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A classification of degree 2 semi-stable rational maps
P2 → P2 with large finite dynamical automorphism

group (∗)

Michelle Manes (1) and Joseph H. Silverman (2)

ABSTRACT. — Let K be an algebraically closed field of characteristic 0. In this
paper we classify the PGL3(K)-conjugacy classes of semi-stable dominant degree 2
rational maps f : P2

K 99K P
2
K whose automorphism group

Aut(f) := {φ ∈ PGL3(K) : φ−1 ◦ f ◦ φ = f}
is finite and of order at least 3. In particular, we prove that #Aut(f) 6 24 in general,
that #Aut(f) 6 21 for morphisms, and that #Aut(f) 6 6 for all but finitely many
conjugacy classes of f .

RÉSUMÉ. — Soit K un corps algébriquement clos de charactéristique 0. Dans cet
article nous classifions les PGL3(K)-classes de conjugaison de fonctions rationelles f :
P2
K 99K P

2
K de degré 2 dominantes et semi-stables dont le groupe d’automorphismes

Aut(f) := {φ ∈ PGL3(K) : φ−1 ◦ f ◦ φ = f}
est fini et d’ordre au moins 3. En particulier, nous démontrons que #Aut(f) 6 24
en général, que #Aut(f) 6 21 pour les morphismes et que #Aut(f) 6 6 pour toutes
excepté un nombre fini de classes de conjugaisons de f .
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1. Introduction

Let d > 1 and N > 1 be integers and let

L = L(N, d) =
(
N + d

d

)
(N + 1)− 1.

We identify PL with the space of (N+1)-tuples of homogeneous polynomials
of degree d in N + 1 variables such that at least one polynomial is non-zero.
Thus each f = [f0, . . . , fN ] ∈ PL defines a rational map

f : PN 99K PN .
Although the map f need not be dominant, nor, if it is dominant, need it
have degree d, we adopt the notation

RatNd := PL

and call RatNd the parameter space of rational self-maps of PN of formal
degree d.

The group PGLN+1 acts on RatNd via conjugation, i.e., the action of ϕ ∈
PGLN+1 on f ∈ RatNd is

fϕ := ϕ−1 ◦ f ◦ ϕ.
This gives a homomorphism

PGLN+1 −→ Aut(RatNd ) = Aut(PL) ∼= PGLL+1 .

Geometric invariant theory [16] tells us that there are subsets (RatNd )stab and
(RatNd )ss of stable and semi-stable points in RatNd which admit good quo-
tients for the action of PGLN+1.(1) We denote these quotients by (MN

d )stab
and (MN

d )ss.

In this note we are interested in the locus in RatNd of maps that admit a
non-trivial automorphism.

Definition. — The automorphism group of a map f ∈ RatNd is
Aut(f) = {ϕ ∈ PGLN+1 : fϕ = f}.

We note that Aut(fϕ) = Aut(f)ϕ. In particular, the isomorphism type of
Aut(f) is a PGLN+1-conjugation invariant.

Remark 1.1. — It is known that (M1
2)stab = (M1

2)ss ∼= P2 and that{
f ∈ (M1

2)stab : # Aut(f) > 2
}

is a cuspidal cubic curve in P2. More
precisely, for f on this curve, Aut(f) ∼= C2 for the non-cuspidal points and
Aut(f) ∼= S3 at the cuspidal point; see [23, Proposition 4.15]. We postpone

(1) More precisely, they admit good SLN+1-quotients; cf. [23, §2.1].
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Degree 2 maps f : P2 → P2 with large Aut(f)

to Section 2 an overview of our current knowledge of maps having non-trivial
automorphism group.

Our primary goal in this paper is to describe the degree 2 maps in (M2
2)ss

having large finite automorphism group, i.e., we want to extend the above-
mentioned classification of quadratic maps on P1 to quadratic maps on P2.
We mention that a number of new phenomena appear, including semi-stable
dominant rational quadratic maps f : P2 99K P2 for which Aut(f) contains
a copy of Gm. For reasons that we explain later, we mostly exclude these
maps from our analysis; see Section A. We also do not study maps with
Aut(f) ∼= C2, since they are too plentiful.

Before stating our main results, we need some additional notation. In
general, for any finite subgroup G ⊆ PGLN+1, we consider

RatNd (G) :=
{
f ∈ RatNd : Aut(f) ⊇ G

}
.

If Gϕ is a conjugate subgroup, then
RatNd (G) ∼−−→ RatNd (Gϕ), f

∼−−→ fϕ,

so it suffices to study RatNd (G) for each conjugacy class of finite subgroups
in PGLN+1.

It is important to note that PGLN+1 generally does not act on RatNd (G),
since if f ∈ RatNd (G) and ϕ ∈ PGLN+1, then Aut(fϕ) = Aut(f)ϕ ⊇ Gϕ.
Thus in order to ensure that fϕ is in RatNd (G), we need Gϕ = G, i.e., the
map ϕ must be in the normalizer N(G) of G. We thus define(2)

RatNd (G)ss :=
{
f ∈ RatNd (G) : f is N(G)-semistable

}
,

and similarly RatNd (G)stab denotes the set of N(G)-stable maps. It turns out
that if f ∈ RatNd (G) is N(G)-semistable, then f is also PGLN+1-semistable
when viewed as a point in RatNd , and further the natural map

RatNd (G)ss/N(G) −→ (RatNd )ss/PGLN+1 (1.1)
is finite; see Proposition B.1 for a general result. However, the map (1.1) may
fail to be injective due to the existence of f ’s that are PGLN+1-conjugate,
but are not N(G)-conjugate; see Example 1.7.

Our main results give a complete description of semistable dominant ra-
tional quadratic maps f : P2 99K P2 satisfying 3 6 # Aut(f) <∞.

Theorem 1.2. — Let K be an algebraically closed field of characteris-
tic 0, and let G ⊂ PGL3(K) be a finite subgroup with #G > 3. Suppose that
there exists a map f ∈ Rat2

2(G)ss(K) satisfying

(2) Again, we are being somewhat informal in this introduction. To be rigorous, we
lift G to an isomorphic subgroup G̃ in SLN+1 and look at maps f that are N(G̃)-semistable.
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• f : P2 99K P2 is dominant.
• deg(f) = 2.
• Aut(f) is finite.

Then there is a PGL3(K)-conjugate of G that contains one of the following
groups, where ζn is a primitive n’th root of unity:

G3 =
〈( 1 0 0

0 ζ3 0
0 0 ζ2

3

)〉
, G4 =

〈( 1 0 0
0 i 0
0 0 −1

)〉
, G5 =

〈( 1 0 0
0 ζ5 0
0 0 ζ3

5

)〉
,

G7 =
〈( 1 0 0

0 ζ7 0
0 0 ζ3

7

)〉
, G2,2 =

〈( 1 0 0
0 −1 0
0 0 1

)
,
( 1 0 0

0 1 0
0 0 −1

)〉
.

(1.2)

Theorem 1.3. — Let K be an algebraically closed field of characteris-
tic 0, and let G ⊂ PGL3(K) be one of the groups (1.2) listed in Theorem 1.2.
Suppose that f : P2 99K P2 satisfies the following:

• f ∈ Rat2
2(G)ss(K).

• f is dominant with deg(f) = 2.
• Aut(f) is finite.

Then f is N(G)-conjugate to one of the maps listed in Table 1.1. (See Ta-
ble 1.2 for an explanation of the entries in Table 1.1.)

The next corollary catalogs the complete list of finite groups that appear
as automorphism groups of semi-stable degee 2 maps of P2, as well as other
information related to the maps in Table 1.1.

Corollary 1.4. — Let K be an algebraically closed field of character-
istic 0, and let f ∈ Rat2

2(K) be a semi-stable dominant rational map of
degree 2 with finite automorphism group.

(a) Aut(f) is isomorphic to one of the following nine groups:
C1, C2, C3, C4, C5, C2

2 , S3, S4, C7 o C3.

(b) For each group G in (a), there exists a group G ⊂ PGL3 with G ∼= G
and a map f ∈ Rat2

2(G)ss such that f is a dominant map of degree 2
satisfying Aut(f) = G.

(c) Let G ⊂ PGL3 be a finite group that is not isomorphic to one of the
following groups:

C1, C2, C3, C4, C2
2 , or S3.

ThenM2
2(G)ss contains only finitely many dominant degree 2 maps.

(d) Let f : P2 99K P2 be a dominant degree 2 rational map such that
Aut(f) contains a copy of C2

2 or C5. Then f is not a morphism.

We briefly explain the strategy that we employ to classify maps with
large automorphism group:
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f Coeffs Aut dim St? #I Crit λ1 λ2

G3 : fb,d,g = [X2 + bY Z,Z2 + dXY, Y 2 + gXZ], fb,d,g ∼ fb,g,d
1.1 (2, 2ζ3, 2ζ2

3 ) C7 o C3 0 S 0 L1·L2·L3 2 4
1.2 (−1,−1,−1) S4 0 S 3 L1·L2·L3 1 1
1.3 (0, 0, 0) S3 0 S 0 L1·L2·L3 2 4
1.4 (b, b−1,−1) S3 1 S 3 L1·L2·L3 ∗1 ∗1

1.5 (b, d, d) S3 2 S 0 Γ 2 4
1.6 bdg = −1 C3 2 S 3 L1·L2·L3 ∗2 ∗2

1.7 bdg = 8 C3 2 S 0 L1·L2·L3 2 4
1.8 other C3 3 S 0 Γ 2 4
G3 : fa,c,g = [aX2 + Y Z, cZ2 +XY, Y 2 + gXZ], f0,c,g ∼ f0,c/g,1/g

(a, c, g) 6= (0, 0, 0)
2.1 (0, 0, g) C3 1 SS 2 C·L ∗3 2
2.2 (0, c, 1) S3 1 S 1 Γ′ 2 3
2.3 (0, c, 0) C3 1 S 1 3L 2 1
2.4 (a, 0, 0) C3 1 SS 1 3L 2 1
2.5 (a, 0, g) C3 2 SS 1 Γ′ 2 3
2.6 (0, c, g) C3 2 S 1 Γ′ 2 3
G4 : fa,e = [aX2 + Z2, XY, Y 2 + eXZ]
3.1 (0, 0) C4 0 S 1 2L1·L2

√
2 2

3.2 (0, e) C4 1 S 1 C·L 2 3
3.3 (a, 0) C4 1 S 2 2L1·L2 2 2
3.4 (a, e) C4 2 S 0 Γ 2 4
G4 : fc = [Y Z,X2 + cZ2, XY ], fc ∼ f1/c
4.1 (−1) Gm o C2 0 S 3 L1·L2·L3 1 1
4.2 (1) S4 0 S 3 L1·L2·L3 1 1
4.3 (0) C4 0 S 2 2L1·L2 1 1
4.4 (c) C4 1 S 3 L1·L2·L3 1 1
G2,2 : fa,e = [aX2 + Y 2 − Z2, XY, eXZ], f0,e ∼ f0,1/e
5.1 (0, 1) Gm o C2 0 S 3 L1·L2·L3 1 1
5.2 (0,−1) S4 0 S 3 L1·L2·L3 1 1
5.3 (0, e) C2

2 1 S 3 L1·L2·L3 1 1
5.4 (a, 1) Gm o C2 1 S 2 C·L 2 2
5.5 (a, e) C2

2 2 S 2 C·L 2 2
G2,2 : f = [Y Z,XZ,XY ]
6.1 S4 0 S 3 L1·L2·L3 1 1
G5 : f = [Y Z,X2, Y 2]
7.1 C5 0 SS 1 2L1·L2

√
2 2

G7 : f = [Z2, X2, Y 2]
8.1 C7 o C3 0 S 0 L1·L2·L3 2 4

Table 1.1. Dominant semistable degree 2 maps P2 99K P2 with large
automorphism group
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• For each family of Type N.M , Table 1.1 first gives a formula for the
maps in the family N.∗ and indicates by the notation f ∼ f ′ the N(G)-
conjugacy equivalences between maps. It then lists subfamilies M =
1, 2, . . .. The columns in Table 1.1 contain the following information:

Key for Columns in Table 1.1
Coeffs restrictions on the coefficients of f
Aut the full automorphism group of f
dim dimension of the familiy inM2

2
St? stability, with S = stable and SS = semistable
#I number of points in the indeterminacy locus of f
Crit geometry of the critical locus of f (see below for key)
λ1 dynamical degree of f (see Remark 2.1)
λ2 topological degree of f

• Within each type, the maps in a given line are understood to exclude the
maps in all previous lines. So for example maps of Type 1.4 exclude the
case b = −1, which is covered by Type 1.2, while Type 1.8 excludes maps
satisfying bdg 6= −1 and bdg 6= 8 Further, each line includes the indicated
PGL3-equivalences, so for example Type 1.4 includes both (b, b−1,−1)
and (b,−1, b−1).

