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Densely related groups *)
YVES CORNULIER (1) AND ADRIEN LE Boubpkc (?)
ABSTRACT. — We study the class of densely related groups. These are finitely

generated (or more generally, compactly generated locally compact) groups satisfying
a strong negation of being finitely presented, in the sense that new relations appear
at all scales. Here, new relations means relations that do not follow from relations
of smaller size. Being densely related is a quasi-isometry invariant among finitely
generated groups.

We check that a densely related group has none of its asymptotic cones simply
connected. In particular a lacunary hyperbolic group cannot be densely related.

We prove that the Grigorchuk group is densely related. We also show that a
finitely generated group that is (infinite locally finite)-by-cyclic and which satisfies a
law must be densely related. Given a class C of finitely generated groups, we consider
the following dichotomy: every group in C is either finitely presented or densely
related. We show that this holds within the class of nilpotent-by-cyclic groups and
the class of metabelian groups. In contrast, this dichotomy is no longer true for the
class of 3-step solvable groups.

RESUME. — On s’intéresse a la classe des groupes densément présentés. Il s’agit
des groupes de type fini (ou plus généralement des groupes localement compacts com-
pactement engendrés) dans lesquels de nouvelles relations apparaissent a intervalles
réguliers. Une relation est dite nouvelle si elle n’est pas conséquence de relations de
longueur plus petites. Pour un groupe de type fini, étre densément présenté est un
invariant de quasi-isométrie.

On vérifie qu’un groupe densément présenté ne peut pas avoir de céne asymp-
totique simplement connexe. En particulier un groupe lacunaire hyperbolique n’est
jamais densément présenté.

On montre que le groupe de Grigorchuk est densément présenté. On prouve éga-
lement que tout groupe de type fini (non virtuellement cyclique) qui est (localement
fini)-par-Z et qui satisfait une loi, est densément présenté. Etant donnée une classe
C de groupes de type fini, on considére 'alternative suivante: tout groupe dans C
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est soit finiment présenté, soit densément présenté. On montre que cette alterna-
tive est satisfaite par la classe des groupes nilpotents-par-cyclique et la classe des
groupes métabéliens. A contrario, cette dichotomie n’est plus vraie pour les groupes
résolubles de classe 3.

1. Introduction

If G is a group and S a generating subset, a relation in G is by definition
an element of the kernel of the natural map Fs — G. A relation w € Fg
is said to be generated by a subset R C Fg if w belongs to the normal
subgroup of Fg generated by R. Equivalently, w can be written as a product
of conjugates of elements of R*!. To every pair (G, S), where G is a group
and S a generating subset, we study the relation range Rg(G), which is
the set of lengths of relations in G that are not generated by relations of
smaller length. Here the length of an element of Fig refers to the word length
associated to S. The set Rg(G) is finite precisely when the kernel of Fg — G
is normally generated by elements of bounded length. When S is finite, this
exactly means that the group G is finitely presented. The relation range was
introduced by Bowditch in [9], but has not been explicitly considered since
then, except in the small cancelation case [30].

The study of the relation range takes part in a program to find “measures”
of the failure of finite presentability for finitely generated groups. Several
approaches, of independent interest, have been carried out so far:

e In [5], several strengthenings of infinite presentability have been in-
vestigated, in terms of the study of the poset of normal subgroups
contained in the kernel of epimorphisms from finitely presented
groups to a given finitely generated group. However, these prop-
erties are not known to be quasi-isometry invariant, or are known
not to be (see Remark 4.5).

e In [13], to one finitely generated group G, one associates the set
of nonprincipal ultrafilters w such that the asymptotic cone
Cone” (G, (1/n)) is simply connected. This is obviously a quasi-
isometry invariant.

The study of the relation range is in spirit closer to the latter one, but it
is not based on asymptotic cones (although we make a connection at some
point) and therefore more of combinatorial flavor. The relation range has
a distinct behavior than the aforementioned invariant from [13], and may
detect properties not seen by this invariant (see Remark 3.6).
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We stress out that the relation range of a finitely generated group is not
defined in terms of a presentation of the group. Moreover in general there is
no connection between the relation range and the set of lengths of relators in
a given presentation of the group, even in the case of a minimal presentation
(see Remark 3.7).

We should mention that there exist other notions turning out to be
strengthenings of infinite presentability, such as the negation of being of ho-
mological type FP5 over a given commutative ring. This is a quasi-isometry
invariant; Alonso’s proof from [1] in the case of the ring Z carrying over the
general case.

DEFINITION 1.1. — A finitely generated group G is densely related if
there exists ¢ > 0 such that for allmn > 1, we have Rg(G)N[n,cn] # 0. (This
does not depend on the finite generating subset S, see Corollary 1.6.)

These are groups in which new relations (that is, not generated by rela-
tions of smaller length) appear at all scales, in a sense precisely defined in the
sequel. A typical example of a densely related group is the wreath product
I’ = ZZ, which admits the presentation (¢, z | [t"at™",z] = 1 for all n > 1).
By a result of Baumslag [3], this presentation is minimal. The relation
[t"axt™™, z] is not generated by relations of smaller length, and therefore
Ryt,23(I') contains the integer 4n + 4 for every n > 1.

Recall that Gromov proved that if a finitely generated group G has all
its asymptotic cones simply connected, then G is finitely presented and has
a polynomially bounded Dehn function [21, §5.F]. In turns out that simple
connectedness of one asymptotic cone of G already has consequences, namely
that G cannot be densely related (see Proposition 3.16 for a more precise
result):

THEOREM 1.2 (Corollary 3.17). — Densely related finitely generated
groups have no simply connected asymptotic cone.

Any (non-trivial) wreath product is an example of a densely related group
(Proposition 4.11). The following construction provides other kind of exam-
ples: Let G be a non-Hopfian group, and let ¢ : G — G be a surjective
endomorphism of G’ with non-trivial kernel. We denote by K, the increasing
union of the normal subgroups ker(¢”), n > 1, and by G, = G/K,, the
associated quotient.

PRrOPOSITION 1.3 (Corollary 4.20). — Let G be a compactly generated
locally compact group. Assume that ¢ is a continuous surjective and non-
injective endomorphism of G such that K, is a closed subgroup of G. Then
the group G, = G/K,, is densely related.
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Examples of groups covered by Proposition 1.3 are the semidirect prod-
ucts Z[1/pg] x Z, where the action is by multiplication by p/q, where p, q > 2
are coprime integers. See Section 4.3 for more examples.

Proposition 1.3 is a particular case of a more general construction inves-
tigated in Section 4.3. Let G be a group with a finite index normal subgroup
H, which come with a finite set ® = {p;} of surjective homomorphisms
v; + H — G. Under appropriate assumptions on G, H and ® (see Sec-
tion 4.3), this naturally defines an increasing sequence of normal subgroups
K, <G, so that the groups G/K,, form a directed system. We show that the
associated direct limit G/ K is always densely related (Theorem 4.15). An
example of group which may be obtained via this construction is the Grig-
orchuk group & introduced in [17], so that we obtain the following result.

THEOREM 1.4. — The Grigorchuk group & is densely related. In partic-
ular no asymptotic cone of & is simply connected.

Finitely generated groups that are not densely related are called lacunary
presented. Of course this includes finitely presented groups, but here we are
especially interested by infinitely presented ones.

The idea of considering sequences of relations of sparse lengths was used
by Bowditch in order to provide a continuum of pairwise non-quasi-isometric
infinitely presented small cancelation groups [9]. It was then shown by
Thomas and Velickovic that this yields the first example of a finitely gener-
ated group having non-homeomorphic asymptotic cones (more precisely, one
asymptotic cone that is a real tree, and one asymptotic cone that is not sim-
ply connected) [31]. This motivated the introduction of lacunary hyperbolic
groups (groups with at least one asymptotic cone a real tree) by Olshan-
skii, Osin and Sapir [26]. They showed that this class of groups is actually
very large. These are examples of groups that are lacunary presented, not all
of which being finitely presented. However, the class of lacunary presented
groups is much larger (see Remark 3.19).

Given A, B C Ry, we write A < B if there exists ¢ > 0 such that for
every a € A, there exists an element of B in the interval [c™'a,ca]. We
write A ~ B when A < B and B < A, and we say that A, B are at finite
multiplicative Hausdorff distance. This defines an equivalence relation for
subsets of R, which identifies all non-empty finite subsets.

The following result is a particular case of Theorem 2.3, which holds in
the more general context of connected graphs. We refer to Section 2.3 for
the relevant terminology.
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THEOREM 1.5. — Let G,S and G', S’ be two pairs of groups and gener-
ating subsets. If the metric space (G,dg) is a large-scale Lipschitz retract of
(G/,ds/), then Rs(G) < RS/(G/).

COROLLARY 1.6 (Bowditch). — If the metric spaces (G,dg) and (G',dg)
are quasi-isometric, then Rs(G) ~ Rg:/(G').

Corollary 1.6 implies in particular that if G is endowed with a (possibly
discrete) locally compact topology, and if S is a compact generating subset,
then the set Rg(G) does not depend, up to finite multiplicative Hausdorff
distance, on the choice of S. We denote by R(G) the associated equivalence
class, and we call R(G) the relation range of the group G. According to
Corollary 1.6, the relation range R(G) in an invariant of the quasi-isometry
class of G.

