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Geodesic intersections and isoxial Fuchsian groups.

Greg McShane (1)

ABSTRACT. — The set of axes of hyperbolic elements in a Fuchsian group depends
on the commensurability class of the group. In fact, it has been conjectured that it
determines the commensurability class and this has been verified for groups of the
second kind by G. Mess and for arithmetic groups by D. Long and A. Reid. Here we
show that the conjecture holds for almost all Fuchsian groups and explain why our
method fails for arithmetic groups.

RÉSUMÉ. — L’ensemble des axes d’éléments hyperboliques dans un groupe fuch-
sien dépend de la classe de commensurabilité du groupe. En effet, cet ensemble
détermine la classe de commensurabilité pour les groupes du deuxième type, d’après
G. Mess, et pour les groupes arithmétiques, d’après D. Long et A. Reid. Selon une
veille conjecture, la classe de commensurabilité d’un groupe fuchsien non élémentaire
est toujours déterminée par ses axes. Nous montrons ici que la conjecture est vraie
pour presque tous les groupes fuchsiens et expliquons pourquoi notre méthode ne
s’applique pas aux groupes arithmétiques.

1. Introduction

Let Σ be a closed orientable hyperbolic surface. The free homotopy classes
of closed geodesics on Σ correspond to conjugacy classes of hyperbolic ele-
ments in Γ. If γ ∈ Γ is a hyperbolic element, then associated to γ is an axis
ax(γ) ⊂ H. The projection of ax(γ) to Σ determines a closed geodesic whose
length is `γ . We shall denote the set of axes of all the hyperbolic elements in
Γ by ax(Γ). It’s easy to check that if g ∈ PSL(2,R) then we have the relation

ax(gΓg−1) = g ax(Γ). (1.1)
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1.1. Isoaxial groups

Following Reid [12] we say that a pair of Fuchsian groups Γ1 and Γ2 are
isoaxial iff ax(Γ1) = ax(Γ2). One obtains a trivial example of an isoaxial pair
by taking Γ1 any Fuchsian group and Γ2 < Γ1 any finite index subgroup.
This example can be extended to a more general setting as follows. Recall
that a pair of subgroups Γ1 and Γ2 are commensurable if Γ1∩Γ2 is a subgroup
of finite index in both Γ1 and Γ2. Thus if Γ1 and Γ2 are commensurable then
they are isoaxial because:

ax(Γ1) = ax(Γ1 ∩ Γ2) = ax(Γ2).
It is natural to ask whether the converse is true:

If Γ1 and Γ2 are isoaxial then are they commensurable?
In what follows we shall say simply that the group Γ1 is determined (up to
commensurability) by its axes. We shall show that this conjecture holds for
almost all Fuchsian groups:

Theorem 1.1. — For almost every point ρ in the Teichmueller space
of a hyperbolic surface Σ the corresponding Fuchsian representation of the
fundamental group Γ is determined by its axes.

1.2. Spectra

We define the length spectrum of Σ to be the collection of lengths `α
of primitive closed geodesics α ⊂ Σ counted with multiplicity. In fact, since
Σ is compact, the multiplicity of any value in the spectrum is finite and
moreover the set of lengths is discrete. Let α, β be primitive closed geodesics
which meet at a point z ∈ Σ, we denote by α∠zβ, the angle measured in the
counter-clockwise direction from α to β. We define the angle spectrum to be
the collection of all such angles (counted with multiplicity) see Mondal [9, 10]
who studies a related marked spectra. Note that we do not suppose that z
is the sole intersection point of α, β and, as such, a pair of geodesics may
contribute several angles to the spectrum.

1.2.1. Lengths, marked and unmarked

The length spectrum has proved useful in studying many problems con-
cerning the geometry of hyperbolic surfaces. Fricke–Klein proved that a
closed hyperbolic surface Σ is uniquely determined by its marked length
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spectrum that is the set of pairs ([a], `α) for all closed geodesics [a] is a non
trivial conjugacy class of π1(Σ) and α is the unique oriented closed geodesic
determined by [a]. Here the algebraic data is constitutes a marking and one
obtains the length spectrum by forgetting the marking but keeping count
of the multiplicities. It is natural to ask whether the unmarked spectrum
determines the such a surface too. Generalising the result of Fricke–Klein
is a difficult problem but Otal [11] and Croke [3] succeeded in proving that
the marked spectrum determines a surface surfaces of variable negative cur-
vature Vigneras [14] and Sunada [13] gave constructions which allow one to
construct pairs of isospectral surfaces, that is surfaces which are not isometric
though they share the same length spectrum.