• Table 1.1 includes a few cases (Types 4.1, 5.1, 5.4) with Aut(f) ⊃ Gm.
These help fill in the indicated family.

• The geometry of the critical locus is described by:
Key for Crit(f)

Γ= smooth cubic curve L1·L2·L3= 3 distinct lines
Γ′= nodal cubic curve 2L1·L2= double line ∪ line

C·L= conic ∪ line 3L= triple line

∗1 We expect that maps of Type 1.4 satisfy λ1(f) = 2 and λ2(f) = 4.
∗2 For generic values of b, d, g satisfying bdg = −1, we expect that maps

of Type 1.6 satisfy λ1(f) = 2 and λ2(f) = 4, but it seems likely that
there is a countable collection of (b, d, g) triples satisfying λ1(f) < 2
and λ2(f) < 4.

∗3 Experiments suggest that deg(fn) is the (n + 2)’nd Fibonacci number,
which would imply that λ1(f) = 1

2 (1 +
√

5).

Table 1.2. Notes for Table 1.1

• Assume that Aut(f) contains a subgroup isomorphic to some finite
group G satisfying #G > 3.
• Classify the conjugacy classes G1, . . . ,Gk of finite subgroups of

PGL3(K) that are isomorphic to G and choose a (nice) representa-
tive group Gi ⊂ PGL3(K) in Gi for each 1 6 i 6 k.(3)

(3) The complete classification of finite subgroups of PGL3(K) is classical, but for
completeness we include the short proof of the part that we need.
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• For each Gi, decompose the set of f ∈ Rat2
2 satisfying Gi ⊆ Aut(f)

into a disjoint union of irreducible families Fi,1,Fi,2, . . . ⊂ Rat2
2.

For example, in the (typical) case that Gi is a group of diagonal
matrices, the various Fi,j are characterized by the eigenvalues of
the generators of Gi acting on the monomials in the coordinates
of f .
• By inspection, determine which f ∈ Fi,j are dominant.
• Use the numerical criterion of Mumford–Hilbert to determine the
set of semi-stable f ∈ Fi,j .(4)
• It remains to determine the full automorphism group for dominant
semi-stable maps f ∈ Fi,j , or more generally, to determine

Hom(f, f ′) :=
{
ϕ ∈ PGL3(K) : f ′ = fϕ

}
for f, f ′ ∈ Fi,j .

(Taking f ′ = f gives Aut(f).) A key tool in this endeavor is to
exploit the fact that every ϕ ∈ Hom(f, f ′) induces an isomorphism
of the associated indeterminacy and critical loci,

I(f) ϕ−−→
∼

I(f ′) and Crit(f) ϕ−−→
∼

Crit(f ′).

These isomorphisms impose restrictions on ϕ which can be used
as the starting point of a case-by-case determination of Hom(f, f ′)
and Aut(f).

Remark 1.5. — We offer some further brief comments on the final step.
If I(f) = I(f ′) is a finite set of points, then ϕ ∈ Hom(f, f ′) induces a
permutation of these points, and similarly if Crit(f) = Crit(f ′) is a union
of (three) lines, or the union of a conic and a line, etc., then ϕ induces
a permutation of these geometric configurations. However, there are three
cases, Type 1.5, 1.8, and 3.4 in Table 1.1, for which I(f) = ∅ and Crit(f) is
a smooth cubic. For Types 1.5 and 1.8 we exploit the fact that every ϕ ∈
Aut(f) permutes the 9 flex points of the smooth cubic curve Crit(f). This
leads to several hundred cases, which we check by computer. For Type 3.4 we
take a slightly different approach by first showing that Crit(f) is an elliptic
curve with CM by Z[i], and that if ϕ ∈ Aut(f), then ϕ : Crit(f)→ Crit(f) is
translation by a 3-torsion point P0. We next prove that if P0 6= 0, then Aut(f)
would contain a copy of C2

3 , contradicting an earlier calculation. This allows
us to conclude that Aut(f) ∼= Z[i]∗ ∼= C4.

(4) We remark that in many cases it turns out that Fi,j contains no dominant semi-
stable maps. Indeed there are conjugacy classes with G ∼= C3 and G ∼= C4 that contain no
dominant semi-stable maps.
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Remark 1.6. — We take a moment to record some additional interesting
properties of some of the maps in Table 1.1.

(a) The maps fc = [Y Z,X2 + cZ2, XY ] of Types 4.1–4.4 satisfy

deg(fnc ) = n+ 1 if c 6= ±1,
f2k
c = [X, ckY, Z] if c = ±1.

In all cases, the second iterate satisfies Aut(f2
c ) ⊇ Gm. This gives a

family of examples of maps with Aut(f) finite and Aut(f2) infinite.
See Proposition 9.3.

(b) The maps f0,e = [Y 2 − Z2, XY, eXZ] of Types 5.1–5.3 satisfy

deg(fn0,e) = n+ 1 if e2 is not an odd-order root of unity,

f4k+2
0,e = [X,Y, Z] if e4k+2 = 1.

See Proposition 8.2.
(c) The map f = [Y Z,X2, Y 2] of Type 7.1 with C5 ∼= Aut(f) has the

property that f8 = [X16, Y 16, Z16].
(d) The map f = [Z2, X2, Y 2] of Type 8.1 with C7 ⊂ Aut(f) has the

property that f3 = [X8, Y 8, Z8].
(e) The maps of Type 1.2, 4.2, 5.2, and 6.1 are PGL3(K)-conjugate to

one another and have the property that f2 = [X,Y, Z]. See Exam-
ple 1.7.

Example 1.7. — Consider the following maps from Table 1.1:

f1.2 := [X2 − Y Z,Z2 −XY, Y 2 −XZ], Type 1.1
f4.2 := [Y Z,X2 + Z2, XY ], Type 4.2
f5.2 := [Y 2 − Z2, XY,−XZ], Type 5.2
f6.1 := [Y Z,XZ,XY ], Type 6.1.

One easily checks that

f1.2 ∈ Rat2
2(G3), f4.2 ∈ Rat2

2(G4), f5.2, f6.1 ∈ Rat2
2(G2,2).

Further, we find that all four maps are PGL3-conjugate. Explicitly

fα1.2 = fβ4.2 = fγ5.2 = f6.1

for

α =
( 1 1 1
ζ2

3 ζ2 1
ζ3 ζ

2
3 1

)
, β =

(
0 ζ2

8 1
−2ζ8 0 0

0 1 ζ2
8

)
, γ =

( 2 0 0
0 1 −1
0 1 1

)
,

where ζn denotes a primitive n’th root of unity.

Theorem 1.3 says that f5.2 and f6.1 both satisfy Aut(f) = S3G2,2, where
S3 ⊂ PGL3 is the group of permutation matrices. In particular, f5.2 and f6.1
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areN(S3G2,2)-conjugate, since γ normalizes S3G2,2, but they are notN(G2,2)-
conjugate, since γ does not normalize G2,2. Thus f5.2 and f6.1 represent differ-
ent points in Rat2

2(G2,2)ss, but they define the same point in Rat2
2(S3G2,2)ss.

Remark 1.8. — A referee has pointed out that for rational maps f that
are not morphisms, it would be interesting, and possibly more natural, to
compute the group of birational automorphisms of P2 that commute with f .
Writing BiRat(P2) for the Cremona group, one might try to classify domi-
nant, semi-stable degree 2 maps f for which the group

BiAut(f) :=
{
ϕ ∈ BiRat(P2) : fϕ = f

}
is finite and, say, has order at least 3. A starting point would be the known
classification of the finite subgroups of the Cremona group [2, 18]. For ex-
ample, a number of our maps with large Aut(f) are themselves elements
of order 2 in the Cremona group, a typical example being the map f =
[Y Z,XZ,XY ] labeled (6.1) in Table 1.1. In these cases BiAut(f) is at least
as large as Aut(f)×C2, with the extra C2 being generated by f . The analysis
of maps with large finite BiAut(f) seems like an interesting problem that
deserves further study, but in view of the length of the present paper, we
will not address it at this time.

Remark 1.9. — A referee has pointed out that the present paper is close
in spirit to the classification by Fornæss and Wu [5] of degree 2 polynomial
automorphisms of C3, and work of Cerveau and Déserti [1] describing bira-
tional maps, especially of degrees 2 and 3, of P2, although we note that the
latter paper studies the two-sided action of PGL3×PGL3, which leads to a
different, albeit also very interesting, classification problem.

2. Background

We briefly summarize some of the existing literature on the study of
(MN

d )stab and (MN
d )ss. A fair amount is known in the case that N = 1. For

example, it is known that (M1
d)stab and (M1

d)ss are rational varieties [10].
And for N = 1 and d = 2 there are natural isomorphisms (M1

2)stab =
(M1

2)ss ∼= P2, with the set of maps
{
f ∈ (M1

2)stab : deg f = 2
}
corresponding

to A2. See [15] for the proof over C and [20] for the proof over SpecZ. For
degree 2 morphisms f : P1 → P1, the group Aut(f) ⊂ PGL2 is isomorphic
to either C1, C2, or S3. The locus of f ∈ A2 with C2 ⊂ Aut(f) is a cuspidal
cubic curve, with the cusp corresponding to the only f having Aut(f) ∼= S3;
see [23, Proposition 4.15]. For similar results onM1

3, see [25]. More generally,
for N = 1 and d > 3, the singular locus of (M1

d)stab is exactly the set of f
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with Aut(f) 6= 1; see [14] for this result and for a calculation of the dimension
and Picard and class groups of

M1
d(G)stab :=

{
f ∈ (M1

d)stab : G ⊆ Aut(f)
}

for G ⊂ PGL2.

(Note that here f represents a conjugacy class of maps, so Aut(f) is a con-
jugacy class of subgroups of PGL2.)

For all N > 1 it is known that
{
f ∈ MN

d : Aut(f) = 1
}

is a non-
empty Zariski open subset of MN

d ; see [10]. Thus “most” maps f have no
automorphisms. On the other hand, those f with Aut(f) 6= 1 are of par-
ticular arithmetic interest, since they tend to have non-trivial K̄/K-twists,
i.e., families of maps that are PGLN+1(K̄)-conjugate, but not PGLN+1(K)-
conjugate. There has been a considerable amount of work studying dynami-
cal twist families and related problems having to do with fields of definition
and fields of moduli; see for example [11, 13, 19, 24], [20, Chapter 7], [21,
Sections 4.7–4.10].

For N > 2, there has been some progress. It is known that if f : PN → PN
is a morphism of degree at least 2, then Aut(f) is finite; see [17]. For N = 1
and 2, there are explicit bounds. For example, a morphism f : P2 → P2

satisfies # Aut(f) 6 6d6; see [3, Theorem 6.2]. It is also known that for
every finite subgroup G ⊂ PGLN+1(K̄), there are infinitely many morphisms
f : PN

K̄
→ PN

K̄
of degree > 2 such that Aut(f) ⊇ G; see [3, Theorem 4.7].

However, the situation is more delicate if one or more of the following natural
conditions is imposed:

• Aut(f) is exactly equal G.
• The degree of f is specified.
• The map f is defined over a non-algebraically closed field K.

For example, every subgroup of PGL2 except the tetrahedral group can be
realized by a map f : P1 → P1 defined over Q; see [3, Theorem 4.9]. And [3,
Section 8.1] gives examples of morphisms f : P2 → P2 defined over Q with
very large automorphism groups. We also mention that [3, Section 5] contains
a nice summary, in modern notation and with explicit generators, of the
classical classification of finite subgroups of PGL3(C).

Remark 2.1. — Two important invariants associated to dominant ratio-
nal maps f : P2 99K P2 are the dynamical degree

λ1(f) := lim
k→∞

(deg fk)1/k

and the topological degree

λ2(f) := #f−1(P ) for a generic point P ∈ Pn(K).
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The map f is said to be algebraically stable if λ1(f) = deg(f). There is a large
literature studying dynamical degrees, algebraic stability, and the existence
of invariant measures, of which we mention two articles. The first [7] gives a
precise formula for the dynamical degree of a monomial map. The second [6]
classifies degree two polynomial maps f : A2

C → A2
C and shows that, up to

affine conjugacy, there are 13 families of such maps, all of which extend to
an algebraically stable map on either P2 or P1 × P1.