In this setting, we have the following two extreme situations:

e R(G) is finite. When G is a finitely generated group, the fact that
R(G) is finite exactly means that G is finitely presented. More gen-
erally in the locally compact setting, the groups having a finite re-
lation range are precisely the compactly presented groups. For an
introduction to compactly presented groups, we refer the reader to
the book [12].

e R(G) ~ N. By definition the groups G such that R(G) ~ N are the
densely related groups.

It is natural to ask which subsets of N are, up to multiplicative Haus-
dorff distance, the relation range of a finitely generated group. The easy
answer is: all of them. Indeed we can start from the above presentation of
Z ! 7Z and choose an arbitrary subset of relators. Namely, given any subset
I € N {0}, defining 'y = (¢, x| [t"«t™",z] = 1 for all n € I), the relation
range of (I'y, {t,z}) is equal to {0} U (41 +4), and every non-empty subset of
N is at finite Hausdorff distance to a subset of this form. As a consequence,
the relation range distinguishes continuum many quasi-isometry classes of
groups, a fact that was established by Bowditch in [9] (using small cancela-
tion rather than the previous presentation). Bowditch’s strategy, combined
with work of Olshanskii-Osin—Sapir [26], actually shows that every subset
I C N such that I » N is the relation range of a finitely generated lacunary
hyperbolic group (see Section 4.1).

Still, it remains natural to ask the same question within more restricted
classes of groups. First recall that if P, Q are properties, a group is said to be
P-by-Q when there is a normal subgroup with P whose associated quotient
has O.
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PROPOSITION 1.7. — Ewery subset of N is (equivalent to) the relation
range of a (3-nilpotent locally finite)-by-abelian finitely generated group.

Note in particular that infinitely presented solvable groups can be la-
cunary presented. In contrast, non-elementary lacunary hyperbolic groups
are never solvable. Indeed, more generally they cannot satisfy a law [16,
Cor. 6.13]. Recall that a group G satisfies a law if there exists a non-trivial
group word w(zy,...,xx) in a free group such that w(gy,...,gx) = 1 for all
g1,---,9k € G.

Now given a certain class of groups, we want to study the behavior
of the relation range within this class. Proposition 1.7 says that the class
of amenable (and even solvable) groups is not yet sufficiently restrictive,
whereby the necessity to focus on smaller classes of groups. The following
result provides classes of finitely generated groups for which the behavior of
the relation range is completely understood.

THEOREM 1.8. — Let G be a finitely generated group. Assume that one
of the following holds:

(1) G is metabelian, or more generally center-by-metabelian;
(2) G is nilpotent-by-cyclic.

Then G is either finitely presented or densely related.

In combination with Theorem 1.2, this implies the following:

COROLLARY 1.9. — Let G be as in Theorem 1.8. If G admits one simply
connected asymptotic cone, then G is finitely presented.

Recall that it follows from Bieri-Strebel theorem that a (non virtually
cyclic) finitely generated group G that is (locally finite)-by-cyclic is infinitely
presented [7]. By a construction due to Olshanskii, Osin and Sapir [26, §3.5],
(locally finite)-by-cyclic groups are not always densely related. Moreover,
although we will not go into this direction here, the flexibility of their con-
struction suggests that the relation range of (locally finite)-by-cyclic groups
may be arbitrary. The following result shows that, under the additional as-
sumption that the group satisfies a law, the relation range is forced to be as
large as possible.

THEOREM 1.10. — Let G = N X Z be a finitely generated group, where
N is an infinite locally finite subgroup. If G satisfies a law, then G is densely
related. In particular G has no simply connected asymptotic cone.

The existence of a law in a finitely generated group or in some large
enough subgroup was already known to have consequences at the level of
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asymptotic cones. For instance if G satisfies a law then no asymptotic cone
of G can be tree-graded in the sense of Drutu and Sapir [16, Cor. 6.13]. Also if
G has a subgroup H of relative exponential growth that satisfies a law, then
no asymptotic cone of G can be real tree [26, Th. 3.18 (c)], [23, Th. 1.4]. The
idea is that the existence of a law prevents ultraproducts from containing free
subgroups, and this has consequences on their possible transitive isometric
group actions. The approach of Theorem 1.10 is different in the sense that
the existence of a law is interpreted directly at the level of the group (rather
than ultraproducts) in order to produce appropriate relations.

A common feature of the proofs of Theorem 1.8 and Theorem 1.10 is
the study of the relation range of finitely generated groups with a given
homomorphism onto the group Z. Recall that given 7 : G — Z, we say that
the action of Z contracts into a finitely generated subgroup of G if there is a
decomposition of G as an ascending HNN-extension over a finitely generated
group whose associated homomorphism onto Z is equal to .

THEOREM 1.11. — Let G = M x Z be a finitely generated group satis-
fying a law. Then either the action of Z contracts into a finitely generated
subgroup of M, or the group G is densely related.

Finally we end this introduction with the following problem. While the
class of finitely generated linear groups (that is, isomorphic to a subgroup
of GL,,(K) for some n and some field K) contains both finitely presented
groups and densely related groups (e.g. the wreath product Z?Z), we do not
know any other behavior of the relation range within this class of groups.

QUESTION 1.12. — Is it true that every finitely generated linear group
is either finitely presented or densely related?

We point out that a positive answer to this question would imply the
non-existence of infinitely presented linear lacunary hyperbolic groups, and
the existence of such groups was asked by Olshanskii, Osin and Sapir in [26].
We refer to Section 3.4 for details.

Outline

This article is organized as follows. Section 2 introduces the analogue of
the relation range for graphs, and contains the proof of Theorem 1.5. In
Section 3 we establish preliminary results on the relation range and make
the connection with asymptotic cones (Theorem 1.2). Finally the study of
the relation range for specific classes of groups is carried out in Section 4,
which contains the proofs of all other results stated in the introduction.
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2. Relation range of graphs

Following [9], this section introduces the analogue of the relation range
in the setting of connected graphs.

2.1. Equivalence relation on subsets of R

Given two subsets A, B of Ry, we write A 5 B if there exists ¢ > 0 such
that there is an element of B in the interval [¢~!a, ca] for every a € A. The
relation A ~ B defined by A < B and B < A is an equivalence relation on
the set of subsets of Ry. Equivalently, we have A ~ B if and only if A, B
are at finite multiplicative Hausdorff distance, i.e. log(A) and log(B) are at
finite Hausdorff distance. The class of a subset A will be denoted [A]. We
leave as an exercise the verification that the operation [A]U[B] = [AU B] is
well defined, and that the relation defined by [A] C [B] if there exist A’ ~ A
and B’ ~ B such that A’ C B’, is a partial order on the set of equivalence
classes.

2.2. Definition for graphs

Let X be a graph. A path « of length n > 0 in X is a sequence of vertices
Zg, - .., Ty such that z; and x;4; are adjacent for every ¢ =0,...,n—1. We
say that x¢ and z,, are respectively the inital point and the endpoint of a.
We say that « is a loop if g = z,,.

Assume now that X is a connected graph, and choose a base point zy € X.
For every n > 0, we consider the subgroup W%n) (X, zp) of m1 (X, zo) generated
by loops of the form p~! - a - p, where p is a path with initial point g, and
« is a loop (based at the endpoint of p) of length at most n. The subgroup

7r§n)(X, xo) is normal in (X, x0), and clearly W%n)(X, xp) is a subgroup
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of ng)(X, xo) for m > n. Note that m(X,x¢) is the increasing union of

the subgroups ﬂgn) (X, z0). We take the convention that 7T(71)(X, Zo) is the
trivial subgroup.

DEFINITION 2.1. — We denote by ®(X) the set of integers n > 0 such

that 7T§n)(X, xg) properly contains ﬂgnfl)(X, x0). This does not depend on xg.

For simplicity we will use the same notation for ®(X) and its ~-class.

Remark 2.2. — For every integer k > 1, the set ®(X) is at finite multi-
plicative Hausdorff' distance to the set of integers n such that 7T§kn)(X ,Zo)
properly contains W%nfl) (X, ).

2.3. Quasi-isometry invariance

In this paragraph we study the behavior of ®(X) under large scale Lips-
chitz retracts of connected graphs.

A map f: X — Y between two metric spaces is (C,C”)-LS-Lipschitz
(where LS stands for Large-Scale) if

d(f(x), f(z")) < max(Cd(z,z"),C’) for all z,2" € X;

and f is LS-Lipschitz if it is (C, C")-LS-Lipschitz for some constants C, C".
The space X is an LS-Lipschitz retract of Y if there are LS-Lipschitz maps
X — Y — X whose composite map is at bounded distance to the identity
map of X.

THEOREM 2.3. — Let X,Y be connected graphs. Assume that X is an
LS-Lipschitz retract of Y. Then [®(X)] C [®(Y)]. In particular, if X and Y
are quasi-isometric then [®(X)] = [®(Y)].

Let us proceed to prove the theorem. It will follow from the more quan-
titative Lemma 2.5.

