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L2-theory for the ∂-operator on complex spaces with
isolated singularities (∗)

Jean Ruppenthal (1)

ABSTRACT. — The present paper is a complement to the L2-theory for the
∂-operator on a Hermitian complex space X of pure dimension n with isolated sin-
gularities, presented in [17] and [13]. The general philosophy is to use a resolution
of singularities π : M → X to obtain a “regular” model of the L2-cohomology.

First, we show how the representation of the L2
loc-cohomology of X on the level

of (n, q)-forms in terms of “regular” L2
loc-cohomology on M , given in [17], can be

made explicit in terms of differential forms, if a certain reasonable extra condition
is satisfied. Second, we prove the analogous statement for L2-cohomology, which is
a new result. Finally, we use this in combination with duality observations to give
a new proof of the main results from [13], where the resolution π : M → X is used
to express the L2-cohomology of X on the level of (0, q)-forms in terms of “regular”
L2-cohomology on M .

RÉSUMÉ. — Le présent article est un complément à la théorie de L2 pour l’opéra-
teur ∂ sur un espace complexe hermitien X de dimension pure n avec des singularités
isolées, présenté dans [17] et [13]. La philosophie générale est d’utiliser une résolution
de singularités π : M → X pour obtenir un modèle « régulier » de la L2-cohomologie.

Tout d’abord, nous montrons comment la représentation de la L2
loc-cohomologie

de X au niveau de (n, q)-formes en termes de la L2
loc-cohomologie « réguliere » sur

M , donnée dans [17], peut être fait explicite en termes de formes différentielles, si
une certaine condition supplémentaire raisonnable est remplie. Deuxièmement, nous
prouvons la déclaration analogue pour la L2-cohomologie, ce qui est un nouveau
résultat. Enfin, nous l’utilisons en combinaison avec des observations de dualité pour
donner une nouvelle preuve des principaux résultats de [13], où la résolution π : M →
X est utilisée pour exprimer la L2-cohomologie de X sur le niveau de (0, q)-formes
en termes de L2-cohomologie « régulière » sur M .
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1. Introduction

The present paper is another part of an attempt to create a systematic
L2-theory for the ∂-operator on singular complex spaces. By a refinement and
completion of the techniques introduced in [17], we obtain a better picture
for (0, q) and (n, q)-forms on a Hermitian complex space X which is of pure
dimension n and has only isolated singularities. The general philosophy is
to use a resolution of singularities to obtain a regular model of the L2-
cohomology. This complements also the insights of Øvrelid and Vassiliadou
in [13].

The key element of our theory is a new kind of canonical sheaf on X
introduced in [17] which we denote here by KsX . It is the sheaf of germs of
holomorphic square-integrable n-forms which satisfy a Dirichlet boundary
condition at the singular set SingX. It comes as the kernel of the ∂s-operator
on square-integrable (n, 0)-forms (see (3.5)). The ∂s-operator is a localized
version of the L2-closure of the ∂-operator acting on forms with support
away from the singular set (see Section 3 for the precise definition). If X is a
Hermitian complex space with only isolated singularities, we showed in [17,
Theorem 1.9], that the ∂s-complex

0→ KsX ↪→ Fn,0 ∂s−→ Fn,1 ∂s−→ Fn,2 ∂s−→ . . . −→ Fn,n → 0 (1.1)

is a fine resolution of KsX , where the Fn,q are the sheaves of germs of L2-
forms in the domain of the ∂s-operator. This implies that the cohomology
of KsX is represented by the L2-∂s-cohomology.

The essential idea of our L2-theory on singular complex spaces is to rep-
resent the cohomology of KsX also by L2-∂-cohomology on a resolution of
singularities. The key to this lies in the following representation of KsX :

Theorem 1.1 ([17, Theorem 1.10]). — Let X be a Hermitian complex
space of pure dimension with only isolated singularities. Then there exists a
resolution of singularities π : M → X with at most normal crossings and an
effective divisor D > Z − |Z| with support on the exceptional set such that:

KsX ∼= π∗
(
KM ⊗O(−D)

)
, (1.2)

where KsX is the canonical sheaf for the ∂s-operator, KM is the usual canon-
ical sheaf on M and Z = π−1(SingX) the unreduced exceptional divisor.

If the exceptional set of the resolution π : M → X has only double self-
intersections, which is particularly the case if dimX = 2 or if X is homoge-
neous, then one can take D = Z − |Z| in (1.2).
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By Grauert’s direct image theorem [4], this yields particularly that KsX is
a coherent analytic sheaf. Note that here π : M → X is not only a resolution
of X, but – in some sense – also a resolution of KsX , making it locally free.
It is moreover not hard to show that

π∗
(
KM ⊗O(−Z)

)
⊂ KsX .

This follows directly from the proof of Lemma 6.1 in [17] and makes it
reasonable to conjecture that one can always take D = Z − |Z| in (1.2) (as
we also know that this is possible e.g. if dimX = 2 or if the singularities
are homogeneous so that they can be resolved by a single blow-up). In the
present paper, we show how the L2-theory from [17] can be refined and
complemented if we assume that actually D = Z − |Z|.(1) So, assume from
now on that this is the case.

We need a few notations to explain our results. If N is any Hermitian
complex manifold, let

∂cpt : Ap,qcpt(N)→ Ap,q+1
cpt (N)

be the ∂-operator on smooth forms with compact support in N . Then we
denote by

∂max : Lp,q(N)→ Lp,q+1(N)

the maximal and by

∂min : Lp,q(N)→ Lp,q+1(N)

the minimal closed Hilbert space extension of the operator ∂cpt as densely de-
fined operator from L2-(p, q)-forms Lp,q(N) to L2-(p, q+1)-forms Lp,q+1(N).
Let Hp,q

max(N) be the L2-Dolbeault cohomology on N with respect to the
maximal closed extension ∂max, i.e. the ∂-operator in the sense of distri-
butions on N , and Hp,q

min(N) the L2-Dolbeault cohomology with respect to
the minimal closed extension ∂min. Our first new main result in the present
paper is:

Theorem 1.2. — Let (X,h) be a Hermitian complex space of pure di-
mension n > 2 with only isolated singularities and π : M → X a resolution
of singularities with only normal crossings. Assume that n = dimX = 2 or
that the singularities of X are all homogeneous.(2)

(1) We will show e.g. how certain isomorphisms on cohomology from [17] can be realized
explicitly by pull-backs or push-forwards of differential forms.

(2) Under this assumption, Theorem 1.1 implies that Ks
X = π∗(KM ⊗O(|Z|−Z)), i.e.,

that one can use D = Z − |Z| in (1.2). Actually, we prove Theorem 1.2 under the mere
assumption that D = Z − |Z| is a possible choice.
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Let 0 6 p < n, Ω ⊂⊂ X a relatively compact domain, Ω̃ := π−1(Ω) and
Ω∗ = Ω − SingX. Provide Ω̃ with a (regular) Hermitian metric which is
equivalent to π∗h close to the boundary bΩ̃.

Let Z := π−1(Ω ∩ SingX) denote the unreduced exceptional divisor
over Ω and let L|Z|−Z → M be a Hermitian holomorphic line bundle such
that holomorphic sections in L|Z|−Z correspond to holomorphic sections in
O(|Z| − Z).

Then the pull-back of forms π∗ induces a natural injective homomorphism

hp : Hn,p
min(Ω∗) −→ Hn,p

min(Ω̃, L|Z|−Z), (1.3)
with cokerhp = Γ(Ω, Rpπ∗(KM ⊗O(|Z| −Z)) if p > 1, and h0 is an isomor-
phism.

Note that singularities in the boundary bΩ of Ω are permitted. Any regu-
lar metric on M will do the job if there are no singularities in the boundary
of Ω. If Ω = X is compact, then the case p = n can be included (see Theo-
rem 6.11).

The proof of Theorem 1.2 requires a slight variation of Theorem 1.11
in [17], which we give in Section 5 (see Theorem 5.1). We use this oppor-
tunity to give a new and more explicit proof of [17, Theorem 1.11], under
the hypothesis that D = Z − |Z|. Theorem 1.2 is then deduced by a de-
tailed comparison of ∂max- with L2

loc-cohomology, and of ∂min-cohomology
with cohomology with compact support (see Section 6). We exploit the fact
that the L2- and the L2

loc-Dolbeault cohomology are naturally isomorphic
on strongly pseudoconvex domains in complex manifolds. Theorem 1.2 is a
completely new result that appears neither in [17] nor in [13].

Let us explain briefly how the hypothesis that one can use D = Z − |Z|
in (1.2) enters the proof of Theorem 1.2. We require that the homomor-
phism (1.3) and, analogously, the injections (5.1), (5.2) in Theorem 5.1 be-
low, are induced by pull-back of L2-forms under the resolution π : M → X.
The crucial point is now that we can show that the pull-back of (n, q)-forms
in the domain of the ∂s-operator vanish just to the order of Z − |Z| on the
exceptional set of the resolution, so that we obtain homomorphisms into
Cn,qσ (LZ−|Z|), but not into Cn,qσ (LD) if D is of higher order than Z−|Z| (see
Lemma 5.2). The fact that the homomorphisms in (1.3), (5.1), (5.2) are in-
duced by pull-back of (n, q)-forms is then essentially used in the commutative
diagrams in the proofs of Lemma 6.7 and Theorem 6.10.