3. Scope of This Paper and Further Questions

The original goal of this paper was to completely describe the moduli
spacesM2

2(G)ss andM2
2(G)stab over an arbitrary fieldK, and more generally

over SpecR for an appropriately chosen ring R. This analysis would have
included giving normal forms for N(G)-conjugacy classes of maps, and it
would have included classifying semi-stable maps that are not dominant or
have degree 1. This turned out to be overambitious, as we realized when
the analysis of the case G ∼= C2

2 approached 50 pages and it became clear
that the cases G ∼= C4 and G ∼= C3 were going to be even more complicated.
Further, if K has positive characteristic, then one must also deal with finite
cyclic subgroups of PGL3(K) that are not diagonalizable, adding another
level of complication.

We thus decided to restrict attention to algebraically closed fields of char-
acteristic 0 and to restrict attention to maps that are dominant and have
degree 2, since these are the maps whose iterates potentially have interest-
ing dynamics. This curtailed goal ended up being sufficiently challenging, as
the length of the present paper attests. However, we propose the following
problems as deserving study in future papers and/or a monograph.

(1) Describe the geometry of the moduli spacesM2
2(G)ss andM2

2(G)stab,
and the geometry of the natural mapM2

2(G)ss →M2
2(G′)ss for sub-

groups G′ ⊂ G.
(2) Determine the field of moduli and minimal fields of definition for

points inM2
2(G)ss, where G ⊂ PGL3(K) is a finite subgroup and K

is minimal for the conjugacy class of G.
(3) Let f : P2 99K P2 be defined over K. We recall that the set of K̄/K-

twists of f is the set of maps f ′ defined over K that are PGL3(K̄)-
conjugate to f , modulo f ′ and f being considered equivalent if they
are PGL3(K)-conjugate. The set of twists is classified by the kernel
of the inflation map

H1(Gal(K̄/K),Aut(ϕ)
)
−→ H1(Gal(K̄/K),PGL3(K̄)

)
;
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see [23, Section 7.1]. Find normal forms for the twists of the maps
in Table 1.1.

(4) Classify rational maps f having large finite birational automorphism
groups, as described in Remark 1.8.

Example 3.1. — We illustrate twisting with an example. Consider the
map f = [Y Z,X2, Y 2] of Type 7.1. Up to PGL3(Q̄)-conjugacy, this is the
only map in (M2

2)ss whose automorphism group is finite and contains an
element of order 5. The isomorphism

µ5 −→ Aut(f), ζ 7−→ ϕζ = [X, ζY, ζ3Z],

is Gal(Q̄/Q)-invariant, and it turns out that every element of

H1(Gal(Q̄/Q),µ5) ∼= Q∗/(Q∗)5

gives a twist of f . Precisely, let b ∈ Q∗, let β = b1/5 ∈ Q̄, and let ψ =
[X,βY, β3Z]. Then the twist of f associated to b is

fb := fψ(X,Y, Z) = ψ−1 ◦ f ◦ ψ(X,Y, Z) = ψ−1 ◦ f(X,βY, β3Z)
= ψ−1(β4Y Z,X2, β2Y 2) = [β4Y Z, β−1X2, β−1Y 2] = [bY Z,X2, Y 2].

Note that fb is defined over Q, but that the map ψ conjugating f to fb is
only defined over Q(b1/5).

Similarly, the µ7-twist of the map f = [Z2, X2, Y 2] associated to b ∈
Q∗/(Q∗)7 ∼= H1(Gal(Q̄/Q),µ7) is [bZ2, X2, Y 2]. We leave the details of the
computation to the reader.

4. Some Finite Subgroups of PGL3

In this section we prove some elementary results concerning finite sub-
groups of PGL3. This information may be gleaned from classical descriptions
of all finite subgroups of PGL3, but for completeness we shall prove what
we need.

Lemma 4.1. — Let K be an algebraically closed field of characteristic 0,
and let G ⊂ PGL3(K) be a finite subgroup.

(a) Suppose that G ∼= Cq with q a prime power. Then there is a ϕ ∈
PGL3(K), a primitive q’th root of unity ζ ∈ K, and an integer m
such that

Gϕ =
〈( 1 0 0

0 ζ 0
0 0 ζm

)〉
. (4.1)
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(b) Suppose that G ∼= Cq with q ∈ {4, 5, 7}. Then there is a ϕ ∈
PGL3(K) and a primitive q’th root of unity ζ such that

G ∼= C4 =⇒ Gϕ =
〈( 1 0 0

0 ζ 0
0 0 1

)〉
or
〈( 1 0 0

0 ζ 0
0 0 −1

)〉
,

G ∼= C5 =⇒ Gϕ =
〈( 1 0 0

0 ζ 0
0 0 1

)〉
or
〈(

1 0 0
0 ζ 0
0 0 ζ3

)〉
,

G ∼= C7 =⇒ Gϕ =
〈( 1 0 0

0 ζ 0
0 0 1

)〉
or
〈(

1 0 0
0 ζ 0
0 0 ζ2

)〉
or
〈(

1 0 0
0 ζ 0
0 0 ζ3

)〉
.

(c) Suppose that G ∼= Cp × Cp with p prime, and let ζ be a primitive
p’th root of unity. Then there is a ϕ ∈ PGL3(K) such that one of
the following is valid:

Gϕ =
〈( 1 0 0

0 ζ 0
0 0 1

)
,
( 1 0 0

0 1 0
0 0 ζ

)〉
, p arbitrary. (4.2)

Gϕ =
〈(

1 0 0
0 ζ 0
0 0 ζ2

)
,
(

0 1 0
0 0 1
1 0 0

)〉
, p = 3 only. (4.3)

Further, the group (4.2) with p = 3 is not GL3(K)-conjugate to the
group (4.3).

Proof. — We remark that if α ∈ PGL3(K) has finite order n, then we
can lift it to an element A ∈ GL3(K) having the same order. To see this,
we start with an arbitrary lift A. Then An = cI for some c ∈ K∗, so we can
take c−1/nA as our lift of α. We also remark that since we have assumed
that char(K) = 0, every element in GL3(K) of finite order is diagonalizable.

(a) Let G = 〈α〉 with α ∈ PGL3(K) having order q. We lift α to an A ∈
GL3(K) of order q. Conjugating A to put it into Jordan normal form, the fact
that Aq = 1 implies that A is diagonal and its diagonal entries are q’th roots
of unity. Replacing A by a scalar multiple, which we may do since we are
really only interested in the image of A in PGL3(K), we may assume that the
upper left entry of A is 1. (Note that we still have Aq = I.) The fact that α
has exact order q, where q is a prime power, implies that one of the other
diagonal entries is a primitive q’th root of unity, which we denote ζ. Possibly
after reversing the Y and Z coordinates, α is diagonal with entries 1, ζ, η,
where η, being a q’th root of unity, is a power of ζ.

(b) From (a), we can find ϕ so that Gϕ is given by (4.1) with 0 6 m < q.
For notational convenience, we let

τ(m) :=
( 1 0 0

0 ζ 0
0 0 ζm

)
.

We note that conjugation by a permutation matrix in PGL3 has the effect
of permuting the entries of a diagonal matrix. Writing ∼ to denote PGL3-
conjugation equivalence and using the fact that we are working in PGL3, we

– 745 –



Michelle Manes and Joseph H. Silverman

have

τ(m) ∼
〈( ζ 0 0

0 1 0
0 0 ζm

)〉
=
〈( 1 0 0

0 ζ−1 0
0 0 ζm−1

)〉
= τ(1−m mod q),

τ(m) ∼
〈( 1 0 0

0 ζm 0
0 0 ζ

)〉
= τ(m−1 mod q) if gcd(m, q) = 1.

(We remark that the other three permutations do not give results that are
useful for our purposes.) Hence after a further conjugation by a permutation
matrix, we may take Gϕ to be generated by any one of the following three
matrices,

τ(m), τ(1−m mod q), τ(m−1 mod q),
subject to gcd(m, q) = 1 for the last one.

Suppose first that q = 4. Taking m = 0 and m = 2, we find that〈
τ(0)

〉
∼
〈
τ(1)

〉
and

〈
τ(2)

〉
∼
〈
τ(3)

〉
.

Hence we can find a ϕ so that Gϕ is generated by either τ(0) or τ(2).

Next let q = 5. Then〈
τ(0)

〉
∼
〈
τ(1)

〉
and

〈
τ(2)

〉
∼
〈
τ(4)

〉
∼
〈
τ(3)

〉
.

Hence we can find a ϕ so that Gϕ is generated by either τ(0) or τ(3).

Finally let q = 7. Then〈
τ(0)

〉
∼
〈
τ(1)

〉
,
〈
τ(2)

〉
∼
〈
τ(6)

〉
∼
〈
τ(4)

〉
and

〈
τ(3)

〉
∼
〈
τ(5)

〉
.

Hence we can find a ϕ so that Gϕ is generated by either τ(0) or τ(2) or τ(3).

(c) Let α, β ∈ G be generators of G. We lift α and β, respectively, to ma-
trices A,B ∈ GL3(K) satisfying Ap = Bp = I. The fact that αβ = βα
in PGL3(K) tells us that there is an ε ∈ K∗ such that AB = εBA in GL3(K).

We start with the case that ε = 1, so we have diagonalizable matri-
ces A,B ∈ GL3(K) satisfying AB = BA. Standard linear algebra says that
they can be simultaneously diagonalized, so after conjugation, we may as-
sume that A and B are both diagonal. And since Ap = Bp = I and the
image of 〈A,B〉 in PGL3(K) is of type C2

p , we see that the group

〈ζI, A,B〉 = {ζiAjBk : 0 6 i, j, k 6 p− 1} ⊂ GL3(K)
contains p3 distinct diagonal elements of GL3(K) of order dividing p. But
GL3(K) contains exactly p3 diagonal matrices of order dividing p, namely
the diagonal matrices with entries that are arbitrary p’th roots of unity. It
follows that G = 〈α, β〉, which is the image of 〈ζI, A,B〉 in PGL3(K), is the
group described in (4.2).

We next suppose that ε 6= 1. Applying (a) to 〈α〉, we can conjugate so
that α lifts to a matrix of the form A =

( 1 0 0
0 ζ 0
0 0 ζm

)
∈ GL3(K), where ζ is a

– 746 –



Degree 2 maps f : P2 → P2 with large Aut(f)

primitive p’th root of unity and 0 6 m < p. Writing the lift B of β with
generic entries, the relation AB = εBA becomes(

a b c
d e f
g h i

)
= B = εA−1BA = ε

(
a ζb ζmc

ζ−1d e ζm−1f
ζ−mg ζ1−mh i

)
.

The assumption that ε 6= 1 forces a = e = i = 0. Since B is invertible, we
see that either b 6= 0 or c 6= 0. For the former, we find that

b 6= 0 =⇒ ε = ζ−1 =⇒



(1− ζm−1)c = 0,
(1− ζ−2)d = 0,

(1− ζm−2)f = 0,
(1− ζ−m−1)g = 0,

(1− ζ−m)h = 0.

(4.4)

The invertibility of B also tells us that d and f are not both 0, and that g
and h are not both 0. Therefore

(p = 2 or m = 2) and (m = p− 1 or m = 0).

Hence either p = 2, or else m = 2 and p = 3. We consider these cases in
turn.

If p = 2, then m ∈ {0, 1}, and (4.4) tells us that one of the following
holds:

(p,m) = (2, 0) =⇒ c = g = 0 =⇒ B =
( 0 b 0
d 0 f
0 h 0

)
,

(p,m) = (2, 1) =⇒ f = h = 0 =⇒ B =
( 0 b c
d 0 0
g 0 0

)
.

Thus both m values with p = 2 lead to a matrix B that is not invertible.

If m = 2 and p = 3, then c = d = h = 0, so B has the form

B =
( 0 b 0

0 0 f
g 0 0

)
.

We know that B3 = I, so bfg = 1. Conjugating B by the matrix ϕ :=( gf 0 0
0 f 0
0 0 1

)
yieldsBϕ =

(
0 1 0
0 0 1
1 0 0

)
, while Aϕ = A. This proves thatG is conjugate

to the group (4.3).