If X is a metric space and ¢ > 0, let R.(X) be the Rips complex: this is
the simplicial complex whose set of vertices is X and there is a n-simplex
between any n + 1 points pairwise at distance < ¢. (We only consider the
Rips complex as a topological space, when endowed with the usual inductive
limit topology.)

If f: X — Y maps any two points at distance < ¢ to points at distance
< ¢, then it induces a map f : R.(X) — Ry (Y), defined to be equal to f
on vertices and extended to be affine on simplices; then f is continuous and
f — f is functorial. In particular:
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o if fis (C,C")-LS-Lipschitz then for all ¢ > C’/C, f induces a map
fiRA(X) = Ree(Y);

e if f has distance < k to the identity, i.e. d(f(x),x) < kforallz € X,
then d(f(x), f(z')) < d(z,2") + 2k, so this defines f from R.(X) to
Rejar(X) for all ¢ > 0.

LEMMA 2.4. — If f has distance < k to the identity then f:R(X)—
Ret21(X) is homotopic to i, where i is the identity of X.

Proof. — We write coordinates in an (n + 1) simplex of vertices (zo, ...,
T,) as .. \iz;, where \; € [0,1] and Y A\; = 1. Note that when two of the
x; are equal this is meaningful and lies in a smaller simplex. For ¢ € [0, 1], we
define v, : D7 Ny = >or (L—8) N + Y; tAif(z;). We need to check this is
meaningful. First, if (x;) forms a simplex, then d(z;, f(x;)) < d(z;,z;) + k
and d(f(z;), f(z;)) < d(z;, ;) + 2k, hence the z; and f(z;) together form
a simplex in R.4or (possibly there are some equalities z; = f(z;)). We also
need to check that the definition of «; matches between different simplices,
and this is the case.

To check continuity, we first observe that by definition of the inductive
limit topology, it is enough to check continuity on finite subcomplexes (i.e. on
F x [0,1] where F ranges over finite subcomplexes of R.(X)). Since such
a finite subcomplex maps into a finite subcomplex, this is equivalent to
checking the continuity when the simplices are endowed with some standard
metric, for instance the Euclidean metric with edges of length 1.

The formula being Lipschitz in all variables (\;) and ¢, the map (¢, z) —
~¢(z) is continuous and defines a homotopy between f and ¢ (note that the
x; lying on a discrete set, there is no continuity issue at this level). (|

For two path-connected metric spaces Z1, Zs, a continuous map f : Z; —
Z5 is said to be mi-injective (respectively mp-surjective) if the induced map
f« at the level of fundamental groups is injective (respectively surjective).

Now we fix a base-point on X and we need the following condition on X:
there exists ¢g such that for all ¢ > ¢,
the inclusion map R, (X) — R.(X) is mi-surjective. (%)

This is ensured by some coarse geodesic assumptions such as: for every ¢ > ¢y,
for any two points at distance < ¢+ 1 there is a third point at distance < ¢
from both. This in particular holds with ¢y = 1 in a combinatorial connected
graph.

We fix another metric space Y that also satisfies (x) (with the same c¢g).
We also fix inverse quasi-isometries f, g between X and Y. We can assume

- 628 —



Densely related groups

(increasing c¢q if necessary) that f : X — Y and g : Y — X are (C,Cc)-
LS-Lipschitz and (C’, ¢p)-LS-Lipschitz for some C,C’ > 1. We assume all
these maps are basepoint-preserving and that g o f has distance < ¢¢/2 to
the identity of X. (We use nothing on f o g, hence we just suppose that X
is a Ql-retract of Y.)

For a metric space Z, we denote by W(Z) is the set of r such that
R.(Z) — R2.(Z) is not m-injective. Note that when Z is a combinato-
rial connected graph, we have U(Z) ~ ®(Z), so that the following lemma
implies Theorem 2.3.

LEMMA 2.5. — There exists 1o > 0 and s > 1 such that if r > rg and
R.(X) — Roy(X) is not m -injective, then Ros—1,.(Y) — Racr(Y) is not
1 -injective.

In particular, up to finite Hausdorff multiplicative distance, we have the
inclusion of ¥(X) into U(Y).

Proof. — Fix a positive number ¢ satisfying ¢ < min((C’C)~1,1/2). Fix
r > g lcy such that R,.(X) — Ra,.(X) is not m-injective.

Assume by contradiction that Rcog,(Y) — Racr(Y) is m-injective. Then
we have the following diagram of continuous maps, where the horizontal ar-
rows are standard inclusions and the top square commutes (for each vertical
arrow, a simple inequality shows that it is well-defined).

R, (X) —— Ror(X)

l I

!
Regr(Y) —— Racr(Y)

lg
Recrgr(X)

The upper square induces a commutative square of maps between the
fundamental groups. Pick a non-trivial element v € (R, (X)) having a
trivial image in 71 (R2,(X)). The assumption (x) implies that v can be chosen
to lie in 1 (R4 (X)).

Composing (right and then down), we see that + has a trivial image
in 71 (Reogr(Y)). The injectivity of Reogr(Y) — Racr(Y) then implies that
f(y) € m1(Regr(Y)) is trivial. Again composing by ¢, it follows that g o
f maps v to a trivial element in 71(Rcrcqr(X)). On the other hand, by
Lemma 2.4, go f, as a map from Ryr(X) t0 Ruax(c'Cargree) (X), 18
homotopic to the identity. Hence the identity maps v to a trivial
element in 71 (Rmax(c’Cqr,gr4c0)(X)). The upper bound on ¢ implies that
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max(C'Cqr, qr + ¢o) < r. Hence we obtain that the image of v in 71 (R, (X))
is trivial, which is a contradiction. O

3. Relation range of a group
3.1. Definition

Let G be a group, and S a generating subset of G, so that we have a
short exact sequence

1— N —Fs — G —1,

where Fg is the free group on S. For every n > 0, we let N,, be the normal
subgroup of Fg generated as such by elements of N or word length at most
n. By definition (N,,) is an increasing sequence of normal subgroups of Fs
ascending to the subgroup N.

DEFINITION 3.1. — We denote by Rs(G) the set of integers n = 0 such
that N, properly contains N,_1. We call Rg(G) the relation range of the
group G with respect to the generating subset S.

DEFINITION 3.2. — A group G is said to be:
(1) boundedly presented over S if Rg(G) is finite;

(2) densely related over S if Rs(G) ~ N. Otherwise G is said to be
lacunary presented over S.

Recall that the Cayley graph Cay(G,S) of G with respect to S is the
graph with G as set of vertices, and (z,y) is an edge if there is s € S*! such
that y = xs. Since loops in Cay(G, S) correspond to relations in G, we have
the following.

LEMMA 3.3. — Rs(G) = &(Cay(G, S)).

Theorem 2.3 has the following consequence.

COROLLARY 3.4. — Let G be a compactly generated locally compact
group, and S a compact generating subset. Then the ~-class of Rs(G) does
not depend on S, and is actually a quasi-isometry invariant of the group G.

More generally [R(H)] C [R(G)] whenever H is a large-scale Lipschitz
retract of G (e.g. a group retract).

Recall that a group retract of G is a subgroup H < G such that there
exists a homomorphism G — H whose restriction to H is the identity.

- 630 -



Densely related groups

DEFINITION 3.5. — If G is a compactly generated locally compact group,
we call R(G) = [Rs(G)] the relation range of G, which does not depend on
the choice of compact generating subset S. We say that G is densely related
if R(G) ~ N, and lacunary presented otherwise.

Remark 3.6. — Following [13], if G is compactly generated locally com-
pact group, let v(G) be the set of non-principal ultrafilters on N such that
the asymptotic cone Cone® (G, (1/n)) is simply connected. This is a quasi-
isometry invariant, and its complement v(G)¢ is related in spirit to the re-
lation range. However, it behaves differently: there exist finitely presented
groups for which v(G)¢ can be non-empty, or even be the set of all non-
principal ultrafilters. For instance, any lattice I' in the 3-dimensional Lie
group SOL has v(I') empty (that is, v(I')¢ is the set of all ultrafilters), in
spite of being finitely presented. Hence if we consider a family of groups (A;)
achieving all possible relation ranges (up to equivalence), then so does the
family (T' x A;), but all these groups have v empty and thus v does not
distinguish these groups.

Remark 3.7 (On minimal presentations and relation range). — Let G be
a finitely generated group with a minimal presentation G = (S| R), meaning
that no relator belongs to the normal subgroup generated by other relators.
Then in general there is no relation between the relation range Rg(G) and
the set Lr = {|r|s : 7 € R}, in the sense that both inclusions [Rs(G)] C [Lg]
and [Lg] C [Rs(G)] may fail:

(1) Let H be a finitely generated densely related group having a min-
imal presentation H = (S| (ry,)), and form the group G = H * Z.
Since H is a retract of G, the group G remains densely related
by Corollary 3.4. On the other hand G admits the presentation
G = (S,a](a"r,a=")) for arbitrary (u,), and this presentation
remains minimal. In particular if (u,) grows very fast, we have a
densely related group with a minimal presentation such that Lg is
not ~-equivalent to IN.

