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Heat kernel asymptotics on sub-Riemannian manifolds
with symmetries and applications to the bi-Heisenberg

group (∗)

Davide Barilari (1), Ugo Boscain (2) and Robert W. Neel (3)

ABSTRACT. — By adapting a technique of Molchanov, we obtain the heat kernel
asymptotics at the sub-Riemannian cut locus, when the cut points are reached by an
r-dimensional parametric family of optimal geodesics. We apply these results to the
bi-Heisenberg group, that is, a nilpotent left-invariant sub-Riemannian structure on
R5 depending on two real parameters α1 and α2. We develop some results about its
geodesics and heat kernel associated to its sub-Laplacian and we illuminate some in-
teresting geometric and analytic features appearing when one compares the isotropic
(α1 = α2) and the non-isotropic cases (α1 6= α2). In particular, we give the exact
structure of the cut locus, and we get the complete small-time asymptotics for its
heat kernel.

RÉSUMÉ. — En adaptant une technique de Molchanov, nous obtenons le dévelop-
pement en temps petit du noyau de la chaleur au lieu de coupure sous-riemannien,
quand les points de coupure sont rejoints par une famille à r paramètres de géodé-
siques optimales. Nous appliquons ces résultats au cas du groupe de bi-Heisenberg,
un exemple de structure sous-riemannienne nilpotente, invariante à gauche sur R5 qui
dépend de deux paramètres réels α1 et α2. Nous décrivons des résultats concernants
ses géodésiques et le noyau de la chaleur associé au sous-laplacien et nous mettons
en évidence des propriétés géométriques et analytiques qui apparaissent quand on
compare le cas isotrope (α1 = α2) au cas non isotrope (α1 6= α2). Notamment,
nous obtenons la structure exacte du lieu de coupure avec la description complète
du développement en temps petit du noyau de la chaleur.
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1. Introduction

The three-dimensional Heisenberg group is the simplest example of a sub-
Riemannian manifold. It already possesses some features that are typical of
more general sub-Riemannian structures: the Hausdorff dimension is bigger
than the topological dimension, the cut locus and the conjugate locus start-
ing from a point are adjacent to the point itself, spheres are not smooth,
even for small radius, and the heat kernel small-time asymptotics on the
diagonal are affected by the presence of the trivial abnormal minimizer (or,
in other words, in sub-Riemannian geometry q is not a smooth point for
the exponential map based at q). The Heisenberg group is also the nilpotent
approximation of any three-dimensional contact structure.

The natural next example, that shares with the Heisenberg group many of
these properties, is the sub-Riemannian structure on R5 (where we consider
coordinates (x1, y1, x2, y2, z)) where the following vector fields{

X1 = ∂x1 − α1
2 y1∂z, Y1 = ∂y1 + α1

2 x1∂z,

X2 = ∂x2 − α2
2 y2∂z, Y2 = ∂y2 + α2

2 x2∂z,
(1.1)

for α1, α2 > 0, (α1, α2) 6= (0, 0), define an orthonormal frame. Usually the
case α1 = α2 is called the five-dimensional Heisenberg group, while the case
α1 6= α2 is referred as the non-isotropic five-dimensional Heisenberg group,
see [12]. In the following we refer to the structure defined by (1.1) as the
bi-Heisenberg group.

When the bi-Heisenberg group is obtained as the nilpotent approximation
of a sub-Riemannian structure with growth vector (4, 5), then the parameters
α1 and α2 keep track of some of the local structure of the original manifold.
In other words, the presence of parameters is a consequence of the fact
that the tangent space (or more precisely the nilpotent approximation) of a
structure with growth vector (4, 5) depends on the point. (See [3] for more
details about the nilpotent approximation of a sub-Riemannian structure.)

Many features of the bi-Heisenberg group change when the two param-
eters become equal. The main purpose of this paper is to study these dif-
ferences, in particular, as it concerns the structure of the cut locus and
the behavior of the heat kernel. An additional important case is the one
in which one of the two parameters vanishes. This is the case in which the
bi-Heisenberg structure is non-contact but is diffeomorphic to the product
H×R2, where H denotes the three-dimensional Heisenberg group. This case
should be treated separately since abnormal minimizers are present.
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Heat kernel asymptotics on sub-Riemannian manifolds

One simple, but crucial, result is the explicit computation of the cut locus
for the bi-Heisenberg group, and the corresponding structure of the expo-
nential map (more precisely, the rank of its differential) at each minimal
geodesic. The starting point for this computation is the existing formulas for
the cut time along each geodesics, see [3, 12]. The heat kernel asymptotics
are obtained as a consequence of the main result of the paper, namely Theo-
rem 3.2, which permits one to deduce the small-time heat kernel asymptotics
at cut loci produced by symmetries of the exponential map. This result is
obtained by refining a general method developed by Molchanov [19] and
the authors in [8, 10] (note in particular that it is a more detailed, sub-
Riemannian version of Case 3.3 in [19]). Indeed, [10] establishes a general
expression in terms of a Laplace integral for the heat kernel at the cut locus
that depends on the geometry of the associated minimal geodesics (which
we recall in Theorem 3.1 below), but to obtain concrete information on
the heat kernel asymptotics for any class of examples requires determining
the geodesic geometry and evaluating the behavior of the Laplace integral.
In [8], this is done for generic metrics in several low-dimensional cases. In
the present paper, we treat the complementary case in which the manifold
has some rotational symmetry.

In the case of the bi-Heisenberg group, the cut points are also conjugate
points and, as a consequence, one gets quite different asymptotic expansions
in and out of the cut locus.

We note that an integral expression for the heat kernel of the bi-
Heisenberg group is known, see [12]. From this expression is not difficult
to obtain an asymptotic expansion on the z-axis, but the extraction of the
asymptotics on points other than these seems more difficult. We also note
that stochastic approaches to small-time heat kernel asymptotics are possi-
ble, as in the recent work of [18]. While stochastic methods are quite powerful
and provide insight into the entire diffusion associated to the sub-Laplacian,
they are also technically demanding. In contrast, the Molchanov-inspired
approach of the present paper treats conjugacy in a relatively simple, finite-
dimensional way, and this makes it well suited to deriving explicit and geo-
metrically meaningful asymptotics.

1.1. Structure of the paper

Since the main result (Theorem 3.2) requires several preliminaries, we
discuss first its application to the bi-Heisenberg group, in the next subsection.

After recalling basic definitions of sub-Riemannian geometry (Section 2),
in Section 3 we state and prove Theorem 3.2. Section 4 is devoted to the
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explicit computation of the optimal synthesis on the bi-Heisenberg group,
together with the explicit formulas for the cut locus. Finally in Section 5 we
show that using the results of [12] one can recover the expansion we found
on a particular subset of the cut locus.

