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Miraculous cancellations for quantum SL2

Francis Bonahon (1)

À Jean-Pierre Otal, en l’honneur de ses 3 × 4 × 5 ans

ABSTRACT. — In earlier work, Helen Wong and the author discovered certain
“miraculous cancellations” for the quantum trace map connecting the Kauffman
bracket skein algebra of a surface to its quantum Teichmüller space, occurring when
the quantum parameter q = e2πi~ is a root of unity. The current paper is devoted to
giving a more representation theoretic interpretation of this phenomenon, in terms
of the quantum group Uq(sl2) and its dual Hopf algebra SLq2.

RÉSUMÉ. — Des travaux précédents de Helen Wong et de l’auteur ont mis en
évidence, quand le paramètre quantique q = e2πi~ est une racine de l’unité, des
« annulations miraculeuses » pour l’application de trace quantique qui relie l’algèbre
d’écheveaux du crochet de Kauffman à l’espace de Teichmüller quantique d’une sur-
face. L’article ci-dessous fournit une interprétation plus conceptuelle de ce phéno-
mène, en termes de représentations du groupe quantique Uq(sl2) et de son algèbre
de Hopf duale SLq2.

Introduction

The equation
(X + Y )n = Xn + Y n (0.1)

is (unfortunately) very familiar to some of our students, who find it conve-
nient to “simplify” computations. However, it is also well-known that this
relation does hold in some cases, for instance in a ring of characteristic n with
n prime, or when the variables X and Y satisfy the q-commutativity relation
that Y X = qXY with q ∈ C a primitive n–root of unity; see Section 1.

The structure of Equation (0.1) can be described by considering the two-
variable polynomial P (X,Y ) = X+Y . Then (0.1) states that the polynomial
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P (X,Y )n, obtained by taking the n–th power of P (X,Y ), coincides with the
polynomial P (Xn, Y n) obtained by replacing the variables X, Y with their
powers Xn, Y n, respectively.

Helen Wong and the author discovered similar identities in their study of
the Kauffman bracket skein algebra of a surface [6]. These relations involved
a 2–dimensional version of the operation of “taking the n–th power”, through
the Chebyshev polynomial Tn(t) ∈ Z[t] defined by the property that

TraceAn = Tn(TraceA)

for every 2-by-2 matrix A ∈ SL2(C) with determinant 1. A typical con-
sequence of the miraculous cancellations discovered in [6] is that, when
Y X = qXY and q is a primitive n–root of unity,

Tn(X + Y +X−1) = Xn + Y n +X−n, (0.2)

which fits the pattern Tn
(
P (X,Y )

)
= P (Xn, Y n) for the polynomial

P (X,Y ) = X + Y + X−1. The arguments of [6] provide many examples
of such polynomials, involving several q–commuting variables.

In [6] these “Chebyshev cancellations” were used to connect, when q is
a root of unity, irreducible representations of the Kauffman bracket skein
algebra Sq(S) of a surface S to group homomorphisms π1(S) → SL2(C).
The skein algebra Sq(S) is a purely topological object whose elements are
represented by framed links in the thickened surface S × [0, 1]. It draws its
origin from Witten’s interpretation [17, 18, 22] of the Jones polynomial knot
invariant within the framework of a topological quantum field theory, and
as a consequence it is closely connected to the quantum group Uq(sl2).

The arguments of [6] were often developed by trial and error. The purpose
of the current article is to put these constructions into a more conceptual
framework, where the connection with Uq(sl2) and SL2(C) appears more
clearly. Another goal is to emphasize the representation theoretic nature
of these phenomena, with the long term objective of generalizing them to
quantum knot invariants and skein algebras based on other quantum groups
Uq(g), such as the Uq(sln)–based HOMFLY polynomial and skein algebra.

In addition to the fact that quantum groups are still an acquired taste for
many mathematicians, including the author, the connection between Uq(sl2)
and SL2(C) is more intuitive if we replace Uq(sl2) with its dual Hopf alge-
bra SLq2, in the sense of [14, 15, 16, 19, 20]. This will enable us to express
our constructions solely in terms of 2-by-2 matrices with coefficients in an
arbitrary noncommutative algebra A; in [6], the algebra A was the quantum
Teichmüller space of the surface. This point of view is sufficiently close to
SL2(C) that it should be relatively intuitive for those mathematicians who
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have a long track record in hyperbolic geometry, since PSL2(C) is the isom-
etry group of the hyperbolic space H3. This category includes the author
and Jean-Pierre Otal, and it is a pleasure to dedicate this article to him
as an acknowledgement of the great influence that he had on the author’s
work, either through their joint articles [1, 2, 3, 4] or through many informal
conversations.

We now state the main result of this article.
Theorem 0.1. — Let A1, A2, . . . , Ak be 2-by-2 matrices with coefficients

in an algebra A over C, such that:

(1) each Ai is triangular of the form
(
ai bi

0 a−1
i

)
or
(
ai 0
bi a

−1
i

)
with biai =

qaibi for some nonzero number q ∈ C− {0};
(2) ai and bi commute with aj and bj whenever i 6= j.

Then, if q2 is a primitive n–root of unity,

Tn(TraceA1A2 . . . Ak) = TraceA(n)
1 A

(n)
2 . . . A

(n)
k

where each A(n)
i is obtained from Ai by replacing ai and bi with their powers

ani and bni

This statement is easier to understand if we illustrate it by an example.
Consider the product of five triangular matrices

A =
(
a1 b1
0 a−1

1

)(
a2 b2
0 a−1

2

)(
a3 0
b3 a−1

3

)(
a4 b4
0 a−1

4

)(
a5 0
b5 a−1

5

)
where biai = qaibi, and ai and bi commute with aj and bj whenever i 6= j.

Computing the product and taking the trace straightforwardly gives

TraceA = a1a2a3a4a5 + a1a2a3b4b5 + a1b2b3a4a5 + a1b2b3b4b5

+ a1b2a
−1
3 a−1

4 b5 + b1a
−1
2 b3a4a5 + b1a

−1
2 b3b4b5

+ b1a
−1
2 a−1

3 a−1
4 b5 + a−1

1 a−1
2 b3b4a

−1
5 + a−1

1 a−1
2 a−1

3 a−1
4 a−1

5 .

Since TraceA has 10 terms and the Chebyshev polynomial Tn(t) has
degree n, one would expect Tn(TraceA) to have about 10n terms. However,
when q2 is a primitive n–root of unity, many cancellations occur and only
10 terms remain. In fact
Tn(TraceA) = an1a

n
2a

n
3a

n
4a

n
5 + an1a

n
2a

n
3 b
n
4 b
n
5 + an1 b

n
2 b
n
3a

n
4a

n
5 + an1 b

n
2 b
n
3 b
n
4 b
n
5

+ an1 b
n
2a
−n
3 a−n4 bn5 + bn1a

−n
2 bn3a

n
4a

n
5 + bn1a

−n
2 bn3 b

n
4 b
n
5

+ bn1a
−n
2 a−n3 a−n4 bn5 + a−n1 a−n2 bn3 b

n
4a
−n
5 + a−n1 a−n2 a−n3 a−n4 a−n5

= TraceA(n)
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where

A(n) =
(
an1 bn1
0 a−n1

)(
an2 bn2
0 a−n2

)(
an3 0
bn3 a−n3

)(
an4 bn4
0 a−n4

)(
an5 0
bn5 a−n5

)
is obtained from A by replacing each ai, bi with ani , bni .

When q is transcendental, there are only very few cancellations and
Proposition 6.2 shows that Tn(TraceA) is a sum of exactly (5 +

√
24)n +

(5−
√

24)n > 9.89n monomials. This explicit count is based on a positivity
result (Proposition 6.1) which may be of independent interest.

Similarly, the example of Equation (0.2) is provided by applying The-
orem 0.1 to the matrix A =

(
a1 b1
0 a−1

1

)(
a2 0
b2 a−1

2

)
, setting X = a1a2 and

Y = b1b2, and replacing q with √q.

The proof of Theorem 0.1 essentially has two parts. The first step is rep-
resentation theoretic, and connects Tn(TraceA) to the action of the matrix
A on the space A[X,Y ]q of polynomials in q–commuting variables X and Y
and with coefficients in the algebra A. This is a relatively easy adaptation to
our context of a deep but classical result in the representation theory of the
quantum group Uq(sl2), the Clebsch–Gordan Decomposition. The author is
here grateful to the referee for pointing out the reference [9], where a differ-
ent proof of Corollary 4.12 can be found; see Remark 4.13. The second step
is a simple computation of traces for this action of A on A[X,Y ]q, which is
much simpler than the original arguments of [6].

Among the hypotheses of Theorem 0.1, some are more natural than oth-
ers. The q–commutativity relations biai = qaibi are essentially mandated by
the connection of the objects considered to the quantum group Uq(sl2) and
its dual Hopf algebra SLq2. Similarly, the requirement that the matrices Ai
be triangular is deeply tied to the structure of the Lie group SL2(C) and
the quantum group Uq(sl2) (and their Borel subgroups/subalgebras). The
commutativity hypothesis that ai and bi commute with aj and bj whenever
i 6= j is less critical, and was introduced here to define TraceA1A2 . . . Ak ∈ A
(and the product matrix A1A2 . . . Ak ∈ SLq2(A)) in a straightforward way.
In fact, it is possible to define such a trace without these commutativity
properties, but this requires using the cobraiding of the Hopf algebra SLq2
as well as additional data that is reminiscent of the original topological con-
text. This was implicitly done in [5] for the Kauffman bracket skein algebra
of a surface, but a quick comparison between the formulas of [5, Lem. 21]
and [11, Cor. VIII.7.2] should make it clear that these arguments can be
expanded to a more representation theoretic framework. The cancellations
of Theorem 0.1 then extend to this generalized setup, as in [6].
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1. The equation (X + Y )n = Xn + Y n

In spite of the first sentence of this article, most of our students do know
the Binomial Formula, which says that

(X + Y )n

= Xn +
(
n

1

)
Xn−1Y + +

(
n

2

)
Xn−2Y 2 + · · ·+

(
n

n− 1

)
XY n−1 + Y n

=
n∑
k=0

(
n

k

)
Xn−kY k

where
(
n
k

)
is the binomial coefficient(

n

k

)
= n(n− 1)(n− 2) . . . (n− k + 2)(n− k + 1)

k(k − 1)(k − 2) . . . 2 1 .

