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Analytic, Reidemeister and homological torsion for
congruence three–manifolds

Jean Raimbault (1)

Pour les 60 ans de Jean-Pierre Otal

ABSTRACT. — For a given Bianchi group Γ and certain natural coefficent modules
VZ and sequences Γn of congruence subgroups of Γ we give a conjecturally optimal
upper bound for the size of the torsion subgroup of H1(Γn;VZ). We also prove limit
multiplicity results for the irreducible components of L2

cusp(Γn\SL2(C)).

RÉSUMÉ. — Soit Γ un groupe de Bianchi. Pour certains ZΓ-modules VZ, et suites
Γn de sous-groupes de congruence de Γ nous démontrons une borne supérieure,
conjecturée optimale, pour la taille du sous-groupe de torsion de l’homologie
H1(Γn, VZ). On démontre aussi des résultats de multiplicités limites pour les fac-
teurs irréductibles des espaces L2

cusp(Γn\SL2(C)).

1. Introduction

1.1. Torsion in the homology of arithmetic groups and hyperbolic
manifolds

Let Γ be a discrete group and VZ a free, finitely generated Z-module
with a Γ-action. The cohomology H∗(Γ;VZ) is an important invariant of Γ
since it is both accessible to computation (though not necessarily efficiently)
and often contains nontrivial information. If Γ is the fundamental group of
an aspherical manifold M then there is a local system V on M such that
H∗(Γ;VZ) = H∗(M ;V). When M is endowed with a Riemannian metric
this gives analytic tools for the study of the characteristic zero cohomology
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H∗(Γ;VC). Maybe the most famous instance of this is when Γ is a torsion-free
congruence subgroup of PSL2(Z) and VZ is a space of homogeneous poly-
nomials. In this case, by the Eichler–Shimura isomorphism the cohomology
can be computed via classical modular forms which correspond to certain
harmonic forms on the Riemann surface Γ\H2 (where H2 is the hyperbolic
plane). More generally, if Γ is an arithmetic lattice in a real Lie group then
classes in H∗(Γ;VC) correspond to “automorphic forms” on G. This corre-
spondance is interesting in both directions: the analytic side is easier to grasp
to prove theoretical results (in particular asymptotic results, as we will see
below) but on the other hand the combinatorial side makes the exact com-
putation of the cohomology groups possible (this has been used for example
to experimentally check special cases of Langlands functoriality, as in [17]).

The torsion part of the cohomology is somewhat less accessible from both
the combinatorial and analytic viewpoint. On the other hand it is in certain
cases of greater interest than the characteristic zero cohomology. In what
follows we will be exclusively interested in arithmetic subgroups of the Lie
group SL2(C). In this case, if Γ is torsion-free, it acts freely and properly
discontinuously on the hyperbolic space H3 and the associated manifold
M = Γ\H3 has finite Riemannian volume. It has been observed that very
often we have H1(M ;C) = 0. On the other hand the torsion part tends to
be very large. For numerical illustrations of these points see [33]. There is
also a form of functoriality for torsion classes which has been explored in [4],
[7] and [32], which makes them of interest in number theory.

In this paper we will be interested in asymptotic statements about the
size of the torsion subgroup of H1(Γn;VZ), when Γn is a sequence of lattices
with covolume tending to infinity. The characteristic zero counterpart of this
is the “limit multiplicity problem” which was studied by many people and
(at least in the case of congruence subgroups) received a definitive solution
in [1] and [11]. We will be interested in the following conjecture (we also
give a statement for nonarithmetic manifolds since we try to maintain an
interest in the topological aspects of the problem). We will use the notion
of a “arithmetic Γ-module”, that is a lattice VZ ⊂ V where ρ : SL2(C) →
GL(V ) is a representation and ρ(Γ) stabilises VZ.(1) This conjecture first
appeared in print in [4], in the arithmetic setting, but in the topological
case Thang Lê had independently formulated it (and dubbed it “topological
volume conjecture”, in analogy with the Volume Conjecture in quantum
topology).

Conjecture 1.1. — If M = Γ\H3 is a closed or cusped hyperbolic 3–
manifold then there exists a sequence of subgroups Γ < Γ1 < · · · < Γn < · · ·

(1) These exist for nontrivial ρ if and only if Γ is arithmetic, on the other hand this
includes the case of trivial coefficients which is the most important for topologists.
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with
⋂
n Γn = {1} and

lim
n→+∞

log |H1(Γn;VZ)tors|
[Γ : Γn] = vol(M)c(V ). (1.1)

If Γ is an arithmetic subgroup of SL2(C) and Γn is a sequence of pairwise
distinct congruence subgroups of Γ then (1.1) holds for Γn.

The constant c(V ) equals −t(2)(V ) where t(2)(V ) is the L2-torsion associ-
ated to V , see [4] or [26]. For the trivial representation it equals −1/(6π), for
the adjoint representation −13/(6π). It is computed in full generality in [4].

The conjecture is completely open for trivial coefficients. There is a cer-
tain amount of computational evidence for a positive answer, see the tables
in the paper by M. H. Şengün [33] and the graphs in Section 4 of the paper
J. Brock and N. Dunfield [6]. For some coefficient systems–including the ad-
joint representation–the limit is proved to hold in [1] and [4] for a cocompact
lattice Γ (see also [27, Section 6.1]). For trivial coefficients the upper bound
on the upper limit in (1.1) was established by Thang Le [19] (the proof is
purely topological and hence works for non-necessarily arithmetic lattices).
See also [3] for some related results in the case of trivial coefficients.

In this paper we will consider the case where Γ is a Bianchi group, i.e.
there is an imaginary quadratic field F such that Γ = SL2(OF ), and deal
only with nontrivial coefficients as in [4]. It is well-known that these groups
represent all commensurability classes of arithmetic nonuniform lattices in
SL2(C). We will be concerned in the upper limit in (1.1). We do not manage
to deal with all sequences of congruence subgroups of such a Γ (see 1.4.1
below) and we do not address here the question of dealing with more general
sequences of commensurable congruence groups. Also we do not prove that
the torsion actually has an exponential growth, which is the most interest-
ing part of the conjecture. This exponential growth (the fact that the limit
inferior of the sequence log |H1|/ vol is positive) is established for certain
sequences by work of the author [27, Section 6.5] and independent work of
J. Pfaff [25]. However, the method used in the present paper, which is dif-
ferent from those in these two references, gives a clear way to establishing
the correct exponential growth rate. It is only because of certain number-
theoretical complications that we were not able to get a complet proof. We
will explain this in more detail later, for the moment let us state our main
theorem.

Theorem 1.2. — Let Γ be a Bianchi group, Γn a cusp-uniform sequence
of torsion-free congruence subgroups and Mn = Γn\H3. Let ρ, V be a real
representation of SL2(C) which is strongly acyclic and VZ a lattice in V
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preserved by Γ. Then we have

lim
n→∞

(
log |H1(Γn;VZ)tors|

volMn

)
= lim
n→∞

(
log |H2(Γn;VZ)tors|

volMn

)
6 −t(2)(V ).

Strong acyclicity of representations was introduced in [4], it means that
the Hodge Laplace operators with coefficients in the local system induced by
ρ have a uniform spectral gap for all hyperbolic manifolds; it was shown there
to hold for all representations that are not fixed by the Cartan involution of
SL2(C), in particular its nontrivial complex representations. Cusp-uniformity
means that the cross-sections of all cusps of all Mn form a relatively com-
pact subset of the moduli space PSL2(Z)\H2 of Euclidean tori. There are
obvious sequences of congruence covers which are not cusp-uniform. The
proofs of [26] actually apply not only to cusp-uniform sequences but to all
BS-convergent sequences which satisfy a less restrictive condition on the ge-
ometry of their cusps, (1.5) below. However even this more relaxed hypoth-
esis fails for some congruence sequences (see 1.4.1 below) and this raises
the question of whether Question 1.1 actually has an affirmative answer in
these cases. Examples of sequences to which our result does apply include
the following congruence subgroups, which are all cusp-uniform (see 2.1.4
below):

Γ(I) =
{(

a b
c d

)
∈ SL2(OF ) : b, c ∈ I, a, d ∈ 1 + I

}
Γ1(I) =

{(
a b
c d

)
∈ SL2(OF ) : c ∈ I, a, d ∈ 1 + I

}
Γ0(I) =

{(
a b
c d

)
∈ SL2(OF ) : c ∈ I

}
.

(1.2)

Actually the Γ0(I) contain torsion for all I but we can apply Theorem 1.2 to
the sequence Γ0(I)∩Γ′ where Γ′ ⊂ Γ is a torsion-free congruence subgroup.
As remarked below (see 1.4.2) our scheme of proof applies to orbifolds except
at one point.

1.2. A few words about the proof

Let Γ,Γn, ρ, VZ be as in the statement of Theorem 1.2. We refer to the
introduction of [26] for more detailed information on how the scheme of proof
of [4] can be adapted to the setting of nonuniform arithmetic lattices. We
recall here that Theorems A and B in this paper, for a sequence Mn of finite
volume hyperbolic 3–manifolds which is Benjamini–Schramm convergent to
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H3(2) and cusp-uniform, under a certain additional technical assumption on
the continuous part of the spectra of the Mn, we have the limit

lim
n→∞

log τabs(MY n

n ;V )
volMn

= t(2)(V ) (1.3)

where:

• MY n

n is a compact manifold with toric boundary, obtained fromMn

by cutting off the cusps(3) along horospheres at a certain height Y n;
• τabs(MY n

n ;V ) is the Reidemeister torsion associated to absolute
boundary conditions on the Riemannian manifold MY n

n (see [26,
6.1.2]).

The first task we need to complete is to check that the hypotheses of these
theorems are satisfied by cusp–uniform sequences of congruence manifolds.
Regarding the BS-convergence we prove a quantitative result valid for any se-
quence of congruence subgroups (Theorem 3.1 below, we recall that (Mn)6R
denotes, as is usual, the R-thin part of Mn).

Theorem 1.3. — Let Γn be a sequence of congruence subgroups of a
Bianchi group; then the manifolds Mn = Γn\H3 are BS-convergent to H3

and we have in fact that there exists a δ > 0 such that for all R > 0
vol(Mn)6R 6 eCR(volMn)1−δ

where C depends on Γ.

We note that this result is much simpler to prove in the cusp-uniform
case (see 3.1.1). For the estimates on intertwining operators as well our proof
goes well for any sequence of congruence subgroups. It is when we study the
trace formula along the sequence Mn that our arguments go awry, as some
summands of the geometric side seem to diverge as n→∞.

Then we want to use (1.3) to study cohomological torsion. The Reide-
meister torsion τabs(MY n

n ;V ) is related to the torsion in H2(Mn;VZ), in fact
it is defined as

τabs(MY n

n ;V ) = R1(MY n

n )
R2(MY n

n ) ·
|H1(Mn;VZ)tors|
|H2(Mn;VZ)tors|

where Rp(MY n

n ) is the covolume of the lattice Hp(Mn;VZ)free in the space
of harmonic forms satisfying absolute boundary conditions on the boundary
of MY n

n . The second thing to be done is to relate these to terms defined

(2) See [1, Definition 1.1]; we recall that it means that for any R > 0 the volume of
the R-thin part (Mn)6R is an o(volMn).

(3) One needs to specify how to proceed to choose at which height the cutting is
performed, this question is adressed in the quoted paper.
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on the manifolds Mn, using the description of H∗(Mn;VC) by non-cuspidal
automorphic forms (namely, harmonic Eisenstein series). The latter define
a “Reidemeister torsion” τ(Mn;V ) (see (5.6) for the precise definition). We
then get a limit

lim
n→∞

log τ(Mn;V )
volMn

= t(2)(V ).

It remains to show that the terms |H1(Mn;VZ)tors| and R2(MY n

n ) disappear
in the limit and that

lim inf
n→+∞

logR1(MY n

n )
vol(Mn) > 0.

The proofs of these claims use elementary manipulations with the long exact
sequence for the Borel–Serre compactification Mn and its boundary and
lemmas on the boundary cohomology.

This is also where our proof encounters an obstruction to proving the full
conjecture, as for the term R1(MY n

n ) we are not able to get that its limit
inferior is positive. For this we would need statements on the integrality of
Eisenstein classes which we were not able to establish. We can still isolate
a number-theoretical statement which would ensure this as stated in the
following proposition.

Proposition 1.4. — Let F be a quadratic field. For χ a Hecke char-
acter with conductor Iχ we denote by L(χ, · ) the associated L-function and
by Lalg(χ, · ) the normalisation which takes algebraic values at half-integers
(see [7, 6.7.2]). Assume that there exists m such that

∀ χ,∀ s ∈ 1
2Z : |Lalg(χ, s)|Q/Q 6 |Iχ|

m. (1.4)

Then we can change the lim sup in Theorem 1.2 to a limit.

We will not give the proof of this statement here. It is available in the old
arXiv version of this paper [28] (we note that this version claims to prove
the unconditional statement but in fact proves only Proposition 1.4 as at
some point in the argument the bound (1.4) is assumed to hold without
justification).

1.3. Limit multiplicities

Another problem about sequences of congruence groups is the question
of limit multiplicities for unitary representations of SL2(C). For such a rep-
resentation π on a Hilbert space Hπ and a lattice Γ in SL2(C) one de-
fines its multiplicity m(π,Γ) to be the largest integer m such that there
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is a SL2(C)-equivariant embedding of Hmπ into L2(Γ\SL2(C)). The ques-
tion of limit multiplicities is then to determine the limit of the sequence
m(π,Γn)/ vol(Γn\H3) as Γn ranges over the congruence subgroups of some
arithmetic lattice. This question is of particular interest when π is a discrete
series (when the limit is expected to be positive), and it has been consid-
ered in the uniform case by D. L. De George and N. R. Wallach in [14], by
G. Savin [31] in the nonuniform case. In the case we consider there are no
discrete series and thus we expect that the limit multiplicity of any repre-
sentation will be 0.

