Let φt = tφ1 + (1 − t)φ0. Applying Lemma 3.16 with A = X and Φα(x) =
φx(α) gives that

Iµ0(φt) = log
∫
X

eφtdµ0

is convex in t. Now, ξ(φt) is convex in t by Lemma 2.6. This means F (φt) is
convex and hence, by (5.7), constant in t. It follows that Iµ0(φt) is affine in
t. However, if we let v = d

dtφt = φ1 − φ0, then

d2

dt2
Iµ0(φt) = d

dt

(∫
X
veφtdµ0∫

X
eφtdµ0

)

=
∫
X
v2eφtdµ0

∫
X
eφtdµ0 −

(∫
X
veφtdµ0

)2(∫
X
eφtdµ0

)2 (5.8)

Further, if we let νt be the probability measure

νt = eφtdµ0∫
X
eφtdµ0
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and v̂ be the constant
v̂ =

∫
X

vνt

then

(5.8) =
∫
X

v2νt − v̂2 =
∫
X

v2νt − 2v̂
∫
X

vνt + v̂2 =
∫
X

(v − v̂)2νt.

In particular, since Iµ0(φt) is affine in t we get that v = v̂, hence that φ1−φ0
is constant. This proves the theorem. �

We now turn to the proof of Theorem 1.4. We will use

Theorem 5.7 (The Prekopa Inequality [26, 16]). — Let φ : [0, 1]×Rn →
R be a convex function. Define

φ̂(t) = − log
∫
Rn
e−φ(t,x)dx.

Then φ̂ is convex. Moreover, if φ̂ is affine, then there is v ∈ Rn and C ∈ R
such that

φ(t, x) = φ(0, x− tv) + tC.

The first statement above was proved by Prekopa [26]. The second state-
ment, concerning the affine case, was done by Dubuc [16]. Since [16] deals
with a more general class of inequalities we will, as a courtesy to the reader,
explain how to deduce the second statement of Theorem 5.7 from the state-
ments in [16]. We will use the notation φt(x) = φ(t, x). First of all, note that
we may restrict ourselves to the case when

φ̂(t) = 0 (5.9)

for all t ∈ [0, 1] since adding a term of the form A+ Ct to φ will reduce the
general case to this. Moreover, it suffices to prove that

φ1(x+ v) = φ1/2(x+ v

2) = φ0(x) (5.10)

for all x ∈ Rn. To see this, note that if (5.10) holds then by convexity of φ

φt(x+ tv) 6 max{φ0(x), φ1(x+ v)} = φ0(x)

for any t ∈ [0, 1]. On the other hand, if t > 1/2 then

φt(x+ tv) > φ0(x) + 2t(φ1/2(x+ v

2)− φ0(x)) = φ0(x)

and if t < 1/2 then

φt(x+tv) > φ1(x+v)+2(t−1)(φ1(x+v)−φ1/2(x+ v

2)) = φ1(x+v) = φ0(x).
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To get (5.10), let f = e−φ0 , g = e−φ1 and h(·) = e−φ1/2(·/2) and apply
Theorem 12 in [16] with p(u, v) =

√
uv. Then pn(u, v) reduces to 2n

√
uv

and, since (by (5.9))∫
Rn
h(x)dx = 2n = 2n

(∫
Rn
f(x)dx

)1/2(∫
Rn
g(x)dx

)1/2

we get, for some vector v ∈ Rn and some real number m > 0, that

mng(mx+ v) = f(x)
(m+ 1)nh((m+ 1)x+ v) = 2nf(x).

Using the convexity of φ we get

(m+ 1)−n2nf(x) = (m+ 1)−n2nf
(
x+mx

1 +m

)
= h(x+mx+ v)

= e−φ1/2( x+mx+v
2 ) > e−(φ0(x)−φ1(mx+v))/2

=
√
f(x)

√
g(mx+ v) = m−n/2f(x).

This implies (m+ 1)−12 > m−1/2 and hence m = 1. We get

φ1(x+ v) = − log g(x+ v) = − log f(x) = φ0(x)

and
φ1/2(x+ v

2) = − log h(2x+ v) = − log f(x) = φ0(x)

hence (5.10) holds.

