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Twisted Lax–Oleinik formulas and weakly coupled
systems of Hamilton–Jacobi equations (∗)

Maxime Zavidovique (1)

ABSTRACT. — We show that viscosity solutions of evolutionary weakly coupled
systems of Hamilton–Jacobi equations can be approximated by iterated twisted Lax–
Oleinik like operators. We establish convergence to the solution of the iterated scheme
and discuss further properties of the approximate solutions.

RÉSUMÉ. — Nous démontrons que les solutions de viscosité d’un système faible-
ment couplé d’équations d’Hamilton–Jacobi peuvent être approchées par des itéra-
tions d’opérateurs tordus à la Lax–Oleinik. On établit la convergence vers la solution
du schéma itératif et mettons en exergue quelques propriétés supplémentaires des
solutions approchées.

Introduction

Representation formulas for solutions of Hamilton–Jacobi equations with
Tonelli Hamiltonians are the starting point of important theories studying
the qualitative properties of the PDE and of the associated dynamical sys-
tem. Of course, we have in mind Fathi’s weak KAM theory which builds a
bridge between solutions of the stationary equation (or cell problem) and
Aubry–Mather theory which deals with action minimizing trajectories and
measures.

Establishing such a dual point of view has led to striking results, let
us mention, out of many others, two of them: the longtime convergence of
solutions of the Hamilton–Jacobi equation (see for example [12, 16]) and
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the convergence of solutions to the discounted equations ([11, 19]). For both
of those examples, purely PDE proofs were later on found (for instance
in [2, 4, 5, 18] and references therein).

A natural generalization of Hamilton–Jacobi equations are systems of
Hamilton–Jacobi equations and more particularly, weakly coupled systems,
meaning that the coupling only appears on the 0 order terms. Ironically,
weak KAM theory for those systems evolved backward compared to what
happened for a single equation. The study of the critical equation was done
first, from a purely PDE angle in [14], before the dynamical aspects were
highlighted ([17, 20]). Recently, Lax–Oleinik formulas, combined with a ran-
dom framework were studied for evolutionary equation in [13]. However de-
terministic approaches had been tried previously without success.

The goal of this paper is to take those deterministic formulas as a starting
point and see how to recover the solutions of the weakly coupled system from
them. We expect the reader to have some familiarity with viscosity solutions,
see [1] for an introduction on the subject.
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1. Setting and main result

We will consider d Lagrangians on TN × RN . They will be denoted by
Li, 1 6 i 6 d.

Moreover, for technical reasons, we will make a couple of assumptions on
the growth of the Li and their derivatives.

Definition 1.1. — In the following θ : R+ → R+ is a function (called
Nagumo function) such that
∀M > 0, ∃ KM > 0, ∀ m 6M, ∀ q > 0, θ(q+m) 6 KM

(
1 + θ(q)

)
. (N)

We will say that a function L : [0, T ]×TN ×RN is a good Lagrangian if
it verifies the following set of hypotheses
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(L1) the Lagrangian L is a C1 function and for all (t, x) ∈ [0, T ] × TN ,
L(t, x, · ) is a strictly convex function;

(L2) there exists constants c0 > 0 and A > 0 such that
∀ (t, x, v) ∈ [0, T ]× TN × RN , L(t, x, v) > θ(|v|)− c0;

|∂xL(t, x, v)|+ |∂vL(t, x, v)| < Aθ(|v|).

We will hence assume that all the Li, 1 6 i 6 d are good Lagangians
(with a common Nagumo function θ and constants A and c0).

Remark 1.2. — This hypothesis is mainly technical and serves at one spe-
cific instance: Theorem 2.1 and its application in Proposition 3.3. It allows to
obtain automatic Lipschitz estimates of minimizers of a minimization prob-
lem involving time–dependent Lagrangians. For autonomous Lagrangians,
such hypotheses are not needed thanks to conservation of energy and Clarke–
Vinter’s theorem ([10]) but we will have to deal with non–autonomous La-
grangians.

Definition 1.3. — A matrix B ∈ Md(R) is a coupling matrix if its
non–diagonal entries are non–positive and the sum of the elements of each
line is non–negative.

It follows from the above definition that the diagonal entries of B verify
bii > 0.

We recall that given a Lagrangian L on R+ × TN × RN , such that each
L(t, · , · ) verifies the above hypotheses, its Hamiltonian is defined by

∀ (t, x, p) ∈ R+ × TN × RN , H(t, x, p) = sup
v∈RN

〈p, v〉 − L(t, x, v).