A more precise question to ask is the following: the set Ĝ of irreducible
unitary representations (up to isomorphism) of G = SL2(C) is endowed with
a Borel measure νG (the Plancherel measure of Harish–Chandra), and for
each lattice Γ ⊂ G the multiplicities in L2(Γ\G) define an atomic measure
νΓ. For a congruence sequence Γn and a Borel set A ⊂ Ĝ, do we have
νΓn(A) ∼ vol(Γn\H3)νG(A) as n tends to infinity? In the case where the Γn
are congruence subgroups of a cocompact lattice this is shown to hold in [1,
Section 6]. The non-compact case is much harder, but T. Finis, E. Lapid
et W. Müller manage in [12] to deal with principal congruence subgroups
in all groups SLn (or GLn) over a number field and this was generalised to
all congruence subgroups in [10], [11]. Here we will, much more modestly,
deal only with SL2 over an imaginary quadratic field (note that the first
prepublication of this results predates [10]).

Theorem 1.5. — Let S be a regular Borel set in the unitary dual of G =
SL2(C), Γ a Bianchi group and Γn a cusp-uniform sequence of congruence
subgroups. Then

lim
n→∞

∑
π∈Sm(π,Γn)

volMn
= νG(S)

The question of limit multiplicities is related to the growth of Betti num-
bers in sequences of congruence subgroups via Matsushima’s formula and
the Hodge-de Rham theorem. The latter has been studied in greater gen-
erality (for sequences of finite covers of finite CW-complexes) by W. Lück
in [21] and M. Farber in [9]. Theorem 0.3 of the latter paper together with
Theorem 1.12 of [1] imply that in a sequence of congruence subgroups of
an arithmetic lattice the Betti numbers are sublinear in the volume in all
degrees except possibly in the middle one where the growth is linear in the
volume if the group has discrete series. Another proof of this for cocompact
lattices, which actually yields explicit sublinear bounds in certain degrees,
is also given in [1, Section 7]. For non-compact hyperbolic 3–manifolds we
dealt with this problem in [26]; a corollary of [26, Proposition C] and of
Theorem 1.3 is then:
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Corollary 1.6. — Let Γn be a sequence of torsion-free congruence sub-
groups of a Bianchi group Γ. Then we have:

b1(Γn)
volMn

−−−−→
n→∞

0.

Note that one of the proofs given in [26] is actually a very short and easy
argument if one admits [1, Theorem 1.8].

1.4. Some remarks

1.4.1. Sequences that are not cusp-uniform

As noted there the results of [26] are valid under a slightly less restrictive
condition than cusp-uniformity: it suffices that we have

hn∑
j=1

(
α2(Λn,j)
α1(Λn,j)

)2
6 (volMn)1−δ (1.5)

for some δ > 0, where Λn,j are the Euclidean lattices associated to the hn
cusps of Mn (and α1, α2 are respectively the first and the second minima of
the Euclidean norm on a lattice). This is clearly implied by cusp-uniformity
in view of Lemma 3.2, and implies the unipotent part of BS-convergence. It
is not hard to see that there are examples of congruence sequence which sat-
isfy this condition but are not cusp-uniform. However, there are congruence
sequences which do not satisfy (1.5), for example those associated to the
subgroups Kn

f which are the preimage in Kf = SL2(OF ) of SL2(Z/n) under
the map Kf → Kf/Kf (n) ∼= SL2(OF /(n)): in this case there are n cusps
having α1 � 1 and α2 � n and the index is about n3. However I have no
clue as to whether the limit multiplicities and approximation result should
or not be valid for these sequences.

1.4.2. Orbifolds

Theorems 1.5 and 1.3 are valid for sequences of orbifolds as well (see [27]).
We have not included the necessary additions here in order to keep this
paper to a reasonable length and because they are quite straightforward.
The approximation for analytic torsion carries to this setting as well, but
the Cheeger–Müller equality for manifolds with boundary which is one of
the main ingredients in the proof of Theorem 5.1 has not, to the best of
my knowledge, been proven for orbifolds yet. As for the final steps of the
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proof of Theorem 1.2 they either remain identical (if the cuspidal subgroups
are torsion-free) or are simplified by the presence of finite stabilizers for the
cusps, which may kill the homology and the continuous spectrum. We will
not adress this here, some details are given in [27].

1.4.3. Trivial coefficients

For the topologist or the group theorist the trivial local system is the
most natural and interesting. The approximation of analytic L2-torsion [26,
Theorem A], [4, Theorem 4.5] extends to that setting if one assumes that
the small eigenvalues on forms have a distribution which is uniformly similar
to the spectral density of the Laplacian on L2-forms on H3 (see Chapter 2
and Theorem 3.183 in [22] for a precise definition of the latter).

Let us describe more precisely what this means. Let Mn be a sequence
of congruence covers of some arithmetic three–manifold, we know by The-
orem 1.5 that for p = 0, 1 the number mp([0, δ];Mn) =

∑
λ∈[0,δ]mp(λ;Mn)

of eigenvalues of the Laplace operator on p-forms on Mn in an interval [0, δ]
behaves asymptotically as m(2)

p ([0, δ]) volMn where m(2)
p is the pushforward

of the Plancherel measure. We would need to know that we have in fact a
uniform decay of mp([0, δ];Mn)/ volMn as δ → 0, for example

mp([0, δ];Mn)
volMn

6 Cδc (1.6)

for all δ > 0 small enough and some absolute C, c. We will now describe a
(very) idealized situation in which (1.6) would hold in a particularly nice
form. Let αp ∈ ]0,∞+] be the pth Novikov–Shubin invariant of H3 (see [22,
Chapters 2 and 5]) then there would be an absolute constant C > 0 such that
for any δ > 0 small enough and any congruence hyperbolic three–manifold
Mn we have ∑

λ∈[0,δ]mp(λ;Mn)
volMn

6 Cδαp . (1.7)

For functions we have α0 = ∞+ (meaning there is a spectral gap on H3)
and (1.6) is known to hold in this case, and in fact in a much more general
situation, by L. Clozel’s solution of the “Conjecture τ” [8]. For 1-forms α1 = 1
and one should probably not expect to prove (1.7) literally (or even for it to
hold in this form). We ask the following question, which to the best of our
knowledge is wide open (see [20] for some recent advances on the general
question of lower bounds for the smallest positive eigenvalue).

Question 1.7. — Does there exist λ0 > 0 such that for any ε > 0 there
is a Cε > 0 such that for any congruence hyperbolic three–manifold M and
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δ 6 λ0 we have ∑
λ∈[0,δ]m1(λ;M)

volM 6 Cεδ
1+ε ?

(Or less precisely, does this hold for some exponent c > 0 in place of 1 + ε
on the right-hand side?)

A positive answer to this question is not enough to imply a positive
answer to Conjecture 1.1 as one still has to analyze the “regulator” terms
in the Reidemeister torsion: see [4, 9.1]. In some cases the latter problem is
dealt with in work of Bergeron–Şengün–Venkatesh [3].

1.4.4. Non-arithmetic manifolds

If Γ is a non-arithmetic lattice in SL2(C) then it is conjugated into
SL2(OE [a−1]) for some number field E and algebraic integer a. Thus we
can define its congruence covers (whose level will be coprime to a), and it
can be proved (see 3.1.1) that they are BS-convergent to H3. The statement
of Conjecture 1.1 still makes sense for trivial coefficients, but it is not ex-
pected that it always holds in that setting. It is actually expected that for
some sequences of non-arithmetic covers with injMn → +∞ the order of the
torsion part of H1(Mn;Z) does not satisfy (1.1). We refer to [4, 9.1] and [6]
for more complete discussion around these questions.

1.4.5. Sequences of noncommensurable lattices

Let Mn be a sequence of finite-volume hyperbolic three–manifolds such
that Mn BS-converges to H3 and their Cheeger constants are uniformly
bounded from below. Do we have

lim
n→+∞

log T (Mn)
volMn

= 1
6π ?

Here T (Mn) is the Ray–Singer analytic torsion, regularized as in [24] if the
Mn have cusps. For compact manifolds Conjecture 8.2 in [1] states that
it does, and for covers soe does [6, Conjecture 1.13]. Examples of such
Benjamini–Schramm convergent sequences are given by noncommensurable
arithmetic lattices, for example the sequence of Bianchi groups SL2(OF ) as
the discriminant of the field F goes to infinity. See [13] and [29].

In the case of uniform lattices with trace fields having bounded degree
it is easy to find natural sequences of coefficient modules of bounded rank
satisfying (1.1).
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1.5. Outline

Section 2 introduces the background we use throughout the paper. In
Section 3 we prove Theorem 1.3, and in Section 4 we estimate the norm
of intertwining operators, thus completing the proof of Theorem 1.5 and
of (1.3). Section 5 completes the proof of the asymptotic Cheeger–Müller
equality between analytic and Reidemeister torsions of the manifolds Mn.
The final section 6 analyses the individual behaviour of the terms in the
Reidemeister torsion, finishing the proof of Theorem 1.2.
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2. Notation and preliminaries

2.1. Bianchi groups and congruence manifolds

For this section we fix an imaginary quadratic field F and let Γ =
SL2(OF ) be the associated Bianchi group. We will denote by Af the ring of
finite adèles of F . At infinity we fix the maximal compact subgroup K∞ of
SL2(C) to be SU(2); if K ′f is a compact-open subgroup of SL2(Af ) we will
adopt the convention of denoting by K ′ the compact-open subgroup K∞K ′f
of K∞ SL2(Af ).

2.1.1. Congruence subgroups

For any finite place v of F let Kv be the closure of Γ in SL2(Fv); then
Kf =

∏
vKv is the closure of Γ in SL2(Af ). A congruence subgroup of

Γ is defined to be the intersection Γ ∩ K ′f where K ′f is a compact-open
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subgroup of Kf . Let Γ(I) be defined by (1.2) and Kf (I) its closure in Kf ;
then Γ(I) = SL2(F ) ∩Kf (I) so that Γ(I) is indeed a congruence subgroup;
likewise, Γ0 and Γ1(I) are “congruence-closed”, i.e. they are equal to the
intersection of their closure with SL2(F ).

For a compact-open subgroupK ′f ⊂ Kf we will denote by ΓK′ = SL2(F )∩
K ′f the associated congruence lattice; we define its level to be the largest I
such that Kf (I) ⊂ K ′f (this is well–defined as Kf (I)Kf (I′) = Kf (J) where
J = gcd(I, I′)). Then the following fact is well-known (see [27, Lemme 5.8]).

Lemma 2.1. — For any compact-open K ′f ⊂ Kf we have

[Kf : K ′f ] > 1
3 |I|

1
3

where I is the level of K ′f .

2.1.2. Congruence manifolds

For a compact-open K ′f we denote by MK′ the orbifold ΓK′\H3. The
strong approximation theorem for SL2 (which in this case is a rather direct
consequence of the Chinese remainder theorem) states that the subgroup
SL2(F ) is dense in SL2(Af ), and it follows that we have a homeomorphism

MK′
∼= SL2(F )\ SL2(A)/K ′. (2.1)

2.1.3. Unipotent subgroups

Let N be a unipotent subgroup of SL2 defined over F , B its normalizer
in SL2 and α the morphism from B/N to the multiplicative group(4) given
by the conjugacy action on N. For any place v of F we have the Iwasawa
decomposition

SL2(Fv) = B(Fv)Kv,

and this yields also that SL2(A) = B(A)K. We define a height function on
SL2(A) by

y(g) = max{|α(b)|, b ∈ B(A) : ∃ γ ∈ SL2(F ), k ∈ K, γg = bk}, (2.2)
this does not depend on the F -rational unipotent subgroup N. We fix the
unipotent subgroup 0N to be the stabilizer of the point (0, 1) in affine 2-space,
and we identify it with the additive group using the isomorphism ψ sending

(4) Which is isomorphic to the automorphism group of N since the latter is itself
isomorphic to the additive group.
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1 to the matrix ( 1 1
0 1 ). Then N is conjugated to 0N by some g ∈ SL2(F ) and

we identify N with the additive group using the isomorphism given by the
composition of conjugation by g with ψ ◦α(b)−1 where g = bk (and we view
α(b) as an automorphism of the additive group).

2.1.4. Cusps

The cusps of the manifold MK′ are isometric to the quotient B(F )\
SL2(A)/K ′; in particular the number h of cusps is equal to the cardinal-
ity of the finite set

C(K ′) = B(F )B(F∞)\ SL2(A)/K ′.

We can describe accurately the cross-section of each cusp. Let N be the
unipotent subgroup which is the commutator of the stabilizer in SL2 of the
point (a : b) ∈ P1(F ). We may suppose that a, b have no common divisor in
OF except for units, then the ideal (a, b) is equal to some ideal C without
principal factors and we write (a) = CA, (b) = CB, so that (A,B) = 1. Then
we have [27, Proposition 5.1]:

Kf ∩N(F ) = 1 +
{(

a
b c −a

2

b2 c
c −ab c

)
, c ∈ B2

}
= 1 +

{(
− b
ac c

− b2

a2 c
b
ac

)
, c ∈ A2

}
.

In particular, since the ideals of OF are a uniform family of lattices it fol-
lows easily that the families Γ(I),Γ0(I) or Γ1(I) are cusp-uniform (see [27,
Lemme 5.7]).

2.2. Analysis on SL2(A) and Eisenstein series

We fix a Borel subgroup B ⊂ SL2 defined over F and a maximal split
torus T in B, and let N be the unipotent radical of B.

2.2.1. Haar measures

We fix the additive and multiplicative measures on each Fv and F×v as
usual, and choose the Haar measure of total mass one on Kv. We take the
Haar measure on B(Fv) = N(Fv)T(Fv) ∼= FvoF×v to be given by d(nvav) =
dxv
|·|v ⊗d×xv. On a proper quotient we always take the pushforward measure, in
particular the measure on SL2(A) is the pushforward of dbdk in the Iwasawa
decomposition SL2(A) = B(A)K.
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2.2.2. Spaces of functions

Let A1 be the subgroup of T(A) such that every character from T(A)
to R×+ factors through A1; then T(F ) ∼= F× is contained in A1 and we will
denote by H the Hilbert space L2(F×\(A1K)). We have a natural isomor-
phism

H ∼= C[C(F )]⊗ L2(K)
where C(F ) is the class-group of F . Let χ be a Hecke character, then it
induces characters of A1 and B(A) that we will continue to denote by χ. For
s ∈ C and φ ∈ H∩C∞(A1K) there is a unique extension φs of φ to SL2(A)
which satisfies:
∀ n ∈ N(A), a∞ ∈ A∞, a ∈ A1, k ∈ K φs(na∞ak) = |α(a∞)|s∞φ(ak). (2.3)

We will denote by Hs the space of such extensions, and Hs(χ) its subspace
of functions having A1-type χ on the left. The space Hs is acted upon by
SL2(A) by right translation; when s 6= 0, 1 the decomposition of Hs into
SL2(A)-irreducible factors is given by the Hs(χ).