If we are working in a ring R with characteristic n and if n is prime
(which in particular occurs when R is a field), then n = 0 in R while
k(k − 1)(k − 2) . . . 2 1 6= 0 for every k < n. It follows that

(
n
k

)
= 0 whenever

0 < k < n, so that the Frobenius relation

(X + Y )n = Xn + Y n (0.1)

holds in this case.

Note that the hypothesis that the characteristic n is prime is really nec-
essary. For instance, in the ring Z/4 of characteristic 4,

(X + Y )4 = X4 + 6X2Y 2 + Y 4 6= X4 + Y 4.

A less well-known occurrence of Equation (0.1) involves variables X and
Y that q–commute, in the sense that Y X = qXY for some q ∈ C. The
Quantum Binomial Formula (see for instance [11, §IV.2]) then states that

(X + Y )n

= Xn +
(
n

1

)
q

Xn−1Y + +
(
n

2

)
q

Xn−2Y 2 + · · ·+
(

n

n− 1

)
q

XY n−1 + Y n

=
n∑
k=0

(
n

k

)
q

Xn−kY k (1.1)

where
(
n
k

)
q
is the quantum binomial coefficient(
n

k

)
q

= (n)q(n− 1)q(n− 2)q . . . (n− k + 2)q(n− k + 1)q
(k)q(k − 1)q(k − 2)q . . . (2)q(1)q
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defined by the quantum integers

(j)q = qj − 1
q − 1 = 1 + q + q2 + · · ·+ qj−1.

We state the following property as a lemma, as we will frequently need
to refer to it.

Lemma 1.1. — If q is a primitive n–root of unity, in the sense that
qn = 1 and qk 6= 1 whenever 0 < k < n, the quantum binomial coefficient(
n
k

)
q
is equal to 0 for every k with 0 < k < n.

Proof. — Since q is a primitive n–root of unity, (n)q = qn−1
q−1 = 0 while

(k)q = qk−1
q−1 6= 0 whenever 0 < k < n. The result follows. �

Corollary 1.2. — If Y X = qXY with q ∈ C a primitive n–root of
unity, the Frobenius relation

(X + Y )n = Xn + Y n (0.1)

holds.

As in the characteristic n case, it is necessary that q be a primitive n–
root of unity. For instance, when Y X = −XY , q = −1 is a (non-primitive)
4–root of unity and (X + Y )4 = X4 + 2X2Y 2 + Y 4 6= X4 + Y 4.

We will now discuss generalizations of Equation (0.1) arising from prop-
erties of the quantum group Uq(sl2). As indicated in the introduction, we
will express these properties in terms of 2-by-2 matrices with coefficients in
an algebra A.

Incidentally, all algebras considered in this article will be over C. Other
fields could be used, but the need for primitive n–roots of unity make this
convention more natural.

We begin with the classical case of the algebra A = C, and of the Lie
group SL2(C).

2. The classical action of SL2(C) on C[X,Y ]

The special linear group of order 2 is the group

SL2(C) =
{(

a b
c d

)
; a, b, c, d ∈ C, ad− bc = 1

}
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of 2-by-2 matrices with determinant 1. It has a left action on the plane C2,
and therefore a right action by precomposition on the algebra

C[X,Y ] = {polynomial functions on C2}

=
{
polynomials

∑m
i=0
∑n
j=0 aijX

iY j ; aij ∈ C
}

of polynomials in the variablesX and Y . More precisely, the action of
(
a b
c d

)
∈

SL2(C) on C[X,Y ] is such that

P (X,Y )
(
a b
c d

)
= P (aX + bY, cX + dY ) (2.1)

for every polynomial P (X,Y ) ∈ C[X,Y ].

This defines a map
ρ : SL2(C)→ EndC

(
C[X,Y ]

)
from SL2(C) to the algebra of C–linear maps C[X,Y ]→ C[X,Y ].

We collect a few elementary properties in the following lemma.

Lemma 2.1.

(1) For every
(
a b
c d

)
∈ SL2(C), ρ

(
a b
c d

)
∈ EndC

(
C[X,Y ]

)
is also an

algebra endomorphism of C[X,Y ].
(2) The map ρ is valued in the group AutC

(
C[X,Y ]

)
of linear au-

tomorphisms of C[X,Y ], and induces a group antihomomorphism
ρ : SL2(C)→ AutC

(
C[X,Y ]

)
, in the sense that

ρ

((
a b
c d

)(
a′ b′

c′ d′

))
= ρ

(
a′ b′

c′ d′

)
◦ ρ
(
a b
c d

)
for every

(
a b
c d

)
,
(
a′ b′

c′ d′

)
∈ SL2(C).

(3) If C[X,Y ]n =
{∑

i+j=n aijX
iY j ; aij ∈ C

} ∼= Cn+1 denotes the vec-
tor space of homogeneous polynomials of degree n, the representation
ρ restricts to a finite-dimensional representation

ρn : SL2(C)→ AutC
(
C[X,Y ]n

) ∼= AutC(Cn+1).

The order reversal in the second conclusion reflects the fact that SL2(C)
acts on C[X,Y ] on the right. We could easily turn ρ into a group homo-
morphism by composing it with any of the standard antiautomorphisms of
SL2(C), such as

(
a b
c d

)
7→
(
a b
c d

)t = ( a cb d ) or
(
a b
c d

)
7→
(
a b
c d

)−1 =
(
d −b
−c a

)
, and

many authors do this. For this reason, we will refer to ρ and its restrictions
ρn as representations of SL2(C).

A classical property is that, up to isomorphism, the ρn form the collection
of all irreducible representations of SL2(C).
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3. The quantum plane and SLq2(A)

For a nonzero number q ∈ C − {0}, the quantum plane is the alge-
bra C[X,Y ]q defined by two generators X and Y , and by the relation
Y X = qXY . Namely, the elements of C[X,Y ]q are polynomials P (X,Y ) =∑m
i=0
∑n
j=0 aijX

iXj that are multiplied using the relation Y X = qXY .

If we want to keep the property that the matrices
(
a b
c d

)
and ( a cb d ) act as

algebra homomorphisms on C[X,Y ]q, we need that
(cX + dY )(aX + bY ) = q(aX + bY )(cX + dY )

and (bX + dY )(aX + cY ) = q(aX + cY )(bX + dY )

to preserve the relation Y X = qXY . Identifying the coefficients of X2, XY
and Y 2, this would require

ba = qab db = qbd bc = cb

ca = qac dc = qcd ad− q−1bc = da− qbc
(3.1)

which is clearly impossible if q 6= 1 and a, b, c, d commute with each other.
This leads us to the following definition (see for instance [11, Chap. IV] for
more background).

Given an algebra A over C, let SLq2(A) denote the set of matrices
(
a b
c d

)
where a, b, c, d ∈ A satisfy the relations of (3.1), as well as

ad− q−1bc = 1. (3.2)

More formally, let SLq2 be the algebra defined by generators a, b, c, d and
by the relations of (3.1) and (3.2). Then SLq2(A) can be interpreted as the
set of all algebra homomorphisms SLq2 → A. The elements of SLq2(A) are
called the A–points of SLq2.

Unlike SL2(C), the set SLq2(A) is far from being a group. It only comes
with a partially defined multiplication. Indeed, if

(
a b
c d

)
and

(
a′ b′

c′ d′

)
∈ SLq2(A),

the usual formula(
a b
c d

)(
a′ b′

c′ d′

)
=
(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
(3.3)

gives an element of SLq2(A) only under additional hypotheses on the entries
of these matrices, for instance if a, b, c, d commute with a′, b′, c′, d′. This
partially defined multiplication has an identity element ( 1 0

0 1 ) ∈ SLq2(A).
However, the operation of passing to the inverse somewhat misbehaves in
the sense that the formal inverse

(
a b
c d

)−1 =
(

d −qb
−q−1c a

)
of
(
a b
c d

)
∈ SLq2(A)

is an element of SLq
−1

2 (A) = SLq2(Aop) instead of SLq2(A); here Aop is the
opposite algebra of the algebra A, consisting of the vector space A endowed
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with the new multiplication ∗op defined by the property that a ∗op b = ba
for every a, b ∈ A. In general, the formula (3.3) gives a globally defined
multiplication SL2(A)⊗SL2(B)→ SL2(A⊗B) for any two algebras A and B.

In order to generalize to SLq2(A) the action of SL2(C) on C[X,Y ], we
introduce the quantum A–plane as the A–algebra A[X,Y ]q = A⊗C[X,Y ]q.
In practice the elements of A[X,Y ]q are polynomials

P (X,Y ) =
m∑
i=0

n∑
j=0

aijX
iXj

with coefficients aij ∈ A, and are algebraically manipulated using the rela-
tion Y X = qXY while the variables X and Y commute with all elements
of A.

The relations defining SLq2(A) are specially designed that an A–point of
SLq2 acts as an algebra homomorphism on the quantum A–plane A[X,Y ]q,
by the same formula (2.1) as in the commutative plane. More precisely, if
EndA(A[X,Y ]q) denotes the space of A–linear maps A[X,Y ]q → A[X,Y ]q,
we can define a map

ρ : SLq2(A)→ EndA(A[X,Y ]q)
such that

ρ

(
a b
c d

)∑
i,j

aijX
iY j

 =
∑
i,j

aij(aX + bY )i(cX + dY )j

for every polynomial
∑
i,j aijX

iY j ∈ Aq[X,Y ].

The map ρ satisfies the following elementary properties.

Lemma 3.1.