Next we assume that b = 0 and c 6= 0, which leads to

b = 0 and c 6= 0 =⇒ ε = ζ−m =⇒


(1− ζ−1−m)d = 0,

(1− ζ−1)f = 0,
(1− ζ−2m)g = 0,

(1− ζ1−2m)h = 0.

(4.5)
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Thus f = 0, and then the fact that detB = cdh 6= 0 tells us that d 6= 0
and h 6= 0. Then (4.5) gives

d 6= 0 =⇒ m = p− 1 and h 6= 0 =⇒ m = p+ 1
2 .

Equating the values of m, we conclude that p = 3 and m = 2, and (4.5)
forces g = 0. This shows that B =

( 0 0 c
d 0 0
0 h 0

)
, and using B3 = 1 shows that

cdh = 1. So if we conjugate by φ :=
(
c 0 0
0 cd 0
0 0 1

)
, we find that Aφ = A and

Bφ =
(

0 0 1
1 0 0
0 1 0

)
. Hence the subgroup of PGL3 generated by Aφ and Bφ is the

group (4.3).

Finally, to prove that the groups in (4.2) with p = 3 and (4.3) are not
GL3(K)-conjugate, we observe that (4.2) fixes three points in P2, while (4.3)
has no fixed points. �

Lemma 4.2. — Let K be an algebraically closed field of characteristic 0,
and let G ⊂ PGL3(K) be one of the groups (1.2) listed in Theorem 1.2. Then
the identity component of the normalizer G is the group of diagonal matrices,

N(G)◦ = D :=
{( α 0 0

0 β 0
0 0 γ

)
∈ PGL3(K)

}
.

More precisely, we have

N(G3) = N(G2,2) = S3D, N(G4) =
〈(

0 0 1
0 1 0
1 0 0

)〉
D,

N(G5) =
〈(

0 1 0
1 0 0
0 0 1

)〉
D, N(G7) =

〈(
0 1 0
0 0 1
1 0 0

)〉
D,

where S3 ⊂ PGL3(K) is the group of permutation matrices.

Proof. — We recall that for any group G and subgroupH ⊆ G, the kernel
of the standard homomorphism

NG(H) −→ Aut(H), g 7−→ (h 7→ g−1hg)
is the centralizer CG(H). We use this to simplify our calculations.

Let ζ be a primitive n’th root of unity with n > 3, let 2 6 m < n,

and let T = Tn,m :=
( 1 0 0

0 ζ 0
0 0 ζm

)
. Then A =

(
a b c
d e f
g h i

)
∈ C(T ) if and only if

A = T−1AT , so if and only if(
a b c
d e f
g h i

)
=
( 1 0 0

0 ζ 0
0 0 ζm

)−1
(
a b c
d e f
g h i

)( 1 0 0
0 ζ 0
0 0 ζm

)
=
(

a ζb ζmc

ζ−1d e ζm−1f

ζ−mg ζ1−mh i

)
.

Keeping in mind that we are working in PGL3, we first note that if any
of a, e, i is non-zero, then A is diagonal. Suppose that a = e = i = 0. If b 6= 0,
then the fact that ζm, ζ−1, ζ1−m are distinct from ζ gives c = d = h = 0,
and then the nonsingularity of A tells us that fg 6= 0, and ζ = ζm−1 = ζ−m.
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Hence b 6= 0 is allowed only if n = 3 and m = 2, in which case C(T ) contains
the scaled cyclic permutation

( 0 b 0
0 0 f
g 0 0

)
. A similar analysis for c 6= 0 yields

the inverse scaled permutation for n = 3 and a contradiction for n > 4. This
completes the proof that

C(Tn,m) =
{
〈π〉D if n = 3 and m = 2,
D if n > 4 and 2 6 m 6 n− 1,

where π ∈ PGL3 is a cyclic permutation.

Suppose now that (n,m) = (3, 2). Then the transposition α =
(

1 0 0
0 0 1
0 1 0

)
satisfies α−1T3,2α = T 2

3,2, so α ∈ N(G3) r C(G3). Using the inclusion
N(G3)/C(G3) ↪→ Aut(G3) ∼= (Z/3Z)∗ ∼= Z/2Z,

we conclude that N(G3) = 〈α〉C(G3) = 〈α〉〈π〉D = S3D.

Next let (n,m) = (4, 2). Then the transposition β =
(

0 0 1
0 1 0
1 0 0

)
satisfies

β−1T4,2β = T 3
4,2, so β ∈ N(G4) r C(G4). Using the inclusion
N(G4)/C(G4) ↪→ Aut(G4) ∼= (Z/4Z)∗ ∼= Z/2Z,

we conclude that N(G4) = 〈β〉C(G4) = 〈β〉D.

Next we consider Tm,n with m = 3 and n > 5 prime. An element A ∈
N(T ) r C(T ) needs to satisfy(

a b c
d e f
g h i

)
=
( 1 0 0

0 ζ 0
0 0 ζ3

)−1
(
a b c
d e f
g h i

)( 1 0 0
0 ζ 0
0 0 ζ3

)j
=
(

a ζjb ζ3jc

ζ−1d ζj−1e ζ3j−1f

ζ−3g ζj−3h ζ3j−3i

)
for some 2 6 j < n with gcd(j, n) = 1. We have

a 6= 0 =⇒ b = d = e = g = 0 =⇒ fh 6= 0
=⇒ j ≡ 3 (mod n) and 3j ≡ 1 (mod n) =⇒ n | 8. →←

e 6= 0 =⇒ a = b = d = h = 0 =⇒ cg 6= 0
=⇒ 3j ≡ j − 1 (mod n) and − 3 ≡ j − 1 (mod n)
=⇒ n | 3. →←

i 6= 0 =⇒ c = e = f = g = h =⇒ bd 6= 0
=⇒ j ≡ 3j − 3 (mod n) and − 1 ≡ 3j − 3 (mod n)
=⇒ n | 5.

So we find that the normalizer of G5 contains
(

0 1 0
1 0 0
0 0 1

)
.

We next look for maps with a = e = i = 0, so(
0 b c
d 0 f
g h 0

)
=
( 1 0 0

0 ζ 0
0 0 ζ3

)−1
(

0 b c
d 0 f
g h 0

)( 1 0 0
0 ζ 0
0 0 ζ3

)j
=
(

0 ζjb ζ3jc

ζ−1d 0 ζ3j−1f

ζ−3g ζj−3h 0

)
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This gives

b 6= 0 =⇒ c = h = 0 =⇒ g 6= 0
=⇒ j ≡ −3 (mod n) =⇒ d = 0 =⇒ f 6= 0
=⇒ j ≡ −3 ≡ 3j − 1 (mod n) =⇒ n | 7.

c 6= 0 =⇒ b = f = 0 =⇒ d 6= 0
=⇒ −1 ≡ 3j (mod n) =⇒ g = 0 =⇒ h 6= 0
=⇒ −1 ≡ 3j ≡ j − 3 (mod n) =⇒ n | 7.

So we find that the normalizer of G7 contains
(

0 1 0
0 0 1
1 0 0

)
and

(
0 0 1
1 0 0
0 1 0

)
.

This completes the computation of N(Gn) with n = 3, 4, 5, 7.

Finally, consider an element A ∈ C(G2,2) of the centralizer of G2,2. It
satisfies the two equations(

a b c
d e f
g h i

)
=
( 1 0 0

0 −1 0
0 0 1

)−1
(
a b c
d e f
g h i

)( 1 0 0
0 −1 0
0 0 1

)
=
(

a −b c
−d e −f
g −h i

)
(
a b c
d e f
g h i

)
=
( 1 0 0

0 1 0
0 0 −1

)−1
(
a b c
d e f
g h i

)( 1 0 0
0 1 0
0 0 −1

)
=
(

a b −c
d e −f
−g −h i

)
.

If any of a, e, i is non-zero, then these two equations combine to tell us that A
is diagonal. On the other hand, if a = e = i = 0, then b 6= 0 forces g = h = 0,
contradicting the non-singularlity of A, and similarly c 6= 0 forces b = h = 0,
giving the same contradiction. Hence C(G2,2) = D. Next we observe that
every permutation in S3 is in N(G2,2), so

S3 −→ N(G2,2)/C(G2,2) ↪−→ Aut(G2,2) ∼= GL2(F2) ∼= S3.

A quick calculation shows that the map S3 → Aut(G2,2) is an isomorphism,
and hence N(G2,2) = S3C(G2,2). �

5. Diagonal Stability and Maps of Finite Order

In this section we set notation that is used throughout the rest of this
paper, we remind the reader of the Hilbert–Mumford criterion for GIT sta-
bility, and we create two tables that we will use to determine the stability
of elements of Rat2

2.

For a fixed root of unity ζ and integer m, we define

τm = τζ,m ∈ GL3(K), τm(X,Y, Z) = (X, ζY, ζmZ).
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Further, for each pair of integers (k, `) we define a 1-parameter subgroup
of SL3 by

Lk,` : Gm → SL3, Lk,`(t) =
(
tk 0 0
0 t` 0
0 0 t−k−`

)
.

We now compute the effect of applying τm and Lk,` to each of the quadratic
monomials in a degree 2 map of A3.

Table 5.1 gives the effect of applying the map τm = (X, ζY, ζmZ) to
each quadratic monomial, where an integer entry ε in Table 5.1 means that
the monomial is multiplied by ζε. Similarly, Table 5.2 gives the effect of
applying Lk,`(t) to each quadratic monomial, where an integer entry δ in
Table 5.2 means that the monomial is multiplied by tδ.

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 2m 1 m m+ 1
Y -coord −1 1 2m− 1 0 m− 1 m

Z-coord −m 2−m m 1−m 0 1

Table 5.1. Effect of τm = (X, ζY, ζmZ) on monomials

X2 Y 2 Z2 XY XZ Y Z

X-coord k −k + 2` −3k − 2` ` −k − ` −2k
Y -coord 2k − ` ` −2k − 3` k −2` −k − `
Z-coord 3k + ` k + 3` −k − ` 2k + 2` k `

Table 5.2. Effect of Lk,`(t) = (tkX, t`Y, t−k−`Z) on monomials

We are going to use the numerical criterion of Hilbert–Mumford [16,
Chapter 2, Theorem 2.1] to determine the stability of maps. We recall the
general setup. (See [23, Section 2.2] or [10] for similar calculations.) Let
G ⊆ SLn+1 be an algebraic subgroup of SLn+1 and let a ∈ Pn. For any given
one-parameter subgroup L : Gm → G, choose coordinates on Pn+1 so that
the image of L is contained in the group of diagonal matrices. Write a =
[a1, . . . , an] ∈ Pn in these coordinates, let â = (â1, . . . , ân) be a lift of a
to An, and write the action of L on the lift â as

L(t) · â = (tr1 â1, t
r2 â2, . . . , t

rn ân),

where r1, . . . , rn ∈ Z. The numerical factor associated to L at a is the quan-
tity

µO(1)(a, L) = max{−ri : i satisfies âi 6= 0}.
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Then the Hilbert–Mumford numerical criterion says that
a is G-unstable ⇐⇒ µO(1)(L,a) < 0 for some L,

a is G-not stable ⇐⇒ µO(1)(L,a) 6 0 for some L.

Equivalently, a is G-stable if µO(1)(L,a) > 0 for all L, and it is G-semistable
if µO(1)(L,a) > 0 for all L.

We write fm,ε to denote a generic element of Rat2
2 whose affine lift f̂m,ε :

A3 → A3 satisfies
f̂τmm,ε = ζεf̂m,ε.

Since the one-parameter subgroup Lk,` is already diagonalized, the following
two-step procedure computes µO(1)(fm,ε, Lk,`).

• Look at Table 5.1 and check off all of the boxes whose entry is
congruent to ε mod p.
• Then µO(1)(fm,ε, Lk,`) is equal to the maximum of the negatives of
the corresponding entries in Table 5.2.

We note that every diagonalized one-parameter subgroup of SL3 is con-
jugate to Lk,` for some (k, `) 6= (0, 0). We set the notation

D =
{( α 0 0

0 β 0
0 0 γ

)
∈ SL3(K)

}
for the group of diagonal matrices. By abuse of notation, we may some-
times also write D for the diagonal subgroup of PGL3. Similarly, we set the
notation

S3 :=
〈(

1 0 0
0 1 0
0 0 1

)
,
(

0 0 1
1 0 0
0 1 0

)
,
(

0 1 0
0 0 1
1 0 0

)
,
(

0 1 0
1 0 0
0 0 1

)
,
(

0 0 1
0 1 0
1 0 0

)
,
(

1 0 0
0 0 1
0 1 0

)〉
for the group of permutation matrices in PGL3 or SL3.