1.2. Description of the results for the bi-Heisenberg group

Theorem 1.1 (Structure of the cut locus). — The cut locus Cut0 start-
ing from the origin for the bi-Heisenberg group (i.e., the sub-Riemannian
metric on R5 for which (1.1) is an orthonormal frame) is characterized as
follows:

(i) if 0 < α2 = α1 then
Cut0 = {(0, 0, 0, 0, z), z ∈ R \ {0}},

(ii) if 0 < α2 < α1 then
Cut0 = {(0, 0, x2, y2, z), |z| > (x2

2 + y2
2)K(α1, α2), (x2, y2, z) ∈ R3 \ {0}},

where

K(α1, α2) := α2
2

8

(
2π
α1
− 1
α2

sin
(

2πα2

α1

))
sin−2

(
π
α2

α1

)
,

(iii) if 0 = α2 < α1 then
Cut0 = {(0, 0, x2, y2, z), (x2, y2, z) ∈ R3, z 6= 0}.

Moreover, in case (i) every point of the cut locus is reached by a family
of optimal geodesics parametrized by S3; in cases (ii)–(iii) every point of the
cut locus is reached by a family of optimal geodesics parametrized by S1. As
a consequence all cut points are also conjugate points.

Notice that the theorem above covers all the possible cases, up to ex-
changing the role of the indexes 1 and 2, which simply gives an isometric
structure.

Notice also that in case (i) the cut locus is a one-dimensional mani-
fold; in cases (ii)–(iii) the cut locus is a 3-dimensional manifold. Moreover
K(α1, α2)→ +∞ for α2 → α−1 and K(α1, α2)→ 0 for α2 → 0+. Hence one
can recover (i) and (iii) as limit cases of (ii). In all cases the cut locus is
symmetric with respect to rotation along the z axes.

In the following d denotes the sub-Riemannian distance and pt(q1, q2) is
the fundamental solution to the heat equation ∂tu = ∆u, where ∆ is the
sub-Laplacian defined on the bi-Heisenberg group (see Section 2 for precise
definitions).
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Theorem 1.2 (Asymptotics of the heat kernel). — There exist positive
constants Ci (depending on q) such that for t → 0, the heat kernel for the
bi-Heisenberg group satisfies

(i) On-diagonal asymptotics:

pt(0, 0) = C1 +O(t)
t3

.

(ii) If q /∈ Cut0 ∪{0}, then

pt(0, q) = C2 +O(t)
t5/2

e−d
2(0,q)/4t.

(iii) If q ∈ Cut0 and

(a) 0 < α2 = α1, then

pt(0, q) = C3 +O(t)
t4

e−d
2(0,q)/4t,

(b) 0 6 α2 < α1, then

pt(0, q) = C4 +O(t)
t3

e−d
2(0,q)/4t.

Case (i) is well known and can be obtained from the explicit expression of
the heat kernel or applying the result of Ben Arous [13]. Notice that in this
case one obtains pt(0, 0) = t−Q/2(C1 + O(t)) where Q = 6 is the Hausdorff
dimension. Case (ii) is a consequence of a result of Ben Arous [14] and from
the explicit expression of the cut locus (cf. Theorem 1.1). Case (iii) is a
consequence of Theorem 3.2. As explained in the introduction, the case in
which α2 = 0 should be treated separately as a consequence of the presence
of abnormal extremals.

Remark 1.3. — In Theorems 1.1 and 1.2 it is not restrictive to consider
the origin as reference point, due to the left-invariance of the structure.

Remark 1.4. — With the same techniques, Theorems 1.1 and 1.2 can
be generalized to the case of nilpotent structure of step 2 on R2`+1 with
distribution of codimension 1. Notice that these structures depend on ` real
parameters α1, . . . , α`. For an explicit description see [3] (cf. also [12]). In
this case, the structure of the cut locus and the heat kernel asymptotics are
determined by how many of these parameters coincide with the maximal
one.
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2. Basic definitions

In what followsM is a connected orientable smooth manifold of dimension
n > 3.

Definition 2.1. — A sub-Riemannian structure on M is a pair (D, g),
where

(i) D is a smooth vector distribution of constant rank k < n satisfying
the Hörmander condition, i.e. a smooth map that associates to q ∈
M a k-dimensional subspace Dq of TqM such that

span{[X1, [. . . [Xj−1, Xj ]]]q |Xi ∈ X(D), j ∈ N} = TqM, ∀ q ∈M, (2.1)
where X(D) denotes the set of horizontal smooth vector fields on
M , i.e.

X(D) = {X ∈ Vec(M) |X(q) ∈ Dq, ∀ q ∈M} .
(ii) gq is a Riemannian metric on Dq which is smooth as function of q.

We denote the norm of a vector v ∈ Dq by |v|g =
√

gq(v, v).

A Lipschitz continuous curve γ : [0, T ] → M is said to be horizontal (or
admissible) if

γ̇(t) ∈ Dγ(t) for a.e. t ∈ [0, T ].
The length of an horizontal curve γ : [0, T ]→M is

`(γ) =
∫ T

0
|γ̇(t)|g dt. (2.2)

Notice that `(γ) is invariant under time reparametrization of γ. The sub-
Riemannian (or Carnot–Carathéodory) distance on M is the function

d(q0, q1) = inf{`(γ) | γ(0) = q0, γ(T ) = q1, γ horizontal}. (2.3)
The hypothesis of connectedness of M and the Hörmander condition guar-
antee the finiteness and the continuity of d : M×M → R with respect to the
topology of M (Chow–Rashevsky theorem, see for instance [7]). The func-
tion d defined in (2.3) gives to M the structure of a metric space (see [7])
compatible with the original topology of M . The sub-Riemannian manifold
is said complete if (M,d) is complete as a metric space.

Locally, the pair (D, g) can be specified by assigning a set of k smooth
vector fields spanning D, being an orthonormal frame for g, i.e.
Dq = span{X1(q), . . . , Xk(q)}, gq(Xi(q), Xj(q)) = δij . (2.4)

In this case, the set {X1, . . . , Xk} is called a local orthonormal frame for the
sub-Riemannian metric.
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When a local orthonormal frame is defined globally, the sub-Riemannian
manifold is called trivializable.

The sub-Riemannian metric can also be expressed locally in “control
form” as follows. Fix {X1, . . . , Xk} a local orthonormal frame and consider
the control system:

q̇ =
k∑
i=1

uiXi(q). (2.5)

The problem of finding the shortest curve minimizing that joins two fixed
points q0, q1 ∈M is naturally formulated as the optimal control problem of
minimizing

∫ T

0

√√√√ k∑
i=1

u2
i (t) dt subject to q(0) = q0, q(T ) = q1. (2.6)

A sub-Riemannian structure on M is said to be left-invariant if M = G,
where G is a Lie group, and both D and g are left-invariant over G. Left-
invariant sub-Riemannian manifolds are trivializable. An example of left-
invariant sub-Riemannian manifold is provided by the bi-Heisenberg group
presented in the introduction (cf. also Section 4).