The Hamiltonian is then a strictly convex function of p, it is also superlinear.

In what follows, Hi is the Hamiltonian associated to Li;

Definition 1.4. — Let u0 : TN → Rd be a continuous initial datum.
The unique solution (see Proposition 2.6) to the evolutionary equation

∂ui
∂t

+Hi(x,Dxui) +
m∑
j=1

bijuj(t, x) = 0

in (0,+∞)× TN , ∀ i ∈ {1, . . . , d}, (1.1)

with u(0, · ) = u0 will be denoted by (t, x) 7→ S(t)u0(x).

Remark 1.5. — Existence and uniqueness results for this equation are
established in [6] under additional growth assumptions on the Hamiltonians.
Those assumptions are removed in [13, Proposition A.1]. The proofs follow
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the same path as for a single equation. First, a comparison principle is es-
tablished (see Proposition 2.6). This uses in an essential manner the sign
properties of the coupling matrix B (they imply the system falls in a more
general class of coupled systems, see [15]). This comparison principle implies
uniqueness and existence follows from Perron’s method (properties of B give
that a supremum of subsolutions is a subsolution).

Definition 1.6. — We will denote by W (t) the twisted Lax–Oleinik for-
mula which to a vector valued function u0 : TN → Rd associates another
vector valued function W (t)u0 : TN → Rd the entries of which are, for
i ∈ {1, . . . , d}:

[W (t)u0(x)]i = inf
γ:[−t,0]→TN

γ(0)=x

[
e−tBu0(γ(−t)

)]
i
+
[∫ 0

−t
esBL

(
γ(s), γ̇(s)

)
ds
]
i

,

where the infimum is taken over all absolutely continuous curves γ : [−t, 0]→
TN and where L = (Li)i∈{1,...,d}.

We will often use the following notation:

W (t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

e−tBu0(γ(−t)
)

+
∫ 0

−t
esBL

(
γ(s), γ̇(s)

)
ds. (1.2)

Note that in the previous equation, we only write one infimum to have
a synthetic formula, but there are actually d quantities to minimize hence
possibly d different minimizing curves.

The goal of this note is to show a link between W and S. As is easily
seen, one reason why W differs from S (apart from the fact that it does not
provide a solution of the weakly coupled system in any reasonable sense) is
that it does not verify the semi–group property (or sometimes also referred
to as dynamical programming property; an explicit counterexample is given
in appendix). At the contrary, by the uniqueness of viscosity solutions, S
is indeed a semi–group, meaning that for all s, t > 0 we have S(t + s) =
S(t) ◦ S(s).

Our main result is the following:

Theorem 1.7. — Let u : TN → Rd be a Lipschitz function, then for
any t > 0, the following holds:

S(t)u = lim
n→+∞

W (t/2n)2n

u.

The procedure of considering iterates of W is a natural way of forcing
the semi–group property. It has already appeared, for example making a
link between variational and viscosity solutions associated to non–convex
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Hamiltonians (in the case of a single equation). See the works of Wei ([22])
and also of Roos ([21]) for more details on this subject.

This can also be seen as a result on the convergence of an approximate
scheme for the system. Many results in the literature of viscosity solutions
justify that the result can be expected to be true (see [3]). We will give a self
contained proof of our result in this particular setting which is an adaptation
of the previous reference.

Finally let us comment on the previous statement and its hypotheses.
They are willingly stronger than necessary because the proof is more natu-
ral in this setting. However, the Lipschitz continuity of the initial data can
be weakened to continuity (Theorem 4.6). The regularity of the Lagrangians
can also be lowered to Lipschitz (Theorem 4.7). Finally the fact of taking
increasing subdivisions of the interval [0, t] is not necessary in order to ob-
tain the convergence result. It is however more natural in some regards (see
section 4.1 and particularly Remark 4.5).

2. Preliminaries

2.1. About a single Hamilton–Jacobi equation

Given a continuous function u : TN → R, let us define the Lax–Oleinik
semi–group as follows: if 0 6 s < t and x ∈ TN then

T t,sL u(x) = inf
γ(t−s)=x

u
(
γ(0)

)
+
∫ t−s

0
L
(
s+ σ, γ(σ), γ̇(σ)

)
dσ.