(1) For every
(
a b
c d

)
∈ SLq2(A), the restriction C[X,Y ]q → A[X,Y ]q of

the A–linear map ρ
(
a b
c d

)
∈ EndA(A[X,Y ]q) is a C–algebra homo-

morphism.
(2) For each n, the map ρ

(
a b
c d

)
∈ EndA(A[X,Y ]q) respects the space

A[X,Y ]qn = A ⊗ C[X,Y ]qn of homogeneous polynomials of degree n
in X and Y with coefficients in A. As a consequence, ρ induces by
restriction a map

ρn : SLq2(A)→ EndA(A[X,Y ]qn).
(3) If a, b, c, d commute with a′, b′, c′, d′ (so that the product

(
a b
c d

)(
a′ b′

c′ d′

)
=
(
aa′+bc′ ab′+bd′
ca′+dc′ cb′+dd′

)
∈ SLq2(A) makes sense),

ρ

((
a b
c d

)(
a′ b′

c′ d′

))
= ρ

(
a′ b′

c′ d′

)
◦ ρ
(
a b
c d

)
.
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Remark 3.2. — The first conclusion of Lemma 3.1 can be rephrased by
saying that, for every P , Q ∈ C[X,Y ]q,

ρ

(
a b
c d

)
(PQ) = ρ

(
a b
c d

)
(P ) ρ

(
a b
c d

)
(Q)

in A[X,Y ]q. However, note that this property does not always hold for P ,
Q ∈ A[X,Y ]q, so that the A–linear map ρ

(
a b
c d

)
: A[X,Y ]q → A[X,Y ]q is

not necessarily an A–algebra homomorphism.

4. Traces and Chebyshev polynomials

4.1. Traces

Traces can misbehave in the noncommutative context. However, we are
interested in endomorphisms of A[X,Y ]qn = A ⊗ C[X,Y ]qn, which have a
natural trace.

To emphasize the key property needed, let V be a finite dimensional
vector space over C, let A be an algebra over C, and consider an A–linear
map f ∈ EndA(A⊗ V ). The trace of f is defined as

Trace f =
n∑
i=0

aii ∈ A

where, if e0, e1, . . . , en is a basis for the C-vector space V , the coefficients
aij ∈ A are defined by the property that f(ej) =

∑n
i=0 aijei in A ⊗ V for

every j = 0, 1, . . . , n.

The usual commutative proof immediately extends to this context to give:

Lemma 4.1. — The trace Trace f ∈ A is independent of the choice of
the basis e0, e1, . . . , en for the C-vector space V .

Note that this property would be false if we only required e0, e1, . . . , en
to be a basis for the A–module A⊗ V ∼= An+1.

For practice, let us carry out a few elementary computations for the
representations ρn : SLq2(A)→ EndA

(
A[X,Y ]qn

)
of Lemma 3.1.

For n = 1, consider
(
a b
c d

)
∈ SLq2(A) and its image ρ1

(
a b
c d

)
∈

EndA
(
A[X,Y ]q1

)
. The polynomials X, Y form a basis for C[X,Y ]q1. Since

ρ1
(
a b
c d

)
(X) = aX + bY and ρ1

(
a b
c d

)
(Y ) = cX + dY we conclude that

Trace ρ1
(
a b
c d

)
is equal to a + d, namely to what we have implicitly called

Trace
(
a b
c d

)
in the introduction.
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For n = 2, an elementary computation gives

ρ2

(
a b
c d

)
(X2) = (aX + bY )2 = a2X2 + (1 + q2)abXY + b2Y 2

ρ2

(
a b
c d

)
(XY ) = (aX + bY )(cX + dY ) = acX2 + (ad+ qbc)XY + bdY 2

ρ2

(
a b
c d

)
(Y 2) = (cX + dY )2 = c2X2 + (1 + q2)cdXY + d2Y 2

so that

Trace ρ2

(
a b
c d

)
= a2 + (ad+ qbc) + d2

= a2 + ad+ da+ d2 − 1
= (a+ d)2 − 1

by remembering that da− qbc = 1 from the definition of SLq2(A).

For n = 3, a longer but similar first step gives that

Trace ρ3

(
a b
c d

)
= a3 +

(
a2d+ q(1 + q2)abc

)
+
(
a(1 + q2)bcd+ ad2)+ d3

= a3 + a2d+ ada+ q2ada− a− q2a+ dad+ q2dad− d− q2d+ ad2 + d3,

using again the property that da− qbc = 1.

Since qbc = da− 1 and bca = q2abc, we have that da2− a = q2ada− q2a.
Similarly, because dbc = q2bcd, d2a − a = q2dad − q2d. Substituting these
values in our first expression for Trace ρ3

(
a b
c d

)
gives

Trace ρ3

(
a b
c d

)
= a3 + a2d+ ada+ da2 + dad+ d2a+ ad2 + d3 − 2a− 2d

= (a+ d)3 − 2(a+ d).

In all three cases, we have been able to express the trace Trace ρn
(
a b
c d

)
as a polynomial in Trace

(
a b
c d

)
= a + d. We will see in Corollary 4.12 that

this is a general phenomenon. Part of the purpose in the above calculations
was to let the reader experience the fact that this property is not that easy
to check by bare-hand computations, which justifies the introduction of the
more theoretical constructions of Section 4.3 and Section 4.4 below.
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4.2. Chebyshev polynomials

We will encounter two types of Chebyshev polynomials. The (normalized)
Chebyshev polynomials of the first kind are the polynomials Tn(t) ∈ Z[t]
recursively defined by

Tn+1(t) = t Tn(t)− Tn−1(t)
T1(t) = t

T0(t) = 2.
(4.1)

The (normalized) Chebyshev polynomials of the second kind Sn(t) ∈ Z[t]
are remarkably similar, and defined by

Sn+1 = t Sn(t)− Sn−1(t)
S1(t) = t

S0(t) = 1.
(4.2)

In particular, in addition to T0(t) = 2, S0(t) = 1 and T1(t) = S1(t) = t,
T2(t) = t2 − 2 S2(t) = t2 − 1
T3(t) = t3 − 3t S3(t) = t3 − 2t
T4(t) = t4 − 4t2 + 2 S4(t) = t4 − 3t2 + 1
T5(t) = t5 − 5t3 + 5t S5(t) = t5 − 4t3 + 3t
T6(t) = t6 − 6t4 + 9t2 − 2 S6(t) = t6 − 5t4 + 6t2 − 1

Lemma 4.2. — The two types of Chebyshev polynomials are related by
the property that

Tn(t) = Sn(t)− Sn−2(t)
for every n > 2

Proof. — This is an immediate consequence of the fact that the Tn(t)
and Sn(t) satisfy the same linear recurrence relation, and of the initial
conditions. �

The following classical properties connect the Chebyshev polynomials
Tn(t) and Sn(t) to the group SL2(C).

Lemma 4.3. — For every A ∈ SL2(C),
Tn(TraceA) = TraceAn

Sn(TraceA) = Trace ρn(A)

where ρn : SL2(C)→ End
(
C[X,Y ]n

)
is the (n+ 1)–dimensional representa-

tion of Section 2.
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Proof. — From the Cayley–Hamilton Theorem (or inspection)
A2 − (TraceA)A+ Id = 0

for every A =
(
a b
c d

)
∈ SL2(C). Multiplying both sides by An−1 and taking

the trace, we see that TraceAn satisfies the same recurrence relation
TraceAn+1 = (TraceA)(TraceAn)− TraceAn−1

as Tn(TraceA), as well as the same initial values for n = 0 and n = 1. It
follows that TraceAn = Tn(TraceA) for every n.

For the property that Sn(TraceA) = Trace ρn(A), which is not needed
in this article, we can just refer to the special case q = 1 of Corollary 4.12
below. �

Note the following closed form expression for the Chebyshev polynomial
Tn(t) ∈ Z[t].

Lemma 4.4.

Tn(t) =
(
t+
√
t2 − 4
2

)n
+
(
t−
√
t2 − 4
2

)n
Proof. — Let A ∈ SL2(C) be a matrix such that TraceA = t. If t2 − 4 6=

0, the characteristic polynomial λ2 − tλ + 1 of A has two distinct roots
t±
√
t2−4
2 , which consequently are the eigenvalues of A. Then An has eigen-

values
(
t±
√
t2−4
2

)n
and, by Lemma 4.3,

Tn(t) = TraceAn =
(
t+
√
t2 − 4
2

)n
+
(
t−
√
t2 − 4
2

)n
.

By continuity, the property also holds when t2 − 4 = 0. �

4.3. The Hopf algebras SLq2 and Uq(sl2)

For most of the article, we are trying to keep the exposition at an elemen-
tary level in order to make the algebra more intuitive and to emphasize its
connection with geometry. However, we now need deeper algebraic concepts
and constructions, which will enable us to apply the well-known Clebsch–
Gordan Decomposition for Uq(sl2) (Theorem 4.8) to obtain a similar state-
ment (Proposition 4.11) for the set SLq2(A) of 2-by-2 matrices that we are
interested in. We follow here the conventions of [11, Chap. VI–VII].

We already encountered the C–algebra SLq2, defined by generators a, b,
c, d and by the relations of (3.1)–(3.2). In particular, SLq2(A) is the set of
homomorphisms from SLq2 to the algebra A.
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A better known object is the quantum group Uq(sl2), which is a de-
formation of the enveloping algebra of the Lie algebra sl2(C) of SL2(C);
see [7, 8, 10, 12]. Recall that Uq(sl2) is defined by generators E, F , K, K−1

and by the relations

KK−1 = K−1K = 1 KE = q2EK

EF − FE = K −K−1

q − q−1 KF = q−2FK
(4.3)

This is a Hopf algebra, whose comultiplication ∆: Uq(sl2) → Uq(sl2) ⊗
Uq(sl2), counit ε : Uq(sl2) → C and antipode map S : Uq(sl2) → Uq(sl2)
are respectively determined by the properties that

∆(E) = E ⊗K + 1⊗ E ε(E) = 0 S(E) = −EK−1

∆(F ) = F ⊗ 1 +K−1 ⊗ F ε(F ) = 0 S(F ) = −KF
∆(K) = K ⊗K ε(K) = 1 S(K) = K−1.

Similarly, SLq2 is a Hopf algebra with comultiplication ∆: SLq2 → SLq2⊗
SLq2, counit ε : SLq2 → C and antipode S : SLq2 → SLq2 given by

∆(a) = a⊗ a+ b⊗ c ε(a) = 1 S(a) = d

∆(b) = a⊗ b+ b⊗ d ε(b) = 0 S(b) = −qb
∆(c) = c⊗ a+ d⊗ c ε(c) = 0 S(c) = −q−1c

∆(d) = c⊗ b+ d⊗ d ε(d) = 1 S(d) = a.