Now we briefly recall some facts about sub-Riemannian geodesics. In
particular, we define the sub-Riemannian exponential map.

Definition 2.2. — A geodesic for a sub-Riemannian manifold (M,D, g)
is an admissible curve γ : [0, T ] → M such that |γ̇(t)|g is constant and, for
every t ∈ [0, T ] there exists ε > 0 such that the restriction γ|[t−ε,t+ε] is a min-
imizer of `( · ). A geodesic satisfying |γ̇(t)|g = 1 is said to be parameterized
by arclength.

A version of the Hopf–Rinow theorem (see [16, Chapter 2]) ensures that if
the sub-Riemannian manifold is complete as metric space, then all geodesics
are defined for every t > 0 and that for every two points there exists a
minimizing geodesic connecting them.

Left invariant sub-Riemannian manifolds are always complete.

Trajectories minimizing the distance between two points are solutions
of first-order necessary conditions for optimality, which in the case of sub-
Riemannian geometry are described as follows.
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Theorem 2.3. — Let q( · ) : t ∈ [0, T ] 7→ q(t) ∈ M be a solution of the
minimization problem (2.6) such that |q̇(t)|g is constant, and let u( · ) be the
corresponding control. Then there exists a Lipschitz map p( · ) : t ∈ [0, T ] 7→
p(t) ∈ T ∗q(t)M such that one and only one of the following conditions holds:

(i) q̇ = ∂H
∂p , ṗ = −∂H∂q , ui(t) = 〈p(t), Xi(q(t))〉, where H(q, p) =

1
2
∑k
i=1〈p,Xi(q)〉2.

(ii) q̇ = ∂H
∂p , ṗ = −∂H∂q , 0 = 〈p(t), Xi(q(t))〉, p(t) 6= 0, where

H(t, q, p) =
∑k
i=1 ui(t)〈p,Xi(q)〉.

For an elementary proof of Theorem 2.3 see [5, 4].

Remark 2.4. — If (q( · ), p( · )) is a solution of (i) (resp. (ii)) then it is
called a normal extremal (resp. abnormal extremal). It is well known that if
(q( · ), p( · )) is a normal extremal then q( · ) is a geodesic (see [5, 7]). This does
not hold in general for abnormal extremals. An admissible trajectory q( · )
can be at the same time normal and abnormal (corresponding to different
covectors). If an admissible trajectory q( · ) is normal but not abnormal, we
say that it is strictly normal.

Definition 2.5. — A minimizer γ : [0, T ] → M is said to be strongly
normal if for every [t1, t2] ⊂ [0, T ], γ|[t1,t2] is strictly normal.

In the following we denote by (q(t), p(t)) = et
~H(q0, p0) the solution of (i)

with initial condition (q(0), p(0)) = (q0, p0). Moreover we denote by π :
T ∗M →M the canonical projection.

Normal extremals (starting from q0) parametrized by arclength corre-
spond to initial covectors p0 ∈ Λq0 := {p0 ∈ T ∗q0

M |H(q0, p0) = 1/2}.

Definition 2.6. — Let (M,D, g) be a complete sub-Riemannian mani-
fold and q0 ∈M . We define the exponential map starting from q0 as

expq0 : Λq0 × R+ →M, expq0(p0, t) = π(et ~H(q0, p0)). (2.7)

Next, we recall the definition of cut and conjugate time.

Definition 2.7. — Let q0 ∈ M and γ(t) an arclength geodesic start-
ing from q0. The cut time for γ is tcut(γ) = sup{t > 0, γ|[0,t] is optimal}.
The cut locus from q0 is the set Cutq0 = {γ(tcut(γ)), γ arclength geodesic
from q0}.
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Definition 2.8. — Let q0 ∈ M and γ(t) a normal arclength geodesic
starting from q0 with initial covector p0. Assume that γ is not abnormal.

(i) The first conjugate time of γ is tcon(γ) = min{t > 0, (p0, t) is a
critical point of expq0}.

(ii) The first conjugate locus from q0 is the set

Conq0 = {γ(tcon(γ)), γ arclength geodesic from q0}.

It is well known that, for a geodesic γ which is not abnormal, the cut time
t∗ = tcut(γ) is either equal to the conjugate time, or there exists another
geodesic γ̃ such that γ(t∗) = γ̃(t∗) (see for instance [1, 5]).

Remark 2.9. — In sub-Riemannian geometry, the map expq0 is never a
local diffeomorphism at 0 ∈ T ∗q0

M . As a consequence one can show that the
sub-Riemannian balls are never smooth and both the cut and the conjugate
loci from q0 are adjacent to the point q0 itself (see [2, 5]).

2.1. The sub-Laplacian

In this section we define the sub-Riemannian Laplacian on a sub-Rieman-
nian manifold (M,D, g) endowed with a smooth volume µ.

The sub-Laplacian is the natural generalization of the Laplace–Beltrami
operator defined on a Riemannian manifold, defined as the divergence of the
gradient. The horizontal gradient is the unique operator∇ : C∞(M)→ X(D)
defined by

gq(∇ϕ(q), v) = dϕq(v), ∀ ϕ ∈ C∞(M), q ∈M, v ∈ Dq.

By construction, it is a horizontal vector field. If X1, . . . , Xk is a local
orthonormal frame, it is easy to see that it is written as follows ∇ϕ =∑k
i=1Xi(ϕ)Xi, where Xi(ϕ) denotes the Lie derivative of ϕ in the direction

of Xi.

The divergence of a vector field X with respect to a volume µ is the
function divµX defined by the identity LXµ = (divµX)µ, where LX stands
for the Lie derivative with respect to X.

The sub-Laplacian associated with the sub-Riemannian structure, i.e.
∆ϕ = divµ(∇ϕ), is written in a local orthonormal frame X1, . . . , Xk as
follows

∆ =
k∑
i=1

X2
i + (divµXi)Xi. (2.8)
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Notice that ∆ is always expressed as the sum of squares of the element of the
orthonormal frame plus a first order term that belongs to the distribution
and depends on the choice of the volume µ.

In what follows we denote pt the heat kernel associated to the heat equa-
tion ∂tu = ∆u. Its existence, smoothness, symmetry, and positivity are guar-
anteed by classical results since the operator (2.8) is in divergence form and
M is complete, see for instance [20].

Remark 2.10. — In the case of a left-invariant structure on a Lie group
(and in particular for a nilpotent structure), an intrinsic choice of volume
is provided by the left Haar measure. When the Lie group is unimodular,
which is the case in particular for nilpotent groups, the left Haar measure is
both left and right invariant. Left invariant vector fields on a Lie group G
are divergence free with respect to the right Haar measure. As a consequence
the sub-Laplacian associated to the Haar measure has the form of “sum of
squares” (see also [6])

∆ =
k∑
i=1

X2
i .