Numerical Criterion for D-Stability. Let G ⊂ PGL3 be a finite
subgroup such that N(G)◦ = D, and let f ∈ Rat2

2(G).

f is N(G)-unstable ⇐⇒ µO(1)(f, Lk,`) < 0 for some (k, `).

f is N(G)-semistable ⇐⇒ µO(1)(f, Lk,`) > 0 for all (k, `).

f is N(G)-stable ⇐⇒ µO(1)(f, Lk,`) > 0 for all (k, `) 6= (0, 0).

6. Maps with an Automorphism of Prime Order p > 5

In this section we analyze maps having an automorphism of prime or-
der p > 5.
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Proposition 6.1. — Let K be an algebraically closed field of char-
acteristic 0, let p > 5 be prime, let ζ be a primitive p’th root of unity,
let m ∈ Z/pZ, and let f ∈ Rat2

2 be a dominant rational map such that
τm ∈ Aut(f). Choose 0 6 ε < p so that the lifts f̂ : A3 → A3 of f satisfy
f̂τm = ζεf̂ . Then one of the following is true:

(a) f is D-unstable.
(b) f is D-semistable, but not D-stable, and is PGL3(K)-conjugate to

a rational map of the form [aX2 + Y Z, bXY, cXZ] with bc 6= 0.
Further (m, ε) = (−1, 0).

(c) p = 5, and f is D-stable and PGL3(K)-conjugate to the rational
map [Y Z,X2, Y 2] with (m, ε) = (3, 4).

(d) p = 7, and f is PGL3-stable and PGL3(K)-conjugate to the mor-
phism [Z2, X2, Y 2] with (m, ε) = (3, 6).

Proof. — We write f = fm,ε to help keep track of the dependence on m
and ε. The assumption that f is dominant implies that its coordinate func-
tions are non-zero, so it necessarily includes at least three monomials. Look-
ing at Table 5.1, we see that each of the quantities 0, 1, and m appears three
times, while each of the quantities

−m, 1−m, 2−m, −1, 2, m− 1, m+ 1, 2m− 1, 2m (6.1)
appears exactly once.

We suppose first that ε /∈ {0, 1,m}. Then the only way for fm,ε to have
at least three monomials is for at least three of the quantities in the list (6.1)
to be equal. Our assumption that p > 5 means that the elements in each of
the subsets
{−m, 1−m, 2−m}, {−1, 2}, {m− 1,m+ 1}, {2m− 1, 2m},

remain distinct when reduced modulo p, so in order to obtain three equal val-
ues modulo p, we first choose three of these four sets, then choose an element
from each set, then equate the three quantities and solve for m modulo p.
This gives a total of 44 possibilities, although many of them give no value
for m, since each choice yields two equations for the one quantity m. Fur-
ther, some choices give ε ∈ {0, 1,m}, which we are not presently considering.
We do not know a clever way to do this computation, but working through
the complete set of possibilities, we find that exactly 10 choices yield values
of m, and all but two of these require either p = 5 or p = 7. The data and
resulting maps are listed in Table 6.1.

In Table 6.1, we require abc 6= 0, since we need at least three monomials.
We start by noting that the maps f0,−1 and f1,2, which work for all p,
are clearly non-dominant (indeed, they are constant maps), so they may be
discarded. (It is also easy to check that they are D-unstable.)
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Values from Table 5.1 m ε p fm,ε

−1 m− 1 2m− 1 0 −1 all p [0, aX2 + bZ2 + cXZ, 0]
2 m+ 1 2m 1 2 all p [aY 2 + bZ2 + cY Z, 0, 0]
−1 m+ 1 −m+ 2 3 −1 5 [aY Z, bX2, cY 2]
−1 −m+ 1 2m 2 −1 5 [aZ2, bX2, cXY ]
2 m− 1 −m 3 2 5 [aY 2, bXZ, cX2]
2 −m+ 1 2m− 1 4 2 5 [aY 2, bZ2, cXY ]

m+ 1 −m 2m− 1 2 3 5 [aY Z, bZ2, cX2]
m− 1 −m+ 2 2m 4 3 5 [aZ2, bXZ, cY 2]
−1 −m+ 2 2m 3 −1 7 [aZ2, bX2, cY 2]
2 −m 2m− 1 5 2 7 [aY 2, bZ2, cX2]

Table 6.1. Values of m mod p and ε /∈ {0, 1,m} such that fm,ε has at
least 3 monomials

We next note that the six families of maps for p = 5 are S3-conjugates, i.e.,
they may be obtained from one another by permuting the variables. It thus
suffices to consider f3,−1 = [aY Z, bX2, cY 2], which is a dominant rational
map having a single point [0, 0, 1] of indeterminacy. Using Table 5.2, we find
that

µO(1)(f3,−1, Lk,`) = max{2k,−2k + `,−k − 3`}.
The identity

7 · (2k) + 6(−2k + `) + 2(−k − 3`) = 0
shows that at least one of the quantities in parentheses is non-negative, and
indeed unless k = ` = 0, one of them is positive. Hence

inf
(k,`)6=(0,0)

µO(1)(f3,−1, Lk,`) = inf
(k,`)6=(0,0)

max{2k,−2k + `,−k − 3`} > 0,

which proves that f3,−1 is D-stable.

In order to obtain the map in (c), we observe that the a, b, c coefficients
of f3,−1 are twist parameters. To see this, let σ(X,Y, Z) = [uX, vY,wZ].
Then

fσ3,−1 = [v2w2aY Z, u3wbX2, uv3cY 2],
so setting u20 = a3b−6c−2, v20 = a−1b2c−6, and w20 = a−9b−2c6 (with an
appropriate choice of 20’th roots) yields fσ3,−1 = [Y Z,Z2, X2]. Thus the
family f3,−1 for p = 5 is a single D-orbit.

Similarly, the two families of maps for p = 7 are conjugate via a cyclic
permutation of the variables. It is also clear that they are morphisms, so
in particular they are stable [10]. Further, just as in (c), the coefficients are
twist parameters. Thus for p = 7 and σ(X,Y, Z) = [uX, vY,wZ] we have

fσ3,−1 = [vw3aZ2, u3wbX2, uv3cY 2],
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so setting u28 = a3b−9c−1, v28 = a−1b3c−9, and w28 = a−9b−1c3 (with
an appropriate choice of 28’th roots) yields fσ3,−1 = [Z2, X2, Y 2]. Thus the
family f3,−1 for p = 7 is also a single D-orbit.

This completes the classification of dominant semistable maps fm,ε with
ε /∈ {0, 1,m}. We next observe that if ε ∈ {0, 1,m} and fm,ε has exactly
three monomials, then Tables 5.1 and 5.2 give the following three maps and
their numerical invariants:

ε fm,ε µO(1)(fm,0, Lk,`)
0 [aX2, bXY, cXZ] −k
1 [aXY, bY 2, cY Z] −`
m [aXZ, bY Z, cZ2] k + `

Thus in all cases fm,ε induces the linear map [aX, bY, cZ], and we can find
a (k, `) 6= (0, 0) making µO(1)(fm,0, Lk,`) < 0, so all of these maps are D-
unstable.

We now assume that ε ∈ {0, 1,m} and that fm,ε has at least four mono-
mials.

ε = 0. Since fm,0 has four or more monomials, Table 5.1 tells us that p
must divide one of the quantities in the set

{m− 2,m− 1,m,m+ 1, 2m− 1}.
Since τm depends only on m modulo p, this gives five possibilities:

m mod p fm,0(X,Y, Z)
2 [aX2, bXY, cY 2 + dXZ]
1 [aX2, bXY + cXZ, dXY + eXZ]
0 [aX2 + bZ2 + cXZ, dXY + eY Z, fX2 + gZ2 + hXZ]
−1 [aX2 + bY Z, cXY, dXZ]
2−1 [aX2, bZ2 + cXY, dXZ]

For each of these families we use Table 5.2 to compute

µO(1)(f2,0, Lk,`) 6 max{−k,−k − 3`} (k,`)=(1,0)−−−−−−−→ −1,

µO(1)(f1,0, Lk,`) 6 max{−k, 2`,−2k − 2`} (k,`)=(2,−1)−−−−−−−−→ −2,

µO(1)(f0,0, Lk,`) 6 max{−k, 3k + 2`, k + `,−3k − `} (k,`)=(1,−2)−−−−−−−−→ −1,

µO(1)(f−1,0, Lk,`) = max{−k, 2k} > 0 for all (k, `) 6= (0, 0),

µO(1)(f1/2,0, Lk,`) 6 max{−k, 2k + 3`} (k,`)=(1,−1)−−−−−−−−→ −1.
Thus f−1,0 is D-semi-stable provided b 6= 0 and a, c, d are not all 0, while the
maps in the other four families are D-unstable. Making a change of variables
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[X,Y, Z] → [X, b−1Y,Z], we can make the coefficient of Y Z in f−1,0 equal
to 1. It is also clear that if c or d is 0, then f−1,0 is not dominant. This gives
the family of maps in (b).

ε = 1. The straightforward approach is to use the assumption that fm,1
has four or more monomials and Table 5.1 to deduce that

m ∈ {2−1, 1, 0, 2,−1} mod p,

which leads to the five families of maps:

m mod p fm,1(X,Y, Z)
2 [aXY, bY 2 + cXZ, dY Z]
1 [aXY + bXZ, cY 2 + dZ2 + eY Z, eY 2 + fZ2 + gY Z]
0 [aXY + bY Z, cY 2, dXY + eY Z]
−1 [aXY, bY 2, cX2 + dY Z]
2−1 [aZ2 + bXY, cY 2, cY Z]

Up to S3-conjugation, these are exactly the five families that we found for ε =
0, so we obtain nothing new.

An alternative is to let σ(X,Y, Z) = (Y,X,Z) and to observe that

(f̂σm,1)τ1−m = f̂σm,1.

Thus the map fσm,1 is in the family of maps f1−m,0, and since fσm,1 and fm,1
have the same number of non-zero monomials, the set of maps with ε = 1 is
equal to the set of σ-conjugates of the maps with ε = 0. (It’s also amusing to
note that the set of m values that we obtained for ε = 0 is invariant under
m→ 1−m.)

ε = m. Again using the assumption that fm,1 has four or more mono-
mials, Table 5.1 tells us that

m ∈ {2−1, 1, 0, 2,−1} mod p.

We are currently dealing with the case ε = m, and we have already analyzed
the cases ε = 0 and ε = 1, so it remains to consider m ∈ {2−1, 2,−1}. This
gives three families of maps:

m mod p fm,1(X,Y, Z)
2 [aY 2 + bXZ, cY Z, dZ2]
−1 [aXZ, bX2 + cY Z, dZ2]
2−1 [aXZ, bY Z, cZ2 + dXY ]

These three families are S3-conjugate to three of the families that we found
for ε = 0. Hence up to PGL3 equivalence, we again obtain nothing new. �
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The next step is to compute the full automorphism groups of the maps
appearing in Proposition 6.1.

Proposition 6.2. — (a) Let f = [Y Z,X2, Y 2], and let ζ be a prim-
itive 5’th root of unity. Then

Aut(f) =
〈( 1 0 0

0 ζ 0
0 0 ζ3

)〉
∼= C5.

(b) Let f = [Z2, X2, Y 2], and let ζ be a primitive 7’th root of unity.
Then

Aut(f) =
〈( 1 0 0

0 ζ 0
0 0 ζ3

)
,
(

0 1 0
0 0 1
1 0 0

)〉
∼= C7 o C3.

(c) Let (a, b, c) ∈ K3 with bc 6= 0, and let f = [aX2 + Y Z, bXY, cXZ].
Then

Aut(f) ⊃
{(

1 0 0
0 t 0
0 0 t−1

)
: t ∈ Gm

}
∼= Gm.