When q = 1, the algebra SL1
2 is just the algebra of regular (= polynomial)

functions SL2(C)→ C on the algebraic group SL2(C). The comultiplication
∆: SL1

2 → SL1
2⊗ SL1

2 then is the algebra homomorphism induced by the
group multiplication SL2(C)× SL2(C)→ SL2(C), the counit ε : SL1

2 → C is
induced by the map {∗} → SL2(C) sending ∗ to the identity ( 1 0

0 1 ), and the
antipode S : SL1

2 → SL1
2 is induced by

(
a b
c d

)
7→
(
a b
c d

)−1.

Similarly, as q → 1, the quantum group Uq(sl2) converges to the en-
veloping algebra U(sl2) of the Lie algebra of SL2(C), by consideration of
H = K−K−1

q−q−1 .

The relationship between SLq2 and Uq(sl2) comes in the form of a linear
pairing

〈 · , · 〉 : Uq(sl2)⊗ SLq2 −→ C
U ⊗ α 7−→ 〈U,α〉

(4.4)
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determined by the properties that

〈E, a〉 = 0 〈E, b〉 = 1 〈E, c〉 = 0 〈E, d〉 = 0
〈F, a〉 = 0 〈F, b〉 = 0 〈F, c〉 = 1 〈F, d〉 = 0
〈K, a〉 = q 〈K, b〉 = 0 〈K, c〉 = 0 〈K, d〉 = q−1

(4.5)

and

〈U,αβ〉 =
∑
(U)

〈U ′, α〉〈U ′′, β〉 (4.6)

〈UV, α〉 =
∑
(α)

〈U,α′〉〈V, α′′〉 (4.7)

for every α, β ∈ SLq2 and U , V ∈ Uq(sl2), using Sweedler’s notation that

∆(U) =
∑
(U)

U ′ ⊗ U ′′ ∈ Uq(sl2)⊗Uq(sl2)

and ∆(α) =
∑
(α)

α′ ⊗ α′′ ∈ SLq2⊗SLq2

for the comultiplications of SLq2 and Uq(sl2). See Lemma 4.6 for an inter-
pretation of the formulas of (4.5), and see [8, 19, 20] and [11, §VII.4] for
details.

In particular, the duality 〈 · , · 〉 induces a linear map δ : SLq2 → Uq(sl2)∗
from SLq2 to the dual of Uq(sl2). We will need the following property.

Lemma 4.5 (Takeuchi [20]). — The above duality map δ : SLq2 →
Uq(sl2)∗ is injective.

This is analogous to the property that, because the Lie group SL2(C)
is connected, a regular function on SL2(C) is completely determined by its
derivatives and higher derivatives at the identity element.

In general, the representation theory of a Lie algebra is significantly easier
to analyze than that of the corresponding Lie group. The same phenomenon
in the quantum world is one of the reasons why Uq(sl2) is more popular
than SLq2.

In particular, there is an action σ : Uq(sl2) ⊗ C[X,Y ]q → C[X,Y ]q of
Uq(sl2) over the quantum plane C[X,Y ]q by “quantum derivation”, defined
by the property that

σ(E ⊗XkY l) = [l]qXk+1Y l−1 σ(F ⊗XkY l) = [k]qXk−1Y l+1

σ(K ⊗XkY l) = qk−lXkY l
(4.8)
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where [k]q denotes the other type of quantum integer

[k]q = qk − q−k

q − q−1 = qk−1 + qk−3 + · · ·+ q−k+3 + q−k+1 = q−k+1(k)q2 .

This action restricts to the space of homogeneous polynomials of degree
n, and gives an (n+ 1)–dimensional representation

σn : Uq(sl2)→ EndC
(
C[X,Y ]qn

)
for every n.

When q is not a root of unity, the σn essentially realize all irreducible
finite-dimensional representations of Uq(sl2), up to isomorphism. To describe
all irreducible finite-dimensional representations of Uq(sl2), one just need
one more family of similar representations σ′n, related to σn by a simple sign
twist. See for instance [11, §VI.2].

Similarly, the representation ρ : SLq2(A)→ EndA(A[X,Y ]q) of Section 3
comes from a coaction

τ : C[X,Y ]q → SLq2⊗C[X,Y ]q

defined by the property that

τ
(
P (X,Y )

)
= P (a⊗X + b⊗ Y, c⊗X + d⊗ Y )

for every polynomial P (X,Y ) ∈ C[X,Y ]q. Indeed, if A ∈ SLq2(A) is
considered as an algebra homomorphism A : SLq2 → A, then ρ(A) ∈
EndA(A[X,Y ]q) is clearly the A–linear extension of the C–linear map

(
A⊗

IdC[X,Y ]q
)
◦ τ : C[X,Y ]q → A[X,Y ]q.

The following statement relates the duality 〈 · , · 〉 of (4.4) to the 2–
dimensional representation σ1 : Uq(sl2)→ EndC

(
C[X,Y ]q1

)
.

Lemma 4.6. — For every U ∈ Uq(sl2), the matrix of σ1(U) ∈
EndC

(
C[X,Y ]q1

)
in the basis {X,Y } is

σ1(U) =
(
〈U, a〉 〈U, b〉
〈U, c〉 〈U, d〉

)
,

where a, b, c, d are the generators of SLq2.

Proof. — The property holds for U = E, F orK±1 by inspection in (4.5),
since σ1(E) = ( 0 1

0 0 ), σ1(F ) = ( 0 0
1 0 ) and σ1(K) =

(
q 0
0 q−1

)
in the basis

{X,Y }. It then holds for any product of these generators by combining the
fact that σ1 is an algebra homomorphism, the compatibility of the duality
〈 · , · 〉 with the multiplications and comultiplications given by (4.7), and the
definition of the comultiplication ∆: SLq2 → SLq2⊗ SLq2. �
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We now show that the duality 〈 · , · 〉 connects the action of Uq(sl2) on
C[X,Y ]q to the coaction of SLq2.

To see this, we first rewrite the action σ : Uq(sl2)⊗C[X,Y ]q → C[X,Y ]q
as a linear map Σ: C[X,Y ]q → Uq(sl2)∗ ⊗ C[X,Y ]q.

Lemma 4.7. — The action Σ: C[X,Y ]q → Uq(sl2)∗ ⊗ C[X,Y ]q, coac-
tion τ : C[X,Y ]q → SLq2⊗C[X,Y ]q and duality map δ : SLq2 → Uq(sl2)∗ are
related by the property that the diagram

C[X,Y ]q

Σ

**

τ
// SLq2⊗C[X,Y ]q

δ⊗IdC[X,Y ]q
// Uq(sl2)∗ ⊗ C[X,Y ]q

is commutative. Namely, Σ = (δ ⊗ IdC[X,Y ]q ) ◦ τ .

Proof. — The property is equivalent to the commutativity of the diagram

Uq(sl2)⊗ C[X,Y ]q σ

��

IdUq(sl2)⊗τ **
Uq(sl2)⊗ SLq2⊗C[X,Y ]q

〈 · ,· 〉⊗IdC[X,Y ]q ))
C[X,Y ]q

To simplify the formulas, write ϕ = IdUq(sl2)⊗τ and ψ = 〈 · , · 〉⊗IdC[X,Y ]q .
We need to prove that

ψ ◦ ϕ
(
U ⊗ P (X,Y )

)
= σ

(
U ⊗ P (X,Y )

)
(4.9)

for every U ∈ Uq(sl2) and P (X,Y ) ∈ C[X,Y ]q.

We first consider the case where P (X,Y ) = X. Then,

ψ ◦ ϕ(U ⊗X) = ψ(U ⊗ a⊗X + U ⊗ b⊗ Y )
= 〈U, a〉X + 〈U, b〉Y
= σ1(U)(X) = σ(U ⊗X)

by Lemma 4.6. So, the property of (4.9) holds for P (X,Y ) = X and every
U ∈ Uq(sl2).

An almost identical argument shows that (4.9) holds for P (X,Y ) = Y
and every U ∈ Uq(sl2). As a consequence, (4.9) holds for every P (X,Y ) ∈
C[X,Y ]q1 and U ∈ Uq(sl2).
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We now claim that, if (4.9) holds for P (X,Y ) and Q(X,Y ) and every
U ∈ Uq(sl2), then it holds for the product P (X,Y )Q(X,Y ) and every U ∈
Uq(sl2).

A fundamental property of the action σ is that, in the terminology of [11,
§V.6], it makes C[X,Y ]q a module algebra over Uq(sl2). This means that, in
addition to making C[X,Y ]q a module over the algebra Uq(sl2), σ satisfies
the “quantum product rule” that

σ
(
U ⊗ P (X,Y )Q(X,Y )

)
=
∑
(U)

σ
(
U ′ ⊗ P (X,Y )

)
σ
(
U ′′ ⊗Q(X,Y )

)
, (4.10)

using Sweedler’s notation that ∆(U) =
∑

(U) U
′ ⊗ U ′′. See [11, §VII.3].

Now,

ψ ◦ ϕ
(
U ⊗ P (X,Y )Q(X,Y )

)
= ψ

(
U ⊗ P (a⊗X + b⊗ Y )Q(a⊗X + b⊗ Y )

)
=
∑
(U)

ψ
(
U ′ ⊗ P (a⊗X + b⊗ Y )

)
ψ
(
U ′′ ⊗Q(a⊗X + b⊗ Y )

)
=
∑
(U)

σ
(
U ′ ⊗ P (X,Y )

)
σ
(
U ′′ ⊗Q(X,Y )

)
= σ

(
U ⊗ P (X,Y )Q(X,Y )

)
,

where the second equality comes from (4.6), the third equality reflects our
hypothesis that P (X,Y ) and Q(X,Y ) satisfy (4.9) for every U ′′′ ∈ Uq(sl2),
and the fourth equality results from (4.10). This proves our claim that (4.9)
holds for P (X,Y )Q(X,Y ) and for every U ∈ Uq(sl2).