The infimum in the previous formula is taken amongst absolutely continuous
curves γ : [0, t− s]→ TN . Clearly, this family of operators verifies a Markov
property, meaning that if 0 6 s < t < t′ then T t

′,t
L ◦ T t,sL u = T t

′,s
L .

Let us recall hereafter some properties verified by such Lagrangian func-
tions and their Lax–Oleinik semi–group.

Theorem 2.1. — Let u : TN → R be a K-Lipschitz continuous function
and L : [0, T ] × TN × RN be a good Lagrangian, we define the function
U : [0, T ]× TN → R by U(t, x) = T t,0u(x).

(1) The function U is a viscosity solution to the Cauchy problem{
∂tU +H(t, x,DxU) = 0,
U(0, · ) = u.

(2.1)
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(2) For any x ∈ TN and 0 6 s < t 6 T , the infimum in the definition of
the Lax–Oleinik semi–group is a minimum. Moreover, there exists
a constant M > 0 depending solely on θ, c0 and K such that any
minimizer γ is M -Lipschitz and even C1.

(3) Finally, the function U is Lipschitz continuous (with Lipschitz con-
stants depending only on θ, c0 and K) in [0, T ]×TN hence it is the
unique viscosity solution to (2.1).

Remark 2.2. — Lipschitz continuity of U is a direct consequence of the
Lipschitz continuity of the minimizing curves. Lipschitz continuity of mini-
mizing curves is proved in [7, Theorems 6.2.5, 6.3.1] from which the hypothe-
ses on the Lagrangians are taken. The C1 property of minimizing curves is
a consequence of the strict convexity of the Lagrangians (see [9, Ex. 18.5
p. 351]). Actually, finer properties can be obtained, as semi–concavity es-
timates (see for instance [7, Theorems 6.4.2, 6.4.3 and 6.4.4]) but we will
not need them. The fact that existence of a Lipschitz solution to (2.1) im-
plies uniqueness is a folklore result (see [8] and references therein or [13,
Proposition A.2]).

2.2. About systems

Recall that the matrix B ∈ Md(R) is a coupling matrix if its non–
diagonal entries are non–positive and the sum of the elements of each line is
non negative. We denote by 1 = (1, . . . , 1)T the vector with all entries equal
do 1.

Proposition 2.3. — Under the above hypotheses, for all s > 0, the
entries of e−sB are all non–negative.

Proof. — This is an immediate consequence of the formula

e−sB = lim
n→+∞

(
Idd−

s

n
B
)n
. �

It follows from the previous proposition and the fact that the exponential
is smooth that:

Proposition 2.4. — Let T > 0, then for all 1 6 i 6 d, the Lagrangian
Li(s, x, v) = [esBL(x, v)]i is a good Lagrangian on [−T, 0]× TN × RN .

Corollary 2.5. — For all s > 0, the following inequalities hold:

01 6 e−sB1 6 1.
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Proof. — The left inequality follows from Proposition 2.3. For the right
inequality, write

d
dse−sB1 = e−sB(−B1) 6 01.

It follows that all entries are decreasing as s increases. As equality holds for
s = 0 this proves the result. �

We now come back to the Definition 1.4. Such a solution exists and is
unique thanks to the following more general comparison principle (see [13,
Proposition 2.5]):

Proposition 2.6. — Let u and u be respectively a lower semicontinu-
ous supersolution and a bounded upper semicontinuous subsolution of (1.1).
Assume they are bounded on [0, T ]× TN , then u > u on [0, T ]× TN .

Let us now come back to the twisted Lax–Oleinik formula

W (t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

e−tBu0(γ(−t)
)

+
∫ 0

−t
esBL

(
γ(s), γ̇(s)

)
ds.

Using the notation Li(s, x, v) = [esBL(x, v)]i the twisted Lax–Oleinik
formula may be interpreted as follows:

[W (t)u0(x)]i = T t,0Li( ·−t,· ,· )[e
−tBu0]i(x).

Hence, as by Proposition 2.4, the Li are good Lagrangians (when re-
stricted to t ∈ [−T, 0]), Theorem 2.1 applies to the twisted Lax–Oleinik
formula.

3. Proof of Theorem 1.7

Definition 3.1. — Given n > 0 and t ∈ (0, T ], let us define the iterated
operator Wn(t) = W (s) ◦

(
W (T/2n)

)k where s > 0 and k > 0 are such that
t = kT/2n + s and s 6 T/2n.