1.2.2. Angles

The angle spectrum is very different from the length spectrum: the set
of angles is obviously not discrete and, as we shall see, there are surfaces for
which every value has infinite multiplicity. However, when considering the
question of whether groups are isoaxial, the angle spectrum has a distinct
advantage for it is easy to see that:

• There are isoaxial groups which do not have the same set of lengths,
that is, the same angle spectrum without multiplicities.
• If two groups are isoaxial then they have the same set of angles,
that is, the same angle spectrum without multiplicities.

Using properties of angles we will deduce Theorem 1.1 from the following
lemma inspired by a result of G. Mess (see paragraph 2.1).

Lemma 1.2. — Define the group of automorphisms of ax(Γ) to be the
group of hyperbolic isometries which preserve ax(Γ). If Σ has a value in its
angle spectrum with finite multiplicity then Γ is a subgroup of finite index in
the group of automorphisms of ax(Γ).

It remains to prove that there are such points of T (Σ), we show in fact
that they are generic:

Theorem 1.3. — For almost every point ρ ∈ T (Σ) there is a value in
the angle spectrum which has multiplicity exactly one.

Our method applies provided there is some value in the angle spectrum
that has finite multiplicity. Unfortunately, for arithmetic surfaces, the mul-
tiplicity of every value is infinity (Lemma 2.5).
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1.3. Sketch of proof

The method of proof of Theorem 1.1 follows the proof of the first part of
Theorem 1.1 in [8]. This says that the set of surfaces in Teichmueller space
where every value in the simple length spectrum has multiciplity exactly
one is dense and its complement is measure zero (for the natural measure
on Teichmueller space.)

1.3.1. Two properties of (simple) length functions

Recall that the simple length spectrum is defined to be the collection of
lengths of simple closed geodesics counted with multiplicity.

There are two main ingredients used in [8] :

• The analyticity of the geodesic length `α as a function over Teich-
mueller space;
• The fact that if α, β are a pair of distinct simple closed geodesics
then the difference `α−`β defines a non constant (analytic) function
on the Teichmueller space T (Σ).

It is clear that the set of surfaces where every value in the simple length
spectrum has multiciplity exactly one is the complement of

Z :=
⋃

(α,β)

{`α − `β = 0},

where the union is over all pairs α, β of distinct closed simple geodesics. Each
of the sets on the left is nowhere dense and its intersection with any open
set is measure zero. Since Z is countable union of such sets, its complement
is dense and meets every open set in a set of full measure.

We note in passing that the second of these properties is not true without
the hypothesis “simple”. Indeed, there are pairs of distinct closed unoriented
geodesics α 6= β such that `α = `β identically on T (Σ) (see [2] for an account
of their construction).

1.3.2. Analogues for angles

We will deduce Theorem 1.1 using the same approach but instead of
geodesic length functions we use angle functions. The most delicate point is
to show that if α1, α2 are a pair of simple closed geodesics that meet in a
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single point z and β1, β2 are a pair of closed geodesics that meet in a point
z′ then the difference α1∠zα2 − β1∠z′β2 defines a non constant function on
Teichmueller space.

We do this by establishing the analogue of the following property of
geodesic length functions:

Fact 1.4. — A closed geodesic α ⊂ Σ is simple if and only if the image
of the geodesic length function `α is ]0,∞[.

Our main technical result (Theorem 6.3) is an analogue of this property.
We consider pairs of simple closed geodesics α1, α2 which meet in a meet in
a single point z. This configuration will be the analogue of a simple closed
geodesic. Now, for any such pair we find a subset X ⊂ T (Σ) such that, for
any other pair of closed geodesics β1, β2 which meet in z′ 6= z:

• the image of X under β1∠z′β2 is a proper subinterval of ]0, π[
• whilst its image under α1∠zα2 is the whole of ]0, π[.

1.4. Further remarks

Since one objective of this work is to compare systematically the prop-
erties of geodesic length and angle functions we include an exposition of
geodesic length functions, and give an account of the characterisation of
simple geodesics, mentioned above, in our Proposition 3.2. Our argument is
inspired by a treatment of a result of Yamada by Gendulphe [4].

Mondal [9] has obtained a rigidity result by using a richer collection of
data than we use here. He defines a length angle spectrum and proves that
this determines a surface up to isometry. However, the set of axes does not
determine the lengths of closed geodesics and so commensurability is the
best one can hope for in the context we consider here.

In paragraph 2.2.1 we answer a question of Mondal in [10] concerning
multiplicities by observing that arithmetic surfaces are very special: the mul-
tiplicity of any angle in the angle spectrum is infinite.

1.4.1. Acknowledgements

It is a pleasure to thank Hugo Parlier, Ser Peow Tan and Jean-Marc
Schlenker for comments and encouragements while preparing this paper.