Proof. — (a) We see by inspection that Aut(f) ⊇ 〈τ3〉 ∼= C5. We claim
that this is the full automorphism group. The indeterminacy and critical loci
of f are

I(f) =
{

[0, 0, 1]
}

and Crit(f) = {4XY 2 = 0}.
Since any ϕ ∈ Aut(f) preserves both of these sets, with their multiplicities,
we see that ϕ leaves both of the lines X = 0 and Y = 0 invariant. Hence ϕ
necessarily has the form ϕ =

( α 0 0
0 β 0
γ δ ε

)
. Comparing the first coordinates of f◦ϕ

and ϕ ◦ f (note αβ 6= 0),

f ◦ ϕ(X,Y, Z) = [βY (γX + δY + εZ), . . .],
ϕ ◦ f(X,Y, Z) = [αY Z, . . .],

we see that γ = δ = 0, i.e., the map ϕ is diagonal. Without loss of generality,
we write ϕ ∈ PGL3 as ϕ(X,Y, Z) = [X, vY,wZ], and then

fϕ = [v2w2Y Z,wX2, v3Z2].

Hence fϕ = f if and only if v2w2 = w = v3. Substituting w = v3 into
v2w2 = v3 gives v8 = v3, so v5 = 1. Therefore v is a 5’th root of unity and
w = v3, so ϕ ∈ 〈τ3〉.

(b) We see by inspection that Aut(f) ⊇ 〈τ3〉 ∼= C7, but it turns out that
Aut(f) is strictly larger than this. Precisely, if we let π(X,Y, Z) = [Z,X, Y ],
then it is easy to check that fπ = f , so π ∈ Aut(f). Also, we compute
π−1τ3π = τ2

3 , so Aut(f) contains the semi-direct product 〈τ3〉o〈π〉 ∼= C7oC3.
We claim that this is the full automorphism group of f .

The critical locus of f is

Crit(f) = {8XY Z = 0},
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so Crit(f) consists of the three lines XY Z = 0. Any σ ∈ Aut(f) must per-
mute these lines and their intersection points. The map π is a cyclic permu-
tation of the intersection points, so replacing σ by π±1σ if necessary, we may
assume that σ fixes [1, 0, 0] and either fixes or swaps [0, 1, 0] and [0, 0, 1]. If σ
fixes all three points, then σ is a diagonal map, say σ(X,Y, Z) = [X, vY,wZ],
and we have

fσ = [vw3Z2, wX2, v3Y 2].
Hence fσ = f if and only if vw3 = w = v3. Substituting w = v3 into
vw3 = v3 gives v10 = v3, so v ∈ µ7 and w = v3. Hence σ ∈ 〈τ3〉.

It remains to deal with the case that σ fixes [1, 0, 0] and permutes [0, 1, 0]
and [0, 0, 1]. But then we would have fσ(1, 0, 0) = [0, 0, 1], while f(1, 0, 0) =
[0, 1, 0], so fσ cannot equal f . (More precisely, the maps f and fσ are inverses
in their action on the three points.) This completes the proof that Aut(f) is
generated by τ3 and π.

(c) It is trivial to check that the indicated copy of Gm is contained in Aut(f).
A more detailed analysis, which we leave to the interested reader, can be used
to show that Aut(f) ∼= Gm. �

7. Maps with Automorphism Group Containing Cp × Cp with
p > 3

Our goal in this section is essentially a non-existence result. Somewhat
surprisingly, the case p = 3 will be crucial to our analysis of maps whose
automorphism group contains a copy of C4. We also note that the proposition
is wildly incorrect for p = 2, and indeed we devote a long section (Section 8)
to classifying maps whose automorphism group contains a copy of C2

2 .

Proposition 7.1. — Let K be an algebraically closed field of charac-
teristic 0. Let p > 3 be prime, and let f ∈ Rat2

2(K) have the property that
Aut(f) contains a copy of C2

p . Then either f is a linear map or else f is not
dominant.

Proof. — Let G ⊂ PGL3(K) be a subgroup of type C2
p that is contained

in Aut(f). Lemma 4.1 tells us that after an appropriate conjugation, we may
assume that

G = 〈α, β〉 with α =
( 1 0 0

0 ζ 0
0 0 1

)
and β =

( 1 0 0
0 1 0
0 0 ζ

)
,

where ζ is a primitive p’th root of unity. The following table describes the
action of α and β on quadratic monomials that might appear in f . An
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entry (i, j) in the table means that α multiplies the monomial by ζi and
that β multiplies the monomial by ζj .

X2 Y 2 Z2 XY XZ Y Z

X-coordinate (0, 0) (2, 0) (0, 2) (1, 0) (0, 1) (1, 1)
Y -coordinate (−1, 0) (1, 0) (−1, 2) (0, 0) (−1, 1) (0, 1)
Z-coordinate (0,−1) (2,−1) (0, 1) (1,−1) (0, 0) (1, 0)

There are a number of possible families of maps invariant for G, indexed by
the pairs (i, j) modulo p. The most interesting case is p = 3, so −1 ≡ 2, in
which case there are 9 families of maps as given in the following table:

(i, j) 0 1 2
0 [aX2, bXY, cXZ] [aXY, bY 2, cY Z] [aY 2, bX2, 0]
1 [aXZ, bY Z, cZ2] [aY Z, 0, 0] [0, aXZ, 0]
2 [aZ2, 0, bX2] [0, 0, aXY ] [0, aZ2, bY 2]

Three of these families coincide with the linear map [aX, bY, cZ], while the
other six families clearly give non-dominant maps. And if p > 5, then we
obtain the same three linear maps, plus nine additional maps defined by a
single monomial.

According to Lemma 4.1, it remains to deal with the case that p = 3 and,
after appropriate conjugation,

G = 〈τ2, π〉 with τ2 =
( 1 0 0

0 ζ 0
0 0 ζ2

)
and π =

(
0 1 0
0 0 1
1 0 0

)
,

where ζ is a primitive cube root of unity and τ2 is as in Section 5. Suppose
that f ∈ Rat2

2 with τ2 ∈ Aut(f). Using Table 5.1 with m = 2 and entries
reduced modulo 3, we find that f has one of the following forms:

F := [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ],
G := [aZ2 + bXY, cY 2 + dXZ, eX2 + gY Z],
H := [aY 2 + bXZ, cX2 + dXZ, eZ2 + gXY ].

Conjugating by the cyclic permutation π(X,Y, Z) = [Y,Z,X] yields

Fπ = [eZ2 + gXY, aY 2 + bXZ, cX2 + dY Z],
Gπ = [eY 2 + gXZ, aX2 + bY Z, cZ2 + dXY ],
Hπ = [eX2 + gY Z, aZ2 + bXY, cY 2 + dXZ].

Since F and Fπ have no non-zero monomials in common, it follows that π /∈
Aut(F ), and similarly for G and H. This completes the proof that there are
no maps f ∈ Rat2

2 with G ⊆ Aut(f). �
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8. Maps with Automorphism Group Containing C2 × C2

In this section we classify maps with G2,2 ⊆ Aut(f).

Proposition 8.1. — Let K be an algebraically closed field of char-
acteristic 0, let G2,2 be the group described in Theorem 1.2, and let f ∈
Rat2

2(G2,2)ss be a dominant map of degree 2. Then f is N(G2,2)-stable and
one of the following holds:

(a) f is N(G2,2)-conjugate to a map of the form
[X2 + Y 2 − Z2, dXY, eXZ] with d, e ∈ K∗.

The N(G2,2)-conjugacy class of the map f is uniquely determined
by the unordered pair {d, e}. The automorphism group of f is

Aut(f) =
{
G2,2 if d 6= e,
Gm o C2 if d = e.

Further, deg(fn) = 2n.
(b) f is N(G2,2)-conjugate to a map of the form

[Y 2 − Z2, XY, eXZ] with e ∈ K∗.
The N(G2,2)-conjugacy class of the map f is uniquely determined
by the unordered pair {e, e−1}. The automorphism group of f is

Aut(f) =


G2,2 if e 6= ±1,
S3G2,2 if e = −1,
Gm o C2 if e = 1.

Further, if e2 is not an odd-order root of unity, then deg fn = n+1,
while if e4k+2 = 1, then f4k+2 = [X,Y, Z].

(c) f is N(G2,2)-conjugate to the map [Y Z,XZ,XY ]. The automor-
phism group of f is Aut(f) = S3G2,2 ∼= S4. Further, f2 = [X,Y, Z].

Proof. — Let

α =
( 1 0 0

0 −1 0
0 0 1

)
and β =

( 1 0 0
0 1 0
0 0 −1

)
,

so G2,2 = 〈α, β〉 ∼= C2
2 is the group that we assume is contained in Aut(f).

The following table describes the action of α and β on quadratic monomials
that might appear in f . An entry (i, j) in the table means that α multiplies
the monomial by (−1)i and that β multiplies the monomial by (−1)j .

X2 Y 2 Z2 XY XZ Y Z

X-coordinate (0, 0) (0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
Y -coordinate (1, 0) (1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
Z-coordinate (0, 1) (0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
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There are thus four families of G2,2-invariant maps, indexed by pairs (i, j)
modulo 2 (or equivalently, by characters G2,2 → C∗),

f0,0 = [aX2 + bY 2 + cZ2, dXY, eXZ],
f1,0 = [aXY, bX2 + cY 2 + dZ2, eY Z],
f0,1 = [aXZ, bY Z, cX2 + dY 2 + eZ2],
f1,1 = [aY Z, bXZ, cXY ].

Lemma 4.1(b) tells us that the normalizer N(G2,2) of G2,2 contains all of the
permutation matrices. In particular, the permutation π(X,Y, Z) = [Y,Z,X]
is in N(G2,2), and applying π and π2 to f0,0 yields

fπ0,0 = [eXY, cX2 + aY 2 + bZ2, dY Z],

fπ
2

0,0 = [dXZ, eY Z, bX2 + cY 2 + aZ2].

Hence the families f1,0 and f0,1 are N(G2,2)-conjugate to the family f0,0.

We next observe that a map in the f1,1 family is dominant if and only
if abc 6= 0. And under this assumption, conjugation by [uX, vY,wZ] ∈ D ⊂
N(G2,2) with u4 = a−1bc, v4 = ab−1c, and w4 = abc−1 transforms f1,1
into the map [Y Z,XZ,XY ], i.e., the family f1,1 with abc 6= 0 consists of a
single N(G2,2)-conjugacy class. This gives the map in (c), which by abuse of
notation we continue to denote by f1,1. The critical locus of f1,1 is the union
of the coordinate axes,

Crit(f1,1) = {X = 0} ∪ {Y = 0} ∪ {Z = 0}.

Any ϕ ∈ Aut(f1,1) thus leaves the union of the coordinate axes invariant,
from which we conclude that ϕ has the form

ϕ = π ◦ σ for some π ∈ S3 and some σ =
( 1 0 0

0 β 0
0 0 γ

)
∈ D.

But one easily checks that S3 ⊂ Aut(f1,1), so it suffices to determine which
diagonal matrices σ ∈ D are in Aut(f1,1). Letting σ = [X,βY, γZ], we find
that

fσ1,1 = [βγY Z, β−1γXZ, βγ−1XY ],
so

σ ∈ Aut(g)⇐⇒ βγ = β−1γ = βγ−1 ⇐⇒ β2 = γ2 = 1⇐⇒ σ ∈ G2,2.

This completes the proof that

Aut(f1,1) = S3G2,2 ∼= S4,

which also completes the proof of (c).
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We now concentrate on maps in the family f0,0, and to ease notation, we
drop the subscript and simply write

f = [aX2 + bY 2 + cZ2, dXY, eXZ].
It is clear that f is dominant if and only if de 6= 0 and at least one of a, b, c is
non-zero. Further, if b = c = 0, then f = [aX, dY, eZ] has degree 1, so we may
assume that one of b and c is non-zero. And since the involution σ(X,Y, Z) =
[X,Z, Y ] ∈ S3 ⊂ N(G2,2) has the effect

fσ = [aX2 + cY 2 + bZ2, eXY, dXZ]
of switching the roles of b and c, after another N(G2,2) conjugacy we may
assume that cde 6= 0. Using this assumption and Table 5.2, the action of the
one-parameter subgroup Lk,`(t) on f is

µO(1)(f, Lk,`) =
{

max{−k, k − 2`, 3k + 2`} if b 6= 0,
max{−k, 3k + 2`} if b = 0.

Thus if b = 0, then µO(1)(f, L1,−2) = −1, so f is D-unstable.

On the other hand, if b 6= 0, then the identity
4(−k) + (k − 2`) + (3k + 2`) = 0

shows that µO(1)(f, Lk,`) > 0 for all (k, `) 6= (0, 0), so f is D-stable.