For unimodular left invariant structures one can show that the Haar measure
coincides with the Popp volume, that is a well defined measure for equiregular
sub-Riemannian manifolds (see [11]).

3. Small time asymptotic of the heat kernel

We begin by recalling the general framework for computing asymptotics
developed in [10], which is built upon the basic insight of Molchanov [19]. Let
M be a complete sub-Riemannian (or Riemannian) manifold of dimension
n. Consider distinct points x and y such that every minimizing geodesic
connecting them is strongly normal. (In this section, we will use x, y and
z to denote points of M , to avoid the need for subscripts as in q0, q1, etc.
Because we work on a general sub-Riemannian manifold, there should be
no confusion with using these letters to denote Euclidean coordinates on
R5, as when we specifically discuss the bi-Heisenberg group.) Let Γ ⊂ M
be the set of midpoints of minimizing geodesics from x to y (or from y to
x, the situation is symmetric), and let N(Γ) denote a neighborhood of Γ.
Further, let hx,y(z) =

[
d2(x, z) + d2(z, y)

]
/2; then hx,y attains its minimum

of d2(x, y)/4 exactly on Γ (see [10, Lemma 21]). Because hx,y is continuous
and sub-Riemannian balls are compact (by completeness of M), it follows
that Γ is compact. Further, since strong normality is an open condition and
Γ is a positive distance from x, y, and their cut loci, hx,y is smooth in a
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neighborhood of Γ. We assume that N(Γ) is small enough so that its closure
is positive distance from x, y, and their cut loci and that hx,y is smooth on
its closure.

Continuing, suppose we giveM a sub-Laplacian ∆ coming from a smooth
volume µ as in Section 2.1. Let Σ ⊂ M ×M be the set of (x, y) such that
x 6= y and there exists a unique, strongly normal, non-conjugate minimiz-
ing geodesic connecting x and y. Then from the results contained in Ben
Arous [13], it follows that for (x, y) ∈ Σ,

pt(x, y) = 1
tn/2

exp
(
−d

2(x, y)
4t

)
(c0(x, y) +O(t)) as t→ 0,

where c0(x, y) is smooth and positive on Σ and the O(t) is uniform over
compact subsets of Σ.

We can now give the basic, general result for determining small-time
asymptotics at the cut locus. The first part of Theorem 27 of [10] gives the
following.

Theorem 3.1. — Let M be an n-dimensional (complete) sub-Rieman-
nian manifold with smooth measure µ and corresponding heat kernel pt, and
let x and y be distinct points such that all minimal geodesics from x to y
are strongly normal. Then with the above notation, for any sufficiently small
N(Γ), we have

pt(x, y) =
∫
N(Γ)

(
2
t

)n
e−hx,y(z)/t (c0(x, z)c0(z, y) +O(t))µ(dz),

where the O(t) term is uniform over N(Γ).

We wish to apply this theorem in concrete cases where we have an explicit
expression for hx,y, and possibly for c0. For what follows, we will need the
case when Γ is an embedded (necessarily compact) r-dimensional smooth
submanifold of M and the Hessian of hx,y restricted to normal bundle of
TΓ in TM is non-degenerate (because in general there is no Riemannian
metric on M , there is no notion of a canonical representative of the normal
bundle as an orthogonal complement, but non-degeneracy of the Hessian
is nonetheless well defined). In other words, hx,y is a Morse–Bott function
with critical set Γ. Note that because the Hessian of hx,y at z ∈ Γ is always
non-degenerate along the minimal geodesic from x to y through z, we must
have 0 6 r < n.

In this situation, for any local coordinates (u1, . . . , ur) on an open subset
U of Γ, we can extend them to local coordinates (u1, . . . , ur, ur+1, . . . , un) on
an open subset V of M such that Γ is locally given by ur+1 = · · · = un = 0
and U = V ∩Γ. Further, perhaps by shrinking U and V , we can assume that
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these coordinates can be extended to a neighborhood of V . We call such a
local coordinate system on M adapted to Γ. Then µ has a smooth density
F (u) with respect to du1 · · · dun, and F (u) along all with of its derivatives
in the ui are bounded on V . Next, note that for z ∈ U , ∂ui

∂uj
hx,y(z) = 0 if

either i 6 r or j 6 r. Then let Hchx,y(z) be the (n−r)× (n−r) matrix with
i, j entry ∂ur+i

∂ur+j
hx,y(z) (this depends on the coordinate system u, but

we supress that in the notation). Note that all the entries of Hchx,y(z) along
with all of their derivatives in the ui are bounded on U . Now we claim that
there is measure νµ,hx,y

Γ on Γ, induced by µ and the Morse–Bott function
hx,y, that is defined by having the following local expression in any local
adapted coordinates,

ν
µ,hx,y

Γ = F (u1, . . . , ur, 0, . . . , 0)√
detHchx,y(u1, . . . , ur)

du1 . . . dur.

To see that this is a globally well-defined measure on Γ, first note that this
expression depends only on the local coordinates (u1, . . . , ur) on Γ and not
on the extension to adapted coordinates on M ; more precisely, the factor of
F/
√

detHchx,y is invariant under change of fiber coordinates on the normal
bundle. This is because if we change the coordinates (ur+1, . . . , un) on any
fixed fiber of the normal bundle to some other adapted choice, both FΓ

and
√

detHchx,y are multiplied by the aboslute value of the determinant of
the Jacobian, which clearly cancels. Further, if we change the coordinates
(u1, . . . , ur) on Γ, it is clear that the given expression for νµ,hx,y

Γ transforms
like a measure, and this is enough to establish the claim.

The motivation for introducing νµ,hx,y

Γ is that it encodes the relevant be-
havior of both µ and the Hessian of hx,y needed for the following asymptotic
expansion.

Theorem 3.2. — Let M be an n-dimensional complete sub-Riemannian
manifold provided with a smooth volume µ and let pt be the heat kernel of
the sub-Riemannian heat equation. Let x and y be distinct and assume that
every optimal geodesic joining x to y is strongly normal. Define

O := {p̄ ∈ Λx | expx(p̄, d(x, y)) = y}

Assume that:

(i) O is a submanifold of Λx of dimension r.
(ii) for every p̄ ∈ O we have dim kerDp̄,d(x,y)expx = r.