This inductive step proves that (4.9) holds in all cases, and concludes the
proof of Lemma 4.7. �

4.4. The Clebsch–Gordan Decomposition for SLq2 and SLq2(A)

A great feature of Hopf algebras is that their comultiplication ∆ enables
one to take the tensor product of two representations.

For Uq(sl2), the Quantum Clebsch–Gordan Decomposition expresses the
action of Uq(sl2) on the tensor product C[X,Y ]qm⊗C[X,Y ]qn as a direct sum
of (irreducible) representations over C[X,Y ]qm+n−2k with 0 6 k 6 inf{m,n}.

We state here the result for the case we need, when m = 1. Recall that
the action of Uq(sl2) on C[X,Y ]q restricts to an algebra homomorphism
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σn : Uq(sl2)→ EndC
(
C[X,Y ]qn

)
for every n. Also, the tensor product

σ1 ⊗ σn : Uq(sl2)→ EndC
(
C[X,Y ]q1 ⊗ C[X,Y ]qn

)
= EndC

(
C[X,Y ]q1

)
⊗ EndC

(
C[X,Y ]qn

)
is defined by the property that

σ1 ⊗ σn(U) =
∑
(U)

σ1(U ′)⊗ σn(U ′′)

for every U ∈ Uq(sl2), using Sweedler’s notation that ∆(U) =
∑

(U) U
′⊗U ′′.

Theorem 4.8 (Clebsch–Gordan Decomposition for Uq(sl2)). — When
q is not a k–root of unity with k 6 n, there exists a C–linear isomorphism
ϕ : C[X,Y ]q1 ⊗ C[X,Y ]qn → C[X,Y ]qn+1 ⊕ C[X,Y ]qn−1 such that the diagram

C[X,Y ]q1 ⊗ C[X,Y ]qn
σ1⊗σn(U) //

ϕ ∼=
��

C[X,Y ]q1 ⊗ C[X,Y ]qn
ϕ∼=
��

C[X,Y ]qn+1 ⊕ C[X,Y ]qn−1 σn+1(U)⊕σn−1(U)
// C[X,Y ]qn+1 ⊕ C[X,Y ]qn−1

commutes for every U ∈ Uq(sl2).

See [12, 13, 21], and [11, §VII.7] for a proof.

We now consider the coaction τ : C[X,Y ]q → SLq2⊗C[X,Y ]q, and more
precisely its restriction τn : C[X,Y ]qn → SLq2⊗C[X,Y ]qn.

Tensor products of coactions are much simpler to define, and
τ1 ⊗ τn

(
P ⊗Q

)
= τ1(P )⊗ τn(Q) ∈ SLq2⊗C[X,Y ]q1 ⊗ C[X,Y ]qn

for every P ∈ C[X,Y ]q1 and Q ∈ C[X,Y ]qn.

We now use the duality 〈 · , · 〉 to deduce the following result from Theo-
rem 4.8.

Proposition 4.9 (Clebsch–Gordan Decomposition for SLq2). — Suppose
that q is not a k–root of unity with k 6 n, and consider the C–linear isomor-
phism ϕ : C[X,Y ]q1⊗C[X,Y ]qn → C[X,Y ]qn+1⊕C[X,Y ]qn−1 of Theorem 4.8.
Then, the diagram

C[X,Y ]q1 ⊗ C[X,Y ]qn
τ1⊗τn //

ϕ ∼=
��

SLq2⊗C[X,Y ]q1 ⊗ C[X,Y ]qn
IdSLq

2
⊗ϕ∼=

��
C[X,Y ]qn+1 ⊕ C[X,Y ]qn−1 τn+1⊕τn−1

// SLq2⊗C[X,Y ]qn+1 ⊕ C[X,Y ]qn−1

commutes, in the sense that (IdSLq
2
⊗ϕ) ◦ (τ1 ⊗ τn) = (τn+1 ⊕ τn−1) ◦ ϕ
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Proof. — To simplify the notation, set Vk = C[X,Y ]qk. Then the commu-
tative diagram of Lemma 4.7 restricts for each k to a commutative diagram

Vk

Σk

**

τk

// SLq2⊗Vk δ⊗IdVk

// Uq(sl2)∗ ⊗ Vk (4.11)

where Σk is related to the action σk : Uq(sl2) → EndC(Vk) by the property
that, for each U ∈ Uq(sl2) and P ∈ Vk, the element σk(U)(P ) ∈ Vk is
obtained by evaluating Σk(P ) ∈ Uq(sl2)∗ ⊗ Vk at U .

In the diagram

V1 ⊗ Vn
Σ1⊗Σn

$$

τ1⊗τn ))
ϕ

��
Vn+1 ⊕ Vn−1

Σn+1⊕Σn−1 ..

τn+1⊕τn−1

))

SLq2⊗V1 ⊗ Vn

δ⊗IdV1⊗Vn **
IdSLq

2
⊗ϕ

��
SLq2⊗(Vn+1 ⊕ Vn−1)

δ⊗IdVn+1⊕Vn−1

**

Uq(sl2)∗ ⊗ V1 ⊗ Vn
IdUq(sl2)∗ ⊗ϕ
��

Uq(sl2)∗ ⊗ (Vn+1 ⊕ Vn−1)
(4.12)

we want to show that the left-hand parallelogram commutes. Here, Σ1⊗Σn is
defined to be related to the tensor product σ1⊗σn : Uq(sl2)→ EndC(V1⊗Vn)
by the property that, for each U ∈ Uq(sl2), P1 ∈ V1 and Pn ∈ Vn, the element
σ1⊗σn(U)(P1⊗Pn) ∈ V1⊗Vn is obtained by evaluating Σ1⊗Σn(P1⊗Pn) ∈
Uq(sl2)∗ ⊗ V1 ⊗ Vn at U . The map Σn+1 ⊕ Σn−1 is similarly associated to
the direct sum σn+1 ⊕ σn−1 : Uq(sl2)→ EndC(Vn+1 ⊕ Vn−1).

Because of the way Σ1⊗Σn and Σn+1⊕Σn−1 are respectively associated
to σ1⊗σn and σn+1⊕σn−1, Theorem 4.8 shows that the outer parallelogram
of (4.12) commutes, in the sense that

(IdUq(sl2)∗ ⊗ϕ) ◦ (Σ1 ⊗ Σn) = (Σn+1 ⊕ Σn−1) ◦ ϕ.
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The lower triangle
Vn+1 ⊕ Vn−1

Σn+1⊕Σn−1 ..

τn+1⊕τn−1

))
SLq2⊗(Vn+1 ⊕ Vn−1)

δ⊗IdVn+1⊕Vn−1

**
Uq(sl2)∗ ⊗ (Vn+1 ⊕ Vn−1)

of (4.12) commutes by an immediate application of (4.11).

The commutativity of the upper triangle requires more thought, because
tensor products of actions of algebras are more complicated than direct sums.

Lemma 4.10. — The diagram

V1 ⊗ Vn

Σ1⊗Σn

++

τ1⊗τn

// SLq2⊗V1 ⊗ Vn
δ⊗IdV1⊗Vn

// Uq(sl2)∗ ⊗ V1 ⊗ Vn

commutes.
Proof. — Because of the relationships between Σ1 ⊗ Σn and the ac-

tion σ1 ⊗ σn, and between the map δ : SLq2 → Uq(sl2)∗ and the duality
〈 · , · 〉 : Uq(sl2)⊗ SLq2 → C, it suffices to show that

V1 ⊗ Vn

σ1⊗σn(U)

**

τ1⊗τn

// SLq2⊗V1 ⊗ Vn 〈U, 〉
// V1 ⊗ Vn (4.13)

commutes for every U ∈ Uq(sl2). Here, for a vector space V , we shorten
the notation and write 〈U, 〉 : SLq2⊗V → V for the map that we previously
denoted by 〈U, 〉 ⊗ IdV .

This property is an immediate consequence of the fact (4.6)–(4.7) that
〈 · , · 〉 establishes a duality between multiplications and comultiplications.
Indeed, given two polynomials P1 ∈ V1 and Pn ∈ Vn,

σ1 ⊗ σn(U)(P1 ⊗ Pn) =
∑
(U)

σ1(U ′)(P1)⊗ σn(U ′′)(Pn)

=
∑
(U)

〈U ′, τ1(P1)〉 ⊗ 〈U ′′, τn(Pn)〉

= 〈U, τ1(P1)⊗ τn(Pn)〉
where the first equality reflects the definition of σ1⊗σ2, the second equality
comes from Lemma 4.7 (or (4.11)), and the third equality follows from (4.6).
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The proves the commutativity of (4.13), and therefore Lemma 4.10. �

We are now ready to conclude the proof of Proposition 4.9. We proved
that, in the diagram (4.12), the outer parallelogram and the two upper and
lower triangles commute. By Lemma 4.5, the map δ : SLq2 → Uq(sl2)∗ is
injective. It easily follows that the left-hand parallelogram

V1 ⊗ Vn τ1⊗τn

//

ϕ

��

SLq2⊗V1 ⊗ Vn
IdSLq

2
⊗ϕ

��
Vn+1 ⊕ Vn−1

τn+1⊕τn−1 // SLq2⊗(Vn+1 ⊕ Vn−1)

commutes. This is exactly what we needed to prove. �

After this long digression through the Hopf algebras SLq2 and Uq(sl2),
we now return to our original topic of interest, namely the set SLq2(A) of
A–points of SLq2 for some algebra A.

The representation ρn : SLq2(A) → EndA(A[X,Y ]qn) is related to the
coaction τn : C[X,Y ]qn → SLq2⊗C[X,Y ]qn by the property that, if an A–
point A ∈ SLq2(A) is considered as an algebra homomorphism A : SLq2 → A,
then ρn(A) ∈ EndA(A[X,Y ]qn) is the A–linear extension of the C–linear map(
A⊗ IdC[X,Y ]qn

)
◦ τ : C[X,Y ]qn → A[X,Y ]qn.

Proposition 4.11. — When q is not a k–root of unity with k 6 n, the
representation

ρ1 ⊗A ρn : SLq2(A)→ EndA
(
A[X,Y ]q1 ⊗A A[X,Y ]qn

)
is isomorphic over C to the direct sum ρn+1 ⊕ ρn−1 of the representations
ρn+1 : SLq2(A)→ End

(
A[X,Y ]qn+1

)
and ρn−1 : SLq2(A)→ End

(
A[X,Y ]qn−1

)
.

