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On the Tits alternative for PD(3) groups
Michel Boileau (1) and Steven Boyer (2)

ABSTRACT. — We prove the Tits alternative for an almost coherent PD(3) group
which is not virtually properly locally cyclic. In particular, we show that an almost
coherent PD(3) group which cannot be generated by less than four elements always
contains a rank 2 free group.

RÉSUMÉ. — Onmontre qu’un groupe à dualité de Poincaré de dimension 3, presque
cohérent et tel que tout sous-groupe d’indice fini contienne un sous-groupe propre de
type fini non cyclique, vérifie l’alternative de Tits. On obtient en particulier qu’un
groupe à dualité de Poincaré de dimension 3, presque cohérent et qui ne peut pas
être engendré par moins de 4 éléments, contient toujours un groupe libre non abélien.

1. Introduction

Recent years have seen spectacular progress in our understanding of the
algebraic properties of the fundamental groups of 3-manifolds due mainly to
Perelman’s geometrisation theorem (cf. [8], [32]) and the work of Agol [2]
and Wise [66], [65]. We know that hyperbolic 3-manifold groups are sub-
group separable, which means that their finitely generated subgroups are
the intersection of subgroups of finite index. (Equivalently, finitely gener-
ated subgroups are closed in the profinite topology.) Moreover, except for
graph manifolds which admit no Riemannian metrics of strictly negative
sectional curvature, each closed manifold virtually fibres over the circle and
thus its fundamental group has a finite index subgroup which is an extension
of Z by a surface group, see [2], [37], [47], [66]. Necessary and sufficient con-
ditions for a given group to be isomorphic to a closed 3-manifold group have
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been given in terms of group presentations ([25], [62]), however, no intrinsic
algebraic characterisation of 3-manifold groups is currently known.

Simple constructions show that if n > 4, each finitely presented group is
the fundamental group of a smooth, closed, n-dimensional manifold. How-
ever, the constructions do not produce aspherical manifolds in general, so
the (co)homology of the constructed manifolds does not necessarily coin-
cide with that of the group. When G is the fundamental group of a closed,
aspherical n-manifold, its homology and cohomology with coefficients in a
ZG-module satisfy a form of Poincaré duality, and a group with this prop-
erty is called an n-dimensional Poincaré duality group or, for short, a PD(n)
group. Equivalently, G is a PD(n) group if the following two conditions hold
(see [9], [10], [17, Chapter VIII]):

• there is a projective Z[G]-resolution of the trivial Z[G]-module Z
which is finitely generated in each dimension and 0 in all but finitely
many dimensions (i.e. G is of type FP);
• Hn(G;ZG) ∼= Z and Hi(G;ZG) = {0} for all i 6= n.

The first condition implies that PD(n) groups are torsion-free. The latter im-
plies that for n > 2, PD(n) groups are 1-ended and therefore indecomposable
by Stallings theorem (cf. [55, 4.A.6.6]).

Finite index subgroups of PD(n) groups are PD(n).

A PD(n) group G is said orientable if the action of G on Hn(G;ZG)
is trivial, and non-orientable otherwise. Each PD(n) group contains an ori-
entable PD(n) group of index 1 or 2.

Wall asked in the 1960s whether this duality characterises the fundamen-
tal groups of closed aspherical n-dimensional manifold. But Davis produced
examples of PD(n)-groups which are not finitely presentable, and so cannot
be the fundamental group of a closed, aspherical n-dimensional manifold [20,
Theorem C], for each n > 4. This leads to the following conjecture:

Conjecture 1.1 (Wall). — A finitely presented PD(n) group is isomor-
phic to the fundamental group of a closed, aspherical n-dimensional manifold.

Non-trivial arguments of Eckmann, Linnell and Müller (see [22]) verified
the conjecture for PD(2) groups, and though the PD(3) case remains com-
pletely open, progress has been made. For instance, Perelman’s geometrisa-
tion theorem implies that a PD(3) group is isomorphic to a 3-manifold group
if and only if it is virtually a 3-manifold group. (See [26, Theorem 5.1].)

A group G is called FPn if there is a projective Z[G]-resolution of the
trivial Z[G]-module Z which is finitely generated in degrees n or less. The
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condition FP1 is equivalent to being finitely generated. The condition FP2
is implied by being finitely presented and a group satisfying this condition is
called almost finitely presented. Since PD(3) groups are FP, they are finitely
generated and almost finitely presented.

Hillman verified Conjecture 1.1 for PD(3) groups of positive first Betti
number which contain non-trivial, normal cyclic subgroups ([27]). Bowditch
extended this to general PD(3) groups containing non-trivial, normal cyclic
subgroups ([13]). This, together with results of Hillman ([27], [28], [30]) and
Thomas ([58]), implies that the conjecture holds for PD(3) groups contain-
ing a non-trivial, infinite index normal subgroup which is almost finitely
presented.