If τ is a finite-dimensional complex continuous representation of K on
a space Vτ we define Hs(χ, τ) to be the subspace of Hs(χ) containing the
functions which have K-type τ on the right (in other words, the projection
to Hs(χ) of the subspace of K-invariant vectors in Hs(χ)⊗ Vτ ).

2.2.3. Eisenstein series

For a function f ∈ C∞(B(F )N(A)\ SL2(A)) put

E(f)(g) =
∑

γ∈SL2(F )/B(F )

f(γ−1g) (2.4)

which is well-defined (i.e. the series converge) for f sufficiently decreasing at
infinity (for example compactly supported).

The height function y defined by (2.2) is left B(F )N(A)-invariant, and it
is well-known (cf. [27, Lemme 5.23]) that the series

E(ys)(g)
∑

γ∈SL2(F )/B(F )

y(γ−1g)s

converges absolutely for all g ∈ SL2(A) and Re(s) > 2, uniformly on com-
pact sets. For φ ∈ H the function φs defined through (2.3) we denote
E(φs) = E(φ, s) which is convergent for Re(s) > 2 according to the above.
We have the following fundamental result, due to A. Selberg for SL2 /Q and
to R. Langlands in all generality (see [27, 5.4.1] for a simpler proof in this
case, based on ideas of R. Godement [15]).

– 430 –



Analytic, Reidemeister and homological torsion for congruence three–manifolds

Proposition 2.2. — The function s 7→ E(φ, s) has a meromorphic con-
tinuation to C, which is homolorphic everywhere if χ 6= 1. If χ = 1 there is
only one pole of order one at s = 1.

The main point of the theory of Eisenstein series is that they give the
orthogonal complement to the discrete part of the regular representation
on L2(SL2(F )\ SL2(A). The space L2

cusp(SL2(F )\ SL2(A)) of cusp forms is
usually defined to be the closed subspace of all functions on SL2(F )\ SL2(A)
whose constant term (defined by (2.5) below) vanishes.

Proposition 2.3. — The map∫ +∞

−∞
H 1

2 +iu(χ)du
2π 3 ψ 7→ E(ψ) ∈ L2(SL2(F )\ SL2(A))

is an isometry onto the orthogonal of the space L2
cusp(SL2(F )\ SL2(A))⊕C.

Moreover, for any φ ∈ C∞c (SL2(A) the associated operator on
L2

cusp(SL2(F )\ SL2(A)) is trace-class; in particular L2
cusp(SL2(F )\SL2(A))

decomposes as a Hilbert sum of irreducible, SL2(A)-invariant closed sub-
spaces.

2.2.4. Intertwining operators

Let f be a continuous function on SL2(F )\ SL2(A). We define its constant
term to be

fP (g) =
∫

N(F )\N(A)
f(ng)dn. (2.5)

Let φ ∈ H, φs be defined by (2.3) and f = E(φs). We use the Bruhat
decomposition SL2(F )/B(F ) = {B(F )} ∪ {γwB(F ), γ ∈ N(F )} and when
Re(s) > 3/2 we get:

fP (g) =
∫

N(F )\N(A)

∑
γ∈SL2(F )/B(F )

φs(γ−1ng)dn

=
∫

N(F )\N(A)
φs(ng)dn+

∑
γ∈N(F )

∫
N(F )\N(A)

φs(wγng)dn

= φs(g) +
∫

N(A)
φs(wng)dn.

and we define the intertwining operator Ψ(s) on H by

(Ψ(s)φ)(ak) =
∫
N(A)

φs(wnak)dn . (2.6)
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We obtain (using the notation of (2.3)):

E(φs)P = φs + (Ψ(s)φ)1−s. (2.7)

One can check that Ψ(s) induces an SL2(A)-equivariant endomorphism on
Hs, which sends the irreducible subspace Hs(χ) to Hs(χ−1). For Re(s) = 1

2
the map Ψ(s) is an isometry for the inner product of H.

2.2.5. Maass–Selberg

Finally we record the Maass–Selberg expansions [27, 5.4.4]; for s ∈ C −
R ∪ ( 1

2 + iR):

〈TY E(s, φ), TY E(s′, ψ)〉L2(G(F )\G(A))

= 1
2(s+ s′ − 1)(Y 2(s+s′−1)〈φ, ψ〉H − Y −2(s+s′−1)〈Ψ(s′)∗Ψ(s)φ, ψ〉H)

+ 1
2(s− s′) (Y 2(s−s′)〈φ,Ψ(s′)ψ〉H − Y 2(−s+s′)〈Ψ(s)φ, ψ〉H). (2.8)

When s ∈ R this degenerates to

〈TY E(φ, s), TY E(ψ, s)〉2L2(G(F )\G(A))

= Y 4s−2

4s− 2 〈φ, ψ〉H −
Y −4s+2

4s− 2 〈Ψ(s)φ,Ψ(s)ψ〉H

+ log Y 〈Ψ(s)φ, ψ〉H +
〈

dΨ(s+ iu)
du

∣∣∣∣u=0φ, ψ

〉
H
. (2.9)

2.3. Regularized traces

2.3.1. Differential forms and L2(SL2(F )\ SL2(A))

Let K ′ be a compact-open subgroup of K, and ρ a representation of
SL2(C) on a finite-dimensional real vector space V . We can associate to ρ a
local system on M = MK′ and we denote by Ωp, L2Ωp(M ;V ) the spaces of
smooth and square-integrable p-forms on M with coefficients in V (see [26,
2.3]). It is well-known that there is an identification(

L2(SL2(F )\ SL2(A))⊗ ∧pp⊗ V
)K′ → L2Ωp(M ;VC). (2.10)
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Let τ be the representation of K that has for it’s finite part C[K/K ′] and
whose infinite part is equal to the representation of K∞ on VC ⊗ ∧pp∗. We
define the map E(s, · ) to be such that the following diagram commutes:

(Hs ⊗ VC ⊗ ∧pp∗)K
′ E //

(
L2(SL2(F )\SL2(A))⊗ VC ⊗ ∧pp∗

)K′
Ch ⊗ VC ⊗ ∧pp∗

E(s,· ) // L2Ωp(ΓK′\H3;VC

(2.11)

where h is the number of cusps of M and we identify B(F )A∞N(A)\
SL2(A)/K ′f with Ch. For p = 0, 1 we retrieve the maps defined in [26,
3.1.3 and 3.1.4] which associate to a section or 1-form on ∂M an element of
L2Ωp(ΓH\H3;VC).

2.3.2. Spectral trace

Let M be a congruence hyperbolic three–manifold and ∆p[M ] the Hodge
Laplacian on p-forms on M with coefficients in VC. We recall the “spectral”
definition of the regularized trace given in [26, 3.2.4]. Let p = 0 for now, and
let φ be a function on R such that the associated automorphic kernel K0

φ on
H3 × H3 has compact support (see [26, Section 3.2]). The regularized trace
of φ(∆0[M ]) is given by

TrR φ(∆0[M ]) =
∑
j>0

m(λj ;M)φ(λj) + 1
4

2q∑
l=−2q

dlφ
(
−l2 + 4 + λV

)
tr Ψl(0)

− 1
2π

∫ +∞

−∞

2q∑
l=−2q

dlφ
(
−u2 + 4− l2 + λV

)
tr
(

Ψl(iu)−1 dΨl(iu)
du

)
du.

(2.12)

where:

• The λj , j > 0 are the eigenvalues of ∆0[M ] in L2(M ;VC);
• For λ ∈ [0,+∞[, m(λ;M) = dim ker(∆0[M ]− λ Id);
• For u ∈ R, Ψl(iu) is the operator on Ch ⊗ Wl corresponding to

Ψ( 1
2 (1+iu)) under the identifications on the right-hand side of (2.11);

• Wl is a certain subspace of VC, and we have VC =
⊕

lWl.

For more details see [26, Section 3.1]. We will skip the definition for 1-forms
since it is basically the same (see loc. cit.).
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2.4. Homology and cohomology

Here we consider a CW-complex X, Λ = π1(X) and L a free Z-module
of finite rank with a Λ-action. There are then defined chain an cochain
complexes C∗(X;L), d∗ and C∗(X;L), d∗. IfX is aspherical thenH∗(X;L) ∼=
H∗(Λ;L) and H∗(X;L) ∼= H∗(Λ;L).

2.4.1. Kronecker pairing

Let L∗ be the dual Hom(L,Z), Zp(X;L) = ker(dp) et Zp(X;L∗) =
ker(dp). There is a natural bilinear form on Zp(X;L) × Zp(X;L∗) which
induces a nondegenerate bilinear form

( · , · )X : H1(X;L)free ×H1(X;L∗)free → Z.

If Y is a sub-CW-complex of X and i its inclusion in X we have the following
property

∀ η ∈ Hp(Y ;L∗), ω ∈ Hp(X;L) : (i∗η, ω)X = (η, i∗ω)Y . (2.13)

In case there is a perfect duality between two Λ-modules L,L′ which comes
from a Λ-invariant bilinear form we get a Kronecker pairing onHp(X;L)free×
Hp(X;L′)free satisfying (2.13); for Γ a lattice in SL2(C) there exists such a
self-duality for the Γ-modules V = Vn1,n2 (given by the form induced on V
by the determinant pairing on V ). This bilinear form, which we will denote
by 〈 · , · 〉V , is actually defined over Z[m−1] for m = n1!n2!. This can be seen
from the explicit formula in [2, 2.4]. If VZ ⊂ VQ is a lattice we put

V ′Z = {v′ ∈ VQ : ∀ v ∈ VZ, 〈v′, v〉V ∈ Z}

which is another lattice in VQ.

2.4.2. Poincaré duality

We suppose now that X is an n-dimensional compact manifold with
boundary ∂X. Poincaré duality is an isomorphism of graded Z-modules
H∗(X;V ) ∼−→ Hn−∗(X, ∂X;V ) or H∗(X, ∂X;V ) ∼−→ Hn−∗(X;V ). It is com-
patible with the long exact sequences of the pair X, ∂X in the following
sense [5, Theorem V.9.3].
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Proposition 2.4. — The diagram:

...

��

...

��
Hp(∂M ;V ) //

��

Hn−1−p(∂M ;V ∗)

��
Hp(M ;V ) //

��

Hn−p(M,∂M ;V ∗)

��
Hp(M,∂M ;V ) //

��

Hn−p(M ;V ∗)

��
...

...
is commutative, where vertical lines are the long exact sequences in homol-
ogy and cohomology of (X, ∂X) and horizontal arrows are Poincaré duality
morphisms.

3. Asymptotic geometry of congruence manifolds and
approximation of L2-invariants

In this section we shall, assuming the results of the next section, prove
Theorem 1.5 from the introduction and the approximation result for analytic
torsion (Theorem 3.8 below).

3.1. Benjamini–Schramm convergence

The following result generalizes [1, Theorem 1.12] to the case of noncom-
pact congruence subgroups of SL2(C).

Theorem 3.1. — There are δ, c > 0 such that for any Bianchi group
Γ = Γ(OF ) and sequence Γn of torsion-free congruence subgroups in Γ, for
all R > 0 we have

vol{x ∈Mn : injx(Mn) 6 R} 6 ecR[Γ : Γn]1−δ

In particular, the sequence of hyperbolic manifolds Mn = Γn\H3 is BS-
convergent to H3.
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We record the following much weaker consequence (see Lemma 3.3 be-
low) of this as a separate fact; note that this is actually the only part of
Theorem 3.1 that we make full use of here, and a direct proof is much easier
than that of the latter.

Lemma 3.2. — Let Γ,Γn,Mn be as in the statement of the theorem above
and let hn be the number of cusps of Mn. Then

hn � [Γ : Γn]1−δ.

Recall that Kf is the closure in SL2(Af ) of Γ = SL2(OF ) and let K ′f be a
closed finite-index subgroup with level I. We will show that for the subgroup
Γ′ = ΓK′ of Γ and M = Γ′\H3 we have vol{x ∈M : injx(M) 6 R} 6 C[K :
K ′]1−δ.

3.1.1. Remarks

(1) The mere BS-convergence (without the precise estimates) follows
from [1, Theorem 1.11]: one can see that it implies that any invariant
random subgroup which is a limit of a sequence of congruence covers
has to be supported on unipotent subgroups, which is impossible
if the limit is nontrivial (for example because of “Borel’s density
theorem” [1, Theorem 2.9]).

(2) As a corollary we get that there is an ε > 0 such that
volM6ε log volM 6 (volM)1−δ

for all (manifold) congruence covers M of a given Bianchi orbifold.

3.1.2. Benjamini–Schramm convergence of manifolds with cusps

We recall some notation: for a hyperbolic manifold M we let NR(M) be
the number of closed geodesics of length less than R on M . If Λ is a lattice
in C we define

α1(Λ) = min{|v| : v ∈ Λ, v 6= 0}
and for any v1 ∈ Λ such that |v1| = α1(Λ),

α2(Λ) = min{|v| : v ∈ Λ, v 6∈ Zv1}.
Then the ratio α2/α1 only depends on the conformal class of Λ, in particular
if Γ 63 −1 is a lattice in SL2(C) and N a unipotent subgroup such that
Γ ∩N is nontrivial (we will say that N is Γ-rational) then α2/α1(Γ ∩N) is
well-defined and depends only on the Γ-conjugacy class of N . We can then
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estimate the volume of the thin part as follows (in particular, to prove that
a sequence of finite covers of a fixed orbifold is BS-convergent we need only
give o(volMn)-bounds for the right-hand side).