Namely, there exists a C–linear isomorphism

ϕ : C[X,Y ]q1 ⊗C C[X,Y ]qn → C[X,Y ]qn+1 ⊕ C[X,Y ]qn−1,

inducing an A–linear isomorphism

IdA⊗Cϕ : A[X,Y ]q2 ⊗A A[X,Y ]qn → A[X,Y ]qn+1 ⊕A[X,Y ]qn−1,

such that the diagram

A[X,Y ]q1 ⊗A A[X,Y ]qn
IdA⊗Cϕ ∼=

��

ρ1(A)⊗Aρn(A) // A[X,Y ]q1 ⊗A A[X,Y ]qn
IdA⊗Cϕ∼=
��

A[X,Y ]qn+1 ⊕A[X,Y ]qn−1 ρn+1(A)⊕ρn−1(A)
// A[X,Y ]qn+1 ⊕A[X,Y ]qn−1

commutes for every A ∈ SLq2(A).
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Proof. — This is an immediate consequence of Proposition 4.9 and of the
relationship between the coactions τk : C[X,Y ]qk → SLq2⊗CC[X,Y ]qk and the
A–linear maps ρk(A) ∈ EndA(A[X,Y ]qk). �

The fact that the isomorphism A[X,Y ]q1 ⊗A A[X,Y ]qn → A[X,Y ]qn+1 ⊕
A[X,Y ]qn−1 between ρ1 ⊗A ρn and ρn+1 ⊕ ρn−1 comes from a C–linear iso-
morphism C[X,Y ]q1⊗C C[X,Y ]qn → C[X,Y ]qn+1⊕C[X,Y ]qn−1 will be crucial
for our consideration of traces in the next section.

4.5. The trace of ρn(A) for A ∈ SLq2(A)

After the hard work of Section 4.3 and Section 4.4, we now have ap-
propriate tools to compute for A ∈ SLq2(A) the trace of ρn(A) in terms of
the trace of A. The few computations that we did at the end of Section 4.1
should convince the reader that this result would be hard to obtain without
the heavy machinery of Sections 4.3–4.4.

Corollary 4.12. — For every
(
a b
c d

)
∈ SLq2(A),

Trace ρn
(
a b
c d

)
= Sn(a+ d)

where Sn is the n–th Chebyshev polynomial of the second kind.

Proof. — The property makes sense for all q, but we first restrict atten-
tion to the case where q is not a root of unity in order to apply Proposi-
tion 4.11.

Consider A =
(
a b
c d

)
∈ SLq2(A). By Proposition 4.11, the A–linear maps

ρ1(A)⊗Aρn(A) and ρn+1(A)⊕ρn−1(A) are isomorphic over C. By Lemma 4.1,
they consequently have the same trace. Therefore,(

Trace ρ1(A)
)(

Trace ρn(A)
)

= Trace
(
ρ1(A)⊗A ρn(A)

)
= Trace

(
ρn+1(A)⊕ ρn−1(A)

)
= Trace

(
ρn+1(A)

)
+ Trace

(
ρn−1(A)

)
and Trace ρn(A) therefore satisfies the same recurrence relation (4.1)–(4.2)
as the Chebyshev polynomials.

For n = 0, ρ0(A) = IdA and Trace ρ0(A) = 1. By definition of the
Chebyshev polynomial Sn(t) in (4.2), it follows that

Trace ρn(A) = Sn
(

Trace ρ1(A)
)
.

We already computed Trace ρ1(A) in Section 4.1. If A =
(
a b
c d

)
, then

ρ1(A) has matrix ( a cb d ) in the C–basis {X,Y } for A[X,Y ]q1 = A⊗C[X,Y ]q1.
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(Note that this is the transpose matrix.) It follows that Trace ρ1(A) = a+d,
which concludes our computation when q is not a root of unity.

The case where q is a root of unity follows from this generic case by con-
tinuity. To justify this continuity argument for an arbitrary algebra A, first
consider the case when A = SLq2, where we can make sense of continuity with
respect to q (for instance by considering SLq2 as an algebra over C[q, q−1]).
The algebra SLq2 admits a tautological SLq2–point I ∈ SLq2(SLq2), defined by
the identity algebra homomorphism I : SLq2 → SLq2. Then, Trace ρn(I) =
Sn(Trace I) ∈ SLq2 for every q by continuity from the case where q is not a
root of unity.

For a general algebra A and an A–point A ∈ SLq2(A), a little thought will
convince the reader that Trace ρn(A) ∈ A is the image of Trace ρn(I) ∈ SLq2
under the algebra homomorphism A : SLq2 → A; in particular, TraceA =
A(Trace I) by specialization to the case n = 1. Then,

Trace ρn(A) = A
(

Trace ρn(I)
)

= A
(
Sn(Trace I)

)
= Sn

(
A(Trace I)

)
= Sn(TraceA)

for every q, using the fact that A is an algebra homomorphism for the third
equality. �

Remark 4.13. — The author is grateful to the referee for pointing out the
reference [9], which provides a brute force proof of Corollary 4.12. The result
of [9] has the advantage of holding for the more general case of SLqn(A).

5. Miraculous cancellations

We now prove the main result of this article, namely Theorem 0.1 which
we rephrase as Theorem 5.1 below. Although we just encountered Chebyshev
polynomials Sn(t) of the second kind, the property involves the Chebyshev
polynomials Tn(t) of the first kind.

Note that, if an A–point A =
(
a b
c d

)
∈ SLq2(A) of SLq2 is upper triangular,

namely is such that c = 0, then necessarily d = a−1 by the quantum deter-
minant relation ad − q−1bc = 1 of Relation (3.2). As a consequence, A can
be written as A =

(
a b
0 a−1

)
with ba = qab. Similarly, any lower triangular

element of SLq2(A) is of the form
(
a 0
b a−1

)
with ba = qab.

Theorem 5.1. — Let A1, A2, . . . , Ak ∈ SLq2(A) be A–points of SLq2 such
that:

(1) each Ai is triangular of the form
(
ai bi

0 a−1
i

)
or
(
ai 0
bi a

−1
i

)
for some ai,

bi ∈ A (with biai = qaibi);
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(2) ai and bi commute with aj and bj whenever i 6= j, so that we can
make sense of the product A1A2 . . . An ∈ SLq2(A).

Then, if q2 is a primitive n–root of unity,

Tn
(

TraceA1A2 . . . Ak−1Ak
)

= TraceA(n)
1 A

(n)
2 . . . A

(n)
k−1A

(n)
k

where, for each i, A(n)
i =

(
an

i bn
i

0 a−n
i

)
or
(
an

i 0
bn

i a−n
i

)
is the A–point of SLq

n2

2

obtained from Ai =
(
ai bi

0 a−1
i

)
or
(
ai 0
bi a

−1
i

)
by replacing ai and bi with their

powers ani and bni , respectively.

Note that bni ani = qn
2
ani b

n
i since biai = qaibi. Also, qn2 is equal to ±1

since q2n = 1, and is always +1 when n is even.

Proof. — For notational convenience, we will reverse the indexing and
prove the equivalent statement that

Tn
(

TraceAkAk−1 . . . A2A1
)

= TraceA(n)
k A

(n)
k−1 . . . A

(n)
2 A

(n)
1 . (5.1)

For this, we will use Lemma 4.2 and Corollary 4.12, so that

Tn
(

TraceAkAk−1 . . . A2A1
)

= Sn
(

TraceAkAk−1 . . . A2A1
)
− Sn−2

(
TraceAkAk−1 . . . A2A1

)
= Trace ρn(AkAk−1 . . . A2A1)− Trace ρn−2(AkAk−1 . . . A2A1)

for the representations ρm : SLq2(A)→ EndA
(
A[X,Y ]qm

)
of Section 3.

We first compute these traces.

When Ai is lower triangular, the image of Xn−uY u ∈ A[X,Y ]qn under
ρn(Ai) is

ρn(Ai)(Xn−uY u) = ρn

(
ai 0
bi a

−1
i

)
(Xn−uY u) = (aiX)n−u(biX + a−1

i Y )u

= an−ui Xn−u
u∑
v=0

(
u

v

)
q2
bu−vi Xu−va−vi Y v

=
u∑
v=0

(
u

v

)
q2
q−v(u−v)an−u−vi bu−vi Xn−vY v,

using the Quantum Binomial Formula (1.1) of Section 1. In particular, if
we express ρn(Ai) in the basis {Xn−uY u;u = 0, 1, . . . , n} for A[X,Y ]qn, the
entries of the corresponding matrix are

ρn(Ai)vu =
{(

u
v

)
q2q
−v(u−v)an−u−vi bu−vi if v 6 u

0 if v > u.
(5.2)

Note that this matrix is upper triangular.
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Similarly, when Ai is upper triangular,

ρn(Ai)(Xn−uY u) = ρn

(
ai bi

0 a−1
i

)
(Xn−uY u) = (aiX + biY )n−u(a−1

i Y )u

=
n∑
v=u

(
n− u
n− v

)
q2
q−u(v−u)an−u−vi bv−ui Xn−vY v

and

ρn(Ai)vu =
{

0 if v < u(
n−u
n−v
)
q2q
−u(v−u)an−u−vi bv−ui if v > u. (5.3)

In particular,

Trace ρn(AkAk−1 . . . A2A1)
= Trace ρn(A1) ◦ ρn(A2) ◦ · · · ◦ ρn(Ak−1) ◦ ρn(Ak)

=
∑

u1,u2,...,uk∈{0,...,n}

ρn(A1)u1u2 ρn(A2)u2u3 . . .

. . . ρn(Ak−1)uk−1uk
ρn(Ak)uku1 (5.4)

and

Trace ρn−2(AkAk−1 . . . A2A1)

=
∑

v1,v2,...,vk∈{0,...,n−2}

ρn−2(A1)v1v2 ρn−2(A2)v2v3 . . .

. . . ρn−2(Ak−1)vk−1vk
ρn−2(Ak)vkv1 , (5.5)

where the terms ρn(Ai)vu are given by Equations (5.2) and (5.3).