We are now ready for

Proof of Theorem 1.4. — By Lemma 5.3 and Lemma 5.5 there always
exist a solution to (1.3). Similarily as in the proof of Theorem 5.6, to prove
uniqueness it suffices to prove that F admits a unique minimizer modulo R.
Assume φ0 and φ1 satisfies

F (φ0) = F (φ1) = inf
C(X)

F.

By Lemma 5.2 any minimizer of F is in P (X), hence (φc0)c = φ0 and (φc1)c =
φ1. This means the following equation defines a curve in C(X) connecting
φ0 and φ1:

φt = (t(φ1)c + (1− t)(φ0)c)c . (5.11)
Even though it is not needed in the proof we make the following remark
about (5.11). If we identify convex functions on X with (S1)n invariant Käh-
ler metrics on the Abelian variety Cn/(Zn+iZn) (see Section 6.1), then (5.11)
is the Mabuchi geodesic connecting φ0 and φ1 in the space of Kähler metrics
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on Cn/(Zn + iZn). We know proceed with the proof. Note that, as P (X) is
convex and φc0, φc1 ∈ P (X) we get tφc1 + (1− t)φc0 ∈ P (X) and

F (φt) =
∫
X

tφc1 + (1− t)φc0dx+ 1
β

log
∫
X

eβφtdγ. (5.12)

The first term of this is affine in t. The second term is given by
1
β

log
∫
X

eβφt
∑
m∈Zn

e−|x−m|
2/2dx = 1

β
log
∫
Rn
eβφt◦π−|x|

2/2dx. (5.13)

Let Φt = φt ◦ π + |x|2/2. By Lemma 2.1, since φt is the c-transform tφc1 +
(1− t)φc0, we have

Φt(x) = sup
y∈Rn

(
〈x, y〉 − (tφc1 + (1− t)φc0) ◦ π(y)− |y|

2

2

)
. (5.14)

As
〈x, y〉 − (tφc1 + (1− t)φc0) ◦ π(y)− |y|

2

2
is affine in (t, x) we get that (5.14) is convex in (t, x). It follows that, as long
as β ∈ [−1, 0), the exponent in (5.13),

βφt ◦ π(x)− |x|2/2 = β(φt ◦ π(x) + |x|2/2)− (β + 1)|x|2/2
= βΦt(x)− (β + 1)|x|2/2

is concave in (t, x). We may then apply the Prekopa inequality to deduce
that (5.13) and hence F (φt) is convex in t. In particular, as φ0 and φ1 are
minimizers of F , this means F (φt) = F (φ0) = F (φ1) for all t ∈ [0, 1]. This
imples (5.13) is affine in t. By the affine case in the Prekopa inequality

βφ1 ◦ π(x)− |x|2/2 = βφ0 ◦ π(x− v)− (x− v)2/2 + C

for some C ∈ R and v ∈ Rn. By noting that φ1 ◦ π and φ0 ◦ π(· − v), and
hence

βφ1 ◦ π − βφ0 ◦ π(· − v) = 〈·, v〉+ v2/2 + C,

should descend to a function on X (in other words, they should be invariant
under the action of Zn), we get that v = 0. This means φ1 = φ0 + C which
proves Theorem 1.4. �

6. Geometric Motivation

The original motivation for this project comes from the paper on statis-
tical mechanics and birational geometry by Berman [4]. Berman introduces
a thermodynamic approach to produce solutions to the complex Monge–
Ampère equation

MAC(u) = eβuµ0 (6.1)

– 54 –



Permanental Point Processes on Real Tori, Theta Functions and Monge–Ampère Equations

on a compact Kähler manifold M . The Monge–Ampère operator in (6.1) is
defined as

(i∂∂̄u+ ω0)n (6.2)

where n is the complex dimension of M and ω0 is a fixed Kähler-form on M
representing the Chern class of a line bundle L overM . A solution, u, should
be a real valued twice differentiable function on M satisfying i∂∂̄u+ω0 > 0.
As Berman’s thermodynamic approach to this equation has served as an
inspiration for us, we outline it here.