The advantage of Theorem 1.2 lies in the fact that it allows to carry
over our results to (0, q)-forms by the use of the L2-version of Serre duality.
Besides the L2-Serre duality between the ∂min- and the ∂max-Dolbeault
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cohomology, there is (for p > 1) another duality between the higher direct
image sheaves Rpπ∗KM⊗O(|Z|−Z) on one hand and the flabby cohomology
Hn−p
E of O(Z−|Z|) with support on the exceptional set E = |Z| on the other

hand. This is explained in Section 7.1. Combination of these two kinds of
duality with Theorem 1.2 leads to the following statement:

Theorem 1.3. — Under the assumptions of Theorem 1.2, let 0 6 q 6 n
if Ω = X is compact and 0 < q 6 n otherwise. Then there exists a natural
exact sequence

0→ Hq
E(Ω̃,O(Z − |Z|))→ H0,q

max(Ω̃, LZ−|Z|)→ H0,q
max(Ω∗)→ 0,

where H∗E is the flabby cohomology with support on the exceptional set E =
|Z|. In case q = n, Hn

E(Ω̃,O(Z − |Z|)) has to be replaced by 0.

Note again that singularities in the boundary bΩ of Ω are permitted and
that any regular metric on M will do the job if there are no singularities in
the boundary of Ω. Note also that H0

E(Ω̃,O(Z − |Z|)) = 0 by the identity
theorem.

The history of Theorem 1.3 is a bit complicated. The idea to identify the
kernel of the natural map

H0,q
max(Ω̃, LZ−|Z|)→ H0,q

max(Ω∗)

as the flabby cohomology of O(Z−|Z|) with support on E is due to Øvrelid
and Vassiliadou [13] who proved Theorem 1.3 recently in the cases q = n−1
and q = n ([13, Theorem 1.4 and Corollary 1.6]). After the present pa-
per appeared as a preprint, Øvrelid and Vassiliadou added another proof of
our Theorem 1.3 in the case 0 < q < n − 1 also to their paper (see [13,
Remark 4.5.1]). Their method is quite different from our approach via Theo-
rem 1.2 and duality.(3) Concluding, the statement of Theorem 1.3 appeared
already in [13], but we give here another, different proof (under the extra
condition that D = Z − |Z|).

For 0 < q < n− 1, one can show that

H0,q
max(Ω̃, LZ−|Z|)

Hq
E(Ω̃,O(Z − |Z|))

∼= H0,q
max

(
Ω̃
)
,

so that we can recover by use of Theorem 1.3 the following result of Øvrelid
and Vassiliadou ([13, Theorem 1.3]):

H0,q
max

(
Ω̃
) ∼= H0,q

max(Ω∗), 0 < q < n− 1.

(3) We may remark that Øvrelid and Vassiliadou also use some results from [17].
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The organization of the present paper is as follows. In the Sections 2, 3
and 4, we provide the necessary tools for the proof of Theorem 5.1 in Sec-
tion 5. More precisely, in Section 2 we show how to deal with the cohomology
of non-exact complexes. Section 3 contains a review of the ∂s-complex as it
is introduced in [17]. This comprises the definition of the canonical sheaf of
holomorphic n-forms with Dirichlet boundary condition KsX and the exact-
ness of the ∂s-complex (1.1). In Section 4, we recall from [17] how KsX can
be represented as the direct image of an invertible sheaf under a resolution
of singularities (see Theorem 1.1). In Section 6 we study how the concepts
that appear in the context of Theorem 5.1 are related to L2-Dolbeault co-
homology and prove Theorem 1.2. Section 7 finally contains the proof of
Theorem 1.3.

An outline of the historical development of the topic can be found in the
introduction of the previous paper [17] and in [13].

Acknowledgements.The author thanks Nils Øvrelid for many inter-
esting and very helpful discussions on the topic. He is also grateful to the
unknown referee for many valuable suggestions which helped to improve
the exposition of this paper considerably. This research was supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation),
grant RU 1474/2 within DFG’s Emmy Noether Programme.

2. Cohomology of non-exact complexes

Let X be a paracompact Hausdorff space. In this section, we consider a
complex of sheaves of abelian groups

0→ A ↪→ A0 a0−→ A1 a1−→ A2 a2−→ A3 −→ . . . (2.1)

over X which is exact at A and A0 such that A ∼= ker a0, but not necessarily
exact at Ap, p > 1. We denote by Kp = ker ap the kernel of ap and by
Ip = Im ap the image of ap. Note that K0 ∼= A. We will now represent the
q-th (flabby) cohomology group Hq(X,A) of A over X by use of the q-th
cohomology group of the complex (2.1). Since (2.1) is not a resolution of A,
this also involves the quotient sheaves

Rp := Kp/Ip−1, p > 1, (2.2)

which are well-defined since ap ◦ ap−1 = 0. To compute the (flabby) coho-
mology of A, we first require that the sheaves Ap are acyclic:
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Lemma 2.1. — Assume that the sheaves Ap, p > 0, in the complex (2.1)
are acyclic. Then there are natural isomorphisms

δ0 : Γ(X, Ip)
ap(Γ(X,Ap))

∼=−→ H1(X,Kp), (2.3)

δq : Hq(X, Ip)
∼=−→ Hq+1(X,Kp) (2.4)

for all p > 0, q > 1.

In this lemma and throughout the whole section, we may as well consider
global sections Γcpt and cohomology Hcpt with compact support.

Proof. — We shortly repeat the proof which is standard. For any p > 0,
we consider the short exact sequence

0→ Kp ↪→ Ap ap−→ Ip → 0. (2.5)

Using Hr(X,Ap) = 0 for r > 1, we obtain the exact cohomology sequences

0→ Γ(X,Kp) ↪→ Γ(X,Ap) ap−→ Γ(X, Ip) δ0

−→ H1(X,Kp)→ 0,

0→ Hq(X, Ip) δq−→ Hq+1(X,Kp)→ 0, q > 1,

which yield the statement of the lemma.

The assertion that the isomorphisms are natural means the following. Let

0→ B ↪→ B0 b0−→ B1 b1−→ B2 b2−→ B3 −→ . . . (2.6)

be another such complex and

0 // A //

f

��

A∗

g

��
0 // B // B∗

a morphism of complexes (where we abbreviate the complex (2.1) by 0 →
A→ A∗ and the complex (2.6) by 0→ B → B∗). If we denote by Lp = ker bp
the kernel of bp and by J p = Im bp the image of bp, then

Γ(X,Ip)
ap(Γ(X,Ap))

δ0 //

g′p+1
��

H1(X,Kp)

g′′p

��
Γ(X,J p)

bp(Γ(X,Bp))
δ0 // H1(X,Lp)
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is commutative, where g′p+1 and g′′p are the maps induced by the commutative
diagram

0 // Kp //

gp

��

Ap
ap //

gp

��

Ip //

gp+1

��

0

0 // Lp // Bp
bp // J p // 0.

The statement that the isomorphisms δq are natural follows analogously. �

To go on, we need some assumptions on Rp:

Lemma 2.2. — For p > 1, assume that the quotient sheaf Rp of the com-
plex (2.1) defined in (2.2) is acyclic and that the natural mapping Γ(X,Kp)→
Γ(X,Rp) is surjective. Then there is a natural isomorphism

Hq(X, Ip−1)
∼=−→ Hq(X,Kp)

for all q > 1 (induced by the inclusion Ip−1 ↪→ Kp).

Proof. — Under the assumptions, the proof follows directly from the long
exact cohomology sequence that is obtained from the short exact sequence

0→ Ip−1 ↪→ Kp −→ Rp = Kp/Ip−1 → 0. (2.7)

If 0 → B → B∗ is another such complex, then we obtain commutative
diagrams as in the proof of Lemma 2.1 showing that the isomorphism is
natural. �

Note that the assumptions of Lemma 2.2 are trivially fulfilled if the com-
plex (2.1) is exact such that Rp = 0 for all p > 1. From Lemma 2.1 and
Lemma 2.2, we deduce by induction:

Lemma 2.3. — Under the assumptions of Lemma 2.1 and Lemma 2.2,
there are natural isomorphisms

γp : Γ(X, Ip−1)
ap−1(Γ(X,Ap−1))

∼=−→ Hp(X,A)

for all p > 1. Here, natural means the following. If 0 → B → B∗ is another
such complex as in (2.6) and

0 // A //

f

��

A∗

g

��
0 // B // B∗
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a morphism of complexes as in the proof of Lemma 2.1, then we obtain a
commutative diagram

Γ(X,Ip−1)
ap−1(Γ(X,Ap−1))

γp //

g′p
��

Hp(X,A)

fp

��
Γ(X,J p−1)

bp−1(Γ(X,Bp−1))
γp // Hp(X,B),

where J p−1 = Im bp−1, fp is the map on cohomology induced by f : A → B
and g′p is the map induced by gp : Ap → Bp. If f is an isomorphism, then g′p
is an isomorphism as well.