Then there exists a positive constant C such that

pt(x, y) = C +O(t)
t

n+r
2

e−d
2(x,y)/4t, as t→ 0. (3.1)
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Further, expx( · , d(x, y)/2) maps O diffeomorphically onto Γ, and the Hes-
sian of hx,y restricted to the normal bundle of TΓ in TM is non-degenerate,
so that νµ,hx,y

Γ is defined as above. Finally, the constant C in the expansion
is given by

C = 2(3n−r)/2π(n−r)/2
∫
z∈Γ

c0(x, z)c0(z, y)νµ,hx,y

Γ (dz) . (3.2)

Proof. — By its definition, Γ is the image of O under expx( · , d(x, y)/2).
Take p̄ ∈ O. By the assumption of strong normality and basic properties of
the exponential map, expx( · , d(x, y)/2) is a diffeomorphism from a neighbor-
hood of p̄ in Λx to a neighborhood of z0 = expx(p̄, d(x, y)/2) in M . Thus Γ
is locally (near z0) an immersed submanifold of M of dimension r. Further,
because the geodesics corresponding to covectors in Λx are optimal until
time d(x, y) and the cut locus of x is closed, expx(p̄, d(x, y)/2) is injective
on a neighborhood of O. It follows that Γ is a compact embedded subman-
ifold of M of dimension r, that expx(p̄, d(x, y)/2) is a diffeomorphism from
a neighborhood of O in Λx to a neighborhood of Γ in M that restricts to a
diffeomorphism from O to Γ, and that O is compact.

Since hx,y is constant on Γ (see also [10, Theorem 24]) and hx,y is smooth
near Γ, the tangent space to Γ lies in the kernel of ∇2hx,y. Since this tangent
space has dimension r, we see that this tangent space is in fact equal to the
kernel of∇2hx,y (at every point of Γ). In particular,∇2hx,y is non-degenerate
on the (n − r)-dimensional normal space to Γ. So we are in the situation
discussed above, and we can define νµ,hx,y

Γ .

Continuing, by general facts about compact submanifolds (like the tubu-
lar neighborhood theorem), it follows that we can find a sufficiently small
N(Γ) so that Theorem 3.1 holds for it and such that N(Γ) is the union of a
finite number of open sets V1, . . . , Vk with the following properties:

• There are coordinates (ui1, . . . , uin) on each Vi which form a set of
coordinate charts for N(Γ), and these coordinates can be extended
to a neighborhood of Vi.
• If Ui = Vi ∩ Γ, then each Ui is nonempty and corresponds to the
subset {uir+1 = · · · = uin = 0} of Vi. In particular, (ui1, . . . , uin) are
local coordinates that are adapted to Γ, as above.
• Each Vi can be written, in the coordinates (ui1, . . . , uin), as the prod-
uct U × (−ε, ε)n−r for some ε > 0.
• There exists a partition of unity ϕ1, . . . , ϕk for Γ subordinate to the
covering U1, . . . , Uk.

In the computations that follow, we drop the superscript i from the co-
ordinates (ui1, . . . , uin) = (u1, . . . , un) on each Vi, in order to lighten the
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notation. We can extend each ϕ to be a function on Vi by letting them be
constant on the normal fibers (which are given by fixing u1, . . . , ur); then∑k
i=1 ϕi = 1 on all of N(Γ). Now we can apply Theorem 3.1 and write the

integral over N(Γ) in terms of this system of coordinates charts to find

pt(x, y) =
(

2
t

)n k∑
i=1

∫
Ui

{
ϕi(u1, . . . , ur)

×
∫

(−ε,ε)n−r

e−hx,y(u1,...,un)/t(co(x, u1, . . . , un)c0(u1, . . . , un, y) +O(t)
)

× Fi(u1, . . . , un)dur+1 · · · dun

}
du1 · · · dur (3.3)

where the O(t) terms are uniform and Fi is the density of µ with respect to
du1 · · · dun. The asymptotic behavior of the inner integrals can be computed
from the standard Laplace asymptotic formula (see [17, p. 198]), since the
Hessian of hx,y in the normal directions is not degenerate, and this behavior
is uniform by the smoothness and boundedness of everything involved. This
gives

pt(x, y) =
(

2
t

)n k∑
i=1

∫
Ui

ϕi(u1, . . . , ur)e−d
2(x,y)/4t (2πt)(n−r)/2

× (c0|Γ(x, u1, . . . , ur)c0|Γ(u1, . . . , ur, y) +O(t))νµ,hx,y

Γ (du1 · · · dur) .

Using that the ϕi are a partition of unity and that the O(t) term is uniform
and thus its integral is also O(t), we re-write this as

pt(x, y) = 2(3n−r)/2π(n−r)/2

t(n+r)/2 e−d
2(x,y)/4t

×
[∫
z∈Γ

c0(x, z)c0(z, y)νµ,hx,y

Γ (dz) +O(t)
]
.

It only remains to see that the integral over Γ is positive (so that the C in the
theorem is positive), but this follows immediately from the positivity of c0
and the fact that νµ,hx,y

Γ clearly gives positive measure to every non-empty
open (Borel) subset of Γ. �

Remark 3.3. — The statement of the theorem makes it clear that if one
is only interested in the power of t appearing in the asymptotics of pt(x, y),
which is the quantity that is most related to the (conjugacy) structure of
minimal geodesics from x to y, then only the properties (i) and (ii) of the
exponential map are needed. It is only if one wants to determine the constant
C that any specific control of µ, c0( · , · ), or the Hessian of hx,y on the normal
bundle are needed.
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Remark 3.4. — This theorem covers the most natural case, in which the
dimension of O is equal to the number of independent directions in which
the optimal geodesics are conjugate, i.e. to dim kerDp̄,d(x,y)expx. Not only
does this seem most common in situations of interest, but also there is a
clear relationship between the geodesic structure and the behavior of hx,y.
In particular, the non-conjugacy in the normal directions, to O or equiva-
lently Γ (in what follows we freely use the fact that the exponential map
gives a diffeomorphism between a neighborhood of O and a neighborhood
of Γ), corresponds exactly to the non-degeneracy of the Hessian of hx,y in
those directions. More concretely, the non-degeneracy of the Hessian along
the normal fibers means that we can find a further change of coordinates
(ur+1, . . . , un) 7→ (ũr+1, . . . , ũn) on each fiber such that hx,y, restricted to
the fiber, is given by the sum of squares ũ2

r+1 + . . . + ũ2
n. Indeed, this nor-

mal form for hx,y is what underlies the asymptotic expansion of the “inner
integrals” in (3.3).

This indicates that the above computation of the asymptotic expansion
can be extended to other normal forms for hx,y along the normal fibers. To
briefly illustrate this, suppose that we drop condition (ii) in Theorem 3.2
and instead assume that near each z ∈ Γ we can find local coordinates such
that hx,y = u2

r+1 + . . .+u2
n−1 +u4

n. This implies that dim kerDp̄,d(x,y)expx =
r + 1 for p̄ ∈ O. Moreover, as discussed in [8] (see especially Lemmas 27
and 29), if the exponential map restricted to a normal fiber has a singularity
of type A3 in the Arnol’d classification, then hx,y will have this normal form
when restricted to the same normal fiber. So there is again a connection
between the geodesic geometry and the behavior of hx,y, even if it is not as
clean. Nonetheless, once we assume this normal form for hx,y, the argument
proceeds in precisely the same way, except that the “inner integrals” in (3.3)
now have asymptotics determined by this different local expression for hx,y.
Such an expansion is again well known, and completing the computation,
one finds that

pt(x, y) =
C +O

(√
t
)

t
n+r+1

2 − 1
4
e−d

2(x,y)/4t, as t→ 0.