The metric, ω0 determines, up to a constant, a metric on L. For each
k > 0, let N = Nk = H0(M,L). By assumption on ω0, L is ample and hence
Nk → ∞ as k → ∞. Let s1, . . . sN be a basis of H0(M,L). Locally we may
identify this basis with a collection of functions f1, . . . fN . The map

(x1, . . . , xN ) 7→ det(fi(xj))

determines a section, det(s1, . . . , sN ), of the induced line bundle L�Nk over
MN . The metric on L induces a metric, ‖·‖, on this line bundle and

‖det(s1, . . . , sN )‖2β/kµ0 (6.3)

determines a symmetric measure on MN . Note that changing the basis of
H0(M,L) will give the same result up to a multiplicative constant. As long
as this measure has finite volume we may normalize it to get a symmetric
probability measure on MN .

Now, Berman shows that if β > 0 and the singularities of µC are controlled
in a certain way, then the point processes defined by (6.3) converge to the
Monge–Ampère measure of a solution to (6.1). However, it should be stressed
that when β < 0 there is no guarantee that (6.3) has finite volume and can be
normalized to a probability measure. This turns out to be a subtle property
and in one of the most famous versions of equation (6.1), when M is a
Fano manifold and ω0, µ and β are chosen so that solutions to (6.1) define
Kähler–Einstein metrics of positive curvature, this reduces to a property of
the manifold M which is conjectured to be equivalent to the existence of
Kähler–Einstein metrics on M (see [18] for some progress on this). We will
explain in Section 6.1 how equation (1.3) can be seen as the ”push forward” to
a real setting of a complex Monge–Ampère equation whose solution define
Kähler–Einstein metrics of almost everywhere positive curvature. In that
sense, the present project can be seen as an attempt to study one side of
this complex geometric problem.
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6.1. Equation (1.3) as the "Push Forward" of a Complex Monge–
Ampère Equation

Let M = Cn/(4πZn + iZn) and θ be the function on Cn defined as

θ(z) =
∑
m∈Zn

e−m
2/4+izm/2.

This is the classical θ-function and it satisfies the following transformation
properties:

θ(z + 4π) = θ(z)

θ(z + i) = θ(z)eiz/2−1/4.

In particular, the zero set of θ defines the theta divisor, D, on M and, using
certain trivializations of the line bundle associated to D, θ descends to a
holomorphic section of this line bundle. This means τ = i∂∂̄ log |θ|2 is a
well-defined (1,1)-current on M and we may consider, for constants α and
η, the twisted Kähler–Einstein equation

Ric(ω)− ατ = ηω (6.4)
onM , where Ric(ω) denotes the Ricci curvature of ω. This equation describes
subtle problems in complex geometry. When α ∈ (0, 2π) it is related to so
called Kähler–Einstein edge metrics of curvature η and an edge singularity
of angle 2π−α along D (see [20]). However, we will be interested in the case
α = −1 and η = 1, which is treated for n = 1 in [1] and [23]. Then (6.4)
define metrics of constant positive Ricci curvature away from D. There is a
standard procedure to rewrite (6.4) into a scalar equation of type (6.1). This
process involves choosing a reference form ω0 in the cohomology class of τ
and fixing a Ricci-potential of ω0, F , such that

i∂∂̄F = Ric(ω0) + τ − ω0.

Choosing ω0 =
∑
i idzi ∧ dz̄i and F = −|y|2/2 + log |θ|2 gives the equation

MAC(u) = e−u−|y|
2/2|θ|2ωn0 . (6.5)

In other words, we arrive at equation (6.1) with the choices

µC = |θ2|e−|y|
2/2ωn0

and β = −1. Now, let z = x+ iy be the standard coordinates on M induced
from Cn. Let ρ : M → X be the map z 7→ y. If φ is a twice differentiable
function on X such that (φij + δij) is strictly positive definite, then u(z) :=
φ(y) defines a (rotationally invariant) twice differentiable function on M
satisfying i∂∂̄u+ ω0 > 0. Moreover,

ρ∗MAC(u) = MA(φ) (6.6)
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where MA(u) is the complex Monge–Ampère measure on M defined in (6.2)
and MA(φ) is the real Monge–Ampère measure on X defined in (1.2). Fur-
ther, at the end of the next section we will prove

Lemma 6.1. — Let ρ, θ and ω0 be defined as above. Then

ρ∗

(
e−|y|

2/2|θ|2ωn0
)

= γ. (6.7)

Since u is rotationally invariant we get that

ρ∗

(
MAC(u)− e−u−|y|

2/2|θ|2ωn0
)

= MA(φ)− e−φγ

and this is the relation that makes us refer to equation (1.3) as the ”push
forward” of equation (6.5) and it is because of this we write about the two
equations as analogous. However, like we stressed in the introduction, state-
ments about existence and uniqueness of solutions to (1.3) are independent
of corresponding statements about solutions to (6.5).