A group is coherent if each of its finitely generated subgroups is finitely
presentable; it is almost coherent if each of its finitely generated subgroups
is almost finitely presented (i.e. FP2). Scott’s compact core theorem [49]
shows that 3-manifold groups are coherent. However, it is an open question
whether a PD(3) group is coherent or even almost coherent. Moreover, there
are examples of closed hyperbolic 4-manifolds whose fundamental groups are
not coherent [14], [46].

Dunwoody and Swenson proved a version of the torus theorem [21]: an
orientable PD(3) group is either isomorphic to the fundamental group of
a Seifert 3-manifold, or it splits over a Z ⊕ Z subgroup, or it is atoroidal
(i.e. does not contain any Z⊕ Z subgroup). This was generalised in F. Cas-
tel’s thesis [19], where Scott–Swarup regular neighborhood theory ([51]) was
used to show that an orientable PD(3) group admits a canonical JSJ split-
ting along free abelian groups of rank 2 with vertex groups isomorphic to
either Seifert manifold groups or atoroidal PD(3) pairs in the sense of [19,
Definition 1(2)]. This splitting is analogous to the one induced on the funda-
mental group of closed orientable aspherical 3-manifolds by their geometric
decomposition. For finitely presented PD(3) groups it can be deduced from
Dunwoody and Swenson JSJ-decomposition theorem [21]. See [63, Theo-
rem 10.8] or [64, Theorem 4.2].

These results show that there is a strong correlation between the algebraic
properties of PD(3) groups and those of 3-manifold groups. The goal of this
paper is to further enhance this correlation by studying the existence of
non-abelian free groups.

A well-known theorem of Tits states that a finitely generated linear group
contains a non-abelian free group or is virtually solvable ([61]) and we say
that a group G satisfies the Tits alternative if each of its finitely generated
subgroups verifies this dichotomy. Geometrisation shows that 3-manifold
groups are residually finite and satisfy the Tits alternative. In fact, more
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recent works by Agol and Wise showed that in most cases, 3-manifold groups
are linear.

To study the Tits alternative for PD(3) groups we cannot rely on the ge-
ometry, but use, rather, algebraic methods, namely the mod p cohomology
of groups and the theory of pro-p groups through the works of Lubotzky–
Mann [39] and Shalen–Wagreich [53]. For our purposes, the alternative and
weaker approach of Segal [52] to Lubotzky’s linearity criterion [38] is suf-
ficient and allows us to avoid the use of Lazard’s theory of p-adic analytic
groups [36]. Homological methods have already been used to approach the
Tits alternative for 3-manifolds groups (see [33], [43], [45], [53]) and also for
PD(3) groups (see [29, Chapter 2], [30, Section 3]).

We say that a finitely generated, torsion free group is properly locally
cyclic if each of its proper, finitely generated subgroups is cyclic. As men-
tioned above, 3-manifold groups are residually finite and this implies that
they are not virtually properly locally cyclic (cf. Lemma 4.1). Mess [42] has
shown that for each n > 4, there are closed aspherical n-manifolds with
non-residually finite fundamental group.

An infinite, finitely generated, properly locally cyclic group cannot satisfy
the Tits alternative, unless it is virtually Z. They are torsion free analogues
of Tarski monsters: infinite simple groups all of whose proper subgroups are
infinite cyclic (see [44]). In Lemma 4.1 we show that locally cyclic PD(3)
groups are simple.

Here is the main result of this article. It sharpens [29, Theorem 2.13]
and [30, Theorem 9].

Theorem 1.2. — An almost coherent PD(3) group satisfies the Tits al-
ternative if and only if it does not contain a finite index subgroup which is
properly locally cyclic.

We show in Theorem 2.1 that an almost coherent PD(3) group with
infinite profinite completion either contains a surface group or contains a
non-abelian free group. As such, it cannot be properly locally cyclic. Con-
sequently, we obtain the following corollary which extends to PD(3) groups
the result of [33].

Corollary 1.3. — An almost coherent PD(3) group with an infinite
profinite completion satisfies the Tits alternative.

The following corollary sharpens the results of [45] and extends them to
PD(3) groups.
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Corollary 1.4. — An almost coherent PD(3) group G with
dimFp H1(G;Fp) > 2 for some odd prime p or with dimF2 H1(G;F2) > 3
satisfies the Tits alternative.

As already mentioned, an important consequence of geometrisation is
that 3-manifold groups are residually finite. In particular, any 3-manifold
group contains a proper subgroup of finite index. One expects that the same
property holds for PD(3) groups, and since finite index subgroups of PD(3)
groups are PD(3), Conjecture 1.5 would then imply that PD(3) groups have
infinite profinite completions. In particular, PD(3) groups could not be vir-
tually properly locally cyclic.

Conjecture 1.5. — A PD(3) group always contains a proper subgroup
of finite index.

Our remaining results determine sufficient conditions for the existence of
a non-abelian free subgroup of a PD(3) group.