We also thank the refreree for pointing out that the case of a three holed
sphere is completely settled by combining the results of Mess and Long–Reid.
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2. Automorphisms and commensurators

To study this question we define, following Reid, two auxilliary groups.
The first is the group of automorphisms of ax(Γ):

Aut(ax(Γ)) := {γ ∈ PSL(2,R), γ(ax(Γ)) = ax(Γ)}.
The second is the commensurator of Γ defined as:
Comm(Γ) := {γ ∈ PSL(2,R) : γΓγ−1 is directly commensurable with Γ}.

We leave it to the reader to check that Aut(ax(Γ)) and Comm(Γ) are indeed
groups and that they contain Γ as a subgroup. In fact any element γ ∈
Comm(Γ) is an automorphism of ax(Γ). To see this, if γ ∈ Comm(Γ), then
Γ and γΓγ−1 are commensurable so are isoaxial. Now by (1.1) one has

ax(Γ) = ax(γΓx−1) = γ ax(Γ)
so γ ∈ Aut(ax(Γ)). In summary one has a chain of inclusions of subgroups:

Γ < Comm(Γ) < Aut(ax(Γ)) < PSL(2,R).
We shall be concerned with two cases:

(1) Γ is finite index in Aut(ax(Γ)).
(2) Aut(ax(Γ)) is dense in PSL(2,R) so that Γ is necessarily an infinite

index subgroup.

The first case arises for the class of Fuchsian groups of the second kind
studied by G. Mess and the second for arithmetic groups.

2.1. Fuchsian groups of the second kind

In an IHES preprint, G. Mess studied a variety of questions relating to
ax(Γ) notably proving the following result:

Theorem 2.1 (Mess). — If Γ1 and Γ2 are isoaxial Fuchsian groups of
the second kind then they are commensurable.

In fact, any hyperbolic surface homeomorphic to a pair of pants is deter-
mined by its set of axes. This is a special case of Mess’ theorem with one
exceptional case, namely the three punctured sphere, and that case is settled
by Long–Reid theorem in the next section.

The proof of Mess’ result is a consequence of the fact that, under the
hypotheses, Aut(ax(Γ)) is a discrete, convex cocompact Fuchsian group. It
is easy to deduce from this that Γ is finite index in ax(Γ).
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To show that Aut(ax(Γ)) is discrete it suffices to find a discrete subset of
H, containing at least two points, on which it acts. Recall that the convex hull
of the limit set of Γ, is a convex subset C(Λ) ⊂ H. If Γ is a Fuchsian groups
of the second kind then its limit set Λ is a proper subset of ∂H and C(Λ)
is a proper subset of H whose frontier ∂C(Λ) consists of countably many
complete geodesics which we call sides. By definition ax(Γ) is Aut(ax(Γ))-
invariant and so C(Λ) is too since, in fact, it is the minimal convex set
containing ax(Γ). Now choose a minimal length perpendicular λ between
edges of C(Λ); such a minimising perpendicular exists because the double of
C(Λ)/Γ is a compact surface without boundary, every perpendicular between
edges of C(Λ) gives rise to a closed geodesic on the double and the length
spectrum of the double is discrete. Let L be the Aut(ax(Γ))-orbit of λ and
observe that L ∩ ∂C(Λ) is a discrete set which contains at least two points.

2.2. Arithmetic groups

In the case of Fuchsian groups of the first kind Long and Reid [6] proved
the conjecture for arithmetic groups.

Theorem 2.2 (Long–Reid). — If a Fuchsian group is arithmetic then
its commensurator is exactly the group of automorphisms of the group.

Also notice that if Γ1 and Γ2 are isoaxial Fuchsian groups, then for any
γ ∈ Γ2

ax(Γ1) = ax(γΓ1γ
−1),

and therefore γ ∈ Aut(ax(Γ)). Hence Γ2 < Aut(ax(Γ)).

So by the above discussion Γ2 < Comm(Γ1), and if Γ2 is also arithmetic,
then Γ1 and Γ2 are commensurable. Thus they obtain as a corollary:

Corollary 2.3. — Any pair of isoaxial arithmetic Fuchsian groups is
commensurable.

2.2.1. Multiplicities for arithmetic groups

Let Γ be an arithmetic Fuchsian group and since its commensurator is
dense in SL(2,R), the set of geodesic intersctions is “locally homogenous” in
the following sense:

Lemma 2.4. — Let θ = α∠zβ be an angle of intersection of closed
geodesics, then for any open subset U ⊂ Σ there is a pair of closed geodesics
αu, βu such that:

αu∠zu
βu, zu ∈ U.
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Proof. — Choose hyperbolic elements a, b ∈ Γ such that the axis of a
(resp. b) is a lift of α (resp β) to H and so that the axes meet in a lift
ẑ ∈ H of z. Since Comm(Γ) is dense in SL(2,R), there is some element
g ∈ Comm(Γ) so that g(ẑ) ∈ Û for some lift of U to H. By the commensu-
rability of the groups Γ and gΓg−1 there is a positive integer m such that
(gag−1)m, (gbg−1)m ∈ Γ so that the axes of these elements project to closed
geodesics αu, βu on Σ meeting in a point zu as required. �

An immediate corollary is:

Corollary 2.5. — The multiplicity of any angle θ in the spectrum of
an arithmetic surface Σ/Γ is infinite.