6.2. Permanental Point Processes as the Push Forward of Deter-
minantal Point Processes

Here we will establish a connection between the permanental point pro-
cesses defined in Section 1.2 and the determinantal point processes defined in
Berman’s framework. The connection is a consequence of a certain formula
that relates integrals of determinants to permanents. This formula might be
of independent interest and is given in the following lemma.

Lemma 6.2. — Let (E,µ) be a measure space. Let N ∈ N and

{Fjk : j = 1 . . . N, k = 1 . . . N}

be a collection of complex valued functions on E, square integrable with re-
spect to µ, such that, for each j∫

E

FjkFjldµ = 0

if k 6= l. Then

perm
(∫

E

|Fjk|2dµ
)

=
∫
EN
|det(Fjk(xj))|2dµ⊗N .
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Proof. — Now,∫
EN
|det(Fjk(xj))|2dµ⊗N

=
∫
EN

det(Fjk(xj))det(Fjk(xj))dµ⊗N

=
∫
EN

∑
σ

(−1)σ
∏
j

Fjσ(k)(xj)

∑
σ′

(−1)σ′
∏
j

Fjσ′(k)(xj)

dµ⊗N
=
∑
σ,σ′

(−1)σ+σ′
∏
j

∫
E

Fjσ(k)Fjσ′(k)dµ (6.8)

By the orthogonality assumption on {Fjk}k, the only contribution comes
from terms where σ = σ′. We get

(6.8) =
∑
σ

∏
j

∫
E

|Fjσ(k)|2dµ = perm
(∫

E

|Fjk|2dµ
)
. �

Before we examine its consequences for permanental point processes we
illustrate two other applications. The first is given by a quick proof of the
following well known formula related to Gram Determinants (see for exam-
ple [14]):

Corollary 6.3. — Let (E,µ) be a measure space and
f1, . . . , fN ∈ L2(µ).

Then
det
(∫

E

fjfkdµ

)
= 1
N !

∫
EN
|det (fk(xj))|2 dµ⊗N . (6.9)

Proof. — Note that if A is an invertible N ×N matrix with determinant
1, then replacing {f1, . . . , fn} by {f̃1, . . . , f̃N} where f̃i is defined by

(f̃1, . . . , f̃N ) = (f1, . . . , fN )A
does not affect the formula (6.9). This means we may, by choosing A so that
the matrix (∫

E

f̃j f̃kdµ

)
= AT

(∫
E

fjfkdµ

)
A

is diagonal, assume f1, . . . , fN satisfy∫
E

fjfkdµ = 0

if j 6= k. For each j, k ∈ {1, . . . , N}, let Fjk = fk. We get that

det
(∫

E

fjfkdµ

)
=
∏
k

∫
E

|fk|2dµ = 1
N ! perm

(∫
E

|Fjk|2dµ
)
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and, applying Lemma 6.2, that

det
(∫

E

fjfkdµ

)
= 1
N ! perm

(∫
E

|Fjk|2dµ
)

= 1
N !

∫
EN
|det (Fjk(xj))|2 dµ⊗N

= 1
N !

∫
EN
|det (fk(xj))|2 dµ⊗N

proving the corollary. �

The second application of Lemma 6.2 is given by the following formula
for the permanent of a matrix of non-negative real numbers.

Corollary 6.4. — Let (ajk) be an N ×N -matrix of non-negative real
numbers. Then

perm(ajk) = 1
(2π)N

∫
[0,2π]N

∣∣det
(√
ajke

ikxj
)∣∣2 dx1 · · · dxN .