We distinguish three types of terms in the sum of Equation (5.4), accord-
ing to the corresponding indices u1, u2, . . . , uk ∈ {0, . . . , n}:

(i) no ui is equal to 0 or n;
(ii) some but not all ui are equal to 0 or n;
(iii) all ui are equal to 0 or n;

We begin with the first type.

Lemma 5.2. — If no ui is equal to 0 or n, the term
Un(u1, . . . , uk) = ρn(A1)u1u2 ρn(A2)u2u3 . . . ρn(Ak−1)uk−1uk

ρn(Ak)uku1

of Equation (5.4) corresponding to u1, u2, . . . , uk ∈ {1, . . . , n− 1} is equal to
the term

Un−2(v1, . . . , vk)
= ρn−2(A1)v1v2 ρn−2(A2)v2v3 . . . ρn(Ak−1)vk−1vk

ρn−2(Ak)vkv1
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of Equation (5.5) corresponding to the indices v1, v2, . . . , vk ∈ {0, . . . , n− 2}
with vi = ui − 1.

Proof. — Set uk+1 = u1 and vk+1 = v1 to introduce uniformity in the
notation.

If Ai is lower triangular, Equation (5.2) gives

ρn(Ai)uiui+1 =
{(

ui+1
ui

)
q2q
−ui(ui+1−ui)a

n−ui+1−ui

i b
ui+1−ui

i if ui 6 ui+1

0 if ui > ui+1

while, using the property that vi = ui − 1,

ρn−2(Ai)vivi+1

=
{(

ui+1−1
ui−1

)
q2q
−(ui−1)(ui+1−ui)a

n−ui+1−ui

i b
ui+1−ui

i if ui 6 ui+1

0 if ui > ui+1.

Since
(
u
v

)
q2 = (u)q2

(v)q2

(
u−1
v−1
)
q2 , it follows that

ρn(Ai)uiui+1 =
(ui+1)q2

(ui)q2
qui−ui+1ρn−2(Ai)vivi+1

when Ai is lower triangular.

Similarly, when Ai is upper triangular,

ρn(Ai)uiui+1

=
{

0 if ui < ui+1(
n−ui+1
n−ui

)
q2q
−ui+1(ui−ui+1)a

n−ui+1−ui

i b
ui−ui+1
i if ui > ui+1.

and

ρn−2(Ai)vivi+1

=
{

0 if ui < ui+1(
n−ui+1−1
n−ui−1

)
q2q
−(ui+1−1)(ui−ui+1)a

n−ui+1−ui

i b
ui−ui+1
i if ui > ui+1,

Therefore

ρn(Ai)uiui+1 =
(n− ui+1)q2

(n− ui)q2
qui+1−uiρn−2(Ai)vivi+1

=
−q−2ui+1(ui+1)q2

−q−2ui(ui)q2
qui+1−uiρn−2(Ai)vivi+1

=
(ui+1)q2

(ui)q2
qui−ui+1ρn−2(Ai)vivi+1
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using the property that

(n− u)q2 = q2n−2u − 1
q2 − 1 = −q−2u q

2u − 1
q2 − 1 = −q−2u(u)q2

since q2n = 1.

As a consequence, we get the same formula whether Ai is upper or lower
triangular. Taking the product over all i,

Un(u1, . . . , uk) = Un−2(v1, . . . , vk)
k∏
i=1

(ui+1)q2

(ui)q2
qui−ui+1 = Un−2(v1, . . . , vk),

where the second equality comes from the fact that uk+1 = u1. This proves
Lemma 5.2. �

Lemma 5.3. — If some but not all indices ui are equal to 0 or n, the
term
Un(u1, . . . , uk) = ρn(A1)u1u2 ρn(A2)u2u3 . . . ρn(Ak−1)uk−1uk

ρn(Ak)uku1

of Equation (5.4) corresponding to u1, u2, . . . , uk ∈ {0, . . . , n} is equal to 0.

Proof. — This is a consequence of Lemma 1.1, which says that, because
q2 is a primitive n–root of unity, the quantum binomial coefficient

(
n
u

)
q2 is

equal to 0 for 0 < u < n.

For convenience, set uk+1 = u1 as in the proof of Lemma 5.2. By hypoth-
esis, there is then an index i such that 0 < ui < n and ui+1 = 0 or n.

Consider first the case when 0 < ui < n and ui+1 = 0. If Ai is lower
triangular, then ρn(Ai)uiui+1 = 0 by Equation (5.2), and consequently
Un(u1, . . . , uk) = 0. Otherwise, Equation (5.3) gives

ρn(Ai)uiui+1 =
(

n

n− ui

)
q2
an−ui
i bui

i = 0

by Lemma 1.1. This proves that Un(u1, . . . , uk) = 0 in this case.

Similarly, if 0 < ui < n and ui+1 = n, Equation (5.3) immediately shows
that Un(u1, . . . , uk) = 0 when Ai is upper triangular, and otherwise gives

ρn(Ai)uiui+1 =
(
n

ui

)
q2
q−ui(n−ui)a−ui

i bn−ui
i = 0

by Lemma 1.1, again proving that Un(u1, . . . , uk) = 0. �

Lemmas 5.2 and 5.3 show that, when computing

Tn(TraceAkAk−1 . . . A2A1)
= Trace ρn(AkAk−1 . . . A2A1)− Trace ρn−2(AkAk−1 . . . A2A1)
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using the expressions of Equations (5.4)–(5.5), the only terms left are∑
u1,u2,...,uk∈{0,n}

ρn(A1)u1u2 ρn(A2)u2u3 . . . ρn(Ak−1)uk−1uk
ρn(Ak)uku1

where

ρn(Ai)uiui+1 =


ani if ui = ui+1 = 0
bni if ui = 0 and ui+1 = n

0 if ui = n and ui+1 = 0
a−ni if ui = ui+1 = n

if Ai is lower triangular, and

ρn(Ai)uiui+1 =


ani if ui = ui+1 = 0
0 if ui = 0 and ui+1 = n

bni if ui = n and ui+1 = 0
a−ni if ui = ui+1 = n

if Ai is upper triangular.

As a consequence, comparing the general case to the case n = 1,

Tn(TraceAkAk−1 . . . A2A1) =
∑

u1,u2,...,uk∈{0,1}

ρ1
(
A

(n)
1
)
u1u2

ρ1
(
A

(n)
2
)
u2u3

. . .

. . . ρ1
(
A

(n)
k−1
)
uk−1uk

ρ1
(
A

(n)
k

)
uku1

= Trace ρ1
(
A

(n)
k A

(n)
k−1 . . . A

(n)
2 A

(n)
1
)

where A(n)
i =

(
an

i bn
i

0 a−n
i

)
or
(
an

i 0
bn

i a−n
i

)
is obtained from Ai =

(
ai bi

0 a−1
i

)
or(

ai 0
bi a

−1
i

)
by replacing ai and bi with ani and bni , respectively.

We already observed that, for an A–point A =
(
a b
c d

)
∈ SLq2(A), the

matrix of ρ1(A) in the basis {X,Y } for C[X,Y ]q1 is the transpose ( a cb d ), so
that Trace ρ1(A) = a+ d = TraceA. It follows that

Tn(TraceAkAk−1 . . . A2A1) = Trace ρ1
(
A

(n)
k A

(n)
k−1 . . . A

(n)
2 A

(n)
1
)

= TraceA(n)
k A

(n)
k−1 . . . A

(n)
2 A

(n)
1 .

This is exactly the relation (5.1) that we wanted to prove, which concludes
the proof of Theorem 5.1. �
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6. A positivity property

Many fewer cancellations occur when q is not a root of unity. This
can be precisely quantified by using a certain positivity property for
Tn
(

TraceA1A2 . . . Ak
)
.

Let A1A2 . . . Ak be a product of triangular matrices Ai =
(
ai bi

0 a−1
i

)
or(

ai 0
bi a

−1
i

)
∈ SLq2(A) satisfying the hypotheses of Theorems 0.1 or 5.1, except

that we are not requiring q to be a root of unity. Then, TraceA1A2 . . . Ak
can be written as a sum of monomials

∏k
i=1 ci with ci ∈ {ai, bi, a−1

i } and
therefore, for every polynomial P (t) ∈ Z[t] with integer coefficients,
P
(

TraceA1A2 . . . Ak
)
can be written as a sum of monomials of the form

±qξ
∏k
i=1 a

αi
i b

βi

i with integer powers ξ, αi, βi ∈ Z (with βi > 0).

The following result states that, when P (t) is one of the Chebyshev poly-
nomials Sn(t) or Tn(t), the signs ± can always be taken to be +.

Proposition 6.1. — Under the hypotheses of Theorems 0.1 or 5.1 but
without any assumption on the parameter q ∈ C − {0}, the evaluations
Sn
(

TraceA1A2 . . . Ak
)
and Tn

(
TraceA1A2 . . . Ak

)
∈ A of the Chebyshev

polynomials can be written as a sum of positive monomials of the form
+qξ

∏k
i=1 a

αi
i b

βi

i with integer powers ξ, αi, βi ∈ Z.
Proof. — The case of Sn(t) is relatively simple. We computed

Sn
(

TraceA1A2 . . . Ak
)

= Trace ρn(A1A2 . . . Ak)
in the course of the proof of Theorem 5.1. In particular, Equations (5.2)–
(5.4) show that, with no assumption on q, Trace ρn(A1A2 . . . Ak) is a sum of
positive monomials +qξ

∏k
i=1 a

αi
i b

βi

i . Indeed, it is well-known (and also fol-
lows from the Quantum Binomial Formula (1.1)) that the quantum binomial
coefficients

(
u
v

)
q2 are polynomials in q2 with nonnegative integer coefficients.

The proof for Tn(t) is more elaborate. We want to show that, when com-
puting
Tn
(

TraceA1A2 . . . Ak
)

= Trace ρn(A1A2 . . . Ak)− Trace ρn−2(A1A2 . . . Ak),
each monomial of Trace ρn−2(A1A2 . . . Ak) cancels out with a monomial of
Trace ρn(A1A2 . . . Ak); this can be seen as a weaker form of Lemma 5.2. For
this, we will give a different computation of Trace ρn(A1A2 . . . Ak).