Here C is again some positive constant, the precise value of which is given
by integrating some local data (depending on c0, the volume measure and
behavior of hx,y) over Γ.

4. The bi-Heisenberg group

Recall that the bi-Heisenberg group is the sub-Riemannian structure on
R5 (where we consider coordinates (x1, y1, x2, y2, z)) where the following
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vector fields {
X1 = ∂x1 − α1

2 y1∂z, Y1 = ∂y1 + α1
2 x1∂z,

X2 = ∂x2 − α2
2 y2∂z, Y2 = ∂y2 + α2

2 x2∂z,
(4.1)

for α1, α2 > 0, (α1, α2) 6= (0, 0), define an orthonormal frame. If we set
Z = ∂z, it is easy to see that the only non trivial commutation relations are

[X1, Y1] = α1Z, [X2, Y2] = α2Z,

hence the structure is bracket generating. Notice that it is a nilpotent left-
invariant structure (indeed it is a Carnot group). Moreover the structure
is contact if and only if α1, α2 > 0. When one of the two parameters is
zero the sub-Riemannian structure is the product R2 × H where H is the
3-dimensional Heisenberg group.

4.1. Exponential map and synthesis

In this section we compute explicitly the cut locus starting from the origin
in the bi-Heisenberg group. In this section we assume 0 6 α2 6 α1, treating
the case α2 = 0 separately. The case 0 6 α1 6 α2 can be obtained by
exchanging the role of the indexes 1 and 2.

4.1.1. Contact case

In the contact case (i.e., α2 > 0) there are no non-constant abnormal
extremals. One then reduces the computations of the extremals (see Theo-
rem 2.3) to the solution of the Hamiltonian system defined by the Hamil-
tonian

H(p, q) = 1
2

2∑
i=1
〈p,Xi(q)〉2 + 〈p, Yi(q)〉2.

The arclength geodesics starting from the origin are parametrized by the
initial covector p0 ∈ T ∗0M belonging to the level set Λ0 := H−1(1/2)∩T ∗0M .
If (px1 , py1 , px2 , py2 , w) are the dual variables to (x1, y1, x2, y2, z) then

Λ0 = {(px1 , py1 , px2 , py2 , w) | p2
x1

+ p2
y1

+ p2
x2

+ p2
y2

= 1} ' S3 × R
Performing the change of variable

pxi
= −ri sin θi, pyi

= ri cos θi, i = 1, 2,
we parametrize the set Λ0 with (r1, r2, θ1, θ2, w) such that r1, r2 > 0, r2

1+r2
2 =

1, θ1, θ2 ∈ S1, w ∈ R. Solving the Hamiltonian system defined by H one
can show that the arclength geodesic γ(t) = (x1(t), x2(t), y1(t), y2(t), z(t))
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associated with an initial covector p0 = (r1, r2, θ1, θ2, w) ∈ Λ0 and |w| 6= 0,
is described by the equations (we restrict to the case w > 0, the case w < 0
is analogous by symmetry)

xi(t) = ri
αiw

(cos(αiwt+ θi)− cos θi),

yi(t) = ri
αiw

(sin(αiwt+ θi)− sin θi), i = 1, 2,

z(t) = 1
2w2

(
wt−

2∑
i=1

r2
i

αi
sinαiwt

)
.

(4.2)

If w = 0, geodesics are straight lines contained in the hyperplane {z = 0}
xi(t) = rit cos θi
yi(t) = rit sin θi,
z(t) = 0.

(4.3)

From equations (4.2) one easily shows that the projection of a non-
horizontal extremal on every 2-plane (xi, yi) is a circle, with period Ti, radius
ρi and center Ci defined by

Ti = 2π
αiw

, ρi = ri
αiw

Ci = − ri
αiw

(cos θi, sin θi), ∀ i = 1, . . . , `. (4.4)

Moreover, generalizing the analogous property of the 3D Heisenberg group
H, one can recover that the z-component of the extremal at time t is the
weighted sum (with coefficients αi) of the areas spanned by the vectors
(xi(t), yi(t)) in R2 (see also Figure 4.1).

We introduce the functions ρi(t) =
√
xi(t)2 + yi(t)2 that satisfy

ρi(t) = 2ri
αi|w|

sin
(
αiwt

2

)
= ri t sinc

(
αiwt

2

)
, (4.5)

where sinc(x) = sin x
x

.

4.1.2. Non-contact case

In the case when α2 = 0 the sub-Riemannian structure reduces to the
product H× R2. To fix notation, let us write an horizontal trajectory as

q̇(t) = u1(t)X1(q(t)) + u2X2(q(t)) + u3Y1(q(t)) + u4Y2(q(t)),

for some L∞ functions ui( · ), i = 1, . . . , 4.
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Figure 4.1. Projection of a non-horizontal geodesic: case 0 < α2 6 α1

We first study the abnormal extremals. From (ii) of Theorem 2.3 we must
have, for every t,

0 = 〈p(t), X1(q(t))〉, 0 = 〈p(t), X2(q(t))〉,
0 = 〈p(t), Y1(q(t))〉, 0 = 〈p(t), Y1(q(t))〉.

These relations do not immediately permit one to get the control correspond-
ing to the abnormal extremals. We then differentiate with respect to t. We
get, for every t,

0 = d
dt 〈p(t), X1(q(t))〉, 0 = d

dt 〈p(t), X2(q(t))〉, (4.6)

0 = d
dt 〈p(t), Y1(q(t))〉, 0 = d

dt 〈p(t), Y2(q(t))〉. (4.7)

By using the Hamiltonian equations of (ii) of Theorem 2.3, we get from the
first two

u1(t)〈p(t), [X1, X2](q(t))〉 = 0, u2(t)〈p(t), [X1, X2](q(t))〉 = 0, for every t

the others being zero since Y1 and Y2 commute with themselves and with
X1 and X2.

SinceX1,X2, Y1, Y2, and [X1, X2] are linearly independent, it follows that
we can only have an abnormal extremal if u1 ≡ u2 ≡ 0, and furthermore,
any trajectory with u1 ≡ u2 ≡ 0 can be realized as an abnormal extremal (as
we will see in a moment, some such abnormal extremals can also be realized
as normal extremals).

Remark 4.1. — Notice that every trajectory having u1 ≡ u2 ≡ 0 can be
realized as an abnormal extremal, but only those that generate straight lines
in the plane (x2, y2) are minimizing.
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Moving on to normal extremals, the level set of the Hamiltonian in this
case is again

Λ0 = {(px1 , py1 , px2 , py2 , w) | p2
x1

+ p2
y1

+ p2
x2

+ p2
y2

= 1} ' S3 × R

Performing the change of variable

pxi
= −ri sin θi, pyi

= ri cos θi, i = 1, 2,

we parametrize the set Λ0 with (r1, r2, θ1, θ2, w) such that r1, r2 > 0, r2
1+r2

2 =
1, θ1, θ2 ∈ S1, w ∈ R.