Lemma 3.3. — Let M = Γ\H3 be a finite–volume hyperbolic three–
manifold and let N1, . . . , Nh be representatives for the Γ-conjugacy classes
of unipotent subgroups. Put Λj = Γn ∩Nj, then there are constants C (de-
pending on Γ) and c > 0 such that

volM6R 6 Ce
cR

RNR(M) +
h∑
j=1

α2(Λj)
α1(Λj)

 .

Proof. — A point x ∈ M lies in the R-thin part if and only if, for any
lift x̃ of it to H3, there is γ ∈ Γ \ {Id} such that d(x̃, γx̃) 6 R. It follows
that if γ1, . . . , γN are elements in Γ representing the conjugacy classes of
loxodromic elements with translation lengths at most R (so N = NR(M))
the R-thin part of M is the union of the images of the R-thin parts in the
manifolds 〈γi〉\H3 and Λj\H3.

The statement of the lemma then follows from the two following facts
from elementary hyperbolic geometry:

(i) If g ∈ SL2(C) is loxodromic the R-thin part of 〈g〉\H3 has volume
6 C`ecR, where C depends only on the minimal translation length
` of g;

(ii) If Λ is a lattice in a unipotent subgroup N of SL2(C) then the R-thin
part of Λ\H3 is of volume 6 ecRα1(Λ)/α2(Λ).

The point (i) follows immediately from the fact that if L is the axis of g and
x is a point at distance at most R from L, then d(x, gx)� R with a constant
independent of g, and the fact that the volume of a R-neighbourhood of the
closed geodesic in 〈g〉\H3 is of volume 6 `ecR (where ecR is an upper bound
for the volume of a radius R ball in H3).

For point (ii) we observe that we can parametrize Λ\H3 as T × [0,+∞[,
where T is the Euclidean torus Λ\C, which we suppose normalized so that
α1(Λ) = 1 (we conformally identify N with C) and the product metric
(dx2 +dy2)/y2. Then the R-thin part is contained in T × [e−cR,+∞[ (where
c is such that if x, y ∈ H3 belong to an horosphere H with Euclidean distance
dH , we have dH3(x, y) > log(1+dH(x, y))). The volume of the latter is easily
seen to be 6 vol(T )ecR � ecRα2(Λ). �
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3.1.3. Proof of Theorem 3.1, the loxodromic part

Here we recall how the bound on NR follows from the results in [1, Sec-
tion 5]. Let c be a closed geodesic in the orbifold Γ\H3 and γ ∈ Γ any
element of the associated loxodromic conjugacy class in Γ. For any g ∈ Kf

we have that γ fixes the coset gK ′f if and only if gγg−1 belongs to K ′f , so
that the number of lifts of c in MK′ is equal to the number of fixed points
of γ in Kf/K

′
f . By Theorem 1.11 in [1] there are constants δ (depending on

F ) and C (depending on c) such that the latter is less than C|Kf/K
′
f |1−δ.

This shows that for a given R there is a CR such that for all K ′ we have

NR(MK′) 6 CR|Kf/K
′
f |1−δ =

(
CR vol(Γ\H3)

)
(volMK′)1−δ.

3.1.4. Proof of Theorem 3.1, the unipotent part

Now we have to bound the second term in Lemma 3.3: we want to show
that

hK′∑
j=1

α2(ΛK′,j)
α1(ΛK′,j)

� |Kf/K
′
f |1−δ (3.1)

where ΛK′,j = jN(F ) ∩ K ′f where the jN are representatives of the ΓK′ -
conjugacy classes of unipotent subgroups in SL2(F ). We fix a unipotent
subgroup N in SL2 /F , and let N = N(Af ) ∩Kf ; clearly it suffices to prove
that (3.1) holds if we sum only over the unipotent groups contained in the Γ-
conjugacy class of N(F ). These ΓK′ -conjugacy classes are in natural bijection
with the set of double cosets N\Kf/K

′
f

For p ∈ Z a rational prime we will denote Fp = Qp ⊗Q F and Kp the
closure of Γ in SL2(Fp). The latter is isomorphic to

• SL2(Ov) in case p is inert or ramified in F and v is the corresponding
place of F ;
• SL2(Zp)× SL2(Zp) when p is split.

We will denote by Kp(pk) the compact-open subgroup of matrices congruent
to 1 modulo pk, and by gp the Lie algebra of Kp.

The crucial case is when we haveK ′p = Kp for all but one rational prime p.
We identify N(Fp) with Fp (see 2.1.3 above) and for a finite-index subgroup
L of N(Fp) we put

α1(L) = min{|v|−1
p : v ∈ L, v 6= 0}
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and for any v1 ∈ L such that |v1|p = α1(Λ),

α2(L) = min{|v|−1
p : v ∈ L, v 6∈ Zv1}.

If g ∈ Kp and Λ = gN(F )g−1 ∩K ′p, L = gNpg
−1 ∩K ′p (where Np = Kp ∩

N(Fp)) then we have
αi(Λ) � αi(L), i = 1, 2,

with absolute constants, so that we must bound the sum

Sp =
∑

g∈Np\Kp/K′p

α2(g−1Npg ∩K ′p)
α1(g−1Npg ∩K ′p)

. (3.2)

We rewrite Sp as follows: we fix k > 1 such that Kp(pk) ⊂ K ′p. Then the
quantities αi(g−1Npg∩K ′p) are constant on a K ′p-orbit in Kp/NpKp(pk); on
the other hand the cardinality of theK ′p-orbit of gNpKp(pk) inKp/NpKp(pk)

is equal to |K′p/Kp(pk)|
|(g−1Npg∩K′p)Kp(pk)/Kp(pk)| so that

Sp =
∑

g∈Kp/NpKp(pk)

|(gNpg−1 ∩K ′p)Kp(pk)/Kp(pk)|
[K ′p : Kp(pk)] ×

α2(gNpg−1 ∩K ′p)
α1(gNpg−1 ∩K ′p)

.

From the equality

α2(gNpg−1 ∩K ′p)α1(g−1Npg ∩K ′p) = |gNpg−1/(gNpg−1 ∩K ′p)|

it follows that α1α2 = |Np/(Np∩Kp(pk))|
|g−1Npg∩K′p|

and then that:

Sp = [Np : Np ∩Kp(pk)]
[K ′p : Kp(pk)]

∑
g∈Kp/NpKp(pk)

1
α1(gNpg−1 ∩K ′p)2

= [Kp : K ′p] ·
[Np : Np ∩Kp(pk)]

[Kp : Kp(pk)]
∑

g∈Kp/NpKp(pk)

1
α1(gNpg−1 ∩K ′p)2 .

On the other hand Bp normalizes Np and we can mod out on the right to
get:

Sp = [Kp : K ′p] ·
|Bp : (Bp ∩Kp(pk))]

[Kp : Kp(pk)]
∑

g∈Kp/BpKp(pk)

1
α1(gNpg−1 ∩K ′p)2

(3.3)
which is the sum that we will now estimate.

For l = 0, . . . , k − 1 we define

Xl = {g ∈ Kp/BpKp(pk) : gNpg−1 ∩K ′p ⊂ Kp(pl), 6⊂ Kp(pl+1)} (3.4)
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and put dl = |Xl|. Then for g ∈ Xl we have α1(gNpg−1 ∩K ′p) = pl and so:

Sp 6
[Kp : K ′p]

2p2k

k−1∑
l=0

dlp
−2l

We may suppose that Kp(pk−1) 6⊂ K ′p, and we will prove in 3.1.5 below the
following estimate for dl when l 6 k/3:

dl 6 p
17k
9 . (3.5)

In general we have trivially that dl 6 |Kp/BpKp(pk)| � p2k. It follows that

Sp �
[Kp : K ′p]

p2k

bk/3c∑
l=0

p
17k
9 + [Kp : K ′p]

k−1∑
l=bk/3c+1

p−2l

6 k
[Kp : K ′p]
pk/9

+ 2
[Kp : K ′p]
p2k/3 .

On the other hand we can estimate trivially [Kp : K ′p] 6 2p6k and k � pεk

for any ε > 0, uniformly in k and p, so we finally get
hK′∑
j=1

α2(ΛK′,j)
α1(ΛK′,j)

� [Kp : K ′p]1−
1
55 . (3.6)

Now we return to the general case; letm be an integer such thatKf (m) ⊂
K ′f , as above we have that

S =
[Kf : K ′f ]

[Kf : NfKf (m)]
∑

g∈Kf/NfKf (m)

1
α1(gNfg−1 ∩K ′f )2 .

Let Nf = N(A)∩Kf . For any prime p dividing m, gNpg−1 ∩K ′p is the pro-p
summand of gNfg−1 ∩K ′f , so that we have

gNfg
−1 ∩K ′f =

∏
p|m

gNpg
−1 ∩K ′p

and it follows that

α1(gNfg−1 ∩K ′f ) =
∏
p

α1(gNpg−1 ∩K ′p).

So we get, writing m =
∏
p p

kp :

S =
[Kf : K ′f ]∏

p[Kp : NpKp(pkp)]
∏
p

 ∑
g∈Kp/NpK(pkp)

1
α1(gNpg−1 ∩K ′p)2

 .
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We can rewrite this as

S =
[Kf : K ′f ]∏
p[Kp : K ′p]

∏
p

Sp �
[Kf : K ′f ]∏
p[Kp : K ′p]

1
55

where the second inequality follows from (3.6). It follows from [1, Lem-
ma 5.11] that there are constants c, C > 1 such that for any compact-open
subgroup K ′f ⊂ Kf , if K ′p is its projection to Kp then we have

[Kf : K ′f ] 6 C
(∏

p

[Kp : K ′p]
)c

where the product runs over all rational primes such that K ′p 6= Kp, so that
we get

S � [Kf : K ′f ]1− 1
55c

which finishes the proof of (3.1) (we get δ = 1
55c ).

3.1.5. Proof of (3.5)

This proof is reminescent of that of [1, Proposition 5.13], albeit much
more cumbersome due to the fact that we cannot identify the precise ele-
ments of Np which are conjugated into K ′p. Under the hypothesis that K ′p 6⊃
Kp(pk−1), for any l = 1, . . . , k − 1 we have that K ′pKp(pl+1)/Kp(pl+1) can-
not contain a generating set for the 6-dimensional Fp-Lie algebra gp/pgp =
Kp(pl)/Kp(pl+1). For a subset Y ⊂ Kp define

qY (j) = max
h∈Kp/Kp(pj)

|(hKp(pj) ∩ Y )BpKp(pj+1)/BpKp(pj+1)|.

Then we have :

|Xl| 6
k−1∏
j=0

qXl(j). (3.7)

We will prove the following lemma at the end of the section (recall that gp
is the Zp-Lie algebra associated to Kp).

Lemma 3.4. — If p is unramified and p 6= 2, 3 then a proper subgroup
of Kp/Kp(p) (resp. a proper Lie subalgebra of gp/pgp) cannot contain more
than p+ 1 pairwise noncommuting unipotent (resp. nilpotent) elements.

This implies that qXl(0) 6 p + 1 for all l 6 k/3 (since there are only
finitely many ramified primes we get qXl(0) 6 Cp for a C > 0 depending on
F , we will work with C = 1 to simplify notation). Now we deal with j > 1:
we will prove that when j < (k − 2l)/3 we must have qXl(j) 6 p, which in
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view of (3.7) implies immediately (3.5) for l 6 k/3. Suppose that there is an
h ∈ Kp/Kp(pj) such that

|(hKp(pj) ∩ Y )BpKp(pj+1)/BpKp(pj+1)| > p;
conjugating K ′p by h we may suppose that h = 1. This means that there
exists pairwise distinct ci ∈ Op−pOp, i = 0, . . . , p, such that for each i there
is ti ∈ Op − pOp satisfying(

1 +
(
∗ ∗
pjci ∗

))(
1 plti

1

)(
1−

(
∗ ∗
pjci ∗

))
∈ K ′p.

Computing the right-hand side yields that

gi = 1 +
(
pl+jtici plti
pl+2jtic

2
i −pl+jtici

)
∈ K ′p. (3.8)

Now the worst that can happen is that we are (up to conjugation) in at most
one of the following situations:

(a) All ti are in Zp;
(b) All tici are in Zp;
(c) All tic2i are in Zp.

In case (a) we get that K ′pKp(pl+2j+1) contains the subgroup 1 + pl+2jV
where

V =
{(

x y
z −x

)
: x, z ∈ Op/pOp, y ∈ Fp

}
.

We may suppose that all tm = 1; now let i, i′ such that a = ci + ci′ 6∈ Fp,
modulo p2l+j+1 we have

gig
−1
i′ = 1 + p2l+j

(
0 a
0 0

)
which is not in 1 + p2l+jV so that we see that K ′p contains Kp(p2(l+j)). In
case (c) we can do exactly the same reasoning to get that K ′p ⊃ Kp(p2l+3j).
It remains to deal with case (b), which is again similar: we have that
K ′pKp(pl+2j+1) contains 1 + pl+2jV ′,

V ′ =
{(

x y
z −x

)
: y, z ∈ Op/POp, x ∈ Fp

}
.

and if we suppose that all tmcm = 1 and ti + ti′ 6∈ Fp we get that

gig
−1
i′ = 1 + p2l

(
pj(ti + ti′) ti − ti′

0 pj(ti + ti′)

)
modulo p2l+j , and multiplying by some other gms to kill the top-right co-
efficients we get that 1 + p2l+ju ∈ K ′pKp(p2l+j+1) for some u 6∈ V ′, which
shows that K ′p contains Kp(p2(l+j)) also in this case.
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In conclusion, we have seen that if qXl(j) > p thenK ′p containsKp(p2l+3j)
which implies that j > (k − 2l)/3, which finishes the proof of (3.5).

3.1.6. Proof of Lemma 3.4

It follows from the following classification as the image X of any of the
proper subgroups listed here contains less than p + 1 unipotent, pairwise
noncommuting elements.

Lemma 3.5. — Let H be a subgroup of Kp/Kp(p) such that H contains
two unipotent elements which do not commute ; then

• If p is inert then either H = SL2(Fp2) or H is conjugated to SL2(Fp);
• If p is split then either H = SL2(Fp)× SL2(Fp) or H = φ(SL2(Fp))
where φ = (φ1, φ2) for some endomorphisms φ1, φ2 of SL2(Fp).