Following [3], we state some fundamental properties of the operators W
and Wn.

Proposition 3.2. — The operator W verifies the following:

• Monotonous: if u 6 v and t > 0 then W (t)(u) 6W (t)(v),
• Continuity: if k ∈ R then for any function u and t > 0, W (t)(u +
k1) = W (t)(u) + ke−tB1. In particular, W (t) is 1-Lipschitz for the
sup norm.
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It follows immediately that Wn enjoys the same properties.

The second property follows from Corollary 2.5.

The last property we state is fundamental as it links the operators W
with the original system (1.1):

Proposition 3.3. — The operator W is consistent in the sense that if
Φ : TN → Rd is a C1 function then

lim
t→0+

W (t)Φ− Φ
t

= −H( · , DΦ)−BΦ,

where we use the notation H( · , DΦ) =
(
Hi( · , Dφi)

)
i∈{1,...,d}.

Proof. — Let us fix x ∈ TN and i ∈ {1, . . . , d}. For t 6 T , let us denote
by γt : [−t, 0] → TN a curve realizing the minimum in (1.2) for the i-
th equation. Recall that the curve γt is then C1. Moreover, for any s ∈
[−t, 0], the function x 7→ v(s, x) := T s,0Li( · −t, · , · )[e

−tBu0]i(x) is differentiable
at γt(−t+s) and setting pt(−t+s) this differential, the couple (γt, pt) solves
Hamilton’s equations with Hamiltonian function Hi( · − t, · , · ) (associated
to the Lagrangian Li( · − t, · , · )), see [7, Theorem 6.3.3 and 6.4.7].

We may then compute

[W (t)Φ− Φ]i(x) =
[
e−tBΦ

(
γt(−t)

)
− Φ

(
γ(0)

)
+
∫ 0

−t
esBL

(
γt(s), γ̇t(s)

)
ds
]
i

= −
[(

Φ− e−tBΦ
)(
γ(0)

)]
i

−
∫ 0

−t

(
d
dsv

(
s, γt(s)

)
−
[
esBL

(
γt(s), γ̇t(s)

)
ds
]
i

)
ds

= −
[(

Φ− e−tBΦ
)
(x)
]
i
−
∫ 0

−t
Hi
(
s, γt(s), pt(s)

)
ds

= [−tBΦ(x)]i − tHi(0, x,Dxϕi) + tε(t)
= [−tBΦ(x)]i − tHi(0, x,Dxϕi) + tε(t),

where ε is a function going to 0 as t→ 0. Note that the function ε depends
on t, x, i, but due to the fact that the Lipschitz constant of γt (and of pt)
depends only on ‖DΦ‖∞ the convergence of ε to 0 is uniform with respect
to i and x.

This proves the proposition. �

As proved in [3], consistency, monotonicity and continuity are enough to
ensure that Theorem 1.7 holds. For the sake of completeness, we reproduce
the proof (adapted to our setting) below:
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Proof of Theorem 1.7. — Let u0 : TN → Rd be a Lipschitz continuous
initial data and T > 0. Let u(t, x) = S(t)u0(x), for (t, x) ∈ [0, T ]× TN . For
n > 0 we define un : [0, T ]× TN → Rd by

un(t, x) = Wn(t)u0(x) = W (r) ◦W (T/2n)ku0(x),

where kT/2n + r = t and 0 < r 6 T/2n, and un(0, · ) = u0. We will in fact
prove that un converges to u as n→ +∞.

We introduce the relaxed semi-limits, let us set u(t, x) = lim inf un(tn, xn)
and u(t, x) = lim sup un(tn, xn) where the liminf and limsup are taken with
respect to sequences tn → t and xn → x.

Obviously, u 6 u. The core of the proof is to show that u (resp. u) is
a subsolution (resp. supersolution) of (1.1). Proposition 2.6 will then entail
the reverse inequality, proving the convergence.

Let us prove that u is a subsolution, the proof for u being the same. Note
that u is upper semi–continuous. Let i ∈ {1, . . . , d}, (t0, x0) ∈ (0, T ) × TN
and φ : [0, T ) × TN → R be a C1 function such that ui − φ 6 0 attains a
global strict maximum at (t0, x0) by vanishing at this point. It follows there
exists an extraction mn and points (tn, xn) converging to (t0, x0) such that
(umn

)i − φ attains a global maximum at (tn, xn) and such that
(umn

)i(tn, xn) → ui(t0, x0). Denoting by ξn = (umn
)i(tn, xn) − φ(tn, xn)

we obtain that ξn → 0 and that (umn
)i 6 φ+ ξn. Write kT/2mn + rn = tn

and 0 < rn 6 T/2mn .