Proof. — Let Fjk = √ajkeikx. Then, for each j,∫
[0,2π]

FjkFjldx =
∫

[0,2π]
ajke

i(k−l)xdx =
{

2πajk if l = k

0 otherwise.
Applying Lemma 6.2 gives

perm(ajk) = 1
(2π)N perm

∫
[0,2π]

|Fjk|2dx

= 1
(2π)N

∫
[0,2π]N

|det (Fjk(xj))|2 dx1 . . . dxN

= 1
(2π)N

∫
[0,2π]N

∣∣det
(√
ajke

ikxj
)∣∣2 dx1 · · · dxN .

which proves the corollary. �

To see how Lemma 6.2 connects permanental point processes to determi-
nantal point processes, we will now look a bit closer on the point processes de-
fined by Berman’s framework when applied to the complex Monge–Ampère
equation in Section 6.1. First of all, ω0 =

∑
i idzi ∧ dz̄i represents the cur-

vature class of the theta divisor D on M . Elements in H0(M,kD) may be
represented by theta functions and a basis at level k ∈ N is given by the set

{θ(k)
p : p ∈ PN} (6.10)

where
θ(k)
p =

∑
m∈Zn+p

e−km
2/4+izkm/2.

With respect to these trivializations the norm of θ(k)
p with respect to the

metric on kD with curvature form kω0 may be written

‖θ(k)
p ‖2 = |θ(k)

p |2e−k|y|
2/2.
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Enumeration the points in PN , {p1, . . . , pN} and using the standard coordi-
nates (z1, . . . , zN ) = (x1 + iy1, . . . , xN + iyN ) on MN allow us to write the
determinant in (6.3) as ∣∣∣∣det

(
θ(k)
pl

(zj)e−y
2
j/4
)
jl

∣∣∣∣2 .
Now, recall that the real Monge–Ampère measure on X may be recovered

as the push forward under the projection map, ρ : M → X, of the complex
Monge–Ampère measure on M (see equation (6.6)). Similarly, Lemma 6.2
will allow us to explicitly calculate the push forward of the measure

|det(θ(k)
pi (zj)e−y

2
j/4)|2ωn0

on MN under the map ρ×N : MN → XN . We get the following lemma,
which is the key point of this section. It shows that the permanental point
processes defined in Section 1.2 are the natural analog of the determinantal
point processes defined by Berman’s framework for complex Monge–Ampère
equations.

Lemma 6.5. — Let dy be the uniform measure on X. Then(
ρ×N

)
∗ |det(θ(k)

pl
(zj)e−y

2
j/4)|2ωn0 = perm

(
Ψ(N)
pl

(yj)
)
dy. (6.11)

Proof. — Let y = (y1, . . . , yN ) ∈ XN . The point y ∈ XN defines a real
torus, Ty, in MN

Ty =
(
ρ×N

)−1 (y) =
{
x+ iy : x ∈ (Rn/4πZn)N

}
.

If we let dx be the measure on Ty induced by (Rn)N , then the density at y
of the left hand side of (6.11) with respect to dy is given by the integral∫

Ty

|det(θ(k)
pl

(zj))e−y
2
j/4|2dx. (6.12)

For each j, l ∈ {1, . . . , N}, let Fjl : Ty → C be defined by

Fjl(x) = θpl(x+ iyj)e−y
2
j/4

=
∑

m∈Zn+pl

e−km
2/4+i(x+iyj)km/2−y2

j/4

=
∑

m∈Zn+pl

e−k(m−yj)2/4+ikmx/2
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Now, when computing the integral∫
Ty

FjlFjl′dx

=
∫
Ty

∑
m∈Zn+pl
m′∈Zn+pl′

e−k(m−yj)2/4−k(m′−yj)2/4+ik(m−m′)x/2dx (6.13)

the only contribution comes from the terms where m−m′ = 0. If l 6= l′, then
there are no such terms, in other words (6.13)=0. If l = l′ we are left with

(6.13) = (4π)N
∑

m∈Z+pl

e−k|yj−m|
2/2 = (4π)NΨ(N)

pl
(yj).

Applying Lemma 6.2 gives

(6.12) =
∫
Ty

|det (Fjl(xj))|2 dx = perm
(∫
|Fjl|2dx

)
= perm (Ψpl(yj))

proving the lemma. �

Finally, we show that Lemma 6.1 is a special case of this.

Proof of Lemma 6.1. — Note that θ = θ
(1)
0 and

γ =
∑
m∈Zn

e−|y−m]2/2dy = Ψ(1)
0 dy.