There is a similar statement for proper Lie subalgebras of gp.

In case p 6= 3 is inert this follows immediately from Dickson’s Theo-
rem [16, Theorem 8.4 in Chapter 2] (this is where we use p 6= 3). In the
remaining case where p is split the lemma is actually much simpler, since
the projection of H on one of the factors SL2(Fp) must contain two non-
commuting unipotent elements and we can then apply Dickson’s theorem
(which in this case is almost trivial).

The result for Lie algebras is easier in the inert case: if a subalgebra
contains two noncommuting nilpotent elements then their Lie bracket is
an element in the Cartan subalgebra contained in the intersection of their
normalizers. If this bracket is not Fp-rational then we get the whole algebra
since its adjoint action on each of the nilpotent Fp2-subalgebras is irreducible
(here we use p 6= 2), if it is then they generate a subalgebra conjugated to
sl2(Fp). The ramified case is dealt with as for the case of groups.

3.2. Limit multiplicities

Let ρ, V be a finite-dimensional representation of SL2(C) and for an hy-
perbolic orbifold M let ∆p[M ] be the Hodge Laplacian on L2Ωp(M ;V ),
and mp

V (λ;M) = dim ker(∆p[M ] − λ). There are also L2-spectral measures
νp, which are Borel measures on [0,+∞[ obtained by pushing forward the
Plancherel measure. We will prove in 3.2.3 below that Theorem 1.5 follows
from the following less precise result.
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Theorem 3.6. — For any regular Borel set S ⊂ [0,+∞[ and p = 0, . . . , 3
we have

lim
n→+∞

∑
λ∈Sm

p
V (λ;Mn)

volMn
= νp(S)

where Mn is as in Theorem 1.5.

3.2.1. Regularized trace

The first step towards Theorem 3.6 is to prove the convergence of regular-
ized traces; the following result is an immediate consequence of Theorem 4.5
in [26] and Theorem 3.1 above.

Proposition 3.7. — Let Γn be a sequence of cusp-uniform congruence
subgroups of a given Bianchi group. Then we have the limit

lim
n→+∞

TrR φ(∆p[Mn])
volMn

= Tr(2) φ(∆p[H3])

for any φ ∈ A(R).

Recall from loc. cit. that A(R) is a C∞-dense subset of the Schwartz
functions on R whose Fourier transforms yield point-pair invariants of rapid
decay on H3 ×H3.

3.2.2. Proof of Theorem 3.6

Because A(R) is dense in L2(R) it suffices (by approximating the charac-
teristic function of regular sets) to prove that for any φ ∈ A(R) we have that
Trφ(∆p

cusp[Mn])/ volMn converges to Tr(2) φ(∆p[H3]). Let ∆p
cusp[Mn] be the

restriction of ∆p[Mn] to the subspace of cusp forms. By standard arguments
one deduces Theorem 3.6 from the fact that for all φ in a L1-dense subset
of C∞c (R) we have

Trφ(∆p
cusp[Mn])

volMn
= Tr(2) φ(∆p[H3]). (3.9)

According to Proposition 3.7 this would follow if we can prove

TrR φ(∆p[Mn])− Trφ(∆p
cusp[Mn]) = o(volMn).
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We will show this when p = 0. From (2.12) we get:

TrR φ(∆0[Mn])− Trφ(∆0
cusp[Mn])

= 0/1 + 1
4

2q∑
l=−2q

dlφ

((
1− |l|2

)2
+ λV

)
tr Ψl(0)

− 1
2π

∫ +∞

−∞

2q∑
l=−2q

dlφ

((
1− |l|2

)2
+ u2 + λV

)
tr
(

Ψl(iu)−1 dΨl(iu)
du

)
du

(where the summand 0/1 comes from the subspace of harmonic sections,
equals 0 when V is acyclic). As Ψ(iu) is unitary for u ∈ R we obtain

1
4

2q∑
l=−2q

dlφ

((
1− |l|2

)2
+ λV

)
tr Ψl(0) 6 C

2q∑
l=−2q

dl 6 Chn.

Putting

ξ(u) = max
l=−2q,...,2q

φ

((
1− |l|2

)2
+ u2 + λV

)
and applying Proposition 4.1 we get for any ε > 0 the bound

|TrRKΓn
φ,0 − Tr(KΓn

φ,0)disc| 6 Chn +
∫ +∞

−∞
ξ(u)Cε(u)duhn[Γ : Γn]ε

where the integral on the right-hand side converges absolutely since Cε(u)
is polynomially bounded. By Lemma 3.2 we get that for ε small enough it is
in fact o(volMn), which finishes the proof of (3.9) and of the theorem.

3.2.3. Laplacian eigenvalues and representations

The fact that we can deduce limit multiplicities for representations (The-
orem 1.5) from limit multiplicities for Laplacian eigenvalues (Theorem 3.6)
is a consequence of the fact, which is specific to real-rank-one groups, that
a unitary representation of SL2(C) is determined by its Casimir eigenvalue
and its SU(2)-types. More precisely, the unitary representations of SL2(C)
are parametrized by (Z × iR)/∼ ∪ ]0, 2[ where (l, ia) ∼ (−l,−ia). On the
other hand the SU(2)-types are the restrictions to SU(2) of the holomorphic
representations Vn = Vn,0 of SL2(C), and by Frobenius reciprocity the rep-
resentations containing the SU(2)-type Vn are the π±l,ia for 0 6 l 6 n and
n − l = 0 (mod 2), so we can deduce Theorem 1.5 by an easy induction on
l using the limit multiplicities for m0

Vl
or m1

Vl
.
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3.3. Approximation for analytic torsion

Theorem 3.8. — Let Γn be a cusp-uniform sequence of torsion-free con-
gruence subgroups of Γ and Mn = Γn\H3. Then we have

lim
n→∞

log TR(Mn;V )
volMn

= t(2)(V ).

Proof. — According to Theorem A in [26] we have to check two condi-
tions:

• The sequence Mn is BS-convergent to H3;
• There is an ε > 0 such that there exists a C > 0 so that for all
u ∈ [−ε, ε] we have

tr
(

Ψl(iu)−1 dΨl(iu)
du

)
, tr

(
Φl(iu)−1 dΦl(iu)

du

)
= o(volMn). (3.10)

The BS-convergence is the content of Theorem 3.1 above. To prove (3.10)
note that we have for all u ∈ R the bound

tr
(

Ψl(iu)−1 dΨl(iu)
du

)
�
∣∣∣∣dΨl(iu)

du

∣∣∣∣hnd (3.11)

where d = dimV and hn is the number of cusps of Mn, since Ψ(s) operates
on a vector space of dimension hnd and it is unitary for Re(s) = 1/2. Now
we have hn 6 (volMn)1−δ for some δ > 0, according to Lemma 3.2, and
on the other hand according to Proposition 4.1(5) for all ε > 0 there exists
Cε(u) such that ∣∣∣∣dΨl(iu)

du

∣∣∣∣ 6 Cε(u)|In|ε � Cε(u)(volMn)3ε

(where the second majoration follows from Lemma 2.1), and taking ε = δ/6
shows that the right-hand side of (3.11) is indeed o(volMn), uniformly for
u in a compact set. �

4. Estimates on the logarithmic derivatives of intertwining
operators

This section is devoted to the proof of the following result (see Section 2.2
for notations).

(5) The operators Ψl(s) are intertwined with the K′
f -invariant, χl, ρ-isotypic matrix

block of Ψ(s) according to (2.11).

– 446 –



Analytic, Reidemeister and homological torsion for congruence three–manifolds

Proposition 4.1. — Let τ∞ be a finite-dimensional representation of
K∞, I an ideal of OF and χ a Hecke character such that fχ|I. Let τf be the
representation of Kf on C[Kf/Kf (I)], τ = τ∞ ⊗ τf and φ ∈ H(χ, τ). Let
ε > 0. Then there exists a polynomially bounded function Cε on R depending
only on F, ε and τ∞ such that∥∥∥∥ d

duΨ
(

1
2 + iu

)
φ

∥∥∥∥
H
6 Cε(u)|fχ|ε‖φ‖H. (4.1)

for all u ∈ R.

We will suppose that φ ∈ C∞(K) is equal to a product
⊗

v φv; then it is
enough to show that ∥∥∥∥ d

duΨ
(

1
2 + iu

)
φ

∥∥∥∥
L2(K)

� |fχ|ε

because ‖ · ‖H =
√
hF ‖ · ‖L2(K) for A1-equivariant functions. Since Hs(χ)

is an irreducible unitary representation of SL2(A) when Re(s) = 1/2 and
Ψ(s)−1 d

duΨ(s) is a SL2(A)-equivariant endomorphism of Hs(χ), it is a scalar
operator, say c Id. Now Ψ(s)−1 is unitary and thus for any two φ, φ′ ∈ Hs(χ)
we have ∣∣ d

duΨ(s)φ
∣∣
H

|φ|H
=
∣∣ d

duΨ(s)φ′
∣∣
H

|φ′|H

so that it suffices to consider a single function φ ∈ Hs(χ); we will take φv to
be the spherical vector at unramified places and specify φv for each ramified
place; the infinite place does not matter very much for our purposes here.

4.1. Computation of the intertwining integrals

Let v be a finite place; we will make repeated use of the matrix decom-
position:

w

(
1 x

1

)
=
(
x−1 −1

x

)(
1
x−1 1

)
∈ B(Fv)Kv when x ∈ Fv −Ov. (4.2)
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4.1.1. Ramified places

We suppose that v ∈ Sχ, that is χ is non-trivial on O×v ; we suppose that
χv is trivial on 1 + πmvv Ov. From (4.2) and (2.3) it follows that:

Ψv(s)φv

=
∫
|x|v>1

|x|−2sχ−1(x)φv
((

1
x 1

)
k

)
dx+

∫
Ov
φv

((
1
x 1

)
w−1k

)
dx

=: Iv(k) + Jv(k).

We now compute the L2-norms of Iv and Jv for the function φv defined as
follows:

φv(k) =
{
χ(m) if k = mn ∈ Bv;
0 otherwise.

One can then compute that for k = w
(
a b
c d

)
we have:

Jv(k) = 1
qmvv

∑
x∈Ov/πmvv Ov

φv

((
a b

ax+ c bx+ d

))
= 1
qmvv

∑
x,ax+c=0

χ(a)

=
{

1
qmvv

χ(a) if a ∈ O×v ;
0 otherwise

and it follows immediately that

|Jv|2L2(Kv) = 1
q2mv−1
v (qv + 1)

= q−mvv |φv|2L2(Kv). (4.3)

Since
∫
O×v

χ(x)dx = 0 and our function φv is Kv(πmvv )-left-invariant we
have ∫

|x|v>mv
|x|−2sχ−1(x)φv

((
1
x 1

)
k

)
dx = 0

and it follows that

Iv(k) =
mv−1∑
l=1

q−2s
v

∫
|xv|=l

χ(x)−1φv

((
1
x−1 1

)
k

)
dx

=
mv−1∑
l=1

ql−2s
v χ(πv)−l

∫
O×v

χ(x)−1φv

((
1
πlvx 1

)
k

)
dx.

For k =
(
a b
c d

)
, c ∈ O×v the right-hand side equals 0. The summands are also

zero if c ∈ πmv O×v for some m = 1, . . . ,mv − 1: indeed, the sum restricts to
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the summand l = m and we get

Iv(k) = ql−2s
v χ(πv)−m

∫
O×v

χ(x)−1φv

((
a b

πmv ax+ c πmv bx+ d

))
dx

= ql−2s
v χ(πv)−mχ(a)

∫
(−π−mv ca−1)(1+πmv−mv Ov)

χ(x)dx

= ql−2s
v χ(πv)−2mχ(c)

∫
1+πmv−mv Ov

χ(x)dx

and since χ is nontrivial on 1+πmv−mv Ov the integral on the right-hand side
vanishes.

4.1.2. Unramified places

If χ is not ramified at v then we choose φv to be the function in Hs
which is identically equal to 1 on Kv. We recall the following well-knwown
computation:

Ψv(s)φv(k) =
∫
Fv−Ov

φs

(
w

(
1 x

1

)
k

)
dx+ 1

=
∫
Fv−Ov

|x|−2s
v χ(x)−1φ

((
1
x−1 1

)
k

)
dx+ 1

= 1 +
∑
l>1

(1− q−1
v )qlvχ(πv)kq−2sl

v = 1− χ(πv)q−2s
v

1− χ(πv)q−2s+1
v

.

4.1.3. Infinite place

We finally compute

I∞(k) = Ψ∞(s)φ∞(k).

For z ∈ C we have

w

(
1 z

1

)
=
(
u−1 u−1z̄

u

)
kz, u =

√
|z|∞ + 1, kz =

(
−u−1z̄ u−1

u−1 u−1z

)
and it follows that

I∞(k) =
∫
C

(|z|∞ + 1)−2sφ∞(kzk)dzdz̄
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As |z| → +∞ we have
∣∣∣kz − ( z̄/|z| z/|z|)∣∣∣ � |z|−1

2∞ (for any norm | · | on
K∞). For Re(s) > 1/2 we get:

I∞ = φ∞(k)
∫
C
χ∞(z)(|z|∞ + 1)−2sdzdz̄ +O(1) (4.4)

where the O(1) depends on τ∞ but not on s. If χ∞ 6= 1 then the integral is
zero so that I∞ is bounded independantly of s for Re(s) > 1/2. If χ∞ = 1
we have ∫

C
(|z|∞ + 1)−2sdzdz̄ = π

Γ(2s− 1)
Γ(2s)

and it follows that I∞ has a meromorphic continuation to Re s > 0 such that
I∞(k)− π Γ(2s−1)

Γ(2s) φ∞(k) is bounded independantly of s for Re(s) > 1/2.