Scott’s compact core theorem [49] shows that 3-manifold groups are co-
herent. It would be preferable to avoid the coherence assumption in Theo-
rem 1.2, but we need it to use an algebraic analogue of the core theorem
for PD(3) groups due to Kapovich and Kleiner [31]. A useful consequence of
their result is that a one-ended FP2 subgroup of infinite index in a PD(3)
group contains a surface group.

The rank of a group G, denoted rk(G), is the minimal number of elements
needed to generate it. The Prüfer-rank of G, denoted u(G), is the maximal
rank among all finitely generated subgroups of G; it may be infinite. If a
group G has finite Prüfer-rank r, every finitely generated subgroup of G can
be generated by r elements. The classification of finite groups with cohomol-
ogy of period 2 and 4 (see [1, Chapter IV.6]) combines with Theorem 1.2 to
prove our next result.

Theorem 1.6. — An almost coherent PD(3) group G contains a rank 2
free group if and only if its Prüfer-rank is at least 4.

The following corollary of Theorem 1.6 sharpens [53, Theorem 2.9] and
extends it to PD(3) groups.

Corollary 1.7. — An almost coherent PD(3) group of rank 4 or more
contains a rank 2 free group.

Consideration of the PD(3)-group Z3 shows that the hypothesis that the
rank be at least 4 in Corollary 1.7 is sharp.

Corollary 1.3 shows that it is of interest to determine sufficient conditions
on a PD(3) group which guarantee that its profinite completion is infinite.
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Our next result gives such a condition via the group’s PSL(2,C)-character
variety.

Theorem 1.8. — If a PD(3) group G has at least three distinct, strictly
irreducible PSL(2,C)-characters, then its profinite completion is infinite.
Moreover, if G is almost coherent, it contains a rank 2 free group.

Corollary 1.9. — LetM be an integral homology 3-sphere with Casson
invariant |λ(M)| > 2. Then π1(M) contains a rank 2 free group.

This corollary is known to follow from the geometrisation of 3-manifolds.
In contrast, our proof is algebraic.

Here is the plan of the paper. In Section 2 we study PD(3) groups with
infinite profinite completions and prove that when such a group is almost
coherent, it either contains a surface group or is virtually k-free for each
k > 1 (Theorem 2.1). Section 3 contains the proof of Theorem 1.2 and
Corollary 1.4 while Section 4 characterises almost coherent PD(3) groups
which contain non-abelian free groups. See Theorem 1.6. Finally, we prove
Theorem 1.8 and Corollary 1.9 in Section 5.

Acknowledgements.The authors would like to thank Ralph Strebel
for his remarks clarifying the use of Theorem [12, Theorem A] in the proof
of Claim 2.7 and Jonathan Hillman for his remarks on an earlier version
of the paper. The authors are also grateful to the referee for pointing out
gaps in some of our arguments and for comments resulting in an improved
exposition.

2. PD(3) groups with infinite profinite completion

Let k > 1 be an integer. A group is k-free if any subgroup generated by k
elements is free. For an almost coherent PD(3) group with infinite profinite
completion, we have the following result related to the Tits alternative.

Theorem 2.1. — Let G be an almost coherent PD(3) group. If its profi-
nite completion is infinite, then either:

(1) G contains a surface group, or
(2) G is virtually k-free for all k > 1.

Since a PD(3) group contains an index 2 orientable PD(3) group, we need
only to consider orientable PD(3) groups.
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The main ingredient in the proof of Theorem 2.1 is Proposition 2.2, a
PD(3)-version of a theorem of Lubotzky and Mann [39] concerning residually
finite groups of finite rank. The proposition’s proof follows the lines of [39],
except that we avoid the use of Lazard’s theory of p-adic analytic groups [36]
by applying a weak linearity criterion due to Segal [52].

We use
β(G) = dimQH1(G;Q)

to denote the first Betti number of G and
vβ(G) = sup

H
{β(H) : H has finite index in G}

to denote its virtual first Betti number.

Similarly for p prime,
βp(G) = dimFp

H1(G;Fp)
denotes the (mod p) first Betti number of G and

vβp(G) = sup
H
{βp(H) : H has finite index in G}

its virtual (mod p) first Betti number.

Proposition 2.2. — Let G be an orientable PD(3) group with infinite
profinite completion Ĝ. Then either

(1) G has a positive virtual first Betti number, or
(2) there is a prime number p such that vβp(G) =∞.

Before proving Proposition 2.2 we introduce some notation and terminol-
ogy.

We say that G has sectional p-rank less than or equal to r if the p-
Sylow subgroups of the finite quotients of G have Prüfer-rank at most r.
The sectional p-rank of G, denoted up(G), is the smallest r such that G has
sectional p-rank at most r.

Lemma 2.3. — If vβp(G) is finite, then every finite index subgroup H
of G has sectional p-rank up(H) 6 vβp(G).