We are reduced to studying f with bcde 6= 0. We conjugate by a diagonal
map δ = [uX, vY,wZ] ∈ D ⊂ N(G2,2) to obtain

fδ = [u2aX2 + v2bY 2 + w2cZ2, u2dXY, u2eXZ].
Thus taking v2 = b−1 and w2 = −c−1, we may assume that b = 1 and c = 1.
Further, if a 6= 0, then we may take u2 = a−1 to reduce to maps with a = 1,
while if a = 0, then we may take u2 = d−1 to reduce to maps satisfying
d = 1. It thus suffices to anaylze the maps in the following two families:

f = [X2 + Y 2 − Z2, dXY, eXZ] with d, e ∈ K∗,
f = [Y 2 − Z2, XY, eXZ] with e ∈ K∗.

f = [X2 + Y 2 − Z2, dXY, eXZ], de 6= 0. The indeterminacy and
critical loci of f are
I(f) =

{
[0, 1,±1]

}
and Crit(f) = {X = 0} ∪ {X2 − Y 2 + Z2 = 0}.

We consider two maps f = [X2 +Y 2−Z2, dXY, eXZ] and f ′ = [X2 +Y 2−
Z2, d′XY, e′XZ] and compute

Hom(f, f ′) :=
{
ϕ ∈ PGL3(K) : fϕ = f ′

}
.

Note that by taking f ′ = f , we will obtain Aut(f).
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Every ϕ ∈ Hom(f, f ′) stabilizes the line {X = 0} and either fixes or
permutes the two point [0, 1,±1]. Thus ϕ has the form

ϕ =
( 1 0 0
γ α β
δ ±β ±α

)
with α2 6= β2,

where choosing the plus sign fixes [0, 1,±1] and choosing the minus sign
swaps them.

We compare the second and third coordinates of f ◦ ϕ and ϕ ◦ f ′,

f ◦ ϕ = [∗, γdX2 + αdXY + βdXZ, δeX2 ± βeXY ± αeXZ],
ϕ ◦ f ′ = [∗, γX2 + γY 2 − γZ2 + αd′XY + βe′XZ,

δX2 + δY 2 − δZ2 ± βd′XY ± αe′XZ].

Since the second and third coordinates of f ◦ϕ have no Y 2 term, we conclude
that γ = δ = 0. Under this assumption, we find that

f ◦ ϕ = [X2 + (α2 − β2)(Y 2 − Z2), X(αdY + βdZ),±X(βeY + αeZ)],
ϕ ◦ f ′ = [X2 + Y 2 − Z2, X(αd′Y + βe′Z),±X(βd′Y + αe′Z)].

Hence ϕ ∈ Hom(f, f ′) if and only if

α2 − β2 = 1 and α(d− d′) = β(d− e′) = β(e− d′) = α(e− e′) = 0.

This leads to three cases.

αβ 6= 0. Then we must have d = e = d′ = e′, i.e., f ′ = f and d = e.
The automorphism group of these maps is the set of all matrices of the form( 1 0 0

0 α β
0 ±β ±α

)
satisfying α2 − β2 = 1, which is easily seen to be isomorphic

to Gm o C2.

β = 0, α = ±1. Then d′ = d and e′ = e, i.e., f ′ = f , and we obtain
exactly four possible maps ϕ, namely the four maps in G2,2 that we already
know are in Aut(f).

α = 0, β = ±1. Then d′ = e and e′ = d, so the maps [X2 + Y 2 −
Z2, dXY, eXZ] and [X2 + Y 2 − Z2, eXY, dXZ] are N(G2,2)-conjugate via
the permutation [X,Y, Z]→ [X,Z, Y ].

It remains to prove that deg(fn) = 2n, a task that we postpone to Sec-
tion 12, where we study the degree sequences of all of the maps in this
paper. This completes our analysis for maps of the form f = [X2 + Y 2 −
Z2, dXY, eXZ].
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f = [Y 2 − Z2, XY, eXZ], e 6= 0. The iterates of f are explicitly de-
scribed later in Proposition 8.2, which in particular gives the stated results
for deg(fn). To make our computation of Aut(f) easier, we instead work
with a PGL3-conjugate of f . Thus we let

λ(X,Y, Z) = [2X,Y − Z, Y + Z]

and define

g(X,Y, Z) := fλ(X,Y, Z) =
[
Y Z,X(AY +BZ), X(BY +AZ)

]
with

A = 1 + e

2 and B = 1− e
2 .

We note that A2 − B2 = e. The advantage of g over f is the fact that the
critical locus of g is the union of the coordinate axes,

Crit(g) = {X = 0} ∪ {Y = 0} ∪ {Z = 0}.

As usual, we let g′ be another map of this form, with e′ in place of e, and we
let ϕ ∈ Hom(g, g′). Then ϕ leaves the union of the coordinate axes invariant,
from which we conclude that ϕ has the form

ϕ = π ◦ σ for some π ∈ S3 and some σ =
( 1 0 0

0 β 0
0 0 γ

)
∈ D.

For each of the six elements of S3 we need to compute the effect of π ◦ σ
on g. We let

S(X,Y, Z) = [X,Z, Y ] and T (X,Y, Z) = [Y,Z,X]

be generators for S3. Our task is simplified by the observation that S ∈
Aut(g) and S ∈ Aut(g′), so it suffices to take π ∈ {I, T, T 2}. For each of
these choices we compute the action on g,

gσ =
[
Y Z,X

(
1
βγ

AY + 1
β2BZ

)
, X

(
1
γ2BY + 1

βγ
AZ

)]
,

gTσ = [AXY + γBY Z, ∗, ∗],

gT
2σ = [AXZ + βBY Z, ∗, ∗].

We consider three cases:

e 6= ±1, AB 6= 0. In this case the fact that g′ has no XY or XZ in its
first coordinate rules out π = T or π = T 2.

On the other hand, for π = I we have

σ ∈ Hom(g, g′) ⇐⇒ βγ = A/A′ and β2 = γ2 = B/B′.
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In particular, this can occur only if

0 = (βγ)2 − β2γ2 =
(
A

A′

)2
−
(
B

B′

)2
= (AB′)2 − (A′B)2

(A′B′)2

= 1
(A′B′)2

((
1 + e

2 · 1− e′

2

)2
−
(

1 + e′

2 · 1− e
2

)2
)

= (e− e′)(1− ee′)
(A′B′)2 .

If e′ = e, i.e., if g′ = g, then we find that σ ∈ Aut(g) if and only if βγ = β2 =
γ2 = 1, so if and only if β = γ = ±1. This gives two elements of Aut(g), and
composing with S gives two additional elements. These elements form the
copy of C2

2 that we already know exists in Aut(g). Further, if e′ = e−1, then
A = eA′ and B = −eB′, so we find that σ ∈ Hom(g, g′) if we take β =

√
−e

and γ = −β.

To recapitulate, we have shown that if e 6= ±1, then

Aut(g) =
〈( 1 0 0

0 −1 0
0 0 −1

)
,
( 1 0 0

0 0 −1
0 −1 0

)〉
∼= C2

2 ,

and that g′ is PGL3(K)-conjugate to g if and only if e′ ∈ {e, e−1}. Undoing
the conjugation by λ, we find that if e 6= ±1, then Aut(f) = G2,2, and that f
is N(G2,2)-conjugate to f ′ if and only if e′ ∈ {e, e−1}.

e = 1, A = 1, B = 0. In this case the map g is simply

g = [Y Z,XY,XZ].

It satisfies g2 = [X,Y, Z], and Aut(g) contains a copy of Gm in the form of
all maps [X, tY, t−1Z], and it contains S, so Gm o C2 ⊆ Aut(g). Since it is
not needed for the proof of our main theorem, we leave for the reader the
proof that this inclusion is an equality.

e = −1, A = 0, B = 1. In this case the map g has the simple form

g = [Y Z,XZ,XY ],

and we observe that g is the map that we already analyzed in (c). In partic-
ular, Aut(g) = S3G2,2 ∼= S4. This proves that Aut(f) ∼= S4, in fact one can
easily check that λ normalizes the group S3G2,2, so Aut(f) = S3G2,2. �

We next give an explicit formula for the iterates of the family of maps in
Proposition 8.1(b).

Proposition 8.2. — Let e ∈ K∗, and for k > 0, let

Uk(Y,Z) = Y 2 − e2kZ2.
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Then the iterates of the map f = [Y 2 − Z2, XY, eXZ] are given by the
formulas

fn(X,Y, Z)

=


[XU1U3 · · ·Un−1, Y U0U2 · · ·Un−2, e

nZU0U2 · · ·Un−2]
if n is even,

[U0U2 · · ·Un−1, XY U1U3 · · ·Un−2, e
nXZU1U3 · · ·Un−2]

if n is odd.

(1) If e2k 6= 1 for all odd integers k, then

deg(fn) = n+ 1 for all n > 0.

(2) If e2k = 1 for some odd integer k, then

f2k(X,Y, Z) = [X,Y, Z].

Proof. — We note that f =
[
U0(Y,Z), XY, eXZ]. The proof of the for-

mulas for fn is an easy induction on n, using the identity

Uk(WY, eWZ) = W 2Uk+1(Y, Z). (8.1)

This allows us to compute

f2k+2(X,Y, Z) = f2k+1(U0(Y,Z), XY, eXZ
)

definition of f ,
=
[
(U0U2 · · ·U2k)(XY, eXZ),

U0(Y,Z) ·XY · (U1U3 · · ·U2k−1)(XY, eXZ),
e2k+1 · U0(Y,Z) · eXZ · (U1U3 · · ·U2k−1)(XY, eXZ)

]
induction hypothesis,

=
[
X2k+2(U1U3 · · ·U2k+1)(Y,Z),

U0(Y,Z) ·X2k+1 · Y (U2U4 · · ·U2k)(Y,Z),
e2k+2 · U0(Y, Z) ·X2k+1 · Z(U2U4 · · ·U2k)(Y, Z)

]
using (8.1).

Canceling X2k+1 gives the desired formula. The computation of f2k+1 using
the formula for f2k is similar. This completes the proof of the formulas for fn.

Since degUk(Y,Z) = 2, we see immediately from the formulas for fn that
deg(fn) 6 n + 1, with equality if and only if the coordinate functions have
no common factor. Since e 6= 0, we see that a common factor occurs if and
only if some odd index U2`+1(Y, Z) has a factor in common with some even
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index U2m(Y,Z). But
Res
(
U2`+1(Y,Z), U2m(Y,Z)

)
= Res(Y 2 − e4`+2Z2, Y 2 − e4mZ2)

= e8m(e2(2`−2m+1) − 1)2.

Hence if e2 is not an odd-order root of unity, then there is no cancelation and
deg(fn) = n + 1. Finally, if e2 is an odd order root of unity, say e4`+2 = 1,
then for all k > 0 we have

Uk+2`+1(Y, Z) = Y 2 − e2(k+2`+1)Z2 = Y 2 − e2kZ2 = Uk(Y, Z).
This allows us to switch even index Uk’s with odd index Uk’s. In particular,
using this identity in the formula for f4`+2, we find that all of the Uk factors
cancel, leaving f4`+2 = [X,Y, Z]. �

9. Maps with an Automorphism of Order 4

In this section we classify maps in Rat2
2 that admit an automorphism of

order 4.

Proposition 9.1. — Let K be an algebraically closed field of character-
istic 0, let G4 be the group described in Theorem 1.2, and let f ∈ Rat2

2(G4)ss
be a dominant map of degree 2 with finite automorphism group. Then f
is N(G4)-stable and one of the following holds:

(a) f is N(G4)-conjugate to a map of the form
fa,e := [aX2 + Z2, XY, Y 2 + eXZ] with a, e ∈ K.

The automorphism group of fa,e is given by
Aut(fa,e) = G4.

Two maps fa,e and fa′,e′ are N(G4)-conjugate if and only (a, e) =
(a′, e′).

(b) f is N(G4)-conjugate to a map of the form(5)

fc := [Y Z,X2 + cZ2, XY ] with c ∈ K r {−1}.
The automorphism group of fc is given by(6)

Aut(fc) = G4 if c 6= ±1,
Aut(fc) ∼= S4 if c = 1.

Two maps fc and fc′ are N(G4)-conjugate if and only if cc′ = 1.
(5) See Proposition 9.3 for explicit formulas for the iterates of fc and a detailed de-

scription of its geometry. In particular, although Aut(f) is finite for c 6= −1, it turns out
that Aut(f2

c ) always contains a copy of Gm.
(6) In the excluded case c = −1, we have Aut(f−1) ⊇ Gm o C2.
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Proposition 9.2. — Let K be an algebraically closed field of character-
istic 0, and let f ∈ Rat2

2 satisfy

Aut(f) ⊇
〈( 1 0 0

0 i 0
0 0 1

)〉
.