We can now make the connection to the p-th cohomology group of the
complex (2.1) by use of:

Lemma 2.4. — For p > 1, assume that the natural mapping Γ(X,Kp)→
Γ(X,Rp) is surjective. Then there is a natural injective homomorphism

ip : Γ(X, Ip−1)
ap−1(Γ(X,Ap−1)) −→ Hp(Γ(X,A∗)) = Γ(X,Kp)

ap−1(Γ(X,Ap−1))
with coker ip = Γ(X,Rp). More precisely, the natural sequence

0→ Γ(X, Ip−1)
ap−1(Γ(X,Ap−1))

ip−→ Hp(Γ(X,A∗)) −→ Γ(X,Rp)→ 0

is exact.
Proof. — From (2.7) we obtain by use of the assumption the exact se-

quence
0→ Γ(X, Ip−1) −→ Γ(X,Kp) −→ Γ(X,Rp)→ 0,

and this induces the natural exact sequence

0→ Γ(X, Ip−1)
ap−1(Γ(X,Ap−1))

ip−→ Γ(X,Kp)
ap−1(Γ(X,Ap−1)) −→ Γ(X,Rp)→ 0

since
ap−1(Γ(X,Ap−1)) ⊂ Γ(X, Ip−1) ⊂ Γ(X,Kp). �

Combining Lemma 2.3 and Lemma 2.4, we conclude finally:
Theorem 2.5. — Under the assumptions of Lemma 2.1 and Lemma 2.2,

there is for all p > 1 a natural injective homomorphism
ip ◦ (γp)−1 : Hp(X,A) −→ Hp(Γ(X,A∗))

with coker ip ◦ (γp)−1 = Γ(X,Rp). More precisely, there is a natural exact
sequence

0→ Hp(X,A) i
p◦(γp)−1

−→ Hp(Γ(X,A∗)) −→ Γ(X,Rp)→ 0.
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Here, natural means the following. If 0 → B → B∗ is another such complex
as in (2.6) and

0 // A //

f

��

A∗

g

��
0 // B // B∗

a morphism of complexes, then we obtain the commutative diagram

Γ(X,Rp)

g′′′p

��

Hp(Γ(X,A∗))oo

[gp]

��

Γ(X,Ip−1)
ap−1(Γ(X,Ap−1))

ipoo γp //

g′p
��

Hp(X,A)

fp

��
Γ(X,Sp) Hp(Γ(X,B∗))oo Γ(X,J p−1)

bp−1(Γ(X,Bp−1))
ipoo γp // Hp(X,B),

where fp is the map on cohomology induced by f : A → B and [gp], g′p, g′′′p
are the maps induced by gp : Ap → Bp. The quotient sheaves Sp are defined
for the complex 0→ B → B∗ analogously to the sheaves Rp for the complex
0→ A→ A∗. The maps γp are bijective and the maps ip are injective.

In the present paper, we need the following consequence of Theorem 2.5.
Here, we make use of our general assumption that X is a paracompact Haus-
dorff space, because this implies that fine sheaves are acyclic.

Theorem 2.6. — Let X, M be paracompact Hausdorff spaces and π :
M → X a continuous map. Let C be a sheaf (of abelian groups) over M and

0→ C ↪→ C0 c0−→ C1 c1−→ C2 c2−→ C3 −→ . . . (2.8)

a fine resolution. Let A ∼= π∗C be a sheaf on X, isomorphic to the direct
image of C, and 0→ A→ A∗ a fine resolution of A over X.

Let B := π∗C be the direct image of C and B∗ = π∗C∗ the direct image
complex (which is again fine but not necessarily exact). Since (2.8) is a fine
resolution, the non-exactness of 0 → B → B∗ is measured as above by the
higher direct image sheaves Sp := Rpπ∗C, p > 1. Let

0 // A //

∼= f

��

A∗

g

��
0 // B // B∗

be a morphism of complexes, and assume that the complex 0 → B → B∗
satisfies the assumption of Lemma 2.2, i.e. that the direct image sheaves Sp
are acyclic and that the maps Γ(X, ker bp)→ Γ(X,Sp) are surjective for all
p > 1.
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Then g induces for all p > 1 a natural injective homomorphism

Hp(Γ(X,A∗)) [gp]−→ Hp(Γ(X,B∗))

with coker[gp] = Γ(X,Sp).

More precisely, there is a natural exact sequence

0→ Hp(Γ(X,A∗)) [gp]−→ Hp(Γ(X,B∗)) −→ Γ(X,Sp)→ 0.

In this sequence, one can replace Hp(Γ(X,B∗)) by Hp(Γ(M, C∗)) because

Γ(X,Bq) = Γ(π−1(X), Cq) = Γ(M, Cq),
bq(Γ(X,Bq)) = cq(Γ(M, Cq))

by definition for all q > 0.

Proof. — The proof follows directly from Theorem 2.5 which we apply
to the morphism of complexes

(f, g) : (A,A∗)→ (B,B∗).

Note that the direct image sheaves Bq = π∗Cq, q > 0, are still fine sheaves
for one can push forward a partition of unity under the continuous map π.

Consider the big commutative diagram in Theorem 2.5. Since 0→ A →
A∗ is a fine resolution, the quotient sheaves Rp, p > 1, do vanish such that
the map ip in the upper line is an isomorphism. By assumption, the induced
map on cohomology fp is an isomorphism, and so g′p must also be isomorphic
(for the maps γp are isomorphisms, as well). But then

0→ Hp(Γ(X,A∗)) [gp]−→ Hp(Γ(X,B∗)) −→ Γ(X,Sp)→ 0

is an exact sequence. �

3. Review of the ∂s-complex

3.1. Two ∂-complexes on singular spaces

Let us recall some of the essential constructions from [17]. LetX be always
a (singular) Hermitian complex space of pure dimension n and U ⊂ X an
open subset. On a singular space, it is most fruitful to consider forms that
are square-integrable up to the singular set. Hence, we will use the following
concept of locally square-integrable forms:

Lp,qloc(U) := {f ∈ Lp,qloc(U − SingX) : f |K ∈ Lp,q(K − SingX) ∀ K ⊂⊂ U}.
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It is easy to check that the presheaves given as
Lp,q(U) := Lp,qloc(U)

are already sheaves Lp,q → X. On Lp,qloc(U), we denote by

∂w : Lp,qloc(U)→ Lp,q+1
loc (U)

the ∂-operator in the sense of distributions on U − SingX which is closed
and densely defined. The subscript refers to ∂w as an operator in a weak
sense. We can define the presheaves of germs of forms in the domain of ∂w,

Cp,q := Lp,q ∩ ∂−1
w Lp,q+1,

given by Cp,q(U) = Lp,q(U)∩Dom ∂w(U). It is not hard to check that these
are actually already sheaves.

Moreover, it is easy to see that the sheaves Cp,q admit partitions of unity,
and so we obtain fine sequences

Cp,0 ∂w−→ Cp,1 ∂w−→ Cp,2 ∂w−→ . . . (3.1)
We will see later, when we deal with resolution of singularities, that

KX := ker ∂w ⊂ Cn,0

is just the canonical sheaf of Grauert and Riemenschneider since the L2-
property of (n, 0)-forms remains invariant under modifications of the metric.

The L2,loc-Dolbeault cohomology with respect to the ∂w-operator on an
open set U ⊂ X is the cohomology of the complex (3.1) which is denoted by
Hq(Γ(U, Cp,∗)).

Secondly, we need a suitable local realization of a minimal version of the
∂-operator. This is the ∂-operator with a Dirichlet boundary condition at
the singular set SingX of X. Let

∂s : Lp,qloc(U)→ Lp,q+1
loc (U)

be defined as follows. We say that f ∈ Dom ∂w is in the domain of ∂s if
there exists a sequence of forms {fj}j ⊂ Dom ∂w ⊂ Lp,qloc(U) with essential
support away from the singular set,

supp fj ∩ SingX = ∅,
such that

fj → f in Lp,q(K − SingX), (3.2)
∂wfj → ∂wf in Lp,q+1(K − SingX) (3.3)

for each compact subset K ⊂⊂ U . The subscript refers to ∂s as an extension
in a strong sense. Note that we can assume without loss of generality (by
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use of cut-off functions and smoothing with Dirac sequences) that the forms
fj are smooth with compact support in U − SingX.

We define the presheaves of germs of forms in the domain of ∂s,

Fp,q := Lp,q ∩ ∂−1
s Lp,q+1,

given by Fp,q(U) = Lp,q(U)∩Dom ∂s(U). It is not hard to see that the Fp,q
are already sheaves (see [17, Section 6.1]).

As for Cp,q, it is clear that the sheaves Fp,q are fine, and we obtain fine
sequences

Fp,0 ∂s−→ Fp,1 ∂s−→ Fp,2 ∂s−→ . . . (3.4)
We can now introduce the sheaf

KsX := ker ∂s ⊂ Fn,0 (3.5)

which we may call the canonical sheaf of holomorphic n-forms with Dirichlet
boundary condition. One of the main objectives of the present paper is to
compare different representations of the cohomology of KsX . One of them
will be the L2,loc-Dolbeault cohomology with respect to the ∂s-operator on
open sets U ⊂ X, i.e. the cohomology of the complex (3.4) which is denoted
by Hq(Γ(U,Fp,∗)).

3.2. Local L2-solvability for (n, q)-forms

It is clearly interesting to study wether the sequences (3.1) and (3.4) are
exact, which is well-known to be the case in regular points of X where the
∂w- and the ∂s-operator coincide. In singular points, the situation is quite
complicated for forms of arbitrary degree and not completely understood.
However, the ∂w-equation is locally solvable in the L2-sense at arbitrary sin-
gularities for forms of degree (n, q), q > 0 (see [14, Proposition 2.1]), and
for forms of degree (p, q), p + q > n, at isolated singularities (see [3, The-
orem 1.2]). Since we are concerned with canonical sheaves, we may restrict
our attention to the case of (n, q)-forms and conclude:

Theorem 3.1. — Let X be a Hermitian complex space of pure dimen-
sion n. Then

0→ KX ↪→ Cn,0 ∂w−→ Cn,1 ∂w−→ Cn,2 ∂w−→ . . . −→ Cn,n → 0 (3.6)

is a fine resolution. For an open set U ⊂ X, it follows that

Hq(U,KX) ∼= Hq(Γ(U, Cn,∗)), Hq
cpt(U,KX) ∼= Hq(Γcpt(U, Cn,∗)).
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Concerning the ∂s-equation, local L2-solvability for forms of degree (n, q)
is known to hold on spaces with isolated singularities (see [17, Theorem 1.9]),
but the problem is open at arbitrary singularities. If X has only isolated
singularities, then the ∂s-equation is locally exact on (n, q)-forms for 1 6
q 6 n by [17, Lemma 5.5]. The statement was deduced from the results of
Fornæss, Øvrelid and Vassiliadou [3].