Proof. — LetH ⊂ G be a subgroup of finite index inG and let f : H → F
be an epimorphism onto a finite quotient of H. Denote by Sp ⊂ F the
p-Sylow subgroup of F and let d = u(Sp) be its Prüfer-rank. There is a
subgroup T of Sp with rk(T ) = d and T/Φ(T ) ∼= (Z/pZ)d, where Φ(T ) is the
Frattini subgroup of T . The finite index subgroup K = f−1(T ) of H is also
of finite index in G and the restriction to K of f induces an epimorphism
K → T → T/Φ(T ) ∼= (Z/pZ)d. Thus vβp(G) > βp(K) > d. �
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Lemma 2.4. — Let G be an orientable PD(3)-group and p be a prime
number. If vβp(G) is finite, then vβp(G) 6 3 and any finite index subgroup
H of G has sectional p-rank up(H) 6 3.

Proof. — Let G be an orientable PD(3)-group and let G1 be the kernel
of the epimorphism G → H1(G,Fp). Lemma 1.3 of [53] is stated for closed
orientable 3-manifold groups, but its proof follows from Poincaré duality and
a homological computation based on the 5-term Stallings’ exact sequence for
the (mod p) homology [54]. Hence the inequality βp(G1) > 1

2βp(G)(βp(G)−1)
remains valid for an orientable PD(3)-group G. Therefore βp(G1) > βp(G)
when βp(G) > 4. Proceeding inductively, it follows that vβp(G) = ∞. The
lemma is a consequence of this observation and Lemma 2.3. �

Proposition 2.5. — Let G be an orientable PD(3)-group such that
vβp(G) is finite for every prime p. Then G has a finite index subgroup G1
each of whose finite quotients is solvable with Prüfer rank 6 4.

Proof. — According to Lubotzky and Mann [39], a group G with finite 2-
rank has a finite index subgroup G1 all of whose finite quotients are solvable.
On the other hand, Kovács [34] has shown that if S is a finite solvable group
all of whose Sylow subgroups have Prüfer-rank at most r, then S has Prüfer
rank at most r + 1. Proposition 2.5 now follows from Lemma 2.4. �

Proof of Proposition 2.2. — Suppose thatG is an orientable PD(3)-group
with infinite profinite completion such that vβp(G) is finite for every prime
p. Let G1 be the finite index subgroup of G given by Proposition 2.5 and
define K to be the intersection of all finite index subgroups of G1. Since Ĝ1
has finite index in Ĝ, it is infinite, so the residually finite quotient Γ = G1/K
is also infinite. By [52], Γ is virtually nilpotent by abelian, and as an infinite,
finitely generated nilpotent by abelian group, it has a positive virtual first
Betti number, so we are done. �

The key ingredient of the proof of Theorem 2.1 is the following result of
Kapovich and Kleiner.

Proposition 2.6 ([31, Corollary 1.3(2)]). — An infinite index FP2 sub-
group of an orientable PD(3) group either contains a surface subgroup or is
free.

Theorem 2.1 now follows from Claims 2.7 and 2.8 below.

Claim 2.7. — Suppose that G is an almost coherent orientable PD(3)
group with Ĝ infinite. If vβp(G) is finite for each prime p, then G contains
a surface group.

Proof. — By Proposition 2.2, vβ(G) > 1, so there is a finite index sub-
group H of G which admits an epimorphism onto Z. Since H is a PD(3)
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group, it is of type FP by [10], so the Bieri–Strebel’s theorem [12, Theo-
rem A] implies that H splits as an HNN extension with finitely generated
base and the splitting subgroups of infinite index. Since G is almost coherent,
the base group of the HNN extension is FP2. If G does not contain a surface
group, Proposition 2.6 implies that the base group of the HNN extension is
free. But this implies that the cohomological dimension of H is 2, which is
impossible since H is a PD(3) group. �

Claim 2.8. — If there is a prime number p such that vβp(G) =∞ and
G does not contain a surface group, then G is virtually k-free for any k > 1.

Proof. — Let Gk be a finite index subgroup of G with βp(Gk) > k+2 and
letH ⊂ Gk be a subgroup generated by k or fewer elements. SinceGk satisfies
Poincaré duality, the cohomological computation using the Stallings exact
sequence and the (mod p) lower central series of Gk in [53, Proposition 1.1]
applies to show that H lies in infinitely many distinct subgroups of finite
index in Gk. Thus it has infinite index in Gk. Since Gk does not contain a
surface group and is almost coherent, Proposition 2.6 implies that H is free.
Hence Gk is k-free. �

3. The Tits alternative

In this section we prove Theorem 1.2. We suppose throughout that G
is an almost coherent PD(3) group and will show that G satisfies the Tits
alternative if and only if it does not contain a finite index subgroup which
is properly locally cyclic. The forward direction is straightforward: if G sat-
isfies the Tits alternative and contains a properly locally cyclic finite index
subgroup H, then H does not contain a non-abelian free group, and since G
is PD(3) it does not contain a finite index subgroup isomorphic to Z. Thus
H must be solvable. But a torsion free finitely generated solvable properly
locally cyclic group is easily seen to be infinite cyclic, which is impossible.