4.1.4. Final expression

For Re(s) > 1/2 and our specific φ we get the formula

Ψ(s)φ(k) = I∞ ×
L(χ, 2s− 1)
L(χ, 2s)

∏
v∈Sχ

Jv(k). (4.5)

4.2. Proof of Proposition 4.1

We will write s = σ + iu for this whole subsection and suppose (unless
otherwise stated) that σ = 1/2. Taking the derivative of the product (4.5)
yields

d
duΨ(s)φ(k) =

(
d

duL(χ, 2s)
L(χ, 2s) +

d
du (L(χ, 2s− 1)I∞(k))
L(χ, 2s− 1)I∞(k)

)
Ψ(s)φ(k)

so that we get, using the functional equation for L(χ, · ):∣∣∣∣ d
duΨ(s)φ

∣∣∣∣
L2(K)

6 2

∣∣∣∣∣ d
duL(χ, 2s)
L(χ, 2s)

∣∣∣∣∣+

∣∣ d
du (γ(s)I∞)

∣∣
L2(K∞)

|γ(s)I∞|L2(K∞)

=: L1 + L2.

We will suppose at first that χ is non-trivial so that the L-function L(χ, · )
is holomorphic on Re(s) > 0. To bound both L1 and L2 we use the following
well-known lemma.
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Lemma 4.2. — Suppose that χ is non-trivial; then we have∣∣∣∣∣ d
duL(χ, 2s)
L(χ, 2s)

∣∣∣∣∣� (log |fχ|)2 (4.6)

with a constant depending only on s and F , growing polynomially in Im(s).
Proof. — The Euler product for L(χ, 2s) yields for Re(s) > 1/2 the ab-

solutely converging series expansion
d

duL(χ, 2s)
L(χ, 2s) =

∑
v 6∈Sχ

2i(log qv)q−2s
v χ(πv)

1− χ(πv)q−2s
v

.

We get
d

duL(χ, 2s)
L(χ, 2s) =

∑
v 6∈Sχ

2i(log qv)q−2s
v χ(πv)

∑
k>0

χ(πv)kq−2ks
v .

The series
∑
v 6∈Sχ(log qv)q−2s

v χ(πv)
∑
k>1 χ(πv)kq−2ks

v converges absolutely
for Re(s) > 1/4 and its sum is bounded by a constant depending only on F ,
so that we are left with estimating

∑
v 6∈Sχ(log qv)q−2s

v χ(πv).

Let χ1, . . . , χhF be all the Hecke characters on F×\A1 such that ker(χj) ⊃
M . If χ is any Hecke character there exists some j such that χ(πv) = χj(πv)
for all places v 6∈ Sχ. We then have that∑

v 6∈Sχ

q−2s
v log(qv)χ(πv)

=
∑
v 6∈Sχj

q−2s
v log(qv)χj(πv)−

∑
v∈Sχ−Sχj

q−2s
v log(qv)χj(πv).

As χj is non-trivial the function H : s 7→
∑
v 6∈Sχj

q−2s
v log(qv)χj(πv) has

an holomorphic extension to an open subset of C containing the half-plane
Re(s) > 1/2, and by standard arguments(6) there is a polynomial bound
(depending only on F as χ1, . . . , χhF are fixed) in u for H(1/2 + iu). On the
other hand, putting q = maxv∈Sχ qv we get that for Re(s) = 1/2 we have∣∣∣∣∣∣

∑
v∈S−Sχ

(log qv)q−2s
v χ(πv)

∣∣∣∣∣∣ 6 log q
∑

v∈S−Sχ

1
qv
� (log q)2

and as q 6 |fχ| we are left with∣∣∣∣∣ d
duL(χ, 2s)
L(χ, 2s)

∣∣∣∣∣ 6 C(u)(log |fχ|)2

(6) It suffices to prove that there is a polynomial bound for the logarithmic derivative
of a given Hecke L-function.
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where C(u) has polynomial growth in u, which finishes the proof of the
lemma. �

Since d
duI∞γ(s) is also bounded by log |fχ| we thus get

|L1|, |L2| 6

∣∣∣∣∣ d
duL(χ, 2s)
L(χ, 2s)

∣∣∣∣∣ 6 C(u)(log |fχ|)2 (4.7)

where C(u) is growing polynomially.

It remains to deal with the case where χ = 1, which is the same except
that we have to group the terms I∞ and L(χ, 2s− 1) = ζF (2s− 1) to cancel
their poles at s = 1/2. The details will be left to the reader (see also [27,
5.5.3]).

4.3. Estimates off the critical line

The estimates above are still valid for any real number s (except if χ is
trivial and s = 1) but different exponents for |I| and fχ are obtained. We
will not require sharp estimates for those, and be content with stating the
following rough result.

Proposition 4.3. — For any σ ∈ R, χ 6= 1 and φ ∈ H(χ, τ) we have

‖Ψ(σ)φ‖H,
∥∥∥∥dΨ(σ + iu)

du φ

∥∥∥∥
H
6 C|I|c‖φ‖H

where C depends on F, σ and τ∞ and c only on σ.

5. Reidemeister torsion and asymptotic Cheeger–Müller equality

The aim of this section is to define a Reidemeister torsion τ for congruence
manifolds with cusps and then prove the following result. We fix a Bianchi
group Γ and a strongly acyclic Γ-module VZ.

Theorem 5.1. — Let Γn be a cusp-uniform sequence of pairwise distinct
torsion-free congruence subgroups of Γ. Let Mn = Γn\H3 and let τ(Mn;VZ)
be defined by (5.6) below, then we have

lim
n→∞

log τ(Mn;VZ)− log TR(Mn;V )
volMn

= 0.
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We now explain how this result follows from [26] and the results in Sec-
tions 5.4 and 5.5 below. According to Theorem 3.1 and the proof of The-
orem 3.8 we can apply Theorem B in [26] to the sequence Mn, so that we
get

lim
n→∞

log τabs(MY n

n ;V )− log TR(Mn;V )
volMn

= 0

for the sequence Y n described there. According to Proposition 5.7 below we
can replace Y n by any Υn such that max Υn

j 6 |In|c for some constant c,
and the result now follows from Proposition 5.4 below.

Before giving the definition of τ(M ;VZ) and the proof of Proposition 5.4
we will recall from scratch how to describe analytically the cohomology of
the boundary ∂M of the Borel–Serre compactification M of an hyperbolic
manifold with cusps, and how to construct a section of the pull-back map
H∗(M)→ H∗(∂M) using Eisenstein series as in [18] (see also [2, Section 3]).

5.1. Boundary cohomology

In this subsection and the next we fix a congruence manifold M = MK′

(we note that everything in the next three sections applies to all finite-volume
hyperbolic three–manifolds). We recall notation from [26]: V = V (n1, n2) is
the SL2(C)-module Symn1 C2 ⊗ Symn1 C2, for a pair k, l we denote by Vk,l
the T(C)-eigenspace of V associated to the character z 7→ zl/z̄k and ek,l a
norm 1 vector generating it. Recall that we have the decomposition

V (n1, n2) =
⊕

06i6n1
06j6n2

V2i−n1,2j−n2 =
⊕

06i6n1
06j6n2

Ce2i−n1,2j−n2

The set of cusps of M is in bijection with C(K ′) = C(F )× (K ′f\Kf/Nf ). In
degree 1 we have an isomorphism

H1(∂M ;VC) ∼= C[C(K ′)]⊗ (V−n1,n2 ⊕ Vn1,−n2) (5.1)

defined as follows: to a 2h-tuple of vectors v1, . . . , vh ∈ V−n1,n2 and
v̄1, . . . , v̄h ∈ Vn1,−n2 we associate the de Rham cohomology class [ω] of the
1-form ω given by

ω =
h∑
j=1

dz̄j ⊗ (gjρ(nzj )vj) + dzj ⊗ (gjρ(nzj )v̄j), nz =
(

1 z
1

)
.

Let us check that ω is indeed a closed form. We have vj = wj⊗uj where wj =
gjλje0 and uj = gjen2 , so that ρ(gjnzg−1

j ).vj = wj ⊗ (
∑n2
l=0Ql(z̄)gjen1−l)

where Ql is a polynomial depending only on n2. It follows that z 7→ ρ(nz)vj
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is anti-holomorphic. We can see in the same way that z 7→ ρ(nz)v̄j is holo-
morphic and all this yields that

d(dz̄j ⊗ (gjρ(nzj )vj)) = 0 = d(dzj ⊗ (gjρ(nzj )v̄j)).

A similar computation shows that ω cannot be exact, hence the right-hand
side of (5.1) injects into the de Rham cohomology. By the equality of di-
mensions of both sides (which follows for example from the combinatorial
description in Section 6.1 below) we get that this inclusion is an isomorphism.

We will denote by H1,0(∂M ;VC), H0,1(∂M ;VC) the subspaces of H1 cor-
responding respectively to C[C(K ′)]⊗ V∓n1,±n2 .

As for degrees 0 and 2 we have isomorphisms

H0(∂M ;VC) ∼= C[C(K ′)]⊗ Vn1,n2
∼= H2(∂M ;VC). (5.2)

Indeed, the space Vn1,n2 is the space of fixed vectors of 0N in V , and to
v1, . . . , vh ∈ Vn1−n2 we associate the holomorphic section

∑h
j=1 gjvj or the

holomorphic 2-form
∑h
j=1(dzj ∧ dz̄j)⊗ (gjvj)).

5.2. Eisenstein cohomology

In our strongly acyclic case it is very easy to determine the dimensions
of the cohomology spaces Hp(M ;VC). The L2-cohomology of M with coef-
ficients in VC vanishes and the map i∗p : Hp(M ;VC) → Hp(∂M ;VC) is thus
an embedding for p = 1, 2 (cf. [23, Theorem 2.1]). One can then show using
the long exact sequence of the pair M,∂M and Kronecker duality that

dimH1(M ;VC) = 1/2 dimH1(∂M ;VC) (5.3)

(cf. [34, Lemme 11]); see also [23, Corollaries 3.6 and 3.7]. As H0(M ;VC) = 0
the long exact sequence also yields that

dimH2(M ;VC) = dimH2(∂M ;VC)− dimH0(M ;VC) = dimH2(∂M ;VC).

In what follows we will give an explicit description of the restriction maps
i∗p following [18]. For a closed p-form f ∈ Ωp(M ;VC) we denote by [f ] its de
Rham cohomology class. Given a harmonic form ω ∈ H1(∂M ;VC) and s ∈ C
we can form the Eisenstein series E(s, ω) ∈ Ω1(M ;VC). The following result
is well-known, see for instance the proof of [18, Theorem 2].

Lemma 5.2. — Let s1
V = n2 − n1 and ω ∈ H1,0(∂M ;VC) (resp. ω ∈

H0,1(∂M ;VC)). The Eisenstein series E(s1
V , ω) (resp. E(−s1

V , ω)) is then a
closed 1-form. Moreover the classes [E(s1

V , ω)] span H1(M ;VC).
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Proof. — We need only check that if P is a Γ-rational parabolic subgroup
the constant term of E(s1

V , ω) at P is a closed form on ΓP \H3. It is equal
(in the SL2(C)-equivariant model for Eρ, see [26, (2.5)]) to ω + Φ+(s1

V )ω
and as ω,Φ+(s1

V )ω are closed forms on ∂M we have d(ω + Φ+(s1
V )ω) = 0.

Moreover, we have E(−s1
V , ω) = E(s1

V ,Φ−(−s1
V )ω) and thus the second

statement follows.

The constant term of E(s1
V , ω) is also not an exact form since its re-

striction to ∂M is not, and it follows that the map H1,0(∂M ;VC) 3 ω 7→
[E(s1

V ), ω] is injective. As we have the equality of dimensions
dimH1,0(∂M ;VC) = 1/2 dimH1(∂M ;VC) = dimH1(M ;VC)

it is in fact an isomorphism. �

We can thus define a mapping E1 : H1(∂M ;VC)→ H1(M ;VC) by E1(ω+
ω) = [E(s1

V , ω)+E(−s1
V , ω)] for ω ∈ H1,0(∂M ;VC), ω ∈ H0,1(∂M ;VC). From

the formula for the constant term of Eisenstein series we get
i∗1E

1(ω) = ω + Φ+(s1
V )ω, ω ∈ H1,0(∂M ;VC)

and it follows that
im i∗1 = {ω + Φ+(s1

V )ω, ω ∈ H1,0(∂M ;VC)}
= {Φ−(−s1

V )ω + ω, ω ∈ H0,1(∂M ;VC)}.

In degree 2 the long exact sequence shows that i∗2 is onto (since
H3(M,∂M ;VC) ∼= H0(M ;VC) = 0). We have a result akin to Lemma 5.2 for
this case, whose proof is very similar.

Lemma 5.3. — Let s0
V = n1 + n2 + 1 and v ∈ VN :=

⊕h
j=1 V

Nj
C
∼=

H0(∂M ;VC). The 2-form ∗dE(s0
V , v) is closed, and the classes [∗dE(s0

V , v)]
for v ∈ VN span H2(M ;VC).

Proof. — Computing the Casimir eigenvalue (cf. [26, (2.4)]) one sees that
E(s0

V , v) is harmonic, so that d ∗ dE(s0
V , v) = 0. The constant term of

∗dE(s0
V , v) is a nonzero harmonic 2-form so that [∗dE(s0

V , v)] is nonzero,
and by equality of dimensions we get that these classes span H2(M ;VC). �

We denote by E2 the map H0(∂M ;VC) → H2(M ;VC) defined by v 7→
[∗dE(s0

V , v)].

5.3. Inner products on cohomology and Reidemeister torsion

From now on we will suppose that V = Vn1,n2 with n1 > n2, so that
s1
v > 1. It follows from the Maass–Selberg relations (2.9) that for ω ∈
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H1,0(∂M ;VC) we have the limit

lim
Y→∞

Y −2s1V +1‖TY E(s1
V , ω)‖2L2(M) = (s1

V )−1‖ω‖2
L2(∂M)

and we define an inner product on H1
Eis(M ;VC) by

〈i∗1[E1(ω)], i∗1[E1(ω′)]〉H1
Eis(M)

= 〈ω, ω′〉2
L2Ω1(∂M)

= lim
Y→∞

s1
V · Y −2s1V 〈TY E(s1

V , ω), TY E(s1
V , ω

′)〉2L2Ω1(M). (5.4)

Similarly, we can put
〈i∗2[E2(v)], i∗2[E2(v′)]〉H2

Eis(M)

= 〈v, v′〉L2(∂M)

= lim
Y→∞

(s0
V ) 1

2Y −2s0V 〈TY (∗dE(s0
V , v)), TY (∗dE(s0

V , v
′))〉L2(M). (5.5)

Now for p = 1, 2 the integral cohomology Hp(M ;VZ)free is a lattice in
the hermitian vector space Hp(M ;VC). We finally define the Reidemeister
torsion of M with coefficients in V by the formula

τ(M ;VZ) = |H1(M ;VZ)tors|
volH1(M ;VZ)free

× volH2(M ;VZ)free

|H2(M ;VZ)tors|
. (5.6)

5.4. Asymptotic equality of Reidemeister torsions

We prove now that the Reidemeister torsion we just defined is asymptot-
ically equal to the absolute Reidemeister torsion of the truncated manifolds
(for a certain choice of truncations).