4. Resolution of (X,KsX)

4.1. Desingularization and comparison of metrics

Let π : M → X be a resolution of singularities (which exists due to
Hironaka [8]), i.e. a proper holomorphic surjection such that

π|M−E : M − E → X − SingX
is biholomorphic, where E = |π−1(SingX)| is the exceptional set. We may
assume that E is a divisor with only normal crossings, i.e. the irreducible
components of E are regular and meet complex transversely. Let Z :=
π−1(SingX) be the unreduced exceptional divisor. For the topic of desingu-
larization, we refer to [1], [2] and [6]. Let γ := π∗h be the pullback of the
Hermitian metric h of X to M . γ is positive semidefinite (a pseudo-metric)
with degeneracy locus E.

We give M the structure of a Hermitian manifold with a freely chosen
(positive definite) metric σ. Then γ . σ and γ ∼ σ on compact subsets of
M − E. For an open set U ⊂ M , we denote by Lp,qγ (U) and Lp,qσ (U) the
spaces of square-integrable (p, q)-forms with respect to the (pseudo-)metrics
γ and σ, respectively.

Since σ is positive definite and γ is positive semi-definite, a straightfor-
ward comparison of the volume forms (see [17, Section 2.2]) leads to the
inclusions

Ln,qγ (U) ⊂ Ln,qσ (U), (4.1)
L0,q
σ (U) ⊂ L0,q

γ (U). (4.2)
for relatively compact open sets U ⊂⊂M and all 0 6 q 6 n.

For an open set Ω ⊂ X, Ω∗ = Ω − SingX, Ω̃ := π−1(Ω), pullback of
forms under π gives the isometry

π∗ : Lp,q(Ω∗) −→ Lp,qγ (Ω̃− E) ∼= Lp,qγ (Ω̃), (4.3)
where the last identification is by trivial extension of forms over the thin
exceptional set E.
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4.2. Representation of KsX under desingularization

By use of (4.3), both complexes, the resolution (Cn,∗, ∂w) of KX and the
resolution (Fn,∗, ∂s) of KsX , can be studied as well on the complex manifold
M . This is the point of view that was taken in [17] where we considered the
sheaves Lp,qγ on M given by

Lp,qγ (U) := Lp,qγ,loc(U)
and

Cp,qγ,E := Lp,qγ ∩ ∂
−1
w,ELp,q+1

γ , (4.4)
where ∂w,E is the ∂-operator in the sense of distributions with respect to
compact subsets ofM−E. (4.4) is given by the presheaf Cp,qγ,E(U) = Lp,qγ (U)∩
Dom ∂w,E(U). It follows from (4.3) that (Cp,∗, ∂w) can be canonically iden-
tified with the direct image complex (π∗Cp,∗γ,E , π∗∂w,E). Since Ln,0γ = Ln,0σ for
the regular metric σ on M by use of (4.1) and (4.2), we can use the fact
that the ∂-equation in the sense of distributions for L2

σ-forms extends over
exceptional sets (see e.g. [16, Lemma 2.1]) to conclude that

KM := ker ∂w,E ⊂ Ln,0γ = Ln,0σ

is just the usual canonical sheaf on the complex manifoldM , and that KX ∼=
π∗KM is in fact the canonical sheaf of Grauert–Riemenschneider.

Analogously, we consider now the ∂s-complex. Let ∂s,E be the ∂-operator
acting on Lp,qγ -forms, defined as the ∂s-operator on X above, but with the
exceptional set E in place of the singular set SingX. Let

Fp,qγ,E := Lp,qγ ∩ ∂
−1
s,ELp,q+1

γ .

Then it follows from (4.3) that (Fp,∗, ∂s) can be canonically identified with
the direct image complex (π∗Fp,∗γ,E , π∗∂s,E).

It remains to study ker ∂s,E in Ln,0γ = Ln,0σ because π∗(Fn,0γ,E ∩ker ∂s,E) =
KsX . This was a central point [17] (see [17, Section 6.3]): There exists a
resolution of singularities π : M → X with only normal crossings and an
effective divisor D > Z − |Z| with support on the exceptional set, where
Z = π−1(SingX) is the unreduced exceptional divisor, such that

KsX = π∗
(
KM ⊗O(−D)

)
. (4.5)

In many situations, e.g., if dimX = 2 or if X has only homogeneous singu-
larities, then one can take D = Z−|Z|. In the present paper, we will assume
from now on that this is actually the case, and show how the L2-theory
from [17] can be improved under this assumption.

So, for the rest of the paper, we assume that (4.5) holds with D = Z−|Z|.
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5. Resolution of L2
loc-cohomology of (n, q)-forms

In this Section, we prove a slight variation of Theorem 1.11 in [17]:

Theorem 5.1. — Let X be a Hermitian complex space of pure dimen-
sion n > 2 with only isolated singularities and π : M → X a resolution of
singularities with only normal crossings such that

KsX ∼= π∗
(
KM ⊗O(|Z| − Z)

)
,

where KsX is the canonical sheaf for the ∂s-operator (i.e. the canonical sheaf
of holomorphic (n, 0)-forms with Dirichlet boundary condition), KM is the
usual canonical sheaf on M and Z = π−1(SingX) the unreduced exceptional
divisor.

Then the pull-back of forms under π induces for p > 1 natural exact
sequences

0→Hp(X,KsX)
[π∗p ]
−→Hp(M,KM ⊗O(|Z| − Z))−→Γ(X,Rp)→ 0, (5.1)

0→Hp
cpt(X,KsX)

[π∗p ]
−→Hp

cpt(M,KM ⊗O(|Z| − Z))−→Γ(X,Rp)→ 0, (5.2)

where Rp is the higher direct image sheaf Rpπ∗(KM ⊗O(|Z| − Z)).

In [17], we stated Theorem 5.1 under the additional assumption that X
is compact (see [17, Theorem 1.11]), but the proof in [17] actually gives
also the statement of Theorem 5.1 above. New in the present paper is the
proof of Theorem 5.1. Whereas in [17], we just gave an abstract proof by
use of the Leray spectral sequence, we give here an explicit realization of
all the mappings in (5.1) and (5.2) in terms of differential forms. Clearly,
statement (5.2) is also new because it is contained in (5.1) if X is compact.

The proof of Theorem 5.1 is based on the following observation. If Cn,∗
is a fine resolution of KM ⊗O(|Z| −Z), then the non-exactness of the direct
image complex π∗Cn,∗ can be expressed by the higher direct image sheaves
Rp = Rpπ∗KM ⊗ O(|Z| − Z), p > 1. These are skyscraper sheaves because
X has only isolated singularities. So, they are acyclic. On the other hand,
global sections in Rp can be expressed globally by L2-forms with compact
support. These two properties allow to express the cohomology of the canon-
ical sheaf KsX in terms of the cohomology of the direct image complex π∗Cn,∗
modulo global sections in Rp. Another difficulty is to show that the exact
sequences in Theorem 5.1 are actually induced by the pull-back of L2-forms
(see Lemma 5.2). We will also see that the surjections in (5.1) and (5.2)
are simply induced by taking germs of differential forms. So, we obtain an
explicit and localized proof of Theorem 1.11 in [17].
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5.1. Proof of Theorem 5.1

We can use Theorem 2.6 to represent the cohomology groups
Hq(X,KsX) ∼= Hq(Γ(X,Fn,∗)),
Hq
cpt(X,KsX) ∼= Hq(Γcpt(X,Fn,∗))

in terms of cohomology groups on the resolution π : M → X, where we
let π : M → X be a resolution of singularities as in Theorem 1.1 so that
D = Z − |Z|. Recall also that X is a Hermitian complex space of pure
dimension n with only isolated singularities.

Clearly, we intend to use Theorem 2.6 with A = KsX and
(A∗, a∗) = (Fn,∗, ∂s),

so that 0→ A → A∗ is a fine resolution of A over X by [17, Theorem 1.9].
By assumption,

A = KsX ∼= π∗
(
KM ⊗O(|Z| − Z)

)
,

so that we can choose
C = KM ⊗O(|Z| − Z)

for the application of Theorem 2.6. It remains to choose a suitable fine res-
olution 0 → C → C∗. Since (M,σ) is an ordinary Hermitian manifold, we
can use the usual L2

σ-complex of forms with values in O(|Z| −Z). To realize
that, we can adopt two different points of view. First, let L|Z|−Z → M be
the holomorphic line bundle associated to the divisor |Z|−Z such that holo-
morphic sections of L|Z|−Z correspond to sections of O(|Z| − Z), and give
L|Z|−Z the structure of a Hermitian line bundle by choosing an arbitrary
positive definite Hermitian metric. Then, denote by

Lp,qσ (U,L|Z|−Z), Lp,qσ,loc(U,L|Z|−Z)
the spaces of (locally) square-integrable (p, q)-forms with values in L|Z|−Z
(with respect to the metric σ on M and the chosen metric on L|Z|−Z). We
can then define the sheaves of germs of square-integrable (p, q)-forms with
values in L|Z|−Z , Lp,qσ (L|Z|−Z), by the assignment

Lp,qσ (L|Z|−Z)(U) = Lp,qσ,loc(U,L|Z|−Z).
The second point of view is to use the sheaves Lp,qσ ⊗O(|Z| − Z) which are
canonically isomorphic to the sheaves Lp,qσ (L|Z|−Z). Let us keep both points
of view in mind. As in (4.4), let

Cp,qσ,E(L|Z|−Z) := Lp,qσ (L|Z|−Z) ∩ ∂−1
w,ELp,q+1

σ (L|Z|−Z), (5.3)

where ∂w,E is the ∂-operator in the sense of distributions with respect to
compact subsets of M − E (and for forms with values in L|Z|−Z). Since σ
is positive definite, the ∂-equation in the sense of distributions for L2

σ-forms
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with values in a holomorphic line bundle extends over the exceptional set,
and we can drop the E in the notation and use as well the ∂w-operator onM .