3. Functions on Teichmueller space

Recall that the Teichmueller of a surface Σ, T (Σ), is the set of marked
complex structures and that, by Riemann’s Uniformization Theorem, this is
identified with a component of the character variety of PSL(2,R)-representa-
tions of π1(Σ). Thus we think of a point ρ ∈ T (Σ) as an equivalence
class of PSL(2,R)-representations of π1(Σ). We remark that PSL(2,R) :=
SL(2,R)/〈−I2〉 so that although the trace tr ρ(a) is not well defined for
a ∈ π1(Σ), the square of the trace tr2 ρ(a) is and so is |tr ρ(a)|. In fact, there
is a natural topology T (Σ) such that for each a ∈ π1(Σ), ρ 7→ tr2 ρ(a) is a
real analytic function.

3.1. Geodesic length

If a ∈ π1(Σ) is non trivial then there is a unique oriented closed simple
geodesic α in the conjugacy class [a] determined by a. The length of α,
measured in the Riemannian metric on Σ = H/ρ(π1(Σ))), can be computed
from tr ρ(a) using the well-known formula

|tr ρ(a)| = 2 cosh(`α/2). (3.1)

There is a natural function,

` : T (Σ)× {homotopy classes of loops} → ]0,+∞[

which takes the pair ρ, [a] to the length `α of the geodesic in the homotopy
class [a]. It is an abuse, though common in the literature, to refer merely to
the length of the geodesic α (rather than, more properly, the length of the
geodesic in the appropriate homotopy class).
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We define the length spectrum of Σ to be the collection of lengths `α of
closed geodesics α ⊂ Σ counted with multiplicity. In fact, since Σ is compact,
the multiplicity of any value in the spectrum is finite and moreover the set
of lengths is discrete.

3.1.1. Analyticity

A careful study of properties of length functions was made in [8] where
one of the key ingredients is the analyticity of this class of functions:

Fact 3.1. — For each closed geodesic α, the function
T (Σ)→ ]0,+∞[, ρ 7→ `α

is a non constant, real analytic function.

See [1] for a proof of this. Note that, to prove that such a function is
non constant, it is natural to consider two cases according to whether the
geodesic α is simple or not:

(1) if α is simple then by including it as a curve in a pants decomposition
one can view `α as one of the Fenchel–Nielsen coordinates so it is
obviously non constant and, moreover, takes on any value in ]0,+∞[

(2) if α is not simple then it suffices to find a closed simple geodesic β
such that α and β meet and use the inequality (see Buser [2])

sinh(`α/2) sinh(`β/2) > 1 (3.2)
to see that if `β → 0 then `α →∞ and so is non constant.

3.1.2. Characterization of simple geodesics

There is always a simple closed geodesic shorter than any given closed
geodesic. More precisely, if β ⊂ Σ is a closed geodesic which is not simple
then by doing surgery at the double points one can construct a simple closed
geodesic β′ ⊂ Σ with `β′ < `β .

For ε > 0 define the ε-thin part of the Teichmueller space T (Σ) to be
the set

T<ε(Σ) := {`β < ε, ∀ β closed simple} ⊂ T (Σ).
By definition, on the complement of the thin part `β > ε for all simple
closed geodesics and since, by the preceding remark, there is always a simple
closed geodesic shorter than any given closed geodesic, `β > ε for all closed
geodesics.
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Proposition 3.2. — Let Σ be a finite volume hyperbolic surface. Then
a closed geodesic α ⊂ Σ is simple if and only if the infimum over T (Σ) of
the geodesic length function `α is zero.

Proof. — In one direction, if α is simple then `α is one of the Fenchel–
Nielsen coordinates for some pants decomposition of Σ so there is some (non
convergent) sequence ρn ∈ T (Σ) such that `α → 0.

Now suppose that α is not simple and we seek a lower bound for its
length. There are two cases depending on whether there exists a closed sim-
ple geodesic β disjoint from α or not. If there is no such geodesic then α
meets every simple closed geodesic β ⊂ Σ and it is cusomary to call such a
curve a filling curve. Choose ε > 0 and consider the decomposition of the
Teichmueller space into the ε-thin part and its complement. On the thick
part `α > ε whilst on the thin part, by the inequality (3.2), it is bounded
below by arcsinh(1/ sinh(ε/2)).