Thus, the proof of Theorem 1.2 reduces to the following proposition.

Proposition 3.1. — Let G be an almost coherent PD(3) group which
is not virtually properly locally cyclic. Then any finitely generated subgroup
of G contains a rank 2 free group or is virtually solvable.

Proof. — As above we can assume that G is an orientable PD(3) group.

First we deal with the case that the subgroup H has a finite index in
G. Then H is a non-virtually properly locally cyclic almost coherent PD(3)
group. We claim that it contains either a non-abelian free group or Z ⊕ Z.
This follows from Theorem 2.1 if the profinite completion Ĥ is infinite. If Ĥ
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is finite, H contains a smallest finite index normal subgroup H0. Then any
finitely generated proper subgroup of H0 is of infinite index. Since H is not
properly virtually locally cyclic, H0 contains a finitely generated subgroup
K of infinite index which is not cyclic. Since H is almost coherent, K is FP2
and by Proposition 2.6 it is either free of rank 2 or more or contains a surface
group. Hence K contains a rank 2 free group or Z⊕ Z.

Next we claim that if H contains Z ⊕ Z, it contains a rank 2 free group
or is virtually solvable. By the Dunwoody–Swenson torus theorem [21] and
Bowditch’s theorem [13], H is either isomorphic to the fundamental group
of a Seifert 3-manifold or splits over Z ⊕ Z with finitely generated edge
groups which, as base groups of PD(3) pairs ([11, Theorem 8.3]), are finitely
generated. Since Seifert 3-manifold groups verify the Tits alternative, we
only need to consider the case where H splits over Z⊕ Z.

If the splitting corresponds to an amalgamated free product H = A ∗C B
with C ∼= Z ⊕ Z, then H contains a rank 2 free group or C is of index 2 in
both A and B ([6, Lemma 1]). In the latter case, it is easy to see that H is
solvable.

Suppose that the splitting corresponds to an HNN extension H = A∗C =
〈A, t : tC+t

−1 = C−〉, with C+ ∼= C− ∼= Z ⊕ Z and (A,C+ ∪ C−) a PD(3)
pair. If H does not contain a rank 2 free group, the HNN extension must be
ascending since A is finitely generated and FP2 (see [5, Theorem 5]). In this
case either C+ = A or C− = A, and hence H is virtually solvable. (This case
also follows from [30, Corollary of Theorem 3].) This completes the proof of
the proposition when H has finite index in G.

Now suppose that H is of infinite index. By [56], H has cohomological
dimension at most 2. It then follows from [31, Corollary 1.3] that H admits
a free product decomposition H = F ∗ H1 ∗ · · · ∗ Hn where F is a finitely
generated free group and each Hi is the base group of a PD(3) pair. There-
fore, if we assume that H does not contain a rank 2 free group, it follows
that n = 1 and H is the base group of an orientable PD(3) pair. A stan-
dard cohomological computation then shows that H admits an epimorphism
to Z, and as H is finitely generated, almost coherent and cd(H) = 2, [30,
Theorem 3] implies that H is virtually solvable. �

Corollary 1.4 follows from Corollary 1.3 and the following lemma.

Lemma 3.2. — If a PD(3) group G has a finite profinite completion Ĝ
then β2(G) 6 2 and βp(G) 6 1 for each odd prime p.

Proof. — The finiteness of Ĝ implies that there is a smallest finite index
subgroup G0 of G which is necessarily normal and contained in every finite
index subgroup of G. It follows that the kernel of each finite quotient of

– 406 –



On the Tits alternative for PD(3) groups

G contains G0 and thus each finite quotient of G factorizses through F0 =
G/G0. In particular G0 is perfect.

Claim 3.3. — The finite group F0 = G/G0 has periodic cohomology with
period 4.

Proof. — Let X be a K(G, 1) complex. The finite cover X0 of X cor-
responding to the subgroup G0 of G is a K(G0, 1) complex on which F0
acts freely. Since G0 is a perfect PD(3) group, X0 is an integral cohomol-
ogy 3-sphere: H∗(X0,Z) ∼= H∗(S3,Z). Then F0 has periodic cohomology of
period 4 by [57, Thm 4.8], see also [17, Chapter VII, Proposition 10.2], [18,
Chapters 16.9, Appl. 4]. �

The Suzuki–Zassenhaus classification of periodic groups (cf. [1, Chap-
ter IV.6]) determines a complete list of finite groups with cohomological
period 2 or 4. See [24, Table 2] for example. Since the epimorphism G →
H1(G,Fp) factorises through F0, it follows that F0/[F0, F0] surjects onto
H1(G,Fp), for any prime number p. The computation of F0/[F0, F0] from
the table of groups with cohomological period 2 or 4 shows that β2(G) 6 2
and βp(G) 6 1 for each odd prime p. This follows also from the fact that
the Sylow p-groups of F0 are cyclic or generalised quaternionic ([1, Chap-
ter IV.6], [17, Chapter VI.9]). �

4. Characterisation of PD(3) groups containing a rank 2 free
subgroup

The goal of this section is to prove Theorem 1.6. We begin with a lemma
concerning properly locally cyclic PD(3) groups.