It is clear that the sheaves Cp,qσ (L|Z|−Z) are fine. Now then, the ordinary
Lemma of Dolbeault tells us that

0→ KM ⊗O(|Z| − Z) ↪→ Cn,0σ (L|Z|−Z) ∂w−→ Cn,1σ (L|Z|−Z) ∂w−→ . . .

is a fine resolution, and we choose
(C∗, c∗) = (Cn,∗σ (L|Z|−Z), ∂w)

for the application of Theorem 2.6. Note that
Hq(M,KM ⊗O(|Z| − Z)) ∼= Hq(Γ(M, Cn,∗σ (L|Z|−Z))),
Hq
cpt(M,KM ⊗O(|Z| − Z)) ∼= Hq(Γcpt(M, Cn,∗σ (L|Z|−Z))).

We have to consider the direct image complex
B∗ = π∗C∗ = π∗Cn,∗σ (L|Z|−Z),

and recall that the non-exactness of the complex 0 → π∗C → π∗C∗ is mea-
sured by the higher direct image sheaves

Rp := Rpπ∗
(
KM ⊗O(|Z| − Z)

)
, p > 1.

We have to check that these satisfy the assumptions in Theorem 2.6 (where
the Rp will appear in place of the Sp). For a point x ∈ X, we have

(Rp)x = lim
−→U

Hp
(
π−1(U),KM ⊗O(|Z| − Z)

)
,

where the limit runs over open neighborhoods of x in X. Since π is a bi-
holomorphism outside the exceptional set, it follows that Rp is a skyscraper
sheaf with (Rp)x = 0 for x /∈ SingX. Hence, the sheaves Rp are acyclic.

It remains to check that the canonical maps Γ(X, ker bp) → Γ(X,Rp)
are surjective for p > 1. So, let [ω] ∈ Γ(X,Rp). Since Rp is a skyscraper
sheaf as described above, [ω] is represented by a set of germs {ωx}x∈SingX ,
where each ωx is given by a ∂-closed (n, p)-form with values in L|Z|−Z in a
neighborhood Ux of the component π−1({x}) of the exceptional set,

ωx ∈ ker ∂w ⊂ Cn,pσ (L|Z|−Z)(Ux).
We will see in a moment that we can assume that the forms ωx have compact
support. So, they give rise to a global form ω ∈ ker ∂w ⊂ Cn,pσ (L|Z|−Z)(M),
i.e.

ω ∈ Γ(M, ker ∂w ∩ Cn,pσ (L|Z|−Z)) = Γ(X, ker bp)
represents [ω] ∈ Γ(X,Rp).

To show that we can choose ωx with compact support in Ux, we can use
the fact that Z − |Z| is effective so that ωx can be interpreted as a ∂-closed
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form in Cn,pσ (Ux). But Takegoshi’s vanishing theorem (see [18, Theorem 2.1])
tells us that there is a solution ηx ∈ Cn,p−1

σ (Vx) to the equation ∂wηx = ωx
on a smaller neighborhood of the component π−1({x}) of the exceptional
set. Since (Cn,∗σ , ∂w) is a fine resolution of the canonical sheaf KM , this fact
is also expressed by the vanishing of the higher direct image sheaves

Rpπ∗KM = 0, p > 1.

Let χx be a smooth cut-off function with compact support in Vx that is
identically 1 in a neighborhood of π−1({x}). Then ∂w(χxηx) is the form we
were looking for because it has compact support in Ux and equals ωx in a
neighborhood of π−1({x}) so that it can be considered as a form with values
in L|Z|−Z again.

Hence, we can use Theorem 2.6 with

(A,A∗) =
(
KsX ,Fn,∗

)
,

(B,B∗) =
(
π∗(KM ⊗O(|Z| − Z)), π∗Cn,∗σ (L|Z|−Z)

)
,

(C, C∗) =
(
KM ⊗O(|Z| − Z), Cn,∗σ (L|Z|−Z)

)
after choosing a suitable morphism of complexes (f, g) : (A,A∗) → (B,B∗)
which gives the commutative diagram

0 // A //

∼= f

��

A∗

g

��
0 // B // B∗

It turns out that we can simply use the natural inclusion because the sheaves
Ap = Fn,p are actually subsheaves of Bp = π∗Cn,pσ (L|Z|−Z) for all p > 0:

Lemma 5.2 ([17, Lemma 6.2]). — For all p > 0, we have

Fn,pγ,E ⊂ C
n,p
σ (L|Z|−Z)

as subsheaves of Ln,pσ . It follows that

Fn,p ∼= π∗Fn,pγ,E ⊂ π∗C
n,p
σ (L|Z|−Z).

So, we can finally apply Theorem 2.6 and conclude that (for p > 1) the
natural inclusion ι : Fn,∗ ↪→ π∗Cn,∗σ (LZ|−Z) induces the natural injective
homomorphisms

Hp
(
Γ(X,Fn,∗)

) [ιp]−→ Hp
(
Γ(X,π∗Cn,∗σ (L|Z|−Z))

)
,

Hp
(
Γcpt(X,Fn,∗)

) [ιp]−→ Hp
(
Γcpt(X,π∗Cn,∗σ (L|Z|−Z))

)
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with coker[ιp] = Γ(X,Rp) in both cases. For p = 0, it is clear that the maps
[ι0] are isomorphisms. Since pull-back of forms under π gives an isomorphism

π∗ : Γ
(
X,π∗Cn,∗σ (L|Z|−Z)

) ∼=−→ Γ
(
M, Cn,∗σ (L|Z|−Z)

)
,

we conclude (omitting the natural inclusions ι, [ιp] from the statement):

Theorem 5.3. — Let X be a Hermitian complex space of pure dimen-
sion n > 2 with only isolated singularities, and π : M → X a resolution of
singularities with only normal crossings such that we can take D = Z − |Z|
in Theorem 1.1.

Then the pull-back of forms π∗ induces for all 0 6 p 6 n natural injective
homomorphisms

Hp
(
Γ(X,Fn,∗)

) [π∗p ]
−→ Hp

(
Γ(M, Cn,∗σ (L|Z|−Z))

)
,

Hp
(
Γcpt(X,Fn,∗)

) [π∗p ]
−→ Hp

(
Γcpt(M, Cn,∗σ (L|Z|−Z))

)
.

In both cases, coker[π∗p ] = Γ
(
X,Rpπ∗(KM ⊗O(|Z| −Z))

)
for p > 1, and the

[π∗0 ] are isomorphisms.

Combining this with Theorem 1.1, the well-known fact that
(Cn,∗σ (L|Z|−Z), ∂w) is a fine resolution of KM⊗O(|Z|−Z), and that (Fn,∗, ∂s)
is a fine resolution of KsX ([17, Theorem 1.9]), we have completed the proof
of Theorem 5.1.

6. Relation to L2-Dolbeault cohomology

6.1. L2-Serre duality.

We shall shortly recall the use of L2-Serre duality as it was introduced
in [14] and [17]. Let N be a Hermitian complex manifold of dimension n. Let

∂cpt : Ap,qcpt(N)→ Ap,q+1
cpt (N)

be the ∂-operator on smooth forms with compact support in N . Then we
denote by

∂max : Lp,q(N)→ Lp,q+1(N)
the maximal and by

∂min : Lp,q(N)→ Lp,q+1(N)
the minimal closed Hilbert space extension of the operator ∂cpt as densely de-
fined operator from Lp,q(N) to Lp,q+1(N). LetHp,q

max(N) be the L2-Dolbeault
cohomology on N with respect to the maximal closed extension ∂max, i.e.
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the ∂-operator in the sense of distributions on N , and Hp,q
min(N) the L2-

Dolbeault cohomology with respect to the minimal closed extension ∂min.
Then, L2-Serre duality can be formulated as follows (see [14, Proposition 1.3]
or [17, Theorem 2.3]):

Theorem 6.1. — Let N be a Hermitian complex manifold of dimension
n and 0 6 p, q 6 n. Assume that the ∂-operators in the sense of distributions

∂max : Lp,q−1(N)→ Lp,q(N), (6.1)
∂max : Lp,q(N)→ Lp,q+1(N) (6.2)

both have closed range (with the usual assumptions for q = 0 or q = n).
Then there exists a non-degenerate pairing

{ · , · } : Hp,q
max(N)×Hn−p,n−q

min (N)→ C
given by

{η, ψ} :=
∫
N

η ∧ ψ.

Note that the theorem remains valid for forms with values in Hermitian
vector bundles (where we have to incorporate the duality between the bun-
dle and its dual bundle). The closed range condition is satisfied e.g. in the
following situation that we need to consider in the present paper:

Theorem 6.2. — Let X be a Hermitian complex space of pure dimen-
sion n with only isolated singularities and Ω ⊂⊂ X a domain which is either
compact (without boundary) or has strongly pseudoconvex boundary which
does not intersect the singular set, bΩ ∩ SingX = ∅. Let 0 6 q 6 n and
Ω∗ := Ω− SingX.

Then the ∂-operators in the sense of distributions
∂max : L0,q−1(Ω∗)→ L0,q(Ω∗), (6.3)
∂max : L0,q(Ω∗)→ L0,q+1(Ω∗) (6.4)

both have closed range and there exists a non-degenerate pairing
{ · , · } : H0,q

max(Ω∗)×Hn,n−q
min (Ω∗)→ C

given by
{η, ψ} :=

∫
Ω∗
η ∧ ψ.

Proof. — The operators (6.3) and (6.4) have closed range by [12, Theo-
rem 1.1]. So, the statement follows immediately from Theorem 6.1.