(2) Consider the partial presentation of the lamplighter group

H= <t,x ’ [t = ] =1 for all n > 1> :

Again form the group G = H % Z, whose relation range is equivalent
to {4(2n)!+4} ~{(2n)!} (Lemma 4.8). Denoting r, = [t zt=(")}
x], consider the presentation G = (t,x,a|a""r,a” %" = 1), where
Uy, is chosen so that the length of a¥“»r,a~"" is equal to (2n + 3)!
for all n > 1. This presentation remains minimal, but the ~-class of
L is not included inside the relation range of G.
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3.2. Relation range of quotients

If N is a normal subgroup of a group G and S generates G, we denote by
Xs(N,G) the set of integers n such that there is an element of N of length
n outside the normal subgroup of G normally generated by elements of N
of length at most n — 1.

ProrOSITION 3.8. — Let 1 - N — G — Q — 1 be a short exact

sequence of groups. Assume that S is a generating subset of G such that G
is boundedly presented over S. Then Rg(Q) = Xs(N,G).

Before giving the proof, let us derive the following consequence:

COROLLARY 3.9. — Let1l - N — G — @Q — 1 be a short exact sequence
of groups. If G is finitely presented, then R(Q) ~ Xs(N,G).

Proposition 3.8 will follow from Lemmas 3.10 and 3.11.

LEMMA 3.10. — Let1 - N - G — Q — 1 be a short exact sequence of
groups, and let S be a generating subset of G. Then Xs(N,G) C Rs(Q).

Proof. — We denote by Ng the kernel of Fg — Q. Let £ € N be an
element of length n > 1 that is not in the normal closure in G of the set of
elements of N of length at most n—1. Let w € Fg of length n that represents
z in G. Then w lies in Ng, and we claim w does not belong to the normal
closure in Fs of the set of elements of Ng of length at most n — 1.

Argue by contradiction and assume that there is a decomposition w =
Hairiai_l, where 7; € Ng has length at most n — 1. If x; (resp. a;) is
the element of G represented by r; (resp. «;), then by pushing the above
decomposition in G we obtain = [ a;x;a; L Contradiction. O

The following shows that the converse inclusion in the previous lemma
also holds when the extension is boundedly presented.

LEMMA 3.11. — Let1 = N - G — Q — 1 be a short exact sequence of
groups. Assume that S is a generating subset of G such that G is boundedly
presented over S. Then Rs(Q) C Xs(N,G).

Proof. — Again we let Ng (resp. Ng) be the kernel of Fis — @Q (resp.
Fs — G). Let r > 1 such that Ng is normally generated by its elements of
length at most r. Let n > r 4+ 1 such that there is a word w € Ng C Fg of
length n, and such that w does not belong to the normal closure of elements
of Ng of length at most n — 1. We shall prove that n belongs to Xs(N, G).

We let = be the element represented by the word w in G. Then z € N,
and we claim that & does not belong to the subgroup normally generated
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by elements of NV of length at most n — 1. Indeed, assume that in G there
is a decomposition z = Haixiai_l, where a; € G and x; € N has length at
most n — 1. For every i, we let w; € Fg representing x; in G and such that
|wils < n—1, and we choose «; € Fg such that «; represents a; in G. Then
w(]] aiwiafl)_l € Ng. Since N¢ is normally generated by its elements of
length at most 7 and n — 1 > r by assumption, we deduce that w belongs
to the normal closure of the set of elements ¢t € Ng such that |t|g < n — 1.
Contradiction. O

3.3. Lacunary approximations

Given a locally compact group G, we call approximation of G a sequence

of continuous surjective homomorphisms with discrete kernel Gy — G; —

. and G; — G such that the obvious diagrams commute, and such that

the kernel N of Gy — G is equal to the union of kernels NV; of Gg — G;, and
such that all G; are compactly presented.

Given such an approximation, fix a compact generating subset of G. For
i = 1, let p; € [1,+00] be the smallest length of an element in N ~\ N;.
Let s; be the smallest number s such that N; is normally generated by the
intersection of N; with the s-ball in Gy; then s; < co because G; is compactly
presented.

We say that the approximation is lacunary if p;/s; — +oc.

PROPOSITION 3.12. — A compactly generated locally compact group is
lacunary presented if and only if it admits a lacunary approximation. More-
over, in the discrete case, Gy can be chosen to be free.

Proof. — This is easy. Start from any compactly presented group G such
that G can be written as a quotient of Gy with discrete kernel N (we can
choose Gy free in the discrete case); fix a compact generating subset of G.
First define H,, as the quotient of Gy with the normal closure N,, of NNB(n),
where B(n) is the n-ball in Gy. Then N = |J N,, (ascending union).

Assume now that G is lacunary presented. Then for every integers ¢, ng >
1, we can find n > ng such that [n,cn] contains no element of the relation
range. Therefore, we can extract from (H,) a subsequence satisfying the
required conditions.

Conversely, the existence of a lacunary approximation implies that there
is no new relation of size between s; and p; and since the ratio p;/s; tends
to infinity, this implies that the relation range is not at finite multiplicative
distance to N. O
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Let us provide an application of lacunary approximations to the Hopfian
property, extending the recent result by Coulon and Guirardel [14] that
lacunary hyperbolic groups are Hopfian. Recall that a group is Hopfian if all
its surjective endomorphisms are injective.

PROPOSITION 3.13. — Let G be a finitely generated group with a lacu-
nary approximation by Hopfian groups. Then G is Hopfian.

Proof. — First, we can find an epimorphism from a free group G_; to Gy
and then shift indices to assume that Gy is free. Next, let f be a surjective
endomorphism of G. Since Gy is free, we can lift it to an endomorphism f
of Gp; then f maps the 1-ball into the k-ball for some k. We can describe
G; as the quotient of Gy by the normal closure of a certain subset R; of the
s;-ball. Then f (R;) belongs to the ks;-ball and also belongs to the kernel
of Gy — G. If i is large enough, say ¢ > iy, so that p; > ks;, it follows
that f(Rl) belongs to the kernel of Gg — G;. Thus for i > i, f factors to
an endomorphism f; of G, still lifting f. Then since f is surjective, we can
write generators as elements of the image in G, and lift this to G; for, say
1 =11 = ig. Thus f; is a surjective endomorphism for all ¢ > 4;. Since G; is
Hopfian, it follows that f; is an automorphism for all ¢ > 41, and therefore
f is an automorphism as well. ]

COROLLARY 3.14 (Coulon—Guirardel [14]). — Finitely generated lacu-
nary hyperbolic groups are Hopfian.

Proof. — Sela proved that torsion-free hyperbolic groups are Hopfian [29],
and this was more recently extended to arbitrary hyperbolic groups by Re-
infeldt and Weidmann in the preprint [28]. Given that finitely generated
lacunary hyperbolic groups admit lacunary approximations by hyperbolic
groups [26, Th. 3.3], we conclude by Proposition 3.13. O

Proposition 3.13 can also be applied beyond the lacunary hyperbolic case.
For instance, those partial finite presentations of Z { Z are easily seen to
be residually finite (and hence Hopfian), so the lacunary presented groups
obtained in this way are Hopfian groups.

3.4. Asymptotic cones of densely related groups

The following terminology and notation are essentially borrowed from
[27]. We let Io = [0,1] x [0, 1] be the unit Euclidean square of dimension
two, and denote by JIs its boundary. A collection of squares Dy, ..., Dy is
defined to be a partition of I if D; N D; = 0D; N 0D; whenever i # j, and
if Iy is the union of the squares D;.
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If X is a geodesic metric space, a loop in X is by definition a continuous
map « : 0ls — X, and we freely identify a loop with its image in X. A
partition 7 of a is a continuous map extending « to 0D U. ..U 0Dy, where
Dy, ..., Dy is a partition of Is. We define the mesh of m as the maximal
length of the paths m(0D;).

LEMMA 3.15. — Let X be a geodesic metric space, and denote by C =
Cone” (X, (zn), (sn)) an asymptotic cone of X. Then

(a) any loop in C is the w-limit of a sequence of loops in X;

(b) if a is a loop in C which is the w-limit of a sequence of loops (o) in
X, then any partition of « is the w-limit of a sequence of partitions
of ay,.

Proof. — Statement (a) is proved in [22, Prop. 2.2] for paths rather than
loops, but the proof can be easily adapted to realize any loop in C as the
w-limit of a sequence of loops in X.

Statement (b) is obtained similarly, working in each square of the parti-
tion. ]

Recall that by a theorem of Gromov [21, §5.F], if a finitely generated
group G has all its asymptotic cones simply connected, then G is finitely
presented (and has a polynomially bounded Dehn function). One cannot
hope to obtain the same conclusion if we weaken the hypothesis by requir-
ing that one asymptotic cone of G is simply connected, as for example any
non-hyperbolic lacunary hyperbolic group is infinitely presented [26, Appen-
dix]. Recall that a group is lacunary hyperbolic if it admits (at least) one
asymptotic cone that is a real tree [26].

We next show that if G has one asymptotic cone that is simply connected,
then the group G is lacunary presented. The proof follows the same strategy
as the proof of the direct implication of Theorem 4.4 in [15], which says
that simple connectedness of all asymptotic cones implies a certain division
property for loops (see [15] for the relevant definition).