Proposition 5.4. — Let Γn, V be as in the statement of Theorem 5.1.
There exists a sequence Υn such that

log τabs(MΥn
n ;VZ)− log τ(Mn;VZ)

volMn
−−−−→
n→∞

0. (5.7)

and maxj Υn
j 6 |I|c for some c > 0.

The first step is the following result, whose proof is essentially contained
in [7, 6.8.3].

Lemma 5.5. — There are C, c > 0 depending only on F such that the
following holds. Let Γ′ ⊂ Γ be a congruence subgroup, M = Γ′\H3, h its
number of cusps, αj = α1(Λn,j) where Λn,j , j = 1, . . . , h are the euclidean
lattices corresponding to the cusps of M ′. Then for all Y ∈ [1,+∞)h such

– 456 –



Analytic, Reidemeister and homological torsion for congruence three–manifolds

that for all j, Yj > Cαj, ω ∈ H1,0(∂M ;VC), f = E(s1
V , ω) and fY the

projection of f |MY on the subspace H1
abs(MY ;VC) and we have

‖f − fY ‖L2(MY ) 6 C‖f‖L2(MY )e
−cminj(Yj/2αj) vol(MY −MY/2).

Proof. — Let h : [1,+∞[→ [0, 1] be a smooth function such that h(1) =
1, h(2) = 0 and define f ′Y on MY by f ′Y = f − h(Y/y)(f − fP ) (where
y = maxj yj). It follows from (6.16) of [26] that

‖f − f ′Y ‖L2(MY ) 6 ‖f − fP ‖L2(MY −MY/2)

� ‖f‖L2(MY )e
−cminj(Yj/2αj). (5.8)

Now we check that f ′Y satisfies absolute boundary conditions: close enough
to the boundary we have f ′Y = fP , and since dy ∧ ∗fP = 0 and dfP = 0 we
conclude that f ′Y ∈ Ω1

abs(MY ;VC). Thus, we have

∆1
abs[MY ]f ′Y = ∆1[MY ]f ′Y = −∆1[MY ](h(Y/y)(f − fP ))

= (fP − f)∆1[MY ]h(Y/y) (5.9)

and the L2-norm of the right-hand side is bounded by C‖f‖L2(MY ) ×
e−cminj(Yj/2αj).

According to the proof of Proposition 8.2 in [26], up to making C larger
we may suppose that for Yj > Cαj the Laplace operator ∆1

abs[MY ] has no
eigenvalue in the open interval ]0, λ1[ (for some λ1 > 0 depending only on
V ) as soon as Yj > Cαj , and we then get from (5.8) and (5.9) that

‖f − fY ‖L2(MY ) 6 ‖f − f ′Y ‖L2(MY ) + ‖f ′Y − fY ‖L2(MY )

6 ‖f‖L2(MY )

∫
MY −MY/2

 h∑
j=1

e−cminj(yj(x)/αj)

2

dx


1
2

+ 2
λ1
‖(fP − f)∆1[MY ]h(Y/y)‖L2(MY )

� ‖f‖L2(MY )

(∫
MY −MY/2

e−cminj yj(x)/αjdx
) 1

2

6 ‖f‖L2(MY ) vol(MY −MY/2)e−cminj(Yj/αj)

where the last line is a consequence of Cauchy–Schwarz inequality. �

Proof of Proposition 5.4. — Let Υ ∈ [1,+∞)hn ; we have

τ(Mn;VZ)
τabs(MΥ

n ;VZ) = volH2(Mn;VZ)free

volH2(MΥ
n ;VZ)free

volH1(MΥ
n ;VZ)free

volH1(Mn;VZ)free
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and we will thus show that for p = 1, 2 we have

log volHp(Mn;VZ)free − log volHp(MΥn
n ;VZ)free = o(volMn)

for a well-chosen sequence Υn.

We will deal only with p = 1, the case p = 2 being similar. Let rn be
the restriction map H1(Mn;VC) → H1(MΥ

n ;VC). As the inclusion MΥ
n ⊂

Mn is an homotopy equivalence, it induces an isomorphism between the
cohomology groups and we get that

volH1(MΥ
n ;VZ)free = |det(rn)| volH1(Mn;VZ)free

where the determinant is taken with respect to unitary bases on each space
(the left-hand space being endowed with the inner product defined by (5.4)
and the right-hand on with the L2 inner product coming from harmonic
forms). We will show below that log |det(rn)| = o(volMn), in fact that
|rn|, |rn|−1 6 1 + εn for some sequence εn such that b1(Mn;VC) log εn =
o(volMn)).

We take back the notation fΥ from Lemma 5.5, if f is a closed form on
Mn we have rn[f ] = [fΥ]. To bound ‖fΥ‖L2(MY ) above we write

‖fΥ‖L2(MΥ) 6 ‖f‖L2(MΥ) + ‖f − fΥ‖L2(MΥ)

6

1 + C

hn∑
j=1

α2(Λn,j)
α1(Λn,j)

 ‖f‖L2(MΥ). (5.10)

where the second inequality follows from Lemma 5.5 and the rough bound
vol(MΥ−MΥ/2) 6 C

∑hn
j=1

α2(Λn,j)
α1(Λn,j) . Now we will bound the right-hand side

using the following lemma.

Lemma 5.6. — Let Y = maxj Υj, a = s1
V and In be the level of Γn.

There are b, C > 0 (depending on F and V ) such that

(C−1Y a − C|In|b)‖[f ]‖H1(Mn) 6 ‖f‖L2(MΥ
n )

6 C(Y a + |In|b)‖[f ]‖H1(Mn). (5.11)

Proof. — Let MY
n be the truncated manifold at height (Y, . . . , Y ) ∈

[1,+∞)hn so thatMΥ
n ⊂MY

n and ‖f‖L2(MY n
n ) 6 ‖f‖L2(MY

n ) 6 ‖TY f‖L2(Mn).
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The Maass–Selberg relations (2.9) yield that

‖TY f‖2L2(Mn) 6
Y 2s1V −1

2s1
V − 1‖ω‖

2
L2∂M

+ Y −2s1V +1

2s1
V − 1 ‖Φ

+(s1
V )ω‖2

L2(∂M)

+ log Y ‖Φ+(s1
V )ω‖L1(∂M) ‖ω‖L2(∂M)

+
∥∥∥∥dΦ+(s1

V + iu)
du

∣∣∣∣
u=0

ω

∥∥∥∥
L2(∂M)

‖ω‖L2(∂M).

From Proposition 4.3 it now follows that
‖TY f‖2L2(Mn)

|ω|2
L2(∂M)

� Y 2s1V + |In|c(1 + log Y )� Y 2a + |In|2c

which deals with the upper bound; the lower bound is proved in a similar
manner. �

We have
hn∑
j=1

α2(Λn,j)
α1(Λn,j)

6 |In|hn 6 hF |Kf/NInKf (In)| · |In| 6 2hF |In|3

and it now follows from (5.10) and Lemma 5.6 that for some e > 0 we have
‖fΥ‖L2(MΥ) � |In|eY e (5.12)

(we keep the notation Y = maxj Υj).

The lower bound for ‖fΥ‖L2(MΥ) is more subtle. We have

‖fΥ‖L2(MΥ) > ‖f‖L2(MΥ) − ‖f − fΥ‖L2(MΥ)

> (1− vol(MΥ −MΥ/2)e−cY/maxαjn) ‖f‖L2(MΥ)

where the second minoration follows from Lemma 5.5. We have maxαjn �
|I| 12 and also vol(MΥ −MΥ/2)�

∑
j
α2
α1

which is bounded by |In|3, and it
follows from Lemma 5.6 that

‖fΥ‖L2(MΥ)

>

(
1− C|In|2 exp

(
−c Y

|In|
1
2

))
(C−1Y a − C|In|b)‖[f ]‖H1(Mn). (5.13)

For A large enough and Υn
j = |In|A−1 we get from (5.12) and (5.13) that

1/2‖[f ]‖H1(Mn) 6 ‖fY ‖L2(MΥn
n ) 6 C|In|Ae‖[f ]‖H1(Mn).

Thus |rn|−1 6 2 and |rn| 6 C|In|Ae and as dimH1(Mn;VC) = hn it follows
that

|log det(rn)| � hn log |In|,

– 459 –



Jean Raimbault

and as hn � (volMn)1−δ (Lemma 3.2) the right-hand side is an o(volMn),
as we wanted to show. �

5.5. Comparing absolute torsions

The following result is necessary to be able to use together Proposition 5.4
below and Theorem B in [26], and its proof completes that of Theorem 5.1.

Proposition 5.7. — Let Y n be the sequence from Theorem B of [26].
For any sequence Υn ∈ [1,+∞)hn such that there is c > 0 for which Y nj 6
Υn
j 6 |I|c we have

|log τabs(MΥn
n )− log τabs(MY n

n )| � dimH∗(Mn;VC) log |In|.

Proof. — It suffices to prove the result for Υn
j = |In|c. We will use a

smooth family of Riemannian metrics gu, u ∈ [1,+∞) on M such that:

(i) (M, gu) is isometric to Mu through a diffeomorphism φu.
(ii) For u/2 6 v 6 u, φu ◦ φ−1

v |Mv/2 is the inclusion map Mv/2 ⊂Mu.
(iii) Let V be the line field perpendicular to horospheres (defined on

M −M1). We have
dgu
du �

1
u
gu|V ⊥ + gu|V . (5.14)

Let us prove that such a family exists. We identify a collar neighbourhood
N of the boundary in M with

⋃
j Tj × [0, 1] where the Tj are the boundary

components of ∂M1. The metrics gu defined as follows do the job, as can
be checked by an easy computation: on M −N ∼= M1, gu is the hyperbolic
metric, an in the cusps we put

|(v1, v2)|2gu = 1
(uh(ut+ 1− u))2

(
|v1|2 + u2h′(ut+ 1− u)|v2|2

)
,

v2 ∈ V(x,t), v1 ∈ V ⊥(x,t)
for x ∈ Tj , t ∈ [0, 1] where h is a bump function which takes the value 1
for t 6 0 and 1 for t > 1 and we identify V ⊥(x,t) = TxTj and V(x,t) with the
orthogonal complement of the latter in TxM1.

Let ∗u be the Hodge star for gu, put ◦∗ = d∗/du and αu = ∗−1
u

◦∗ ∈
EndC ker ∆abs[M, gu]. Then we have [30, Theorem 7.6]

d
du log τabs(M ; gu) = tr(αu).
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Let λu be the largest eigenvalue of αu, so that

|log τabs(MY n)− log τabs(MΥn)| 6
hn∑
j=1

∫ |In|c
Yj

|λu|du.

Thus the result would follow if we proved that |λu| � 1
u for u > Yj . First

we compute the eigenvalues: if f is an eigenform of αu with norm 1 and
eigenvalue λ we have

λ = d‖v‖gu
du .

Indeed, 〈∗−1 ◦∗ f, f〉 = λ, so that we get λ =
∫
M

◦∗f ∧ f = d
du
∫
M
∗f ∧ f .

Now let f be a harmonic 1-form for the metric gu which is an eigenform
for αu; we want to see that d|f |gu/du� u−1. On M −M1 write f = f1 + f2
according to the decompostion TM = V ⊕ V ⊥ (in coordinates f1 is the
composant on dy), then according to (5.14) we have the pointwise inequality∣∣∣∣d|f |gudu

∣∣∣∣� |f1|gu + u−1|f2|gu

so that we need to show that |f1|gu � u−1 on Mu−M u
2 . The fact that f is

co-closed implies that f1 has a vanishing constant term and it follows that

|f1| = |f1 − (f1)P | 6 |f − fP | � e−yj/α1(Λj)

where the estimate is a consequence of [7, Lemma 6.2.1]. The right-hand side
is � u−1 : indeed, the sequence Y nj was defined in [26] as

Y nj = α1(Λn,j)×
(

volMn∑hn
j=1(α2(Λn,j)/α1(Λn,j))2

) 1
10

and it follows from Lemma 3.2 and the cusp–uniformity of the Mn that
Yj � α1(λj)|In|δ for some δ > 0. Thus, as we consider only |In|c > u >
Y nj /2 we get u

α1(Λj) � uη for some η > 0 (depending on Υn) and clearly
e−u

η � u−1. �

6. Torsion in (co)homology

We can now finish the proof of Theorem 1.2, whose statement we recall
below.

Theorem 6.1. — Let Γ be a Bianchi group, Γn a cusp-uniform sequence
of torsion-free congruence subgroups and Mn = Γn\H3. Let V be a real
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representation of SL2(C) and VZ a lattice in V preserved by Γ. If V is strongly
acyclic then we have

lim sup
n→∞

log |H1(Γn;VZ)tors|
volMn

6 −t(2)(V ). (6.1)

and
lim sup
n→∞

log |H2(Γn;VZ)tors|
volMn

6 −t(2)(V ). (6.2)

Let us describe how the results in this section articulate to yield this.
Recall that in (5.6) we have defined a Reidemeister torsion for the congruence
manifolds Mn = Γn\H3 the logarithm of which is given by

log τ(Mn;VZ) = log |H1(Mn;VZ)tors| − log volH1(Mn;VZ)free

+ log volH2(Mn;VZ)free − log |H2(Mn;VZ)tors|. (6.3)
It follows from Theorems 3.8 and 5.1 that

lim
n→∞

log τ(Mn;V )
volMn

= t(2)(V )

and by Lemmas 6.5, 6.8 and 6.7 below all terms in (6.3) except
− log |H2(Mn;VZ)tors| have a negative limit superior as n → ∞. This
proves (6.2); we will deduce (6.1) from it in 6.4 at the end of the section.