We remark that the closed range condition can be also deduced from
finite-dimensionality of the corresponding cohomology groups (see [7, Ap-
pendix 2.4]), so that [12, Theorem 1.1], is nonessential. �
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6.2. Extension of Hp,q
max-cohomology classes

We consider the following situation: Let X be a Hermitian complex space
(of pure dimension n) and Ω ⊂⊂ X a domain with smooth strongly pseudo-
convex boundary which does not intersect the singular set, i.e. bΩ∩SingX =
∅. Suppose that ρ : U → R is a smooth strictly plurisubharmonic defining
function for Ω on a neighborhood U ⊂ RegX of bΩ. For ε > 0 small enough,
let

Ωε := Ω ∪ {z ∈ U : ρ(z) < ε}.

The purpose of this section is to show that for 0 6 p 6 n, q > 1 the natural
restriction

r : Hp,q
max(Ω∗ε )→ Hp,q

max(Ω∗)

is surjective for ε > 0 small enough by use of Grauert’s bump method (where
Ω∗ = Ω− SingX and Ω∗ε = Ωε − SingX).

Since there are no singularities in the neighborhood U of the boundary
bΩ, we can use the usual bumping procedure as it is described for example
in [11, Chapter IV.7]. We only have to make sure that Ω−U is irrelevant for
the procedure. But this is in fact the case as the bumping procedure looks
as follows:

Let B0 = Ω. Then there exists ε > 0, an integer t and smoothly bounded
strongly pseudoconvex domains B1,. . . , Bt = Ωε with Bj−1 ⊂ Bj for j =
1, . . . , t such that the complements Bj − Bj−1 are compactly contained in
patches Uj ⊂⊂ U which are biholomorphic to strictly convex smoothly
bounded domains in Cn (we assume that a neighborhood of Uj is biholomor-
phic to an open set in Cn). We fix a certain j ∈ {1, . . . , t}. The situation can
be arranged such that there exists a (small) neighborhood V of bUj ∩ bBj−1,
a strongly pseudoconvex domain D with smooth boundary such that

D ⊂ Bj−1 ∩ Uj , D − V = (Bj−1 ∩ Uj)− V,

and D is biholomorphically equivalent to a strictly convex domain with
smooth boundary in Cn, and that moreover there exists a smooth cut-off
function ψ ∈ C∞cpt(X) such that suppψ ⊂⊂ Uj , ψ ≡ 1 in a neighborhood of
Bj −Bj−1 and

suppψ ∩ bD ∩Bj−1 = ∅.

Then, one step in the bumping procedure can be accomplished as follows
(see [11, Lemma 7.2]). Let 0 6 p 6 n, q > 1 and [φ] ∈ Hp,q

max(Bj−1) be
represented by φ ∈ Lp,q(Bj−1). Then there exists g′ ∈ Lp,q−1(D) such that
∂maxg

′ = φ on D. We set g := ψg′ on D and g ≡ 0 on Bj−1 − D. Then
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g ∈ Lp,q−1(Bj−1) ∩Dom ∂max. Now, we can set

φ′ :=
{
φ− ∂maxg on Bj−1,

0 on Bj −Bj−1.

Then φ′ ∈ Lp,q(Bj) and ∂maxφ
′ = 0 such that φ′ defines a class [φ′] ∈

Hp,q
max(Bj) with

[φ′]|Bj−1 = [φ′|Bj−1 ] = [φ] ∈ Hp,q
max(Bj−1).

An induction over j = 1, . . . , t shows:

Lemma 6.3. — Let X be a Hermitian complex space (of pure dimen-
sion n) and Ω ⊂⊂ X a domain with strongly pseudoconvex smooth boundary
that does not intersect the singular set, bΩ ∩ SingX = ∅. Let 0 6 p 6 n and
q > 1.

Then there exists a strongly pseudoconvex smoothly bounded domain Ωε
with Ω ⊂⊂ Ωε such that the natural restriction map

r : Hp,q
max(Ω∗ε )→ Hp,q

max(Ω∗)

is surjective (where Ω∗ = Ω− SingX and Ω∗ε = Ωε − SingX).

The dual statement (according to Theorem 6.2) reads as:

Lemma 6.4. — Let X be a Hermitian complex space of pure dimension n
with only isolated singularities and Ω ⊂⊂ X a domain with strongly pseudo-
convex boundary which does not intersect the singular set, bΩ ∩ SingX = ∅.
Let 1 6 q 6 n, and Ωε chosen according to Lemma 6.3. Then the natural
inclusion map

i : H0,n−q
min (Ω∗)→ H0,n−q

min (Ω∗ε )
is injective.

Proof. — Note that the map i is defined as follows. For ψ ∈ Lr,s(Ω∗) ∩
Dom ∂min let ψ̃ be the trivial extension by 0 to Ω∗ε . Then ψ̃ ∈ Lr,s(Ω∗ε ) ∩
Dom ∂min. So, the map i is given by the assignment [ψ] 7→ [ψ̃].

Now then, let [ψ] ∈ H0,n−q
min (Ω∗) such that

i[ψ] = [ψ̃] = 0 ∈ H0,n−q
min (Ω∗ε ).

By Theorem 6.2, this means nothing else but∫
Ω∗ε
η ∧ ψ̃ = 0 (6.5)

for all [η] ∈ Hn,q
max(Ω∗ε ).
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Let [φ] ∈ Hn,q
max(Ω∗). By Lemma 6.3, there exists a class [φ′] ∈ Hn,q

max(Ω∗ε )
such that

r[φ′] = [φ′]|Ω∗ = [φ′|Ω∗ ] = [φ] ∈ Hn,q
max(Ω∗).

By (6.5), this yields∫
Ω∗
φ ∧ ψ =

∫
Ω∗
φ′ ∧ ψ =

∫
Ω∗ε
φ′ ∧ ψ̃ = 0 (6.6)

for all [φ] ∈ Hn,q
max(Ω∗) which (by use of Theorem 6.2) means nothing else

but [ψ] = 0 ∈ H0,n−q
min (Ω∗). �

6.3. Exceptional sets

We need some well-known facts about exceptional sets. Here, we adopt
the presentation from [13, Section 3.1].

Let X be a complex space. A compact nowhere discrete, nowhere dense
analytic set A ⊂ X is an exceptional set (in the sense of Grauert [5, Para-
graph 2, Definition 3]) if there exists a proper, surjective map π : X → Y
such that π(A) is discrete, π : X − A → Y − π(A) is biholomorphic and
for every open set D ⊂ Y the map π∗ : Γ(D,OY ) → Γ(π−1(D),OX) is
surjective.

Theorem 6.5 (Grauert [5, Paragraph 2, Satz 5]). — Let X be a complex
space and A ⊂ X a nowhere discrete compact analytic set. Then A is an
exceptional set exactly if there exists a strongly pseudoconvex neighborhood
U ⊂⊂ X of A such that A is the maximal compact analytic subset of U .

Theorem 6.6 (Laufer [10, Lemma 3.1]). — Let π : U → Y exhibit A as
exceptional set in U with Y a Stein space. If V ⊂ U with V a holomorphically
convex neighborhood of A and F is a coherent analytic sheaf on U , then the
restriction map ρ : Hi(U,F)→ Hi(V,F) is an isomorphism for i > 1.

6.4. L2-∂min-Representation of Hq
cpt(Ω,KsX)

The purpose of this subsection is to represent the cohomology with com-
pact support of KsX in terms of L2-∂min-cohomology groups. This can be
done on strongly pseudoconvex domains.

For this, we return to the situation of Subsection 6.2, i.e. let X be a
Hermitian complex space of pure dimension n with only isolated singulari-
ties and Ω ⊂⊂ X a domain with smooth strongly pseudoconvex boundary
which does not intersect the singular set and ρ : U → R a smooth strictly
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plurisubharmonic defining function (for Ω) on a neighborhood U ⊂ RegX
of bΩ. For ε > 0 small enough,

Ωε = Ω ∪ {z ∈ U : ρ(z) < ε}.

Note that a neighborhood of Ωε − Ω does not contain singularities. We have:

Lemma 6.7. — Let 0 < q < n. In the situation above, the natural injec-
tion

iq : Hq(Γcpt(Ω,Fn,∗))→ Hq(Γcpt(Ωε,Fn,∗))
is an isomorphism.

Proof. — The mapping iq is induced by extending sections in
Γcpt(Ω,Fn,∗) trivially to sections in Γcpt(Ωε,Fn,∗). Let π : M → X be a
resolution of singularities as in Theorem 5.3,

Rq := Rqπ∗
(
KM ⊗O(|Z| − Z)

)
,

D := π−1(Ω), Dε := π−1(Ωε), and consider the exact diagram

0 // Hq(Γcpt(Ω,Fn,∗))
π∗ //

iq

��

Hq(Γcpt(D, Cn,∗σ (L|Z|−Z))) s //

jq

��

Γ(Ω,Rq) //

∼=
��

0

0 // Hq(Γcpt(Ωε,Fn,∗))
π∗ // Hq(Γcpt(Dε, Cn,∗σ (L|Z|−Z))) s // Γ(Ωε,Rq) // 0.

This diagram is commutative because the maps π∗ are induced by pullback
of forms under π : M → X, iq and jq are induced by the trivial extension
of forms, and the maps s are induced by the residue class maps Γ(Ω,Kq)→
Γ(Ω,Rq) and Γ(Ωε,Kq) → Γ(Ωε,Rq), respectively. The vertical arrow on
the right-hand side of the diagramm is an isomorphism because there are no
singularities in a neighborhood of Ωε − Ω.

But jq is also an isomorphism. This follows from Theorem 6.6 as follows.
The map

jq : Hq(Γcpt(D, Cn,∗σ (L|Z|−Z)))→ Hq(Γcpt(Dε, Cn,∗σ (L|Z|−Z)))
is dual to the natural restriction map

ρn−q : Hn−q(Γ(Dε, C0,∗
σ (LZ−|Z|)))→ Hn−q(Γ(D, C0,∗

σ (LZ−|Z|))).