PROPOSITION 3.16. — Let G be a compactly generated locally compact
group, and (s,) a sequence of positive numbers. Assume that the asymptotic
cone Cone® (G, (sn)) is simply connected for some ultrafilter w such that
lim,, s, = +00. Then {s, :n € N} ¢ R(G).

Proof. — Let S be a compact generating subset of G. We argue by con-
tradiction, and assume that {s, : n € N} C R(G). This implies that there
exist a constant ¢ > 0 and a sequence of relations r,, € Fg so that

¢ sy < rnls < csp,
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and r, is not generated by relations of smaller length. By construction,
the sequence of loops a,, : 0 — Cay(G,S) parametrized proportionally
to the length associated to r, yields a loop a : 9I; — Cone® (G, (sy)).
Since Cone” (G, (sy,)) is supposed to be simply connected, the map « :
0I; — Cone” (G, (s,)) can be extended to a continuous function o : Iy —
Cone” (G, (s)). Now since I is compact, the map o is uniformly continuous,
and there exists 7 > 0 so that d,,(o(t),o(u)) is at most ¢~!/5 as soon as the
distance between ¢ and u is at most 7. Let us consider the partition of I
given by the net

{(an,bn) :a,b € Z,0< a,b< 1/n}.

Since the mesh of this partition is equal to 47, the restriction of ¢ to this
partition yields a partition of the loop « in Cone” (G, (s,)) of mesh at most
4¢71/5.

From a geometric point of view, the fact that r, does not belong to the
normal subgroup of Fg generated by relations of length at most |r,|s — 1
implies that the mesh of any partition of the loop a, is at least |r,|s, so in
particular at least ¢~ !s,. Now we claim that this implies that the mesh of
any partition of the loop « is at least ¢~ !. Indeed according to Lemma 3.15,
any partition 7 of the loop « is the w-limit of a sequence of partitions m,, of
the loop a,, in Cay(G, S). Being the limit over the ultrafilter w of the mesh of
7y, rescaled by s,,, the mesh of 7 is at least ¢! by the previous observation.
This readily gives a contradiction with the previous paragraph. |

COROLLARY 3.17. — Let G be a densely related compactly generated
group. Then none of the asymptotic cones of G are simply connected.

Since a real tree is a simply connected metric space, Corollary 3.17 also
admits the following consequence, which can also be derived from Propo-
sition 3.12 using the combinatorial characterization of lacunary hyperbolic
groups from [26] in the discrete case, and from [23] in the locally compact
case.

COROLLARY 3.18. — Any lacunary hyperbolic locally compact group is
lacunary presented.

Remark 3.19. — The class of lacunary presented groups is much larger
than the class of lacunary hyperbolic groups. For instance, in the discrete
case, it contains all finitely presented groups and is stable under direct powers
and direct products with finitely presented groups (Corollary 4.9), which
are essentially never lacunary hyperbolic (recall that being direct limits of
hyperbolic groups, lacunary hyperbolic groups contain no copy of Z?).

Remark 3.20. — (See also Question 1.12) We do not know any example of
a finitely generated linear group that is neither finitely presented nor densely
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related. If it is true that every finitely generated infinitely presented linear
group is densely related, then this implies according to Corollary 3.18 that
every finitely generated lacunary hyperbolic group that is linear is actually
a hyperbolic group (because a finitely presented lacunary hyperbolic group
is hyperbolic [26, Appendix]). Whether this last assertion is true was asked
in [26].

4. Specific classes of groups and examples
4.1. Classes of groups with various relation ranges
4.1.1. Lacunary hyperbolic groups

Recall from Corollary 3.18 that every finitely generated lacunary hy-
perbolic group is lacunary presented. The following proposition, the proof
of which is a combination of works of Bowditch [9] and Olshanskii-Osin—
Sapir [26], says that this is actually the only restriction on the relation range
of a lacunary hyperbolic group.

PROPOSITION 4.1. — For every subset I of N with I «~ N, there exists
a lacunary hyperbolic group I' with R(I') ~ I.

Proof. — Upon changing I into some I’ ~ I, we may easily find a presen-
tation I' = (a, b| (1)) so that {|r,| : n € N} = I’ and satisfying the C’(1/7)
small cancelation condition. This last property means that {r, : n € N} is
a set of reduced words stable under taking cyclic conjugates, and such that
for every n € N and every m # n, the largest common prefix of r, and
rm has length at most (1/7)|r,|. The C’(1/7) condition implies on the one
hand that the relation range of the group I is given by the set of lengths
of relators [9, Lem. 5], i.e. R(G) ~ I' ~ I, and on the other hand that T is
lacunary hyperbolic since I’ » N [26, Prop. 3.12]. O

4.1.2. Solvable groups

If G is a group and ¢ : G — Ry is a length function on G, we denote
by X¢(G) the set of integers n such that there is g € G such that ¢(g) =n
and g does not belong to the subgroup of G generated by elements of length
at most n — 1. Note that if Z is a central subgroup of a group G and S is
a generating subset of G, then we have X, (Z) = Xs(Z, G) (see Section 3.2
for the definition of Xs(Z,G)).

The proof of the following lemma is routine, and we omit it.
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LEMMA 4.2. — If 1,05 are bi-Lipschitz equivalent length functions on
G, then Xy, (G) ~ Xy, (G).

In the sequel we denote by R the ring F,[t,t~!, (t+1)7!], and we consider
Abels’ group A4(R) consisting of upper triangular matrices of GL4(R) whose
first and last diagonal entries are equal to 1 (see [13]).

For ¢ > 0, we denote by z; € A4(R) the element whose diagonal entries
are equal to 1, and whose only non-zero off-diagonal entry has coordinate
(1,4) and is equal to t*. We note that every z; lies in the center of A4(R). If
I C N, welet Z; = (2;),c;- The group Z; is abelian and isomorphic to the

group Fg). Every z € Z; can be uniquely represented as Ek>0 aitk, where
all but finitely many ar € F, are equal to zero. We consider the length
function on Z; defined by ¢(z) = sup {k : ar, # 0}.

LEMMA 4.3. — We have X;(Z;) = I.

Proof. — We have {(z;) = i for every i € I, and clearly z; does not belong
to the subgroup generated by the z; for k < 4. This shows I C Xy(Z;), and
the converse is clear since £ : Z; — R take values in I. O

Recall that Grigorchuk gave, using growth exponents, a continuum of
pairwise non quasi-isometric finitely generated groups of intermediate
growth [18]. In view of Corollary 3.4, the following proposition provides
a continuum of quasi-isometry classes of finitely generated solvable groups,
a fact that was established in [13] using asymptotic cones. This was also
obtained in [10] using compression of embeddings into LP-spaces.

PROPOSITION 4.4. — Let I C N, and let Q be the quotient of the group
A4(R) by its central subgroup Zy. Then R(Qr) ~ I.

Proof. — Let S be a finite generating subset of the group A4(R). Since the
group A4(R) is finitely presented [13, Th. 5.1], we have Rs(Qr) = Xs(Z1, G)
according to Corollary 3.9. Now since Z; is central in A4(R), if follows
that Xs(Z;,G) = Xo(Z1) = Xe(Z1), where the last equality follows from
Lemma 4.2 (since the metrics £ and ¢g are bi-Lipschitz equivalent on Z7,
see for instance [13, §4.3]). Therefore Rs(Qr) = X¢(Z1), and the conclusion
then follows from Lemma 4.3. O

Remark 4.5. — This completes a remark in the introduction. In [5], the
class of extrinsic condensation group is studied: these are finitely generated
groups G such that for every finitely presented group H and surjective ho-
momorphism p : H — G, the kernel of p contains uncountably many normal
subgroups of H. This property is a strengthening of being infinitely pre-
sented but is not a quasi-isometry invariant, and is actually not even closed
under taking finite index overgroups. For instance, if B is Abels’ group (de-
noted A4/Z in [5, Example 5.13]); here it is rather, for some prime p, the
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quotient of A4(Z[1/p]) by its center Z ~ Z[1/p], then B x B is an extrinsic
condensation group but its overgroup of index 2 B! Z/2Z is not.

4.2. Graph products and wreath products

We will make use of the following easy lemma.

LEMMA 4.6. — Let G be a group, H a retract of G and ¢ : G - H be a
homomorphism whose restriction to H is the identity. Assume that Sg is a
generating subset of G, and write Sy = ¢(Sg). Then Rgs,, (H) C Rs.,(G).

Proof. — Let w € Fg, be a relation in the group H. If w admits a
decomposition in Fs, as a product of conjugates of elements of length < n,
then by replacing each letter by its image by ¢ we obtain a decomposition
of win Fg,, as a product of conjugates of elements of length < n. It follows
that if w is not generated by relations of smaller length in Fg,,, then the
same holds in Fs,, and the result is proved. O

We derive the following consequence about group retracts, which also
follows from Theorem 2.3.

COROLLARY 4.7. — Let G = N x @Q be a semidirect product decom-
position of locally compact groups, with G,Q compactly generated. Then
R(Q) € R(G). In particular, if G is lacunary presented then so is Q (or
equivalently, if Q is densely related then so is G).