Lemma 4.1. — If a PD(3) group G is properly locally cyclic, then

(1) G has trivial profinite completion;
(2) G is simple and generated by any pair of non-commuting elements.
Proof. — Assertion (1) follows from the fact that a properly locally cyclic

PD(3) group cannot contain a proper finite index subgroup, since such a
subgroup is finitely generated of cohomological dimension 3, and thus cannot
be isomorphic to Z.

For assertion (2), note that by [60], an abelian PD(3) group is a Euclidean
3-manifold group and thus cannot be properly locally cyclic. Hence we may
choose non-commuting elements x, y ∈ G. Then by our hypotheses, G =
〈x, y〉.

Let N ⊂ G be a non-trivial proper normal subgroup. By (1), N has infi-
nite index. Hence N is locally cyclic, so abelian, and torsion free group. Thus
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it is isomorphic to a subgroup of the additive group Q. (See for example [35,
Chapter VIII, Section 30].) This implies that Aut(N) is abelian and there
is a representation ρ : G→ Aut(N) induced by conjugation. Let K = ker ρ.
If K = G, N belongs to the center of G and by [13], G is a Seifert fibred 3-
manifold group and hence cannot be properly locally cyclic. Therefore K is a
proper subgroup of G and the previous argument shows that K is an abelian
subgroup of infinite index in G. Hence G is a solvable group. But a solvable
PD(3) group is a 3-manifold group ([60]) and thus cannot be properly locally
cyclic. Hence G is simple. �

Proof of Theorem 1.6. — If G contains a rank 2 free group, it is clear
that the Prüfer-rank u(G) is unbounded and hence at least 4. This is the
forward direction of the theorem. To prove the reverse direction, we begin
with a lemma.

Lemma 4.2. — A PD(3) group with Prüfer-rank u(G) > 4 is not virtu-
ally properly locally cyclic.

Proof. — We argue by contradiction. Let G0 < G be a properly locally
cyclic subgroup of finite index. Since G0 is simple (Lemma 4.1), it is normal
in G. The finite quotient F0 = G/G0 has cohomological period 2 or 4 ([18,
Chapters 12.11 and 16.9]). We claim that its Prüfer-rank is at most 3. To see
this, note that since F0 has finite cohomological period, its Sylow p-groups
are cyclic for p odd and generalised quaternionic for p = 2 (cf. [1, Chap-
ter IV.6]). Thus their Prüfer-ranks are at most 2. It then follows from [34]
that u(F0) 6 3 if F0 is solvable.

Suppose that F0 is not solvable. The classification of periodic groups with
cohomological period 2 or 4 (see [24, Table 2]) shows that when F0 is non-
solvable, it is isomorphic to Z/nZ × SL2(F5) with n prime to 120. Such a
group is the fundamental group of a spherical Seifert fibred 3-manifold ([59])
and so the same is true for any of its subgroups. Since spherical 3-manifolds
have Heegaard genus 2 or less, u(F0) = u(Z/nZ× SL2(F5)) 6 2.

To complete the proof of Lemma 4.2 we need only to show that u(G) 6
max{2, u(F0)}.

Let π : G → F0 = G/G0 be the quotient homomorphism and H ⊂ G be
a finitely generated subgroup. Since G0 is properly locally cyclic, there are
three possibilities for the group H ∩G0:

(1) H ∩G0 = {1}. In this case H is finite, since H ∩G0 has finite index
in H. Hence H = {1}, since G is torsion free, so rk(H) = 0.

(2) H ∩G0 ∼= Z. In this case H is a virtually infinite cyclic group, and
hence has 2 ends. Since H is torsion free, it follows that H ∼= Z and
thus rk(H) = 1, see [55, 4.A.6.5].
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(3) H ∩ G0 = G0. Then H is of finite index in G and is therefore a
PD(3) group. Let r = rk(π(H)) and let {a1, · · · , ar} be a minimal
set of generators for π(H). For i = 1, · · · , r take āi ∈ H such that
π(āi) = ai and define K = 〈ā1, · · · , ār〉 ⊂ H. We consider the
subgroup K ∩ G0 of G0 and as above we argue according to the
three possibilities:
(a) If K ∩ G0 = {1}, then K = {1}. Hence π(K) = π(H) = {1}

and H = G0. Then rk(H) 6 2 by Lemma 4.1.
(b) If {1} 6= K ∩ G0 6= G0, then K ∩ G0 ∼= Z. This implies that

K ∼= Z is generated by a single element t ∈ H. Since G0 is
of finite index in H, there exits an integer n > 1 such that tn
generates K∩G0. Since a Seifert fibred 3-manifold group is not
properly locally cyclic, K ∩ G0 cannot lie in the center of G0
by [13]. Hence there exists an element x ∈ G0 \K which does
not commute with tn. Then by Lemma 4.1, G0 = 〈x, tn〉, and
so G0 ⊂ 〈x, t〉. Since π(〈x, t〉) = π(K) = π(H), it follows that
H = 〈x, t〉 and rk(H) = 2.