Again, solving the Hamiltonian system defined by H (in the sense of (ii)
of Theorem 2.3), one shows that the arclength geodesic γ(t) = (x1(t), x2(t),
y1(t), y2(t), z(t)) associated with an initial covector p0 = (r1, r2, θ1, θ2, w) ∈
Λ0 and |w| 6= 0, are described as follows (we restrict to the case w > 0, the
case w < 0 is analogous by symmetry): when r1 6= 0

x1(t) = r1

α1w
(cos(α1wt+ θ1)− cos θ1),

y1(t) = r1

α1w
(sin(α1wt+ θ1)− sin θ1),

x2(t) = r2t cos θ2, y2(t) = r2t sin θ2,

z(t) = r2
1

2w2

(
wt− 1

α1
sin(α1wt)

) (4.8)

and these geodesics are strictly normal, based on the characterization of
abnormals above. If r1 = 0 (hence r2 = 1) we have

x1(t) = 0, y1(t) = 0,
x2(t) = t cos θ2, y2(t) = t sin θ2,

z(t) = 0,
(4.9)

and these geodesics are also realized as abnormals (they are exactly the
straight lines in the (x2, y2) plane mentioned in Remark 4.1). Finally, if
w = 0 and r1 6= 0, we have

x1(t) = r1t cos θ1, y1(t) = r1t sin θ1,

x2(t) = r2t cos θ2, y2(t) = r2t sin θ2,

z(t) = 0,
(4.10)

and these geodesics are once again strictly normal.

Let us denote the exponential map starting from the origin as the map

exp0 : Λ0 × R+ →M, exp0(p0, t) = γ(t),

where γ(t) = (x1(t), x2(t), y1(t), y2(t), z(t)) is the arclength geodesic associ-
ated with p0.
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In light of the above, to determine the cut locus, it is enough to restrict our
attention to normal extremals, since all abnormals are either non-minimizing
(hence not geodesics) or also realized as normal extremals. The following
lemma is proved in [3], see also [12].

Lemma 4.2. — An arclength geodesic γ(t) = exp0(p0, t) associated to
p0 = (r1, r2, θ1, θ2, w) ∈ Λ0 is optimal up to its cut time

tcut(γ) = 2π
|w|max{α1, α2}

. (4.11)

with the understanding tcut(γ) = +∞ when w = 0. Moreover the cut time
coincides with the first conjugate time.

Let us mention the following explicit formula for the distance from the
origin to the vertical axis in terms of the parameters α1, α2, namely for every
ζ = (0, 0, 0, 0, z) we have

d(0, ζ)2 = 4π|z|
max{α1, α2}

. (4.12)

4.2. Proof of Theorem 1.1

By symmetry we will consider the case w > 0 and the cut locus will
be the union of this set and its symmetric with respect to the hyperplane
{z = 0}. (Recall the case w = 0 there is no cut locus along the geodesic.)

(i). — In this case let t∗ = 2π/αw be the cut time, where α := α1 = α2.
Substituting the cut time into the equations of the geodesic one gets that
all the horizontal coordinates vanishes and z(t∗) = π/αw2. From this (i)
is immediate. Notice moreover that the final point does not depend on
(r1, r2, θ1, θ2) ∈ S3, so we have a three-parameter family of optimal geodesics
joining this point.

(ii). — Since max{α1, α2} = α1, the cut time is t∗ = 2π/α1w and sub-
stituting the cut time into the equations we get

x1(t∗) = y1(t∗) = 0,

x2(t∗) = r2

α2w

(
cos
(

2πα2

α1
+ θ2

)
− cos θ2

)
,

y2(t∗) = r2

α2w

(
sin
(

2πα2

α1
+ θ2

)
− sin θ2

)
,

z(t∗) = 1
2w2

(
2π
α1
− r2

2
α2

sin
(

2πα2

α1

))
.

(4.13)
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Notice that the set of cut points has rotational symmetry. Indeed the function
ρ2 describing the distance from the origin in the plane (x2, y2) (see (4.5))

ρ2
2 = x2

2 + y2
2 = 4r2

2
α2

2w
2 sin2

(
π
α2

α1

)
does not depend on θ2 ∈ S1. In other words the cut locus is a subset of the
three-dimensional space {(x2, y2, z)} which is symmetric with respect to the
z-axis. This set is obtained by rotating with respect to the z axis the image
of the map in the half-space {(ρ, z), ρ > 0} (for simplicity we denote in the
following by ρ, r respectively ρ2 and r2)

(r, w) 7→

ρ = 2r
α2w

sin
(
πα2
α1

)
,

z = 1
2w2

(
2π
α1
− r2

α2
sin
(

2πα2
α1

))
,

r ∈ [0, 1], w > 0. (4.14)

From the equations above it is easy to get the relation

z = Ψ(α1, α2, r)ρ2

where Ψ(α1, α2, r) is a constant that depends only on r (and the parameters
α1, α2) expressed by

Ψ(α1, α2, r) = α2
2

8r2 sin−2
(
π
α1

α2

)(
2π
α1
− r2

α2
sin
(

2πα2

α1

))
.

In other words, for a fixed value of r, the point belongs to a parabola
and (4.14) guarantees there exists a unique w associated to each point on
this parabola. Moreover we have that

lim
r→0+

Ψ(α1, α2, r) = +∞, lim
r→1−

Ψ(α1, α2, r) =: K(α1, α2),

and
∂

∂r
Ψ(α1, α2, r) = −

πα2
2 csc2(πα1

α2
)

8α1r3 < 0, r ∈ [0, 1],

that ensure that the function (4.14) is injective on its image, which completes
the proof of (ii).

(iii). — This case is reduced to R2 times the cut locus of H, that is the
three dimensional space {(x2, y2, z), z 6= 0}.

Remark 4.3. — Notice that the structure of the cut locus is continuous
with respect to the parameters α1, α2 in the following sense

lim
α2→0+

Ψ(α1, α2, r) = 0, lim
α2→α−

1

Ψ(α1, α2, r) = +∞.

This implies in fact that the cases (i) and (iii) can be recovered as the limit
cases of (ii).
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4.3. Proof of Theorem 1.2

Point (i) and (ii) of Theorem 1.2 follows from results of Ben Arous [13, 14].