If there is an essential simple closed geodesic disjoint from α then we
cut along this curve to obtain a possibly disconnected surface with geodesic
boundary. We repeat this process to construct a compact surface C(α) such
that α is a filling curve in C(α). By construction C(α) embeds isometrically
as a subsurface of Σ and since α is not simple C(α) is not an annulus. On
the other hand, by taking the Nielsen extension of C(α) then capping off
with a punctured disc we obtain a conformal embedding C(α) ↪→ C(α)∗
where C(α)∗ is a punctured surface with a natural Poincaré metric. By the
Ahlfors–Pick–Schwarz Lemma there is a contraction between the metrics
induced on C(α) from the metric on Σ and from the Poincaré metric on
C(α)∗. A consequence of this is that the geodesic in the homotopy class
determined by α on C(α) is longer than the one in C(α)∗. So, to bound `α
it suffices to bound the length of every filling curve on a punctured surface.
There are two cases.

• If C(α) has an essential simple closed curve then we have already
treated this case above.
• If C(α) has no essential simple closed curves then it is a 3 punctured
sphere and the bound is trivial since the Teichmueller space consists
of a point. �

4. Fenchel–Nielsen twist deformation

Whilst make no claim as to the originality of the material in this section
it is included to set up notation give an exposition of two results which we
use in Section 6.1.
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4.1. The Fenchel–Nielsen twist

We choose a simple closed curve α ⊂ Σ. Following [5], cut along this curve,
and take the completion of the resulting surface with respect to the path
metric to obtain a possibly disconnected surface with geodesic boundary Σ′.

Obviously, one can recover the original surface from Σ′ by identifying
pairs of points of one from each of the boundary components. More gener-
ally, if t ∈ R then a (left) Fenchel–Nielsen twist along α allows one to con-
struct a new surface Σt, homeomorphic to Σ by identifying the two boundary
components with a left twist of distance t, i.e. the pair of points which are
identified to obtain Σ are now separated by distance t along the image of α
in Σt. Thus this construction gives rise to a map, which we will call the time
t twist along α,

τ tα : Σ→ Σt,
discontinuous for t 6= 0 and mapping Σ \ α isometrically onto Σt \ α. Note
that τ tα is not unique but this will not be important for our analysis, what
is important, and easy to see from the construction, is that the geometry of
Σt \α does not vary with t as we will exploit this to obtain our main result.

4.2. The lift of the twist to H

Let Γ be Fuchsian group such that Σ := H/Γ is a closed surface, α ⊂ Σ a
non separating simple closed geodesic and x 6∈ α a basepoint for Σ. Now let
A ⊂ H denote the set of all lifts of α and x̂ ∈ H a lift of x. Then the comple-
ment of A consists of an infinite collection of pairwise congruent, convex sets.
Moreover, if P denotes the connected component of the complement of A
containing x̂, then P can be identified with the universal cover of the surface
Σ\α and the subgroup ΓP < Γ that preserves P is isomorphic to the funda-
mental group of this subsurface. Since the geometry of Σt does not change
with t ∈ R the geometry of P does not change either. This observation is
the key to establishing uniform bounds in the proof of Theorem 6.3.

Each of the other connected components of H \ P can be viewed as a
translate of gi(P ) for some element gi of Γ and so H is tiled by copies of
P . Let us consider how this tiling evolves under the time t twist τ tα along
α. There is a unique lift τ̂ tα : H → H which fixes x̂ and hence P . We can
calculate the image of a translate of P under the lift of τ̂ tα by a recursive
procedure. Suppose that for some g1, . . . gn ∈ Γ;

• ∪gi(P̄ ) is connected,
• we have determined the images of g1(P ), . . . gn(P ).
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Let gn+1(P ) be a translate of P such that gn+1(P̄ ) ∩ gn(P̄ ) = α̂, and we
consider two cases:

(1) If gn(P ) = P then the image of gn+1(P ) is φt(gn+1(P )) where φt is
a hyperbolic translation of length t with axis α̂.

(2) If gn(P ) 6= P and its image under τ̂ tα is h(P ) then the image of
gn+1(P ) is h◦φt ◦g−1

n (gn+1(P )) where φt is a hyperbolic translation
of length t with axis g−1

n (α̂) ⊂ A.

This procedure allows us to prove the following:

Lemma 4.1. — Let ΛP ⊂ ∂H denote the limit set of ΓP . Then τ̂ tα admits
a canonical extension τ̂ tα : H t ∂H → H t ∂H which is continuous on ∂H.
Further:

(1) For any w ∈ ΓP one has τ̂ tα(w) = w;
(2) For any w ∈ ∂H one has limt→±∞ τ̂ tα(w) ∈ ΛP and further this is

an endpoint of an edge of ∂P .

Proof. — It is standard from the theory of negatively curved groups that
the lift admits a unique extension to H t ∂H, continuous on the boundary
∂H, since H/Γ is compact. It follows too from compactness of the quotient
that the restriction of this lift to the set of lifts of the base point x ∈ Σ is
Lipschitz.