This computation goes back to the principles underlying the Quantum
Binomial Formula. Let C〈X,Y 〉 be the free algebra generated by the set
{X,Y }. Namely, C〈X,Y 〉 consists of all formal polynomials P (X,Y ) in non-
commutating variables X and Y , and these polynomials are multiplied with-
out simplifications. In particular, the quantum plane C[X,Y ]q is the quotient
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of C〈X,Y 〉 by the ideal generated by Y X− qXY , which gives a natural pro-
jection π : C〈X,Y 〉 → C[X,Y ]q.

Similarly, consider A〈X,Y 〉 = A ⊗ C〈X,Y 〉, and the projection IdA⊗π
which we will also denote as π : A〈X,Y 〉 → A[X,Y ]q for short.

Let A〈X,Y 〉n be the linear subspace of A〈X,Y 〉 consisting of all ho-
mogeneous polynomials of degree n. Namely, A〈X,Y 〉n consists of all finite
sums

P (X,Y ) =
∑
u

αuZu1Zu2 . . . Zun

where the coefficients αu are in A and where each variable Zuv is equal to
X or to Y . In particular, A〈X,Y 〉n is isomorphic to A2n as an A–module.
For comparison, remember that A[X,Y ]qn is isomorphic to An+1.

The representation ρn : SLq2(A) → EndA
(
A[X,Y ]qn

)
lifts to a represen-

tation ρ̂n : SLq2(A)→ EndA
(
A〈X,Y 〉n

)
defined by the property that

ρ̂n
(
a b
c d

) (
P (X,Y )

)
= P (aX + bY, cX + dY )

for every homogeneous polynomial P (X,Y ) ∈ A〈X,Y 〉 of degree n in the
noncommuting variables X and Y (and with coefficients in A).

To give a more combinatorial description of this action, note that
every element of A〈X,Y 〉n can be uniquely written as a sum of
monomials αZ1Z2 . . . Zn where α ∈ A and each Zu ∈ {X,Y }. Then,
ρ̂n
(
a b
c d

)
(αZ1Z2 . . . Zn) ∈ A〈X,Y 〉n is the sum of all monomials

α′Z ′1Z
′
2 . . . Z

′
n obtained from αZ1Z2 . . . Zn by replacing each Zu with:

• either aX or bY , if Zu = X;
• either cX or dY , if Zu = Y ,

(and pushing all coefficients of A to the front).

As a consequence,

ρ̂n(A1A2 . . . Ak)(αZ1Z2 . . . Zn)
= ρ̂n(Ak) ◦ ρ̂n(Ak−1) ◦ · · · ◦ ρ̂n(A1)(αZ1Z2 . . . Zn)

can be described as follows. LetM(αZ1Z2 . . . Zn) be the set of all sequences
M = (Mi)i=0,1,...,k of monomials Mi = αiZi1Zi2 . . . Zin ∈ A〈X,Y 〉n such
that

(1) M0 = αZ1Z2 . . . Zn;
(2) Mi is obtained from Mi−1 by replacing each Z(i−1)u with

• aiX or biY if Z(i−1)u = X and Ai =
(
ai bi

0 a−1
i

)
;

• a−1
i Y if Z(i−1)u = Y and Ai =

(
ai bi

0 a−1
i

)
;
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• aiX if Z(i−1)u = X and Ai =
(
ai 0
bi a

−1
i

)
;

• biX or a−1
i Y if Z(i−1)u = Y and Ai =

(
ai 0
bi a

−1
i

)
.

Then, as we expand ρ̂n(A1A2 . . . Ak)(αZ1Z2 . . . Zn) ∈ A〈X,Y 〉n, we see that
its decomposition into monomials is given by

ρ̂n(A1A2 . . . Ak)(αZ1Z2 . . . Zn) =
∑

M∈M(αZ1Z2...Zn)

Mk

where Mk is the last term of the sequence
M = (Mi)i=0,1,...,k ∈M(αZ1Z2 . . . Zn).

As a consequence, if we use the same notation for the monomial
Xn−uY u=X . . .XY . . . Y ∈A〈X,Y 〉n and for its image Xn−uY u∈A[X,Y ]qn
under the projection π : A〈X,Y 〉n → A[X,Y ]qn,

ρn(A1A2 . . . Ak)(Xn−uY u) =
∑

M∈M(Xn−uY u)

π(Mk).

Finally, let M′(Xn−uY u) be the set of monomial sequences M ∈
M(Xn−uY u) whose contribution π(Mk) belongs to AXn−uY u. For such
a monomial sequence M = (Mi)i=0,1,...,k, let α(Mk) ∈ A be the coeffi-
cient such that π(Mk) = α(Mk)Xn−uY u. We can then compute the trace of
ρn(A1A2 . . . Ak) by using the basis {Xn−uY u;u = 0, 1, . . . , n} for C[X,Y ]qn
and A[X,Y ]qn = A⊗ C[X,Y ]qn, which gives

Trace ρn(A1A2 . . . Ak) =
n∑
u=0

∑
M∈M′(Xn−uY u)

α(Mk). (6.1)

Similarly

Trace ρn−2(A1A2 . . . Ak) =
n−2∑
v=0

∑
M∈M′(Xn−v−2Y v)

α(Mk). (6.2)

The expression (6.1) for Trace ρn(A1A2 . . . Ak) was obtained by using the
basis {Xn−uY u;u = 0, 1, . . . , n} for A[X,Y ]qn. For comparison with (6.2), it
is more convenient to use the other basis {Xn, Y n} ∪ {Xn−v−2Y vXY ; v =
0, 1, . . . , n− 2} for A[X,Y ]qn. This gives the expression

Trace ρn(A1A2 . . . Ak) =
∑

M ′∈M′(Xn)

α(M ′k) +
∑

M ′∈M′(Y n)

α(M ′k)

+
n−2∑
v=0

∑
M ′∈M′(Xn−v−2Y vXY )

β(M ′k) (6.3)
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where, forM ′= (M ′i)i=0,1,...,k ∈M′(Xn−v−2Y vXY ), the coefficient β(M ′k)∈
A is defined by the property that π(M ′k) = β(M ′k)Xn−v−2Y vXY .

Note that, because of the commutativity and q–commutativity properties
of the quantities ai, bi, X, Y , all terms α(Mk) and β(M ′k) in (6.2)–(6.3) are
positive monomials of the form +qξ

∏k
i=1 a

αi
i b

βi

i with ξ, αi, βi ∈ Z and
βi > 0.

We now compare (6.2) and (6.3). Every monomial sequence M =
(Mi)i=0,1,...,k ∈ M′(Xn−v−2Y v) gives rise to a monomial sequence M ′ ∈
M′(Xn−v−2Y vXY ) defined by the property that M ′i = MiXY for every i.
Indeed, rewriting

M ′i = Mi(aiX)(a−1
i Y )

shows thatM ′ = (M ′i)i=0,1,...,k really satisfies the inductive property defining
M′(Xn−v−2Y vXY ). In addition, when M ′ ∈ M′(Xn−v−2Y vXY ) is thus
associated to M ∈M′(Xn−v−2Y v),

π(M ′k) = π(MkXY ) = π(Mk)π(X)π(Y ) = α(Mk)Xn−v−2Y vXY

so that β(M ′k) = α(Mk).

Therefore, when computing

Tn
(

TraceA1A2 . . . Ak
)

= Trace ρn(A1A2 . . . Ak)− Trace ρn−2(A1A2 . . . Ak),

every monomial α(Mk) occurring in (6.2) cancels out with a monomial β(M ′k)
of (6.3). It follows that Tn

(
TraceA1A2 . . . Ak

)
is the sum of the remain-

ing coefficients α(Mk) and β(M ′k) of (6.3). We already observed that these
monomials are positive, which concludes the proof of Proposition 6.1. �

Proposition 6.1 enables us to precisely determine the number of monomi-
als in Tn

(
TraceA1A2 . . . Ak

)
under the hypothesis that there are no extra-

neous simplifications. This means that q is transcendental and, since we can
always assume that the algebra A is generated by the entries ai, bi of the
matrices Ai, that A is the algebra defined by the generators a±1

i , bi and by
the relations that biai = qaibi and that ai, bi commute with aj , bj whenever
i 6= j. In other words, A is the algebra

⊗k
i=1 C[a±1

i , bi]q.

In this case, every element of A =
⊗k

i=1 C[a±1
i , bi]q has a unique decom-

position as a sum of monomials ξ
∏k
i=1 a

αi
i b

βi

i with ξ ∈ C, αi ∈ Z, βi ∈ Z
and βi > 0.

Proposition 6.2. — Suppose that q is transcendental, and that A =⊗k
i=1 C[a±1

i , bi]q. Let triangular matrices Ai =
(
ai bi

0 a−1
i

)
or
(
ai 0
bi a

−1
i

)
∈

SLq2(A) be given for i = 1, 2, . . . , k, and consider the positive integer t0 =
TraceA(0)

1 A
(0)
2 . . . A

(0)
k where A(0)

i = ( 1 1
0 1 ) if Ai =

(
ai bi

0 a−1
i

)
and A(0)

i = ( 1 0
1 1 )
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if Ai =
(
ai 0
bi a

−1
i

)
. Then, for every n, Tn

(
TraceA1A2 . . . Ak

)
is the sum of

exactly

Tn(t0) =
(
t0 +

√
t20 − 4

2

)n
+
(
t0 −

√
t20 − 4

2

)n
positive monomials of the form +qξ

∏k
i=1 a

αi
i b

βi

i with ξ, αi, βi ∈ Z and
βi > 0.

Proof. — We already proved in Proposition 6.1 that Tn
(

TraceA1A2...Ak
)

is a sum of monomials of the type indicated. The only issue is to count their
number.

Because of the positive signs, the number of these monomials can be
computed by letting q and the ai, bi tend to 1. Under this limiting pro-
cess, TraceA1A2 . . . Ak approaches t0, and the number of monomials in the
expansion for Tn

(
TraceA1A2 . . . Ak

)
is therefore equal to Tn(t0).

The formula Tn(t0) =
(
t0+
√
t20−4

2

)n
+
(
t0−
√
t20−4

2

)n
is provided by Lem-

ma 4.4. �
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