Let us fix an ε > 0 and construct a C1 test function Φ : [0, T ] × TN →
Rd as follows: φi = φ, φj > uj + ε/2 for j 6= i and finally Φ(t0, x0) 6
u(t0, x0) + ε1. Up to taking n large enough, we still have the following
property: (umn

)j − φj attains a global maximum at (i, tn, xn).

We then compute

0 = 1
rn

[
(umn)(tn, xn)−W (rn)

[
umn(kT/2mn , · )

]
(xn)

]
i

>
1
rn

(
ϕ(tn, xn) + ξn −W (rn)

[
Φ(kT/2mn , · ) + ξn1

]
i
(xn)

)
= 1
rn

(
φ(tn, xn)− φ(kT/2mn , xn) + φ(kT/2mn , xn)

−W (rn)
[
Φ(kT/2mn , · )

]
i
(xn)

)
+ ξn
rn

(
1− (e−rnB1)i

)
.

As rn, ξn → 0 the last term ξn

rn

(
1− (e−rnB1)i

)
converges to 0 as n→ +∞.
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By making use of Proposition 3.3 and letting n→ +∞ we infer that

0 > ∂φ

∂t
(t0, x0) +Hi

(
x0, Dxφ(t0, x0)

)
+ [BΦ(t0, x0)]i

>
∂φ

∂t
(t0, x0) +Hi

(
x0, Dxφ(t0, x0)

)
+ [Bu(t0, x0)]i − ε

∑
j 6=i
|bij |.

Letting ε→ 0 shows that u is a subsolution. �

4. Further properties and extensions of Theorem 1.7

In this final section, we discuss some nice properties of the twisted oper-
ators W . Then we show how to weaken the hypotheses of our main theorem
and propose some possible variations.

4.1. Properties of W

Proposition 4.1. — If a function u : [0, T ] × TN → Rd is a Lipschitz
subsolution of the evolutionary equation then for any t 6 T and any abso-
lutely continuous curve γ : [−t, 0]→ TN the following holds:

u
(
t, γ(t)

)
− e−tBu

(
0, γ(0)

)
6
∫ t

0
e(s−t)BL

(
γ(s), γ̇(s)

)
ds.

In particular, u
(
t, γ(t)

)
6 W (t)u(0, · ). More generally, for any positive

integer n and positive times t1, . . . , tn such that
∑
ti = t,

u
(
t, γ(t)

)
6W (tn) ◦ · · · ◦W (t1)u(0, · ).

Proof. — Assume that u is differentiable almost everywhere on the image
of γ, then

u
(
t, γ(t)

)
− e−tBu

(
0, γ(0)

)
=
∫ t

0

d
dseB(s−t)u

(
s, γ(s)

)
ds

=
∫ t

0
e(s−t)B

[
Bu
(
s, γ(s)

)
+ ∂u
∂t

(
s, γ(s)

)
+Dxu

(
s, γ(s)

)
· γ̇(s)

]
ds

6
∫ t

0
e(s−t)B

[
Bu
(
s, γ(s)

)
+ ∂u
∂t

(
s, γ(s)

)
+ H

(
γ(s), Dxu

(
s, γ(s)

))
+ L

(
γ(s), γ̇(s)

)]
ds

6
∫ t

0
e(s−t)BL

(
γ(s), γ̇(s)

)
ds.
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Note that for the last inequality, we use the fact that all entries of the
matrices e(s−t)B are non negative. The general case is then proved by an
approximation argument of γ by curves on which u is differentiable almost
everywhere.

The second point is then the result of a straightforward induction
on n. �

Remark 4.2. — It can actually be proved that the converse is also true
in the above Proposition (see [13]).

Proposition 4.3. — Let u : TN → Rd then, for all s, t > 0,
W (s+ t)u >W (s) ◦W (t)u.