Since the extension is continuous, to prove (1) it suffices to note that the
lift of the Fenchel–Nielsen deformation fixes the endpoints of the edges of
∂P and these are dense in ΛP .

For (2) let w ∈ ∂H and suppose that it is not a point of ∂P . Then
there is an edge α̂ of ∂P such that w is a point of the interval determined
by the endpoints of this geodesic. It is easy to check using our recursive
description of the action of τ̂ tα on H that w converges to the appropriate
endpoint of α̂. �

We note that (2) can also be proved as follows. For t = n`α, n ∈ Z the
Fenchel–Nielsen twist coincides with a Dehn twist. If β is a loop, disjoint
from α then (up to homotopy) it is fixed by the Dehn twist. If β is a loop
which crosses α then under iterated Dehn twists twn

α it limits to a curve on
Σ that spirals to α. That is, lifting to H and considering the extension of
the lift of the Dehn twist twn

α : H t ∂H → H t ∂H, an endpoint of twn
α(β)

converges to an endpoint of some lift of α. It is not difficult to pass to general
t using the fact that the τ̂ tα extends to a homeomorphism on H t ∂H.
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4.3. Separated geodesics

We say that a pair of geodesics γ̂1, γ̂2 ⊂ H are separated by a geodesic γ̂
with end points γ̂± ∈ ∂H if the ideal points of γ̂1, γ̂2 are in different connected
components of ∂H \ {γ̂±}. Note that γ̂1, γ̂2 are necessarily disjoint.

If γ1, γ2 ⊂ H are a pair of simple closed geodesics, such that α, γ1, γ2 are
disjoint and we choose an arc β between γ1 and γ2 that meets α transversely
in a single point then this configuration lifts to H as γ̂1, γ̂2 separated by a
lift α̂ of α. It is easy to convince oneself that, as we deform by the Dehn
twist twn

α, the length of β goes to infinity. Essentially, our next lemma says
that this is true for any pair of geodesics γ1, γ2 in Σ admitting an arc that
meets α in an essential way.

Lemma 4.2. — Let γ̂1, γ̂2 ⊂ H be a pair of geodesics which are separated
by some lift of α then the distance between τ̂ tα(γ̂1) and τ̂ tα(γ̂2) tends to infinity
as t→ ±∞.

Proof. — Let α̂ be a lift of α which separates γ̂1, γ̂2 ⊂ H. Let P1 and
P2 be the pair of complementary regions which have α̂ as a common edge
and we label these so that γ̂i is on the same side of α̂ as Pi for i = 1, 2.
We choose the lift of the base point to be in P1 and lift the Fenchel–Nielsen
deformation.

First consider the orbit τ̂ tα(y) of an ideal endpoint y of γ̂2 as t → ∞.
Since x ∈ P1, the region P2 gets translated and so, for any side β of P2, the
sequence τ̂ tα(β) converges to the endpoint α̂+. Now there is a pair of edges
β1, β2 such that the endpoints of γ̂2 are contained in the closed interval
containing the endpoints of β1, β2. Since each of the βi converges to α̂+

under the deformation it is easy to see that τ̂ tα(γ̂2) must converge to α̂+ too.

Now consider the orbit of an endpoint y of γ̂1 under the deformation. It
suffices to show that, under this deformation, y does not converge to α̂+.
There are two cases according to whether or not y belongs to the limit set
ΛP1 of the subgroup of Γ which stabilises P1.

(1) If y ∈ ΛP1 then it is invariant under the Fenchel–Nielsen deforma-
tion.

(2) If y 6∈ ΛP1 then it limits to a point in y∞ ∈ ΛP1 which is an endpoint
of one of the edges of P1. By hypothesis γ̂1 does not meet α̂ and so
y∞ is not α̂+. �

– 483 –



G. McShane

5. Geodesic angle functions

We present two methods for computing (functions of) the angle α1∠zα2
between α1, α2 at z. The first method, just like the formula (3.1) for geodesic
length, is a closed formula in terms of traces (equation (5.1) whilst the second
is in terms of end points of lifts of α1, α2 to the Poincaré disk (equation (5.2)).
This second formula will prove useful for obtaining estimates for the variation
of angles along a Fenchel–Nielsen deformation. In either case, we start as
before by identifying Σ with the quotient H/Γ where Γ = ρ(π1(Σ)), ρ ∈
T (Σ). We choose z as a basepoint for Σ and associate elements a1, a2 ∈
π1(Σ, z) such that αi is the unique oriented closed geodesic in the conjugacy
class [ai] in the obvious way.