Since C0,∗
σ (LZ−|Z|) is a fine resolution of O(Z − |Z|), we can apply Theo-

rem 6.6 to O(Z − |Z|) and conclude that ρn−q is an isomorphism for q < n.
Since D and Dε are strongly pseudoconvex subsets of a complex manifolds,
we can apply Serre duality, and obtain that jq is also an isomorphism for
q < n. But then iq is an isomorphism as well by commutativity of the dia-
gram. �

From this and Lemma 6.4, we deduce:
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Theorem 6.8. — Let X be a Hermitian complex space of pure dimen-
sion n with only isolated singularities s.t. there exists a representation as in
Theorem 5.1, KsX = π∗

(
KM ⊗ O(Z − |Z|)

)
, and Ω ⊂⊂ X a domain with

strongly pseudoconvex boundary which does not intersect the singular set,
bΩ ∩ SingX = ∅.

Let 0 6 q < n. Then the natural inclusion map
ι : Hq(Γcpt(Ω,Fn,∗))→ Hn,q

min(Ω∗)
is an isomorphism.

Proof. — Let Ωε be a strongly pseudoconvex neighborhood of Ω as in
Lemma 6.4 and Lemma 6.7. If q > 1, we consider the sequence of trivial
inclusions

Hq(Γcpt(Ω,Fn,∗))
ι→ Hn,q

min(Ω∗) j→ Hq(Γcpt(Ωε,Fn,∗))
k→ Hn,q

min(Ω∗ε ).
Now then, j ◦ ι is an isomorphism as it is just the map iq from Lemma 6.7.
Hence, ι must be injective and j is surjective.

On the other hand, k◦j is injective as it is just the map i from Lemma 6.4.
Hence, j is also injective.

So, the maps j and j ◦ ι both are isomorphisms. This shows that ι is an
isomorphism, as well.

It remains to treat the case q = 0. But this is trivial for the groups under
consideration both vanish. Let π : M → X be a resolution of singularities as
in Theorem 1.1. Consider a form φ ∈ Γcpt(Ω,Fn,0). Then

π∗φ ∈ Γcpt
(
π−1(Ω),KM ⊗O(|Z| − Z)

)
= 0

since holomorphic n-forms with compact support in a non-compact manifold
must vanish. On the other hand, let φ ∈ Hn,0

min(Ω∗). Then φ can be trivially
extended to a ∂s-closed form φ̃ with compact support,

φ̃ ∈ Γcpt(Ωε,Fn,0),
so that φ = 0 as before. �

6.5. L2-version of Theorem 5.1

A slight modification of the proof of Theorem 6.8 also gives an L2-version
of Theorem 5.1. For this, we also need the well-known:

Lemma 6.9. — Let (M,σ) be a Hermitian complex manifold of dimen-
sion n and let G ⊂⊂ M be a strongly pseudoconvex smoothly bounded do-
main. Assume that Z is a divisor with support in G and denote by L|Z|−Z
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a Hermitian holomorphic line bundle as in Section 5 (the proof of Theo-
rem 5.1). Then the natural inclusion (trivial extension of forms) induces a
natural isomorphism

ιcpt : Hq(Γcpt(G, Cn,∗σ (L|Z|−Z)))→ Hn,q
min(G,L|Z|−Z))

for all 0 6 q < n.

Proof. — By use of Serre duality and the L2-duality Theorem 6.1 for
forms with values in Hermitian line bundles (see [17, Theorem 2.3]), it is
enough to prove that the natural map

H0,n−q
max (G,LZ−|Z|)→ Hn−q(Γ(G, C0,∗

σ (LZ−|Z|))) (6.7)

is an isomorphism. But this is the well-known equivalence of L2- and L2
loc-

cohomology on strongly pseudoconvex domains.(4) The map (6.7) is induced
by the natural inclusion L0,n−q

σ (G,LZ−|Z|)→ L0,n−q
σ (G,LZ−|Z|) of L2- into

L2
loc-forms on G, and (C0,∗

σ (LZ−|Z|), ∂w) is the usual fine L2
loc-resolution of

O(Z − |Z|). �

Combining Theorem 6.8 with Lemma 6.9, we obtain the following L2-
version of Theorem 5.1:

Theorem 6.10. — In the situation of Theorem 5.1, let Ω ⊂⊂ X be a
domain with strongly pseudoconvex smooth boundary that does not intersect
the singular set, bΩ ∩ SingX = ∅. Let 0 6 p < n, Ω̃ := π−1(Ω) and Ω∗ =
Ω− SingX.

Then the pull-back of forms π∗ induces a natural injective homomorphism

hp : Hn,p
min(Ω∗) −→ Hn,p

min(Ω̃, L|Z|−Z)
with cokerhp = Γ(Ω, Rpπ∗(KM ⊗O(|Z| −Z)) if p > 1, and h0 is an isomor-
phism.

Proof. — Consider the diagram of natural mappings

Hp(Γcpt(Ω,Fn,∗))
[π∗p ]
//

ι

��

Hp(Γcpt(Ω̃, Cn,∗σ (L|Z|−Z)))

ιcpt

��
Hn,p
min(Ω∗)

hp // Hn,p
min(Ω̃, L|Z|−Z),

where [π∗p ] is the map from Theorem 5.3, ι is the map from Theorem 6.8, and
ιcpt is the map from Lemma 6.9. Since all these maps are induced by natural
inclusion or pull-back of forms, the diagram is commutative. But ι and ιcpt
are isomorphisms and [π∗p] is injective with coker[π∗p] = Γ(Ω, Rpπ∗(KM ⊗

(4) One can prove the isomorphy (6.7) by combining Lemma 6.3 and Theorem 6.6.
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O(|Z| − Z)) if p > 1 and an isomorphism for p = 0. That implies the
assertion. �

The situation is much easier on compact complex spaces (where we can
also include the case p = n):

Theorem 6.11. — In the situation of Theorem 5.1, assume that X is
compact. Let 0 6 p 6 n. Then the pull-back of forms π∗ induces a natural
injective homomorphism

hp : Hn,p
min(X − SingX) −→ Hn,p(M,L|Z|−Z)

with cokerhp = Γ(X,Rpπ∗(KM ⊗O(|Z|−Z)) if p > 1, and h0 is an isomor-
phism.

Proof. — Since X is compact, the statement follows directly from Theo-
rem 5.3 because then

Hp(Γcpt(X,Fn,∗)) = Hn,p
min(X − SingX),

Hp(Γcpt(M, Cn,∗σ (L|Z|−Z))) = Hn,p(M,L|Z|−Z).

for all 0 6 p 6 n. �

6.6. Mayer–Vietoris for the ∂min-complex

We will now remove the assumption that Ω has strongly pseudoconvex
boundary from Theorem 6.10 by use of the Mayer–Vietoris sequence for the
∂min-complex.

Let N be a Hermitian complex manifold. For an open set V ⊂ N , let

Cp,qmin(V ) := Lp,q(V ) ∩Dom ∂min

be the square-integrable (p, q)-forms in the domain of ∂min. We denote by
Cp,∗min(V ) the ∂min-complex of (p, q)-forms

Cp,0min(V ) ∂min−→ Cp,1min(V ) ∂min−→ Cp,2min(V ) ∂min−→ . . .

Let U, V be two open sets in N with non-empty intersection. For any p, q,
let

iU : Cp,qmin(U ∩ V )→ Cp,qmin(U),
iV : Cp,qmin(U ∩ V )→ Cp,qmin(V ),
jU : Cp,qmin(U)→ Cp,qmin(U ∪ V ),
jV : Cp,qmin(V )→ Cp,qmin(U ∪ V )
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be the trivial extension of (p, q)-forms. Then it is clear that the natural
sequence of complexes

0→ Cp,∗min(U ∩V ) (iU ,iV )−→ Cp,∗min(U)⊕Cp,∗min(V ) jU−jV−→ Cp,∗min(U ∪V )→ 0 (6.8)
is exact on the left and in the middle. Assume that (6.8) is also exact on the
right. Then the short exact sequence (6.8) gives rise as usually to the long
exact cohomology sequence

0 −→Hp,0
min(U ∩ V ) (iU ,iV )−→ Hp,0

min(U)⊕Hp,0
min(V ) jU−jV−→ Hp,0

min(U ∪ V ) δ0−→

. . .
δq−1−→Hp,q

min(U ∩ V ) (iU ,iV )−→ Hp,q
min(U)⊕Hp,q

min(V ) jU−jV−→ Hp,q
min(U ∪ V ) δq−→

δq−→Hp,q+1
min (U ∩ V ) −→ . . .

6.7. Proof of Theorem 1.2

Let Y := Ω ∩ SingX be the (finite) set of isolated singularities in Ω and
E := |π−1(Y )| the (compact) exceptional set in Ω̃. Let W ⊂⊂ V be two
smoothly bounded neighborhoods of Y in Ω with strongly pseudoconvex
boundary. For this, one can just take the intersection of X with small balls
centered at the isolated singularities (in local embeddings). Note thatW and
V do not need to be connected. Let U := Ω−W and χ be a smooth cut-off
function with compact support in V which is identically 1 in a neighborhood
ofW . Then U does not contain singularities and χ is constant close to SingX.

Let V ∗ = V − SingX, Ṽ := π−1(V ), Ũ := π−1(U) and χ̃ = π∗χ. Choose
any (regular) Hermitian metric σ′ on M . Then σ := χ̃σ′ + (1 − χ̃)γ is a
(regular) Hermitian metric on Ω̃ which is equivalent to γ close to bΩ̃. All
such metrics on Ω̃ are equivalent. In the following, we work with the two
Hermitian complex manifolds (Ω∗, h) and (Ω̃, σ).