Proof. — Let γ be a curve realizing the infimum for the first component
of W (s+ t)u(x). We then have

[W (s+ t)u(x)]1

=
[
e−(t+s)Bu

(
γ(−(t+ s))

)
+
∫ 0

−(t+s)
eσBL

(
γ(σ), γ̇(σ)

)
dσ
]

1

=
[
e−sB

(
e−tBu

(
γ(−(t+ s))

)
+
∫ 0

−t
eσBL

(
γ(σ − s), γ̇(σ − s)

)
dσ
)

+
∫ 0

−s
eσBL

(
γ(σ), γ̇(σ)

)
dσ
]

1

>

[
e−sBW (t)u

(
γ(−s)

)
+
∫ 0

−s
eσBL

(
γ(σ), γ̇(σ)

)
dσ
]

1
> [W (s) ◦W (t)u]1. �

Notice that in the previous inequality, there is no hope to obtain an
equality, for the curve γ has no reason to realize the infimum inW (s+t)u(x)
on other coordinates than the first one.

Corollary 4.4. — The sequence Wn(t)u is decreasing with n.

Proof. — Using notations of the corollary, let t = kT/2n+s = k′T/2n+1+
s′. Either s < T/2n+1, then k′ = 2k and s = s′, or T/2n+1 6 s < T/2n, then
k′ = 2k + 1 and s− T/2n+1 = s′. Let us deal with the first case, the second
one being similar.

Wn+1(t)u = W s ◦W (T/2n+1)2ku = W s ◦
(
W (T/2n+1)2

)k
u

6W s ◦W (t/2n)ku = Wn(t)u.

Moreover, by proposition 4.1 it is greater than S(t)u. �
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Remark 4.5.

(1) The previous results explain our choice of subdivision of the interval
[0, T ] in our construction of Wn. Indeed, Theorem 1.7 holds true for
any sequence of partitions such that the length of the subdivisions
uniformly converge to 0. However, taking nested partitions (as we
did) gives a decreasing family of operators.

(2) The corollary, along with Proposition 4.1 immediately imply that
Wnu converges given a Lipschitz function u. One alternative idea of
proof would then be to establish that the limit is itself a subsolution.
It would hence be the solution by maximality. However, to do so,
we need to be able to keep track of the Lipschitz constants of the
Wnu which we were not able to do without requiring much stronger
hypotheses on the Lagrangians.

4.2. Weakening the hypotheses of Theorem 1.7

The following Theorem weakens the Lipschitz hypothesis on the initial
data u0:

Theorem 4.6. — Assume u0 : TN → Rd is a continuous function, then
the sequence W (t/2n)2nu0 converges to S(t)u0.

Proof. — All the operators S, W and Wn are 1-Lipschitz, hence approx-
imating u0 by Lipschitz functions and using Theorem 1.7 yields that again,

W (t/2n)2n

u0 → S(t)u0. �

Finally, we show how to weaken the hypotheses on the Lagrangians:

Theorem 4.7. — Assume that the Lagrangians Li are Lipschitz contin-
uous, convex in the p variable and that there exists a Nagumo function θ
verifying (N) for which the Li satisfy (L2) in the almost everywhere sense.

Then the conclusions of Theorems 1.7 and 4.6 still hold.

Proof. — The proof follows from the following simple observations. As-
sume that L̃ = (L̃i)i are other Lagrangians such that ‖Li − L̃i‖∞ 6 ε for
all 1 6 i 6 d. We infer, by monotonicity of the Legendre transform, that
‖Hi − H̃i‖∞ 6 ε for all 1 6 i 6 d (with obvious notations).

We then observe that if u is an initial data, then (t, x) 7→ S̃(t)u(x)−εt1 is
a subsolution for the weakly coupled system (1.1). Hence, by the comparison
principle, we conclude that S̃(t)u− εt1 6 S(t)u. By a symmetric argument,
we infer that ‖S(t)u− S̃(t)u‖∞ 6 εt.
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Moreover, using the explicit formulas definingW ,Wn and there analogues
for L̃ denoted by W̃ and W̃n we obtain that for any continuous initial data u,
we have as well that ‖W (t)u−W̃ (t)u‖∞ 6 εt and ‖Wn(t)u−W̃n(t)u‖∞ 6 εt.

Hence, approximating uniformly L by strictly convex, smooth Lagran-
gians verifying the hypotheses of theorems 1.7 and 4.6 gives the result. �

4.3. An alternative approximation scheme

We conclude this section by proposing another way of approximating
solutions to the weakly coupled system. The proofs being similar (even sim-
pler with some respect) we omit them and leave them as an exercise to the
motivated reader.