This means (6.7) is the special case of (6.11) given by N = k = 1. Hence the
lemma follows from Lemma 6.5. �

6.3. Approximations of Optimal Transport Maps

As mentioned in the introduction the point processes defined here can be
used to produce semi-explicit approximations of optimal transport maps. In
optimal transport it is natural to consider a larger class of Monge–Ampère
operators. Let ν0 ∈ M1(X) be absolutely continuous with respect to dx.
Then ν0 defines a Monge–Ampère operator MAν0 on P (X) as

MAν0(φ) = (∇cφc)∗ν0.

Solutions, φ∨, to the inhomogeneous Monge–Ampère equation

MAν0(φ) = µ0 (6.14)

determine optimal transport maps on X in the sense that T = ∇cφ∨ is
the optimal transport map in the sense of Brenier (see [29]) from the source
measure µ0 to the target measure ν0.
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The fact that the point processes defined in Section 1.2 are related to the
standard MA = MAdx is a consequence of the fact that

1
N

∑
p∈PN

δp → dx

in the weak*-topology. Redefining S(N) in the following way will provide
the generalisation we want: Let P (N) be a collection of point sets with the
property that |P (N)| = N and

1
N

∑
p∈P (N)

δp → ν0.

This is possible since the set of atomic measures is dense inM1(X) equipped
with the weak* topology. As in the original definition, associate a function,
Ψ(N)
p , to each point p ∈ ∪P (N)

Ψ(K)
pi =

∑
m∈Zn+pi

e−|x−m|
2

and, for each N , enumerate the points in P (N)

P (N) = {p1, . . . , pN}.
We get

Corollary 6.6. — Let µ0, ν0 ∈ M1(X) be absolutely continuous and
have smooth, strictly positive densities with respect to dx and Ψ(N)

pi be defined
as above. Then

φN := 1
N

log
∫
XN−1

perm
(

Ψ(N)
pi (xj)

)
dµ⊗N

converges uniformly to the unique, smooth, strictly convex solution of (6.14).
Consequently, the associated gradient maps ∇cφN converges uniformly to the
unique optimal transport map transporting µ0 to ν0.

Proof of Corollary 6.6. — First of all, the fact that the optimal transport
map is smooth follow from Caffarelli’s regularity theory for Monge–Ampère
equations. We will not go through the argument as it is similar as in Sec-
tion 5.2. Uniqueness is a basic result from optimal transport (see for example
Theorem 2.4.7 in [29]). Now, to see that the convergence holds, consider the
functionals, {H(N)}, onM1(X) defined by

E(N)(µ) = 1
N

∫
XN

H(N)dµ⊗N .

Direct calculations give that they are continuous, convex, Gâteaux differen-
tiable and dE(N)|µ0 = Φ(N). We claim that

E(N)(µ)→W 2(µ, dx) (6.15)
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for all µ ∈M1(X). To see this, note that by the proof of Theorem 3.12

sup
XN

∣∣∣∣ 1
N
H(N) −W 2(·, dx) ◦ δ(N)

∣∣∣∣→ 0

as N →∞. We get, since { 1
NH

(N)} are uniformly bounded,

E(N)(µ) =
∫
XN

W 2(·, dx) ◦ δ(N)dµ⊗N + o(1)

=
∫
M1(X)

W 2(·, dx)
(
δ(N)

)
∗
µ⊗N + o(1). (6.16)

where o(1) → 0 as N → ∞. Now, it follows from Sanov’s theorem that
(δ(N))∗µ⊗N → δµ in the weak*-topology on M1(M1(X)). Now, since X
has finite diameter we get that the squared distance function on X can be
bounded by a a constant times the distance function. As the Wasserstein 1-
metric metricizes the weak* topology onM1(X) this implies that W 2(·, dx)
is continuous on M1(X). We get that (6.16) converges to W 2(µ, dx) as
N →∞.

Further, W 2(·, dx) is convex. By standard properties of convex functions
dE(N)|µ0 converges to a subgradient of W 2(·, dx) at µ0. By standard prop-
erties of the Legendre Transform this means

φ = lim
N→∞

φ(N) (6.17)

satisfies dξ|φ = MA(φ) = µ0. This means φ is smooth and ∇cφ defines
the optimal transport map transporting µ0 to ν0. Now, let ΦN and Φ be
the images in PZn(Rn) of φN and φ respectively. The convergence in (6.17)
implies ΦN → Φ and, by standard properties of convex functions, ∇Φ(N) →
∇Φ. This means ∇cφN → ∇cφ which proves the Corollary. �
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