Let X = (V, E) be a graph, and let (G, ),cv be a family of groups indexed
by the set of vertices of X. Recall that the graph product P associated to this
data is the quotient of the free product of all G, by the relations [G,,, G,] =1
whenever (v, w) is an edge of X.

LEMMA 4.8. — Assume that S, is a generating subset of G, for every
v €V, and let S be the disjoint union of all S,. Then

Rs(P) = |J Rs, (G).
veV
Proof. — Each G, is a retract of P, so by Lemma 4.6 we have Rg, (G,) C
Rs(P) for every v € V. Now let w be a word in the elements of S of length
> 5, such that w is a relation in P that is not generated by relations of
smaller length. Remark that in P every relation that is not generated by
relations of length at most 4 comes from relations in the G,. Since moreover
w is not generated by relations of smaller length w must be a relation in one
of the G,,, which proves the converse inclusion. O
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COROLLARY 4.9. — Let a compactly generated locally compact group
G be a graph product of finitely many groups Gi,...,G,. Then R(G) ~
UR(G;). In particular, if all G; are lacunary presented then so is G. In
particular again, the class of lacunary presented groups is closed under tak-
ing direct or free products with compactly presented locally compact groups,
and under taking direct or free powers (G +— G* or G**).

Remark 4.10. — Similarly to what happen for lacunary hyperbolic
groups [26, Example 3.16], the class of lacunary presented groups is not
closed under direct or free products. For instance, consider the subset A, =
Uns11(2n)!, (2n+ 1)1 (where intervals are understood to be within integers),
and let As be the complement of A; in N. Then there exist finitely generated
groups I'1, Ty with R(T;) ~ A; (see the introduction, or Section 4.1.2). Then
both I'y and I's are lacunary presented, but using Corollary 4.9, I'y x I'; and
I'y xI's are densely related.

Recall that a standard wreath product H ! G, with H non-trivial and G
infinite, is never finitely presented [3]. The following strengthens this result
by showing that such groups are actually densely related.

PROPOSITION 4.11. — Let G, H be finitely generated groups such that
H is non-trivial and G is infinite. Then the standard wreath product H 1 G
is densely related.

Proof. — Let S be the union of finite generating subsets S¢ and Sy of
respectively G and H. For every n > 0, let us consider the graph structure
X, on G defined by putting an edge between ¢g; and go # g; if and only if
ds.(91,92) < n. We denote by P, the graph product associated to X, for
which all groups are equal to H. Since the action of G on itself preserves the
graph structure X,,, we can consider the semidirect product I',, = P, x G.
By construction we have a surjective homomorphism I';, — I',,41 for every
n > 0. Since (X,,) converges to the complete graph on G, the direct limit of
the sequence (T';,) is exactly the wreath product HG.

Fix a non-trivial s € Sg. For every n > 1, we choose some element g, € G
whose length with respect to Sg is exactly n (such an element always exists
because S¢ is finite and G is infinite). Choose a word vy, in the elements of
Sc of length n representing g,, in the group G, and write w,, = [v,sv; 1, s].
By construction w,, is a relation of length 4n + 4 in H ! G. Since there is
no edge in X,,_1 between 1g and g,, the elements g,sg, ' and s generate
their free product in P,_; [11, Lem. 2.3(2)]. In particular the word w,, is
not trivial in I';,_;. Now by remarking that every relation in H ! G of length
at most 4n is a relation in I';,_1, we obtain that w,, cannot be generated by
relations of length < 4n. Therefore Rg(H ! G) contains an element between
4n and 4n + 4, and the proof is complete. (|

- 640 —



Densely related groups

4.3. Iterations of endomorphisms

Following [20], we consider the following situation. Let G be a group with
a finite index normal subgroup H, and denote by X = {x1,...,2,} a system
of coset representatives, so that G = x1H U...Ux,.H. Assume we are given
a set ® = {¢;} of surjective homomorphisms

pi:H—>G fori=1,...,r
with the following properties:
(1) iy ker(p;) # 1.
(2) for every i,j € {1,...,r}, there exists k € {1,...,r} such that
Pi O Moy = Pk,

where p,, : H — H is the automorphism of H induced by the
conjugation by x;.

(3) The image of H — G", h+— (¢1(h),...,p.(h)), contains the diago-
nal A(G) in G".

Remark 4.12. — It would actually be enough for our purpose that the
image of H — G™ contains the diagonal A(H) in H™ < G".

From now on we fix G, H and ® satisfying (1), (2) and (3). We define
inductively a sequence of subgroups by

Ko=1,and K, 11 = ﬂ @i_l(Kn)
i=1

for all n > 0.

LeEmMmA 4.13. — K,, < H is a normal subgroup of G, and K,, is properly
contained in K,41 for alln > 0.

Proof. — That K, is a subgroup of H and K,, < K, follow by an
easy induction. Let us check that K, is normal in G. We also proceed by
induction, the case n = 0 being trivial. Assume that K, is normal in G, and
choose hpq1 € Kpp1 and g € G. Given i € {1,...,r}, we want to see that
0i(ghnt197") € K,,. Let j and h € H be such that g = x;h. We have:

@i(ghni19™") = @i © o, (hhn1h ™) = @p(hhnyrh ™),

where the integer k is provided by (2). Therefore we have

@i(ghnt197") = pr(h)or(hns1)ee(h) 71,

and ¢g(hp+1) € K, since hyy1 € K, q1. Since K, is normal in G by as-
sumption, we conclude that ¢;(gh,+19~") belongs to K,,.
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To prove that the inclusion K,, C K, 41 is proper for all n, assume by
contradiction that there is n > 1 such that K,, = K, 11, and take g € K.
According to (3) we may find h € H such that ¢;(h) = g for every i,
which implies that h belongs to K, 41 since g € K,. Therefore h € K,
by our assumption, and it follows that the element g belongs to K,,_;. So
K, 1 = K,. By repeating the argument we obtain that Ky = K;, which is
a contradiction with (1). O

We denote by
Ko =] Ka
n=0
the increasing union of the subgroups K,,, which is therefore a normal sub-

group of G, and by G¢ = G/Kg be the associated quotient. In other words,
we have a sequence of groups and surjective homomorphisms

G%G/Kl l>—>G/Knﬂ>
whose direct limit is Gg.

In the sequel we assume moreover that G is a compactly generated locally
compact group, that H is closed in G and that all ¢; : H — G are continuous.
Note that the continuity of the ; implies that the K,, are closed subgroups
of G, but it may happen that K is not closed (as the example H = G = S!
and ¢(z) = 22 shows, for which K¢ is dense). From now on we will assume
that K is also closed in G, and hence G is a locally compact group.

Remark 4.14. — If there is a neighbourhood of the identity U such that
U Nker(p;) =1 and ¢;(U) C U for every i, then K is a discrete subgroup
of G.

Since K¢ is the increasing union of its closed subgroups K,,, by the Baire
category theorem the subgroups K, must eventually be open in Kg. In
particular for every k > 0, the intersection between K¢ and S* is compact
in Kg, and therefore must be contained in some subgroup K,, . Since K, is
a normal subgroup of G, this shows that the normal subgroup of G generated
as such by elements of K¢ of length at most k is contained in K, . Since
all the inclusions K,, C K41 are strict (Lemma 4.13), this shows that K¢
is not compactly generated as a normal subgroup of G, and therefore the
group Gg is not compactly presented by Lemma 3.10.

THEOREM 4.15. — Let G be a compactly generated locally compact
group, and assume that ® = {@;} satisfy (1), (2) and (3). Then the group
Go = G/Kg is densely related.

We will use the following lemma, the proof of which is standard.
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LEMMA 4.16. — Let S be a compact generating subset of G. Then there
exists ¢ > 0 such that for every g € G, there exists h € H such that p;(h) = g
for every i and |h|ls < c|g|s.

Proof. — The image of ¢ : H — G", h — (p1(h),...,o.(h)), contains
the diagonal in G thanks to (3). Let ¥ C H be a compact subset of H such
that p(X) = S (where we identify S and its diagonal embedding), and let
¢ = sup |o|g, for ¢ € 3. Since ¥ is compact, c¢ is finite. Now let g € G, and
let £ = |g|s, so that there exist s1,...,s, € S such that g = s; -+ s. For all
k, let o € X such that ¢(of) = sk, and write h = oy - - - g¢. Then h satisfies
the conclusion, because each ¢; maps h to g, and |hlsg < > |oils < ¢l =
clgls.

Proof of Theorem 4.15. — Let S be a compact generating subset of G,
and 7 : Fg — G the canonical projection. For k > 0, let N®®) = 7=1(K},).
Note that N*) is a normal subgroup of Fg in view of Lemma 4.13. The
increasing union N(°) of the subgroups N®) is nothing but the kernel of
the natural map from Fs to the group Gg:

1— N 5 Fg — Gp —> 1.

For every k > 1 we let IV, ,goo) be the normal subgroup of Fs generated as
such by elements of N(°) of length at most k.