5.1. Traces and analyticity

As explained in the introduction we shall need an analogue of Fact 3.1
so we give a brief account of the analyticity of the angle functions:

Proposition 5.1. — Let α1, α2 be a pair of (not necessarily simple)
closed geodesics meeting at z. If ρ ∈ T (Σ) is a point in Teichmüller space
then

T (Σ)→ ]0, 2π[, ρ 7→ α1∠zα2,

is a real analytic function.

Proof. — With the notation above we have the following expression for
the angle:

sin2(α1∠zα2) = 4(2− tr[ρ(a1), ρ(a2)])
(tr2ρ(a1)− 4)(tr2ρ(a2)− 4)

. (5.1)

This equation is actually implicit in [7] but it is not claimed to be new there
and seems to have been well known. The left hand side of (5.1) is clearly an
analytic function on T (Σ) and it follows from elementary real analysis that
the angle varies real analytically too. �

Note that, though we will not need this, (5.1) shows that the square of the
sine is in fact a rational function of traces (see Mondal [10] for applications
of this).

5.1.1. Cross ratio formula

It will prove useful to have another formula for the angle in terms of
a cross ratio. This formula is well-known, see for example, The Geometry
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of Discrete Groups, by A.F. Beardon but since we will use it extensively
to obtain bounds we give a short exposition. If θ is the angle between two
hyperbolic geodesics α̂, β̂ ⊂ H then tan2(θ/2) can be expressed as a cross
ratio. One can prove this directly by taking α̂ to have endpoints α± = ±1
and β̂ endpoints β± = ±eiθ in the Poincaré disc model. Then(

α+ − β+

α+ − β−

)(
α− − β−

α− − β+

)
=
(

1− eiθ

1 + eiθ

)(
−1 + eiθ

−1− eiθ

)
=
(

1− eiθ

1 + eiθ

)2

= tan2(θ/2). (5.2)

6. Angles defined by closed geodesics

6.1. Variation of angles

In this paragraph we give an improved version of the following well known
fact:

Fact 6.1. — Let α, β ⊂ Σ be a pair of simple closed simple geodesics
that meet in a point z ∈ Σ. Then for any θ ∈ ]0, pi[ there exists ρ ∈ T (Σ)
such that

α∠xβ = θ.

Under the hypothesis, there is a convex subsurface Σ′ ⊂ Σ homeomorphic
to a one holed torus which contains α∪ β. The fact follows by presenting Σ′
as the quotient of H by a Schottky group.

Using the preceding discussion of the Fenchel–Nielsen deformation we
can relax the hypothesis on β even whilst taking the restriction of the angle
function to a one dimensional submanifold of T (Σ). The proof will should
also serve to familiarise the reader with the notation and provide intuition
as to why this case is different to that of an intersection of a generic pair of
closed geodesics treated in Theorem 6.3

Lemma 6.2. — Let α, β ⊂ Σ be a pair of closed geodesics that meet in a
point z ∈ Σ. If α is simple then for any θ ∈ ]0, π[ and any ρ0 ∈ T (Σ) there
exists ρt ∈ T (Σ) obtained from ρ0 by a (finite) Fenchel–Nielsen twist along
α such that

α∠xβ = θ.

Moreover,
lim

t→±∞
α∠xβ ∈ {0, π}.
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Proof. — With the notation of Subsection 4.2, there is a convex region P
in H bounded by lifts of α as before. Let α̂ be an edge of ∂P , and choose a
corresponding lift β̂ which intersects α̂. There is an element of the covering
group g ∈ Γ such that

α̂ = ∂P ∩ g(∂P ).
We lift the Fenchel–Nielsen deformation and consider, as before, its extension

τ̂ tα : H t ∂H→ H t ∂H.

Now, arguing as in Lemma 4.1, we see that:

• the endpoints of α̂ are fixed by τ̂ tα,
• the endpoint of β̂ on the same side of α̂ as P converges to a point
z 6= α+ as t→ −∞,
• the other endpoint of β̂ converges to α+ as t→ −∞.

It follows that, after possibly changing the orientation of β, that the angle
between α̂ and β̂, and hence α∠xβ, tends to 0. Likewise, as t → +∞ the
angle between α̂ and β̂, and hence α∠xβ, tends to π.

Thus, by continuity, the range of the angle function is ]0, π[. �

Theorem 6.3. — Let β1, β2 be a pair of closed geodesics and y ∈ β1∩β2.
Then for any simple closed geodesic α, different from both β1 and β2, the
angle function β1∠yβ2 is bounded away from π along the Fenchel–Nielsen
orbit of ρ ∈ T (Σ).

Proof. — If α and β1 ∪ β2 are disjoint then β1∠yβ2 is constant along the
τ̂ tα-orbit so the result is trivial.