As in some respect, the structure of the schemes below are more sim-
ple, the proofs also work in the case of coupling matrices depending on the
space variable. We henceforth consider a continuous, coupling matrix valued
function B : TN →Md(R).

Definition 4.8. — Given a continuous initial condition u0, we define
the operator

W(t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

e−tB(x)u0(γ(−t)
)

+
∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds.

Theorem 4.9. — Let u0 : TN → Rd be a continuous function, then for
any t > 0, the following holds:

S(t)u = lim
n→+∞

W(t/2n)2n

u.

Remark 4.10. — Actually, the proof of consistency of this scheme is eas-
ier and the hypotheses on the Nagumo functions and derivatives of the La-
grangians are not even needed. Indeed, as the Lagrangians appearing in
the operator W are autonomous (contrarily to the ones in W that depend
on time because of the exponential term), conservation of energy gives the
Lipschitz estimates on minimizing curves by only assuming that each Li is
continuous, convex in p and superlinear.

However, this operator is less natural and does not enjoy the nice prop-
erties established for W . And it was not misused in literature.

The last scheme we propose consists in only taking the first terms of the
exponential term:
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Definition 4.11. — Given a continuous initial condition u0, we define
the operator

W(t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

(
Idd−tB(x)

)
u0(γ(−t)

)
+
∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds.

Theorem 4.12. — Let u0 : TN → Rd be a continuous function, then
for any t > 0, the following holds:

S(t)u = lim
n→+∞

W(t/2n)2n

u.

Appendix. An explicit computation

We conclude this article by giving a very simple example showing W
does not provides the viscosity solution operator. For sake of simplicity and
of nice formulas, we consider here a problem on RN .

We will consider the simple system with H =
(
H1
H2

)
where H1 = H2 =

1
2‖ · ‖

2 on RN and B =
( 1 −1
−1 1

)
. It then holds that

∀ t ∈ R, etB =
(

1+e2t

2
1−e2t

2
1−e2t

2
1+e2t

2

)
.

We will also make use of that fact that if H : Rn → R is independent of
the first variable and if p ∈ Rn, then the solution to

∂u

∂t
+H(Dxu) = 0 (A.1)

with initial condition u(0, x) = 〈p, x〉 is given by
u(t, x) = −tH(p) + 〈p, x〉. (A.2)

We now proceed to computing

W (t)u0(x) = inf
γ:[−t,0]→TN

γ(0)=x

e−tBu0(γ(−t)
)

+
∫ 0

−t
esBL

(
γ(s), γ̇(s)

)
ds

= inf
γ:[−t,0]→TN

γ(0)=x

e−tBu0(γ(−t)
)

+
∫ 0

−t
L
(
γ(s), γ̇(s)

)
ds. (A.3)

As there is no exponential term in the integral, in formula (A.3), we recognize
there a classical Lax–Oleinik formula and we can interpret that both lines of
W (t)u0(x) are respectively solutions at time t of the simple Hamilton–Jacobi
equation (A.1) with initial conditions, respectively the entries of e−tBu0. It
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follows that to compute W (t) we have to compute the solution, at time t,
of two classical Hamilton–Jacobi equations, with initial conditions given by
the entries of e−tBu0.

In our case, we take u0(x) =
( 0
〈p,x〉

)
therefore,

e−tBu0(x) = 〈p, x〉
(

1−e2t

2
1+e2t

2

)
.

We deduce from (A.2) that

u(t, x) := W (t)u0(x) = 〈p, x〉2

(
1− e−2t

1 + e−2t

)
− t‖p‖2

8

(
(1− e−2t)2

(1 + e−2t)2

)
.

To conclude, we compute that

∂u
∂t

+ H(Dxu) +B(u)

= e−2t〈p, x〉
(

1
−1

)
− ‖p‖

2

8

(
(1− e−2t)2

(1 + e−2t)2

)
+ t‖p‖2

2

(
−(1− e−2t)e−2t

e−2t(1 + e−2t)

)
+ ‖p‖

2

8

(
(1− e−2t)2

(1 + e−2t)2

)
+ 〈p, x〉2

(
1 −1
−1 1

)(
1− e−2t

1 + e−2t

)
− t‖p‖2

8

(
1 −1
−1 1

)(
(1− e−2t)2

(1 + e−2t)2

)
= t‖p‖2e−4t

2

(
1
−1

)
6= 01.

Hence u is not a solution to the Hamilton–Jacobi system.
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