Point (iii) of Theorem 1.2 can be obtained by applying Theorem 3.2 to
the explicit structure of optimal geodesics described in the previous section.
We have two different cases:

(iii.a). — 0 < α2 = α1 =: α. In this case we proved that every point in
the cut locus is reached by a three-parameter family of geodesics. More pre-
cisely, following the notation of Theorem 3.2, for every point q ∈ Cut0 \{0},
we have O = S3. Moreover it is easy to see that for every p̄ ∈ O one has
D(p̄,d(0,q))exp0 has rank 2. Indeed the differential of the exponential map is
never degenerate with respect to t and, for t = d(0, q) fixed, one has (notice
that p̄ ∈ O implies w 6= 0)

exp0(p̄, t) = (0, 0, 0, 0, π/(αw2)).
Hence, applying Theorem 3.2 with n = 5 and r = 3, we have

pt(0, q) = C +O(t)
t4

e−
d2(0,q)

4t

(iii.b). — 0 6 α2 < α1. Let us first consider the subcase α2 > 0. Then
every point in the cut locus is reached by a one-parameter family of geodesics.
More precisely, following the notation of Theorem 3.2, for every point q ∈
Cut0 \{0}, we have O = S1. Moreover it is easy to see that for every p̄ ∈ O
one has D(p̄,d(0,q))exp0 has rank 4.

Hence, applying Theorem 3.2 with n = 5 and r = 1, we have

pt(0, q) = C +O(t)
t3

e−
d2(0,q)

4t

When α2 = 0 the results of Section 3 cannot be applied due to the presence
of abnormal minimizers. Nevertheless since the struture is the product of the
Heisenberg group and R2 one easily gets that the heat kernel is the product
of the heat kernel of the Heisenberg group and the heat kernel of R2. From
the explicit expression one gets the result.

5. What one can get from the Greiner–Gaveau–Beals results

In this section we recall the expression of the heat kernel of the intrinsic
sub-Laplacian associated with a 2-step nilpotent structure, that has been
found in [12]. Then we rewrite it to have a convenient expression on the
“vertical subspace”.
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Consider on Rn a 2-step nilpotent structure of rank k < n, where
X1, . . . , Xk is an orthonormal frame. Once a smooth complement V for the
distribution is chosen (i.e. TqRn = Dq ⊕ Vq, for all q ∈ Rn) we can com-
plete an orthonormal frame to a global one X1, . . . , Xk, Y1, . . . , Ym, where
m = n− k and Vq = spanq{Y1, . . . , Ym}. Since the structure is nilpotent, we
can assume that the only nontrivial commutation relations are

[Xi, Xj ] =
m∑
h=1

bhijYh, (5.1)

where B1, . . . , Bm defined by Bh = (bhij) are skew-symmetric matrices (see [9]
for the role of these matrices in the exponential map).

Due to the group structure, the intrinsic sub-Laplacian takes the form of
sum of squares ∆ =

∑k
i=1X

2
i (see Remark 2.10). The group structure also

implies that the heat kernel is invariant with respect to the group operation,
hence it is enough to consider the heat kernel pt(0, q) starting from the
identity of the group, which we also denote pt(q). The heat kernel is written
as follows (see again [12, 15])

pt(q) = 2
(4πt)Q/2

∫
Rm

V (B(τ)) exp
(
−W (B(τ))x · x

4t

)
cos
(z · τ

t

)
dτ,

where q = (x, z), x ∈ Rk, z ∈ Rm, and B(τ) :=
∑m
i=1 τiBi. Moreover V :

Rn×n → C and W : Rn×n → Rn×n are the matrix functions defined by

V (A) =

√
det
(

A

sinA

)
, W (A) = A

tanA.

Here Q is the Hausdorff dimension of the sub-Riemannian structure.

Notice that (5.2) differs by some constant factors from the formulas con-
tained in [12] since there the heat kernel is the solution of the equation
∂tu = 1

2∆u.

Remark 5.1. — Assume that the real skew-symmetric matrix B(τ) is di-
agonalizable and denote by ±iλj(τ), for j = 1, . . . `, its non-zero eigenval-
ues. Then we have the formula for the expansion on the “vertical subspace”
(i.e. where x = 0)

pt((0, z)) = 2
(4πt)Q/2

∫
Rm

∏̀
j=1

λj(τ)
sinhλj(τ) cos

(z · τ
t

)
dτ. (5.2)
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For the bi-Heisenberg case, in which m = 1, we have that B(τ) = τB
and eig(B(τ)) = {± iα1τ,± iα2τ}, and from (5.2) one gets

pt(q) = 2
(4πt)3

∫ ∞
−∞

2∏
i=1

αiτ

sinh(αiτ) exp
(
−

2∑
i=1

x2
i + y2

i

4t
αiτ

tanh(αiτ)

)
cos
(zτ
t

)
dτ,

where pt(q) := pt(0, q) and q = (x1, x2, y1, y2, z).

From this formula one can get the expansion of the heat kernel on the
z-axis (that always lies in the cut locus by Theorem 1.1). We rewrite the
expansion when xi = yi = 0 for i = 1, 2, i.e. at a point ζ = (0, 0, 0, 0, z) (see
also (5.2)), as

pt(ζ) = 2
(4πt)3

∫ ∞
−∞

α1τ

sinh(α1τ)
α2τ

sinh(α2τ) cos
(zτ
t

)
dτ. (5.3)

We show now that the different behavior of the asymptotics that we proved
in the previous section can be recovered in the two cases when the parameters
are equal or not.

Case α1 = α2. — It is enough to consider the case when α1 = α2 = 1.

In this case the integral (5.3) is explicitly computed by the formula

pt(ζ) = 2
(4πt)3

∫ ∞
−∞

τ2

sinh2 τ
cos
(zτ
t

)
dτ =

πz coth
(
πz
2t
)
− 2t

32πt4
(
cosh

(
πz
t

)
− 1
) . (5.4)

Let us consider now the point ζ corresponding to z = 1. From (4.12) and (5.4)
one gets

pt(ζ) = 1
t4

exp
(
−d

2(0, ζ)
4t

)
ϕ(t), (5.5)

with ϕ a smooth function of t such that ϕ(0) = 1/16.

Case α1 6= α2. — To simplify the expression of the heat kernel we con-
sider the particular case when α1 = 1, α2 = 1/2. Also in this case we have
the expression of the heat kernel on the vertical axis ζ = (0, 0, 0, 0, z) (again
z 6= 0)

pt(ζ) =
(
−8πz sinh

(
πz
t

)
+ 8t cosh

(
πz
t

)
+ πt

(
cosh

( 2πz
t

)
− 3
))

128πt4cosh3 (πz
t

) . (5.6)

If we consider the expansion at the point ζ corresponding to z = 1, us-
ing (4.12) and (5.6) we find

pt(ζ) = 1
t3

exp
(
−d

2(0, ζ)
4t

)
ϕ(t), (5.7)

with ϕ(0) = 1/32.

By homogeneity these expansion hold on any point of the z-axis.
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Remark 5.2. — As a byproduct of formula (5.5), we get that, in the
symmetric case the maximal degeneration, at least in terms of the factor in
front of the exponential, is not obtained on the diagonal. This is in contrast
to what happens in the Heisenberg case.
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