Suppose now that α and β1 ∪ β2 are not disjoint and choose x as a
basepoint of Σ. Then, with the notation of paragraph 4.2, there is a convex
region P in H bounded by lifts of α. We now consider three cases according
to the number of edges of ∂P that β̂1 ∪ β̂2 meets.

We first deal with the simplest case. Suppose that β̂1∪β̂2 meets ∂P in four
distinct edges denoted C1, C2, C3, C4 ⊂ H, and, after possibly relabelling
these, β̂1 meets C1, C2 whilst β̂2 meets C3, C4 as in Figure 6.1. Now we
deform ρ0 by a Fenchel–Nielsen twist along α to obtain a 1-parameter family
of ρt ∈ T (Σ), t ∈ R. As we have seen above, under such a deformation the
length of α does not change nor does the geometry of ∂P in particular the
positions of the Ci remain unchanged. From our discussion of the τ̂ tα and its
extension to H t ∂H it is clear that, ∀ t ∈ R, τ̂ tα(β1) meets C1, C2 whilst
τ̂ tα(β2) meets C3, C4. Thus, if the diameters of the circles were small, the
angle at ẑ cannot not vary much from its value at ρ0 since the radii of the
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Figure 6.1. Case of 4 intersections.

circles are small. More generally, we can bound the size of the angle using
the cross ratio formula. Labeling the endpoints as in Figure 6.1 one has:

tan2(θ/2) =
∣∣∣∣β+

1 − β
+
2

β+
1 − β

−
2

∣∣∣∣ ∣∣∣∣β−1 − β−2β−1 − β
+
2

∣∣∣∣
Note first that each of the four points lies on the unit circle and so that its
diameter, that is 2, is a trivial upper bound for each of the four distances
appearing on the left hand side of this equation. Now under the deformation
each of the endpoints τ̂ tα(β±i ) stays in one of four disjoint euclidean discs
defined by one of the Cj . In particular, there exists δ4 > 0 such that for all
t ∈ R

δ4 6 |τ̂ tα(β±1 )− τ̂ tα(β±2 )| 6 2,
δ4 6 |τ̂ tα(β±1 )− τ̂ tα(β∓2 )| 6 2,

and this is sufficient to obtain bounds on the cross ratio:

1/2δ4 6 tan(θ/2) 6 2/δ4. (6.1)

Let β̂1 ∪ β̂2 meet ∂P in just two edges, C1, C2 ⊂ H say. Although we no
longer have a uniform lower bound for |τ̂ tα(β±1 )− τ̂ tα(β±2 )| in this case, there
still exists δ2 > 0 such that for all t ∈ R,

δ2 6 |τ̂ tα(β±1 )− τ̂ tα(β∓2 )|.

Thus, for all t ∈ R,
0 6 tan(θ/2) 6 2/δ2. (6.2)
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Figure 6.2. Case of 2 intersections.

Finally, if β̂1 ∪ β̂2 meets ∂P in exactly three edges then it is easy to see
that, using the same reasoning as for the two edge case, there is δ3 such that:

δ3 6 |τ̂ tα(β±1 )− τ̂ tα(β∓2 )|. �

Corollary 6.4. — Let α1, α2 be a pair of simple closed geodesics which
meet in a single point z and β1, β2 primitive closed geodesics which meet in
z′. If the difference

α1∠zα2 − β1∠z′β2

is constant then the angles are equal and, after possibly relabelling the
geodesics, αi = βi and z = z′.

Proof. — We first consider the case where four geodesics are distinct
then, under the Fenchel Nielsen twist along α1, the image of α1∠zα2 is ]0, π[
whilst, by Theorem 6.3, the image β1∠z′β2 is a strict subinterval. It is easy
to see α1∠zα2 − β1∠z′β2 cannot be a constant.

Now suppose, α1 = β1. If α2 = β2 then, since α1 and α2 meet in a single
point, we must have z = z′ and the angles must be the same.

On the other hand, if α2 6= β2 then z, z′ may or may not be distinct:

• If z = z′ then, by Lemma 6.2, both α1∠zα2 and β1∠z′β2 tend to
0 or π as the Fenchel–Nielsen parameter t → ±∞. Therefore, if
the difference is constant it must be 0 or π and so, up to switching
orientation, β1 = β2.
• If z = z′ then, by Lemma 6.2 and Theorem 6.3 β1∠z′β2 is a proper
subinterval of the range of α1∠zα2 so the difference cannot be con-
stant. �

Proof of Lemma 1.2. — Suppose that Σ has a value in its angle spectrum,
say θ, with finite multiplicity. Let x1, x2, . . . xn ∈ Σ be a complete list of
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points such that there are pair of closed geodesics meeting at xi at angle
θ. Then the set of preimages of the xi under the covering map H → Σ is a
discrete set which is invariant under Aut(ax(Γ)). Thus Aut(ax(Γ)) is discrete
and has Γ as a finite index subgroup. �
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