(c) If K ∩ G0 = G0 then G0 ⊂ K. Since π(K) = π(H), H = K
and thus rk(H) = r 6 u(F0).

Thus for any subgroup H of G, rk(H) 6 max(2, u(F0). Hence u(G) 6
max{2, u(F0)}. �

Now we complete the proof of Theorem 1.6.

Lemma 4.2 and Theorem 1.2 imply that G satisfies the Tits alternative.
In particular it contains a rank 2 free group or is virtually solvable. By [4],
see [60], a virtually solvable PD(3) group is the fundamental group of a
closed 3-manifoldM which is geometric with Euclidean, Nil or Sol geometry.
In particular, M is finitely covered by a torus bundle by [23, Theorem 4.5].
Since any finitely generated subgroup G of π1(M) is the fundamental group
of a cover ofM with a compact core ([49]), it is easy to verify that u(G) 6 3,
contrary to our hypotheses (cf. [23]). Therefore G must contain a rank 2 free
subgroup. �

5. PSL(2,C)-character variety

The goal of this section is to prove Theorem 1.8 and Corollary 1.9. We
begin with some definitions.

The action of SL2(C) on C2 descends to one of PSL2(C) on CP 1. We
call a representation with values in PSL2(C) irreducible if the associated
action on CP 1 is fixed point free and strictly irreducible if the action has no
invariant subset in CP 1 with fewer than three points.
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Proof of Theorem 1.8. — If G admits a representation with values in
PSL(2,C) and with infinite image, then Ĝ is infinite as finitely generated lin-
ear groups are residually finite. (See, for example, [41, Proposition III.7.11].)
Let us assume then that the image of each representation of G in PSL(2,C)
is finite. We argue by contradiction assuming that the profinite completion
Ĝ is finite.

The finiteness of Ĝ implies that there is a smallest finite index subgroup
G0 of G which is necessarily normal and contained in every finite index
subgroup of G. Thus the kernel of each representation ρ : G → PSL(2,C)
contains G0. Hence ρ factors through F0 = G/G0. Since G0 is perfect, the
finite quotient group F0 = G/G0 has periodic cohomology with period 4
by Claim 3.3. The classification of finite groups with cohomological period
2 or 4 implies that F0 is of tetrahedral type (III), octahedral type (IV), or
icosahedral type (V) in [24, Table 2]. Up to conjugacy, such a group admits
at most two irreducible representations with values in PSL(2,C), see [16,
Lemma 5.3], [67], contrary to the hypothesis. This proves the first assertion
of Theorem 1.8.

To prove the second, suppose that G is almost coherent. Then by Corol-
lary 1.3, G either contains a rank 2 free group or is virtually solvable. In
the latter case, we argue as in the last paragraph of §4 to see that M is
geometric with Euclidian, Nil of Sol geometry. In the first two cases, M is
Seifert fibred with Euclidean base orbifold while in the third,M is either the
union of two twisted I-bundles over the Klein bottle or a torus bundle over
the circle ([50, Theorem 5.3(i)]). Fix a strictly irreducible homomorphism
ρ : π1(M)→ PSL(2,C).

First suppose thatM is Seifert fibred with Euclidean base orbifold B and
let h ∈ π1(M) be the class of the Seifert fibre. The proof of [7, Lemma 3.1]
is easily modified to show that ρ(h) = ±I. Thus ρ induces a homomorphism
ρ̄ : π1(B) → PSL(2,C). By hypothesis, there are at least three different
characters of such ρ̄, so [15, Lemma 10.1] implies that M does not have base
orbifold S2(2, 3, 6), S2(2, 4, 4), or S2(3, 3, 3). Similarly B cannot be a torus.
Suppose then that B is one of S2(2, 2, 2, 2), P 2(2, 2), or the Klein bottle K.
Then π1(B) contains an infinite cyclic index 2 normal subgroup which, as
in the proof of [7, Lemma 3.1], lies in the kernel of ρ̄. But then ρ̄ factors
through Z/2Z ∗ Z/2Z and so cannot be strictly irreducible, a contradiction.
Thus M cannot be Seifert fibred.

If M is Sol, [15, Proposition 7.1] implies that the normal Z⊕Z subgroup
of π1(M) corresponding to the torus (semi)fibre T is sent by ρ to A =
Z/2Z ⊕ Z/2Z ⊂ PSL(2,C) and that the image of ρ is T12 in the fibre case
and O24 in the semifibre case. The reader will verify that the restriction of
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ρ to π1(T ) is unique up to conjugation in PSL(2,C) and we assume that all
strictly irreducible representations of π1(M) to PSL(2,C) coincide on Z⊕Z.