Fix an integer £ > 1. Denote by nj the smallest integer so that the set
of elements of N(°) of word length at most k lies in N (). The discussion
before the proposition shows that such an integer n; always exists. Note that
since N("¥) is a normal subgroup, we have N,EOO) c N(),

By definition of ny, there must exist a word w in N(°) < N(%=1) of
length at most k. Set g = m(w). According to (3), there exists h € H such
that ¢;(h) = g for every i. Let w’ € Fg such that h = w(w’). Then we claim
that w’ € N, Indeed, for every i we have @;(m(w')) = @;i(h) = g = 7(w),
so if n is such that w € N then w’ € N1 On the other hand the word
w’ does not belong to N(™+) because otherwise we would have w € N(—1),
A fortiori w’ does not belong to N,goo) since N,EOO) c N(%)_ This implies
that the relation range Rs(Gg) contains an element between k and |w'|.

Now we may plainly choose w’ € Fg such that |w’|s = |h|g, and according
to Lemma 4.16 we may also choose h € H such that |h|s < c|g|s for some
constant ¢ depending only on S. But g = m(w), so the word length of g with
respect to S is at most |w|g. Since |w|s < k by definition of w, it follows that
|w'| g < ck. Therefore Rs(Ga)N[ec, ck] # 0, and the statement is proved. [0
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4.3.1. The Grigorchuk group

We consider the Grigorchuk group & introduced in [17].
THEOREM 4.17. — The Grigorchuk group & is densely related.

Proof. — Let G = (a,b,c,d|a*> =b* = c? =d®> =bed = 1) be the free
product Cs * (Cq x Cq), and H be its subgroup of index two which projects
trivially on the first Cy. H is generated by b, ¢, d and their conjugates by a.
The assignments

vo = (b a,c— a,d— 1,aba — ¢,aca — c,ada — b)
and
Y1 =oo g =(b—c,c—d,d— baba — a,aca — a,ada — 1)
extend to homomorphisms from H onto G.

It is well known that the group & is generated by four elements a, b, ¢, d
satisfying the relations defining G, so that we have a surjective map 7 : G —
®. The image of H is the subgroup $ of & stabilizing the first level of the
rooted tree on which & acts. Moreover there exist morphisms g, 11 : § — &
such that the diagrams

H %, G

- I
5 Ve

commute ([19, §2]).

We shall check that the assumptions of Theorem 4.15 are satisfied. It is a
simple verification that ® = {¢y, ¢1} satisfies (1), and (2) is clear since ¢ =
©0 © [t by definition. Now to see that (3) is satisfied, by the commutativity
of the above diagrams it is enough to see that the image of ¢ = (¢g, 1) :
H — & x B contains the diagonal embedding of &. This later fact follows for
instance from Proposition 1 in [19]. Therefore by applying Theorem 4.15, we
deduce that the group Gg is densely related. The statement follows, since
the group Gg is precisely the group ® [20, Th. 4] (see also [19]). O

Combined with Corollary 3.17, Theorem 4.17 implies the following result.
COROLLARY 4.18. — No asymptotic cone of the Grigorchuk group is

simply connected.

We shall point out that an explicit infinite presentation of the group &
has been given by Lysionok in [24], and this presentation has been shown
to be minimal by Grigorchuk [19]. However we stress out that in general
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the relation range cannot be seen on the lengths of relators even for a
minimal presentation, see Remark 3.7. The presentation of the group &
from [24] is an example of a finite endomorphic presentation in the sense of
Bartholdi [2]. These are presentations which are obtained by successive iter-
ations of (finitely many) endomorphisms of the free group to a finite initial
subset of relators. However the proof of Theorem 4.15 does not seem to ap-
ply directly to every group with a finite endomorphic presentation (even in
the case when the endomorphisms of the free group induce endomorphisms
of the group associated to the endomorphic presentation). We do not know
whether every such group is either finitely presented or densely related.

The group & is an example of group that is generated by a finite state
automaton. As a preliminary version of this article was circulating, the fol-
lowing conjecture has been communicated to us by L. Bartholdi.

CONJECTURE 4.19 (Bartholdi). — If a group G is generated by a finite
state automaton, then G is either finitely presented or densely related.

4.3.2. Non-Hopfian groups

A particular case of the construction carried out in Section 4.3 is when
G is a non-Hopfian group, H = G and ® = {p}, where ¢ : G — G is a
surjective, non-injective endomorphism of G.

COROLLARY 4.20. — Let G be a compactly generated locally compact
group, and assume that ¢ : G — G is a continuous, surjective, non-injective
endomorphism of G such that K, is closed in G. Then the group G, = G/K,
is densely related.

Proof. — The assumption (1) is satisfied because ¢ is non-injective. There
is nothing to check for (2) in this case, and (3) also holds here because ¢ is
surjective. The conclusion therefore follows from Theorem 4.15. |

Here are examples of groups that can be obtained as direct limits of non-
Hopfian groups by iterating a non-injective endomorphism. It follows from
Corollary 4.20 that all the groups appearing in the following examples are
densely related.

Example 4.21. — Let r > 1, and let m,n > 2 be two coprime integers.
Let us consider the group C(m,n,r) defined by the presentation

C(m,n,r) = <x,t

e N 2 A ™ = 1> .

This family of groups appeared in [4] as a generalization of Baumslag—Solitar
groups BS(m,n), which correspond to the case r = 1. When m,n > 2 are
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chosen relatively prime, the endomorphism given by ¢(z) = 2™ and p(t) =t
is well defined, surjective but non-injective. In this case the limit group
C(m,n,r), is the metabelian group Z[1/mn|" X Z, where the action is
defined by the r x r companion matrix

0 0 n/m
M- 1 0
0 1 0

Let us now recall the construction from [25] of non-Hopfian HNN-
extensions. Let A be a group and let u,v : A — A be two injective and
non-surjective endomorphisms. Assume that

and consider the HNN-extension of A associated to the subgroups p(A)
and v(A)

G=(At|tp(a)t ' =v(a) Ya€eA).

The following was proved in [25, Lem. 1].

LEMMA 4.22. — The endomorphism ¢ : G — G defined by p(t) =t and
w(a) = pla) for every a € A, is surjective but non-injective.

Example 4.23. — Let K;, i = 1,2 be ultrametric local fields. Let O; be
the unique maximal compact subring in K;. Let m; be an element in K;
with 0 < |m;| < 1. Let us take A = O; x Oy and p(z,y) = (x,my) and
v(w,y) = (mz,y).

The HNN-extension G defined above inherits a locally compact topology
for which the inclusion of A in G is continuous and open. Since p(A4) C A
and ¢ is injective on A, by Remark 4.14 the subgroup K, is a discrete
subgroup of G. A simple computation shows that the group G, is the group
(K, x Ky) x Z, where the action is the multiplication by (my, ;).

FEzample 4.24. — Discrete analogues of the construction of Example 4.23
may be carried out, for example with A = Z? and u(x,y) = (z,ny), v(z,y) =
(nx,y) for some integer n > 2. Here G, is the metabelian group Z[1/n]? x Z,
where the action is the multiplication by (n,n=1).
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Interesting examples also arise with A non-abelian. Let for instance A =
H3(Z) be the Heisenberg group, and u, v defined by

1 =z =z 1 x pz
o I y|+w= 1 py|,
1 1
1 = =z 1 x pz
v 1 y| — 1 vy,
1 1

where p is a prime. Then one can check that the group G, is the group

L Z[1/p] Z[1/p]
A3(Z[1/p]) = p*  Z[1/p]
1

4.4. Finitely generated groups with a homomorphism to Z
4.4.1. Preliminaries

We say that an automorphism « : G — G contracts into a subgroup H
if the sequence of subgroups (o~ "(H)), >0 is increasing and ascends to G. If
we have a homomorphism 7 : G — Z, we say that the action of Z contracts
into a finitely generated subgroup of G if there is ¢ € G such that 7(t) is a
generator of Z and the conjugation by ¢ contracts into a finitely generated
subgroup of G. This is equivalent to saying that 7 splits ascendingly over
a finitely generated subgroup, i.e. that there is a decomposition of G as an
ascending HNN-extension whose associated homomorphism G — Z is equal
to m.

We now introduce some notation. Consider a finitely generated group
G=MxZ,and let S ={mq,...,m¢} C M and t a generator for Z such
that S U {t} generates G. In the free group F freely generated by the m;
and ¢, we write mgk] = t*m,;t~%. Let R be the kernel of F — G, and R,, the
normal subgroup of F' generated by the intersection of R and the n-ball.

For u < v let M, ,) be the subgroup of M generated by Uu<k<v thSt=F.
For every n > 1, let G, be the HNN-extension of M, along the iso-
morphism Mg ,_1; — M|, given by conjugation by ¢. The inclusions
Mio,n) — Mg s 41] induce surjective homomorphisms G,, — Gp11. Let R},
be the kernel of the natural map F' — G,,.

LEMMA 4.25. — We have Rany3 C RY,.
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Note that typically, we have elements of the form [m, " imt=""1] in
Ro, 44 that are not in R/, so the lemma is optimal.