6.1. Integral homology of the boundary

We have previously described the cohomology of the boundary with co-
efficients in VC using differential forms; to analyze the terms (6.3) we will
need a precise description of the integral homology and cohomology through
cell complexes.

6.1.1. Cell complexes

Let T be a 2–torus, U a finite-rank free Z-module with a representation
ρ : π1(T )→ SL(U). We fix a cell structure on T with one 2–cell e2, two 1–cells
e1

1, e
1
2 and one 0–cell e0 and denote by u1, u2 the associated basis for π1(T )

(i.e. ui is the homotopy class of the loop e1
i ). Then we have an isomorphism of

Z-complexes C∗(T̃ ;U) ∼= C∗(T̃ )⊗ U which yields an isomorphism of graded
modules

C∗(T ;U) = C∗(T̃ ;U) ⊗
Z[π1(T )]

Z ∼= C∗(T )⊗ U.
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In this model the differentials for C∗(T ;U) are given by

d2(e2 ⊗ v) = e1
1 ⊗ (v − ρ(u2)v) + e1

2 ⊗ (ρ(u1)v − v),
d1(e1

i ⊗ v) = e0 ⊗ (v − ρ(ui)v).
(6.4)

6.1.2. Growth of torsion

Lemma 6.2. — Let Λ be a lattice in a unipotent F -rational subgroup N ,
then for any sequence of pairwise distinct finite-index subgroups Λn in Λ we
have

log |H0(Λn;VZ)tors|, log |H1(Λn;VZ)tors| = o([Λ : Λn]).

Proof. — We prove the result only for Λ = 1 + OFX∞ (where X∞ =
( 0 1

0 0 )), the general case can be reduced to that particular one. In the proof of
Lemma 6.4 below we will show that if 1+aX∞ ∈ Λ′ then (Λ′−1)VZ ⊃ NaV Z,
where V Z = ker ρ(X∞), where N is a positive integer which does not depend
on Γ. In particular, putting d = dimV we get:

|(VZ/(Λ′ − 1)VZ)tors| 6 (N [Λ : Λ′])d

and the result about H0 follows at once.

Write now Λ′ = Zu1 ⊕Zu2. From (6.4) we know that H1(Λ′;VZ) embeds
in (VZ ⊕ VZ)/ im(ρ(u1) − 1) ⊕ (ρ(u2) − 1). The Z-torsion of the latter itself
embeds into

VZ/(im(ρ(u1)− 1)⊕ VZ(ρ(u2)− 1)).
Now this last module has a torsion the order of which is bounded by (N |u1|2×
N |u2|2)d � [Λ : Λ′]4d, and this finishes the proof for H1. �

6.1.3. Free part of the homology

Suppose now that T has an Euclidean structure, so that its homology
groups with coefficients in VC are endowed with the L2 inner product and
have a Hodge decomposition H1 = H1,0 ⊕ H0,1, which in the case of a
boundary component of an hyperbolic manifold corresponds to the decom-
position in Section 5.1. We use the rational structure on the F -vector space
VQ = (Symn1 F 2)⊗ (Symn2 F

2) given by restricting the scalars from F to Q,
which induces a rational structure on H∗(Γ;VQ); recall that a C-subspace
W ⊂ VC is called rational when dimQ(W ∩ VQ) = dimCW .
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Lemma 6.3. — The subspaces H1,0(T ;VC) and H0,1(T ;VC) are rational;
moreover there exists C > 0 depending only on T, V such that for any finite
cover T ′ of T of degree D, we have

[H1(T ′;VZ)free : H1,0(T ′;VZ)⊕H0,1(T ′;VZ)] 6 CD2

(where we use the notation H1,0(T ′;VZ) for the subgroup H1(T ′;VZ) ∩
H1,0(T ′;VC) and similarly for H0,1(T ′;VZ)).

Proof. — We first prove that H1,0(T ;VC) and H0,1(T ;VC) are rational.
This is a special case of results in [18], we will give a short completely explicit
proof in our setting. Let z be a complex coordinate for T , we can assume
that all periods of dz,dz̄ are in F . Recall that ek,l ∈ VZ were defined in
Section 5.1 and put

ω1 = dz ⊗ (ρ(nz)e−n1,n2), ω2 = dz ⊗ (ρ(nz)en1,−n2),
then ω1, ω2 are generators (over C) for H1,0(T ;VC) and H0,1(T ;VC) respec-
tively according to Section 5.1. It is clear that the cohomology classes they
define are rational, as for any chain c ∈ C1(T ;VZ) we have (ωi, c) ∈ F .

Now let H = π1(T )/π1(T ′) be the group of deck transformations of the
covering T ′ → T . Let π∗ : H1(T ′;VZ) → H1(T ;VZ) be the map induced by
the finite covering T ′ → T , let c ∈ Z1(T ;VZ) any cycle and c̃ any lift of c to
T ′ (which is a chain, but not necessarily a cycle). Then

∑
g∈H g∗c̃ is a cycle

and π∗(
∑
g∈H g∗c̃) = Dc. So we see that the image of the map π∗ contains

DH1(T ;VZ). On the other hand all harmonic forms on T ′ with coefficients
in VC are H-invariant, so we can consider them as harmonic forms on T .
If ω ∈ H1(T ′, VZ) then it follows from the above that Dω ∈ H1(T ;VZ), so
that [H1(T ′;VZ) : H1(T ;VZ)] 6 D2. Since H1,0(T ;VC) and H0,1(T ;VC) are
rational H1,0(T ;VZ) ⊕ H0,1(T ;VZ) is a finite-index subgroup in H1(T ;VZ)
and letting C be the index of H1,0(T ;VZ) ⊕ H0,1(T ;VZ) in H1(T ;VZ) it
follows that [H1(T ′;VZ) : H1,0(T ′;VZ)⊕H0,1(T ′;VZ)] 6 CD2. �

6.2. Subexponential growth of torsion

We prove here that in degrees other than 2 the torsion in cohomology
has subexponential growth.

6.2.1. Homology in degree 0

Lemma 6.4. — Let Γn be a sequence of congruence subgroups in Γ(OF ),
Mn = Γn\H3. We have that log |H0(Mn;VZ)| = o(volMn).
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Proof. — We prove the result for principal congruence subgroups and
then deduce the general case. To do the former we will show that NIVZ ⊂
(Γ(I) − 1)VZ for all I and some integer N depending only on n1, n2, so
that |H0(MI;VZ)| 6 (N |I|)dimV from which it follows at once that
log |H0(MI;VZ)| = O(log |I|) is an o(volMI). Let X∞ = ( 0 1

0 0 ) and X0 =
( 0 0

1 0 ). For a ∈ I we have that ηa = 1 + aX∞ ∈ Γ(I). We begin by studying
the case where n2 = 0, n1 = n; put e1 = (1, 0) and e2 = (0, 1), then the family
en1 , e

n−1
1 e2, . . . , e

n
2 is an OF -basis of the free module VZ. Let N be the product

of all binomial coefficients
(
n
k

)
, we will see that Naen−k1 ek2 ∈ (Γ(I) − 1)VZ

for all k < n. Indeed, we have aen2 = ηa.(e1e
n−1
2 ) − e1e

n−1
2 , and on the

other hand ηa.(ek+1
1 en−k−1

2 ) − ek+1
1 en−k−1

2 is a linear combination of the
el1e

n−l
2 for l > k so we can prove this by induction on k. We also have that

aen1 = (1 + aX0)en−1
1 e2 − en−1

1 e2 ∈ (Γ(I)− 1)VZ, which finishes the proof in
this case. The same arguments work in general.

If H ⊂ GI is a proper subgroup there is an epimorphism H0(MH ;VZ)→
H0(MI;VZ). Letting In be the level of Γn we get that log |H0(Mn;VZ)| =
O(log |In|), and it follows from this and Lemma 2.1 that we have
log |H0(Mn;VZ)| = o(volMn). �

6.2.2. Cohomology in degree 1

We will use the following elementary lemma in what follows.
Lemma 6.5. — Let A ∈ Hom(Zm,Zn) and B ∈ Hom(Zn,Zm) such that

for all ϕ ∈ Hom(Zm,Z) and v ∈ Zn we have (ϕ,Bv) = (ϕ ◦ A, v). Then
Zm/BZn and Zn/AZm have the same torsion subgroup.

Proof. — In appropriate bases of Zm,Zn the matrices of A and B are
transpose of each other. �

Lemma 6.6. — We have
log |H1(Mn;VZ)tors|

volMn
−−−−→
n→∞

0. (6.5)

Proof. — Recall that there is a Γ(OF )-invariant pairing on VQ and let V ′Z
is the lattice in V which is dual to VZ through this pairing. For notational
ease we will use H∗, H∗ to denote (co)homology with coefficients in VZ and
H ′∗, H

∗
′ for V ′Z-coefficients. The existence of the Kronecker pairing and the

property (2.13), together with Lemma 6.5 imply that
[H2(M)free : (im i2∗)free] = [H2

′ (∂M)free : (im i∗2)free]
and it further follows that

[H2(M)free : (im i2∗)free] = [H ′0(∂M)free : im(δ1)free] 6 |H ′0(M)|
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where the equality follows from Poincaré duality and the majoration from
the segment H ′1(M,∂M) δ1

−→ H ′0(∂M)→ H ′0(M) in the homology long exact
sequence of the pair (M,∂M). Applying once more Poincaré duality we get

[H1(M,∂M) : im δ0] = [H2(M)free : (im i2∗)free] 6 |H ′0(M)tors|. (6.6)
On the other hand the cohomology long exact sequence for M,∂M contains

H0(∂M) δ0−→ H1(M,∂M)→ H1(M)→ H1(∂M)
which in turn yields

log |H1(M)tors| 6 log[H1(M,∂M) : im δ0] + log |H1(∂M)tors|
6 log |H ′0(M)tors|+ log |H1(∂M)tors|

where the inequality on the second line follows from (6.6). The right-hand
side is an o(volMn), as follows from Lemmas 6.4 and 6.2, which finishes the
proof. �

6.3. Growth of regulators

6.3.1. Degree 1

Lemma 6.7. — We have

lim inf
n→∞

log volH1(Mn;VZ)
volMn

> 0.

Proof. — The embedding H1(Mn;VC) → H1(∂Mn;VC) is isometric by
definition of the inner product on H1(Mn;VC) and its image is the subspace

{ω + Φ+(s1
V )ω, ω ∈ H1,0(∂Mn;VC)}.

Let π be the orthogonal projection of H1(∂Mn;VC) onto H1,0(∂Mn;VC).
Then Lemma 6.3 implies that the image π(H1(∂Mn;VZ)) contains
H1,0(∂Mn;VZ) with an index which is � (volMn)4hn . As

vol
(
i∗1H

1(Mn;VZ)
)
> vol

(
π(i∗1H1(Mn;VZ))

)
we get that

volH1(Mn;VZ)� (volMn)−4hn volH1,0(∂Mn;VZ). (6.7)
LetM0 = Γ\H3 (recall that Γ is the Bianchi group containing Γn = π1(Mn))
and let T be a component of ∂M0; to simplify we assume that T is a torus,
otherwise we would need to use its minimal manifold cover. Let T1, . . . , Tr
the components of the preimage of T in Mn, and Di the degree of the cover
Ti → T (so in particular Di 6 [Γ : Γn] � vol(Mn)). Let ωi ∈ H(1,0)(Ti;VZ)
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be a generator. Then, as we saw in the proof of Lemma 6.3 we have that
Diω ∈ H(1,0)(T ;VZ). It follows that

volH(1,0)(Ti;VZ) = ‖ωi‖L2(Ti;VC) > D
−1
i volH(1,0)(T ;VZ).

Now as H(1,0)(∂Mn;VZ) =
⊕

T,iH
(1,0)(Ti;VZ) we get that

volH(1,0)(∂Mn;VZ) >
∏
T,i

D−1
i volH(1,0)(T ;VZ) > (C vol(Mn))−hn .

Using (6.7) we finally obtain that
log volH1(Mn;VZ)

volMn
� −hn log vol(Mn)

volMn

and by Lemma 3.2 the right-hand side goes to zero as n→ +∞. �

6.3.2. Degree 2

Lemma 6.8. — We have
log volH2(Mn;VZ)free

volMn
−−−−→
n→∞

0.

Proof. — The map i∗2 : H2(Mn;VC) → H2(∂Mn;VC) is an isometry ac-
cording to the definition (5.5) of the inner product onH2(Mn;VC). Moreover,
using the long exact sequence we get

[H2(∂Mn;VZ) : im i∗2] = |H3(Mn, ∂Mn;VZ)| = |H0(Mn;VZ)|
and it follows that

|log volH2(Mn;VZ)free| 6 log |H0(Mn;VZ)|+ | log volH2(∂M ;VZ)|.

For a torus T we have volH2(T, VZ)� vol(T ) so we get the bound
|log volH2(Mn;VZ)free| 6 log |H0(Mn;VZ)|+O(hn log(volMn)).

Now the right-hand side is an o(volMn), as follows from Lemmas 6.4 and 3.2
so that the proof is complete. �

6.4. Homology from cohomology

We can finally deduce (6.1) from (6.2): from the sequence
H1(∂M)→ H1(M)→ H1(M,∂M)→ H0(∂M),

Lemmas 6.2 and 6.4, and Poincaré duality it is clear that it suffices to show
that the index of the sublattice i∗H1(∂Mn)free inH1(Mn)free is an o(volMn).
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We will not detail how to prove this, as it follows from the proof of Lemma 6.7
(where it was shown that the torsion subgroup of H1(∂Mn)/i∗H1(Mn) is
of order o(volMn)) and Kronecker duality as in the proof of Lemma 6.5.
We could also have applied the universal coefficients theorem as in [25,
Lemma 3.1] to deduce it from (6.2) applied to the dual lattice of VZ in VQ.
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