Let L := L|Z|−Z →M be the holomorphic line bundle as above, carrying
an arbitrary Hermitian metric. This metric can be arbitrary because Ω̃ is
relatively compact in M and we can restrict our attention to Z := π−1(Ω ∩
SingX). This setting avoids problems with singularities in the boundary of
Ω.

In this situation, the short sequence (6.8) is exact. The reason is as follows.
Let ω ∈ Cp,∗min(U∪V ∗) be a form on U∪V ∗. Then χω ∈ Cp,∗min(V ∗), (χ−1)ω ∈
Cp,∗min(U) and (jU−jV )(χω, (χ−1)ω) = ω. Thus, there is a long exact Mayer–
Vietoris sequence as above on U ∪ V ∗ = Ω∗.

Analogously, we have a short exact sequence (6.8) of complexes of forms
with values in the Hermitian holomorphic line bundle L|Z|−Z on Ω̃ = Ũ ∪ Ṽ
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(by using the smooth cut-off functions χ̃ and 1− χ̃), and this yields another
long exact sequence on Ω̃ for forms with values in L|Z|−Z .

This leads to the long exact natural commutative diagram (set L :=
L|Z|−Z)

... // Hn,q
min(Ũ ∩ Ṽ , L) // Hn,q

min(Ũ , L)⊕Hn,q
min(Ṽ , L) // Hn,q

min(Ω̃, L) // ...

... // Hn,q
min(U ∩ V ∗) //

hU∩Vq

OO

Hn,q
min(U)⊕Hn,q

min(V ∗) //

hUq ⊕h
V
q

OO

Hn,q
min(Ω∗) //

hU∪Vq

OO

...

where all the vertical maps are induced by pull-back of forms (see the
proof of Theorem 5.1). By our choice of the open coverings and metrics,
the maps hU∩Vq and hUq are isomorphisms for all 0 6 q 6 n. By The-
orem 6.10, the hVq are injective for 0 6 q < n with cokerhV0 = 0 and
cokerhVp = Γ(V,Rpπ∗(KM ⊗ O(|Z| − Z))) for 1 6 p < n. Thus, the same
holds for the maps hU∪Vq , 0 6 q < n. But

Γ(V,Rpπ∗(KM ⊗O(|Z| − Z))) = Γ(Ω, Rpπ∗(KM ⊗O(|Z| − Z)))

for all 1 6 p < n, and this finishes the proof of Theorem 1.2.

7. Proof of Theorem 1.3

7.1. Cohomology with support on the exceptional set

Let π : M → X be a resolution of singularities as above and E = |π−1(Ω∩
SingX)| the exceptional set. For a closed subset K of M and a sheaf of
abelian groups F , we denote by H∗K(M,F) the flabby cohomology of F
with support in K. In this section, we are interested in the case where K
is the exceptional set E. A nice review of cohomology with support on the
exceptional set can be found in [13, Section 3.2], a more extensive treatment
in [9].

Let G ⊂ X be an open set and G̃ := π−1(G). In the following, we may
assume that E ⊂ G̃. Since X has only isolated singularities, there exists
a (not connected) smoothly bounded strongly pseudoconvex neighborhood
V of E in G̃ which exhibits E as exceptional set in G̃ (see Section 6.3).
H∗E(V,F) = H∗E(M,F) by excision, and so we have natural homomorphisms

γj : Hj
E(M,F)→ Hj

cpt(V,F).
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Theorem 7.1 (Karras [9, Proposition 2.3]). — If F is a coherent ana-
lytic sheaf on M such that depthxF > d for all x ∈ V − E, then

γj : Hj
E(M,F)→ Hj

cpt(V,F)
is an isomorphism for j < d.

On the other hand we have seen that
Γ(G,Rpπ∗KM ⊗O(|Z| − Z)) = lim

−→U
Hp(π−1(U),KM ⊗O(|Z| − Z))

for p > 1, where the limit is over open neighborhoods of SingX ∩ G. But
then the natural maps

αp : Hp(V,KM ⊗O(|Z| − Z))→ Γ(G,Rpπ∗KM ⊗O(|Z| − Z)) (7.1)
are isomorphisms for p > 1 by Theorem 6.6.

By use of Serre duality, there exists a non-degenerate pairing
Hp(V,KM ⊗O(|Z| − Z))×Hn−p

cpt (V,O(Z − |Z|))→ C. (7.2)
As depthO(Z − |Z|) = n, we can combine Theorem 7.1 with (7.1), (7.2) and
obtain:

Theorem 7.2. — In the situation described above, there is a natural
non-degenerate pairing

Γ(G,Rpπ∗KM ⊗O(|Z| − Z))×Hn−p
E (G̃,O(Z − |Z|))→ C

for 1 6 p 6 n which is induced by Serre duality and the natural isomorphisms
αp : Hp(V,KM ⊗O(|Z| − Z))→ Γ(G,Rpπ∗KM ⊗O(|Z| − Z)),

γn−p : Hn−p
E (M,O(Z − |Z|))→ Hn−p

cpt (V,O(Z − |Z|).

7.2. Proof of Theorem 1.3

We use the notation
Rp := Rpπ∗

(
KM ⊗O(|Z| − Z)

)
for p > 1 and set R0 = 0 for ease of notation but emphasize that this is
clearly not the direct image of KM ⊗O(|Z| − Z).

Assume first that Ω is strongly pseudoconvex with smooth boundary that
does not intersect the singular set or that Ω = X is compact.

By Theorem 1.2 or Theorem 6.11, respectively, there is an exact sequence
of natural homomorphisms (induced by pull-back of forms and the residue
map)

0→ Hn,p
min(Ω∗) hp−→ Hn,p

min(Ω̃, L|Z|−Z) πp−→ Γ(Ω,Rp)→ 0, (7.3)
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where Ω∗ = Ω− SingX and Ω̃ = π−1(Ω).

Let V ⊂⊂ Ω̃ be a strongly pseudoconvex (smoothly bounded) neighbor-
hood of the exceptional set in Ω̃ as in Section 7.1. For p > 1, the map πp
in (7.3) factors through Hp(V,KM ⊗O(|Z| −Z)) by use of the isomorphism
αp in Theorem 7.2:

πp : Hn,p
min(Ω̃, L|Z|−Z) rp−→ Hp(V,KM ⊗O(|Z| − Z)) αp−→ Γ(Ω,Rp), (7.4)

where rp is the natural restriction map. Ignore this factorization in the case
p = 0.

Note that all the cohomology groups in (7.3) and (7.4) are finite-dimen-
sional vector spaces. For any such vector space G, we denote the dual
space of (continuous) linear mappings to C by G∗ := Hom(G,C). By finite-
dimensionality, the contravariant functor G 7→ G∗ is not only left-exact, but
also right-exact. So, (7.3) yields the natural exact sequence

0→ Γ(Ω,Rp)∗
π∗p−→ Hn,p

min(Ω̃, L|Z|−Z)∗
h∗p−→ Hn,p

min(Ω∗)∗ → 0, (7.5)
where π∗p factors through Hp(V,KMO(|Z| −Z))∗ by use of the isomorphism
α∗p:

π∗p : Γ(Ω,Rp)∗
α∗p−→ Hp(V,KM ⊗O(|Z| −Z))∗

r∗p−→ Hn,p
min(Ω̃, L|Z|−Z)∗. (7.6)

Again, ignore this factorization if p = 0. The situation is quite comfortable
since all the groups under consideration are of finite dimension. Anyway, the
argument remains valid if only the corresponding ∂-operators all have closed
range. Then, all the spaces under consideration inherit a natural locally
convex topology (see [15, Theorem 1.41]), and then the functor G 7→ G∗ is
right-exact by the Hahn–Banach Theorem (see [15, Theorem 3.6]).

Now, consider the commutative diagram of natural mappings (let q =
n− p)

0 // Γ(Ω,Rp)∗
π∗p // Hn,p

min(Ω̃, L|Z|−Z)∗
h∗p // Hn,p

min(Ω∗)∗ // 0

0 // Hq
E(Ω̃,O(Z − |Z|))

iq //

∼=

OO

H0,q
max(Ω̃, LZ−|Z|)

sq //

∼=

OO

H0,q
max(Ω∗) //

∼=

OO

0,

where the vertical isomorphisms are induced by the natural non-degenerate
pairings from Theorem 7.2, Theorem 6.1 for forms with values in holomorphic
line bundles (see [17, Theorem 2.3]) and Theorem 6.1 itself.(5) The map iq

(5) Here, we use that Ω is compact or has a strongly pseudoconvex boundary so that
the ∂-operators under consideration have closed range and the duality statements can be
applied.
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is the isomorphism γn−p from Theorem 7.2 followed by a natural mapping:

iq : Hq
E(Ω̃,O(Z−|Z|)) γn−p−→ Hq

cpt(V,O(Z−|Z|))−→H0,q
max(Ω̃, LZ−|Z|). (7.7)

Put 0 instead of Hn
E(Ω̃,O(Z − |Z|)) in the case p = 0 (i.e. if q = n). Now,

define
sq : H0,q

max(Ω̃, LZ−|Z|) −→ H0,q
max(Ω∗)

to be the natural mapping which makes the diagram commutative. A real-
ization of this mapping on the level of forms can be obtained by working
with harmonic representatives of cohomology classes. The lower line of the
natural commutative diagram must be exact for the upper line is exact.
That proves the second main Theorem 1.3 if Ω is compact or has a strongly
pseudoconvex smooth boundary without singularities.

The general statement follows exactly as in the proof of Theorem 1.2 by
use of the Mayer–Vietoris sequence for the ∂max-cohomology.
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