Proof. — Consider an element w in the (2n+3)-ball of F' that is a relation
in G. The number of occurrences of ¢ and its inverse is even. First suppose
this is 2n 4+ 2: then up to cyclic conjugation, this element has the form
t2"*+2m and this is a contradiction. Hence it is at most 2n. We can view
the occurrences of ¢ as a loop in Z of length < 2n; hence its diameter in
Z is at most n. Therefore, after conjugating w (and possibly increasing its
length), we can suppose that this path in Z has range in [0, n]; this means
that w € R],. O

4.4.2. Abelian-by-cyclic groups

In this paragraph we prove that a finitely generated abelian-by-cyclic
group that is not finitely presented must be densely related. Although a
more general result will be obtained later, here we include an elementary
proof for this class of groups.

LEMMA 4.26. — Assume that the action of Z does not contract into any
finitely generated subgroup of M. Then for every n > 1 there exist i,j such

that m; ¢ My ) and mg-"] ¢ M. -1

Proof. — Argue by contradiction and assume that for all ¢, we have m; €
My - This implies that M[; ) = Mg 5], and hence G is an ascending HNN-
extension over a finitely generated subgroup of M, a contradiction.

Similarly, if m;"] € Mg ,—1 for all j, then My, = My, and again

G is an ascending HNN-extension, resulting to a similar contradiction. [

PROPOSITION 4.27. — Assume that the action of Z does not contract
into any finitely generated subgroup of M. Then for every n > 1 there exist
i,7 such that [mi,m[-nﬂ]] is not contained in R),.

J
Proof. — Let 4,7 be as in the conclusion of Lemma 4.26. Suppose that
[n+1]

[mi,m; "] is a relation in G,. We rewrite it as the equality in Gy,

mitmgn]t_lmflt(mgn})_lt_l =1.
Once we view mgn] as an element of Mjq,, the Britton lemma implies that
this expression is not reduced (with respect to the given HNN decomposition
of G,). This means that either m; € My ,, or mgn] € Mjp,n—1), and both
cases contradict the definition of ¢ and j.

Hence [my, mgnH]]

g."‘*'l]] does not belong to R/. U

is not a relation in G,,, which exactly means that

[, m
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COROLLARY 4.28. — Let G = M x Z be an abelian-by-cyclic finitely
generated group. Then G is either finitely presented or densely related.

Proof. — We assume that G is not finitely presented, and we show that G
is densely related. The action of Z cannot contract into a finitely generated
subgroup of M, because otherwise G would be an ascending HNN-extension
over a finitely presented subgroup because M is abelian. Therefore G would
be finitely presented, which is a contradiction. So we may apply Proposi-
tion 4.27, which, combined with Lemma 4.25, says that the relation range of
G with respect to SU{t} contains an element of the interval [2n + 4, 4n + 8]
for every n > 1. This implies the statement. O

4.4.3. Groups satisfying a law

In this paragraph we deal with the larger class of groups G satisfying
a law. Recall that this means that there exists a non-trivial reduced word
w(xy,...,T;) in some letters x1, ..., such that w(gs,...,gr) = 1 for all
g1, ---,9k € G. Note that if we have G = M x Z, then G satisfies a law if
and only if M satisfies a law.

We follow a similar approach as in the previous paragraph, except that

[mi,mgnﬂ]] need not be a relation anymore. We need the following simple

lemma.

LEMMA 4.29. — Consider a group amalgam A x¢c B, and a € AN C,
b€ B~ C. Then for every k € Z ~ {0}, we have (ab)* ¢ AU B.

If moreover we have, for all k € Z ~ {0}, a* ¢ C and V* ¢ C, then a,b
freely generate a free subgroup.

Proof. — For k > 1 and by € B, we can write (ab)*by " = abab...a(bby '),
which is a reduced word, hence it represents a non-trivial element by the
Britton lemma. So (ab)* ¢ B, and the same proof shows that (ab)* ¢ A.

Under the stronger assumption, it first follows that a,b are not torsion.
Hence if they satisfy a non-trivial relation, it can be chosen of the form
a™bpm™ .. .a™ b™ with r > 1 and m;, n; nonzero integers. The stronger as-
sumption again implies that this word is reduced. O

LEMMA 4.30. — Let n > 1 such that there exist i,j so that m; & My p)
and mg-n] & Mo, —1). Then

a= mEiz]mg-n*l] and b= mimg-nH]

freely generate a free subgroup in G,,.
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Proof. — G,, being a HNN-extension, it is a semidirect product N x Z
with N being a 2-sided iterated amalgam

e Mgy My oy M= 1011 %010,y Mio,n) %My g Mt 1] $0pp gy - -
which thus is the amalgam of two 1-sided iterated amalgams:
(' e M[—Zv”—2] *M_1 2 M[—l,n—l])
*Mio,n—1] (M[Oyn] M1y M{1n41] *¥Mps 4 ) =: Axc B.

(-2]

%

[n—1]

Here a = m ;

m belongs to M|_3,,_9 KM(_y 0z M_y 1. Note

that by assumption mkz] € M_g o) ~\M|_1 2 and mgnfu € M_1pn_1~

M|_1 5 —g), so it follows from the first item in Lemma 4.29 that for all k €
/AN {0}, we have a¥ ¢ M[_Q,n_z] U M[—l,n—l] = M[_27n_1].

The same argument applied to b = mimg-nﬂl € Moy *Mpy ; Mt i1
shows that b* ¢ M ,1q) for all k € Z ~\ {0}. In particular neither a* nor
b* belongs to Mg, 1], and the second item in Lemma 4.29 implies that a, b
freely generate a free subgroup. O

The following is the main result of this paragraph.

PRrROPOSITION 4.31. — Consider a finitely generated group G = M X Z
satisfying a law. Then either the action of Z contracts into a finitely
generated subgroup of M, or the group G is densely related.

Proof. — Let w(x1,...,xx) be a reduced word in some letters z1,. ..,z
such that w(gy,...,gx) = 1 for every g1,...,gr € G, and let £ be the length
of w.

Assume that the action of Z does not contract into any finitely generated
subgroup of M. Lemmas 4.26 and 4.30 ensure the existence, for every n > 1,
of elements a,,b, € F, both of length 2n + 4, whose images in G,, freely
generate a free subgroup. For simplicity we still denote a,, and b, the cor-
responding elements of G,,. Then one easily check that a,b,,a2b?, ... a%bk
freely generate a free subgroup of rank k in G,. In particular the word
w(anbp, - ..,akbk) does not belong to R/, and by Lemma 4.25 it does not be-
long to Ray, 13 either. But now by definition of w, the word w(anby, ..., akbk)

r'n n
belongs to R. It has length at most 2k¢(2n + 4), so the relation range of G
with respect to S U {t} must contain an element in the interval [2n + 4,

2k0(2n + 4)]. O

We derive from Proposition 4.31 the following consequence. Recall that
a group is called coherent if every finitely generated subgroup is finitely pre-
sented. Examples of coherent groups are locally nilpotent groups, or locally
finite groups.
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COROLLARY 4.32. — Let G = M x Z be a finitely generated group,
where M is coherent. If G satisfies a law, then G is either finitely presented
or densely related.

Proof. — Assume that G is not densely related. Then by Proposition 4.31
the action of Z contracts into a finitely generated subgroup of M, and G is
an ascending HNN-extension over a finitely presented group because M is
coherent. This clearly implies that G is finitely presented. O

COROLLARY 4.33. — Fwvery nilpotent-by-cyclic finitely generated group
is either finitely presented or densely related.

Remark 4.34. — We shall point out that Corollary 4.33 extends neither
to nilpotent-by-abelian groups according to Proposition 4.4, nor to (locally
nilpotent)-by-cyclic groups in view of the examples from [26, §3.5].

4.4.4. Metabelian groups

The following important theorem, the proof of which is a combination
of results of Bieri-Strebel [7, 8] and Bieri-Groves [6], characterizes infinitely
presented groups among finitely generated metabelian groups. This result
was explained and used in [5] to determine the finitely generated metabelian
groups that are of extrinsic condensation (see [5] for this terminology).

THEOREM 4.35 (Bieri-Groves—Strebel). — Let G be a finitely generated
metabelian group. Then G admits a homomorphism onto Z that does not
contract into any finitely generated subgroup if and only if G is not finitely
presented.

The following is the main result of this paragraph.

THEOREM 4.36. — Let G be a finitely generated metabelian group. Then
G is either finitely presented or densely related.

Proof. — If G is not finitely presented, then Theorem 4.35 ensures the
existence of a homomorphism from G onto Z that does not contract into
any finitely generated subgroup of G. Now since G is metabelian, we may
plainly apply Proposition 4.31, from which the conclusion follows. g

The dichotomy appearing in Theorem 4.36 actually extends to the larger
class of center-by-metabelian finitely generated groups.

COROLLARY 4.37. — Let G be a center-by-metabelian finitely generated
group. Then G is either finitely presented or densely related.
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Proof. — Let Z be a central subgroup of G such that Q = G/Z is
metabelian. If @) is finitely presented then Z has to be finitely generated
by Lemma 3.10, and therefore finitely presented since Z is abelian. So G
lies in an extension of finitely presented groups, and is therefore finitely
presented.

Now assume that @ is not finitely presented. Since ) is metabelian, by
Theorem 4.35 there is a homomorphism Q — Z that does not contract into
any finitely generated subgroup of (). This homomorphism may clearly be
lifted to a homomorphism G — Z with the same property, and since G is
solvable, Proposition 4.31 implies that G is densely related. ]
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