First suppose that M is a torus bundle with fibre T . Then the image of
ρ is T12. Since the order of a non-trivial element of T12 is 2 or 3 and the
elements of order 2 generate A, it follows that if t ∈ π1(M) \ Z ⊕ Z, then
ρ(t) has order 3. On the other hand, under the conjugation, there are two
A-orbits of elements of order 3 in T12. Thus there are at most two choices
for the character of ρ in the fibre case, a contradiction.

Next suppose that M is a torus semibundle with semifibre T and ρ :
π1(M)→ O24 ⊂ PSL(2,C) is an epimorphism. Then there is a 2-fold cover
M1 → M such that M1 is a torus bundle over the circle and the restriction
of ρ determines an epimorphism ρ1 : π1(M1) → T12. We claim that if ρ′ :
π1(M)→ PSL(2,C) is a homomorphism for which ρ′|π1(M1) = ρ|π1(M1), then
ρ′ = ρ. Indeed, we must have ρ′(π1(M)) = O24 and if x ∈ π1(M) \ π1(M1),
conjugation by ρ1(x) on T12 coincides with conjugation by ρ2(x), which
implies that ρ1(x) = ρ2(x) since T12 is a strictly irreducible subgroup of
PSL(2,C). But then as the previous paragraph implies that up to conjuga-
tion in PSL(2,C), there are at most two epimorphisms π1(M1) → T12, the
same is true for epimorphisms π1(M)→ O24, a contradiction. This completes
the proof of the second assertion of Theorem 1.8. �

Proof of Corollary 1.9. — Let M be an integral homology sphere. If
π1(M) is a non-trivial free product, then π1(M) contains a non-abelian free
group (see for example [40, Theorem 2]), so we can assume that π1(M) is
indecomposable. Hence π1(M) is the fundamental group of an irreducible
integral homology sphere. Thus we assume, without loss of generality, that
M is irreducible.

If π1(M) is finite, the universal cover ofM is a closed homotopy 3-sphere
on which π1(M) acts freely. Then π1(M) has cohomological period 4 by [57,
Thm 4.8]. The classification of these groups ([24, Table 2]) shows that it is
isomorphic to the binary icosahedral group SL(2, F5), which admits, up to
conjugacy, at most two irreducible representations with values in PSL(2,C).
The proof of [48, Lemma 9.1] then shows that |λ(M)| 6 1, which contradicts
our hypotheses. Therefore π1(M) must be infinite. Since M is irreducible,
π2(M) = {0} by the sphere theorem [55]. Furthermore, since M̃ is non-
compact, 0 = H3(M̃) = π3(M̃) = π3(M) by the Hurewicz’s theorem. It
follows that M is aspherical and thus π1(M) is a PD(3) group which is,
moreover, coherent ([49]).
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Lemma 5.1. — Let M be an irreducible integral homology sphere with
infinite fundamental group. Then one of the following properties holds.

(1) π1(M) contains a non-abelian free group.
(2) Every non-trivial representation ρ : π1(M) → SU(2) is finite with

ρ(π1(M)) ∼= SL(2, F5) and the number of SU(2)-conjugacy classes
of such representations is at least 2|λ(M)|.

Proof. — If π1(M) admits a representation ρ : π1(M) → SU(2) with
infinite image, then ρ(π1(M)) cannot be virtually solvable as otherwise it
would have positive first Betti number, contrary to the fact that π1(M)
is perfect. The Tits alternative for linear groups ([61]) then implies that
ρ(π1(M)) contains a non-abelian free group F . Let F0 ⊂ F be a rank 2 free
subgroup of F and H any subgroup of π1(M) generated by two elements
which map to the generators of F0. Then H is clearly free and non-abelian,
which completes the proof of the lemma in this case.

Assume then that every non-trivial representation ρ : π1(M) → SU(2)
has finite image. Since π1(M) is perfect, ρ(π1(M)) ∼= SL(2, F5) (cf. [67]).
It then follows from the definition of the Casson invariant (cf. [3]) and of
the proof of [48, Lemma 9.1] that either the number of conjugacy classes
of SU(2)-representations of π1(M) is at least 2|λ(M)| or M has a positive
virtual first Betti number. In the latter case there is a finite cover M1 of
M which contains a non-separating orientable π1-injective surface S. This
surface cannot be a 2-sphere since M1 is irreducible. Hence π1(S) contains
a rank 2 free group or is isomorphic to Z ⊕ Z. In either case, π1(M) is not
properly locally cyclic and since it has zero first Betti number, it cannot be
virtually solvable. Thus Theorem 1.2 implies that π1(M) contains a non-
abelian free group. �

Since irreducible representations with values in SU(2) are conjugate in
SU(2) if and only if they are conjugate in SL(2,C), Corollary 1.9 follows
from Lemma 5.1. �
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