Then f is D-unstable.

Proof of Proposition 9.1. — Let ζ = i to be a primitive 4’th root of unity,
so the map [X, iY,−Z] corresponds to the matrix τ2 defined in Section 5.
Table 5.1 with m = 2 and entries reduced modulo 4 is

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 0 1 2 3
Y -coord 3 1 3 0 1 2
Z-coord 2 0 2 3 0 1

Hence the assumption that τ2 ∈ Aut(f) leads to the following four families
of maps:

f2,0 := [aX2 + bZ2, cXY, dY 2 + eXZ],
f2,1 := [aXY, bY 2 + cXZ, dY Z],
f2,2 := [aY 2 + bXZ, cY Z, dX2 + eZ2],
f2,3 := [aY Z, bX2 + cZ2, dXY ].

Conjugation by the permutation π(X,Y, Z) = [Z, Y,X] ∈ N(G4) gives

fπ2,0 = [aX2 + bZ2, cXY, dY 2 + eXZ]π = [dY 2 + eXZ, cY Z, bX2 + aZ2],

so π identifies the families f2,0 and f2,2. (One also easily checks that π
stabilizes each of the families f2,1 and f2,3.) Further, the family f2,1 has
infinite automorphism group,

Aut(f2,1) ⊇
{( 1 0 0

0 t 0
0 0 t2

)
: t ∈ Gm

}
∼= Gm.

It remains to consider the families f2,0 and f2,3.

In order for f2,0 to be dominant, we need c 6= 0. Table 5.2 tells us that

µO(1)(f2,0, Lk,`) 6 max{−k, 3k + 2`,−k − 3`}, (9.1)

with equality if bd 6= 0. Since

b = 0 =⇒ µO(1)(f2,0, Lk,`) 6 max{−k,−k − 3`} (k,`)=(1,0)−−−−−−−→ −1,

d = 0 =⇒ µO(1)(f2,0, Lk,`) 6 max{−k, 3k + 2`} (k,`)=(1,−2)−−−−−−−−→ −1,

our assumption that f is N(G4)-semistable tells us that we also have bd 6= 0.
We may thus conjugate f2,0 by

σ = [uX, vY,wZ] with (u6, v12, w3) = (bc−3, b−1c3d−6, b−1),
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which with appropriate choice of roots puts f2,0 into the form f2,0 = [aX2 +
Z2, XY, Y 2 + eXZ]. And since (9.1) is an equality, the identity

14 · (−k) + 6 · (3k + 2`) + 4 · (−k − 3`) = 0
shows that µO(1)(f2,0, Lk,`) > 0 for all (k, `) 6= (0, 0). This completes the
proof that f2,0 of this form are N(G4)-stable.

In order for f2,3 to be dominant, we need ad 6= 0 and at least one
of b, c non-zero. Since fπ2,3 = [dY Z, cX2 + bY 2, aXY ] has the effect of
switching b and c (as well as switching a and d), we may assume with-
out loss of generality that b 6= 0. Then conjugation by [uX, vY,wZ] with
(u8, v8, w8) = (ab−2c−1, a−1b2d−3, a−3b−2d3) puts f2,3 in the form f2,3 =
[Y Z,X2 + cZ2, XY ]. Table 5.2 tells us that

µO(1)(f2,3, Lk,`) =
{

max{2k,−2k + `, 2k + 3`,−2k − 2`} if c 6= 0,
max{2k,−2k + `,−2k − 2`} if c = 0.

In both cases the identity
3(2k) + 2(−2k + `) + (−2k − 2`) = 0

shows that µO(1)(f2,3, Lk,`) > 0 for all (k, `) 6= (0, 0). This completes the
proof that f2,3 of this form are N(G4)-stable.

Computation of Aut(f2,0) for f2,0 = [aX2+Z2, XY, Y 2+eXZ]

To ease notation, we are going to drop the subscript on f . We consider
two maps
f = [aX2 + Z2, XY, Y 2 + eXZ] and f ′ = [a′X2 + Z2, XY, Y 2 + e′XZ]
and compute

Hom(f, f ′) :=
{
ϕ ∈ PGL3(K) : fϕ = f ′

}
.

The critical locus of f is
Crit(f) = {aeX3 − eXZ2 + 2Y 2Z = 0},

and the indeterminacy locus of f is

I(f) =


∅ if ae 6= 0,{

[1, 0, 0]
}

if a = 0,{
[1, 0,±

√
−a]

}
if e = 0 and a 6= 0.

In particular, if ae 6= 0, then f is a morphism.

We assume that Hom(f, f ′) 6= ∅, and we let ϕ ∈ Hom(f, f ′).
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We begin by computing Hom(f, f ′) in the generic case ae 6= 0. Since ϕ
sends I(f) to I(f ′), it follows that also a′e′ 6= 0. The critical locus of f is an
irreducible cubic curve. Indeed, setting

E : aeX3 − eXZ2 + 2Y 2Z = 0 and O = [0, 1, 0],

we see that O is a flex point of the cubic, so (E,O) is an elliptic curve with
group law specified by the usual rule that distinct points P,Q,R ∈ E sum
to O if and only if P,Q,R are colinear. Further, the elliptic curve (E,O)
has CM by Z[i], so Aut(E,O) ∼= Z[i]∗ = {±1,±i}, and since the four maps
in G4 induce automorphisms of (E,O), we see that

Aut(E,O) = G4.

And similarly for the elliptic curve (E′,O′) associated to f ′.

We next observe that there are exactly four isomorphisms from (E,O)
to (E′,O′), since if ψ1 and ψ2 are any two such isomorphisms, then ψ−1

2 ◦ψ1 ∈
Aut(E,O) = G4. Explicitly, if we fix u, v ∈ K satisfying u4 = a′/a and
v2 = e/e′, then the four elements of Isom

(
(E,O), (E′,O′)

)
are

ψ0(X,Y, Z) = [u2X,uvY, Z], ψ1(X,Y, Z) = [u2X, iuvY,−Z],
ψ2(X,Y, Z) = [u2X,−uvY, Z], ψ3(X,Y, Z) = [u2X,−iuvY,−Z].

Since these are diagonal maps in PGL3, we also note that

ψ ◦ α = α ◦ ψ for all α ∈ G4 and all ψ ∈ Isom
(
(E,O), (E′,O′)

)
. (9.2)

The map ϕ ∈ Hom(f, f ′) sends Crit(f) to Crit(f ′), so ϕ(E) = E′. In
other words, ϕ|E induces an isomorphism of genus 1 curves E → E′. (There
is, however, no a priori reason that ϕ needs to send O to O′.) Standard
properties of elliptic curves [22, III.4.7] tell us that there is an isogeny ψ :
(E,O)→ (E′,O′) and a point P0 ∈ E so that

ϕ(P ) = ψ(P + P0) = ψ ◦ TP0(P ) for all P ∈ E,

where TP0 : E → E denotes the translation-by-P0 map. Further, since ϕ is
invertible on all of P2 and since translation by P0 is invertible on E, we see
that ψ is bijective, hence ψ ∈ Isom

(
(E,O), (E′,O′)

)
is one of the fours maps

listed earlier.

We next exploit the fact that ϕ ∈ PGL3(K) maps lines to lines. Thus
if P,Q,R ∈ E are distinct points satisfying P+Q+R = O, then ϕ(P ), ϕ(Q),
ϕ(R) are also colinear, so ϕ(P ) + ϕ(Q) + ϕ(R) = O′. Using the fact that ψ
is a group isomorphism, we compute

O′ = ϕ(P ) + ϕ(Q) + ϕ(R) = ψ(P + P0) + ψ(Q+ P0) + ψ(R+ P0)
= ψ(P +Q+R) + 3ψ(P0) = ψ(O) + 3ψ(P0) = 3ψ(P0).
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Hence ψ(P0) is a 3-torsion point of E′, and since ψ is a group isomorphism,
we conclude that P0 is a 3-torsion point of E.

We claim that P0 = O. To prove this claim, we assume that P0 6= O and
derive a contradiction. For an arbitrary α ∈ G4 ⊆ Aut(f), we note that the
composition α ◦ϕ−1 ◦α−1 ◦ϕ is in Aut(f). On the other hand, we can write
this composition explicitly as

α ◦ ϕ−1 ◦ α−1 ◦ ϕ = α ◦ (ψ ◦ TP0)−1 ◦ α−1 ◦ (ψ ◦ TP0)
= α ◦ T−P0 ◦ ψ−1 ◦ α−1 ◦ ψ ◦ TP0

= α ◦ T−P0 ◦ α−1 ◦ ψ−1 ◦ ψ ◦ TP0 from (9.2),
= T−α(P0) ◦ TP0

= TP0−α(P0).

Our assumption that P0 is a non-trivial 3-torsion point implies that P0 6=
α(P0) for all α ∈ G4 r {1}, since for such α, the kernel of α − 1 consists of
2-torsion points. Hence the set{

P0 − α(P0) : α ∈ G4
}

contains four distinct elements of E[3]; in particular, it contains generators
of E[3]. We saw above that all of the translations TP0−α(P0) are in Aut(f),
so using the fact that Aut(f) is a group, we have proven that

Aut(f) ⊃
{
TQ : Q ∈ E[3]

}
.

Thus Aut(f) contains a subgroup of type C3×C3. This and the fact that f is
a degree 2 morphism contradicts Proposition 7.1, which concludes the proof
that P0 = O.

We now know that every ϕ ∈ Hom(f, f ′) has the form ϕ = ψ for
some ψ ∈ Isom

(
(E,O), (E′,O′)

)
, i.e., Hom(f, f ′) consists of the four maps

listed earlier, so there is an integer m such that
ϕ(X,Y, Z) = [u2X, imuvY, (−1)mZ],

where we recall that u and v satisfy u4 = a′/a and v2 = e/e′. We compute
fϕ = ϕ−1 ◦ f ◦ ϕ(X,Y, Z) = [u2aX2 + u−2Z2, u2XY, u2v2Y 2 + u2eXZ]

=
[
a′X2 + Z2,

a′

a
XY,

a′e

ae′
(Y 2 + e′XZ)

]
.

Comparing this to f ′ = [a′X2 +Z2, XY, Y 2 + e′XZ], we see that fϕ = f ′ if
and only if a = a′ and e = e′, i.e., if and only if f ′ = f . This completes the
proof that

Hom(f, f ′) =
{
∅ if f 6= f ′,
G4 if f = f ′,

which completes the proof of (a) in the case that ae 6= 0.
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We next consider the case of maps with a = 0, i.e., maps of the form

f = [Z2, XY, Y 2 + eXZ].

These maps satisfy

I(f) =
{

[1, 0, 0]
}

and Crit(f) = {Z = 0} ∪ {eXZ = 2Y 2}.

Letting f ′ = [Z2, XY, Y 2 + e′XZ] be another such map, we conclude that
any ϕ ∈ Hom(f, f ′) fixes the point [1, 0, 0] and stabilizes the line Z = 0.
(This is true regardless of whether e = 0 and/or e′ = 0, since ϕ preserves the
multiplicities of components of Crit(f).) Thus ϕ has the form ϕ =

( 1 α β
0 γ δ
0 0 ε

)
.

Equating

f ◦ ϕ = [ε2Z2, γXY + δXZ + αγY 2 + (αδ + βγ)Y Z + βδZ2, ∗],
ϕ ◦ f ′ = [Z2 + αXY + βY 2 + βe′XZ, γXY + δY 2 + δe′XZ, ∗],

we see from the XY and Y 2 terms in the first coordinate that α = β = 0,
and then the Y 2 term in the second coordinate gives δ = 0. Hence ϕ is a
diagonal matrix, and we have

[Z2, XY, Y 2 + e′XZ] = f ′ = fϕ = [ε2Z2, XY, γ2ε−1Y 2 + eXZ].

Therefore ϕ ∈ Hom(f, f ′) if and only if e = e′ and ε2 = 1 and γ2 = ε. So if
f = f ′, then we get the four maps in G4, and if f 6= f ′, then f and f ′ are
not conjugate.

It remains to consider the case of maps with a 6= 0 and e = 0, i.e., maps
of the form

f = [aX2 + Z2, XY, Y 2] with a 6= 0.
These maps satisfy

Crit(f) = {Z = 0} ∪ {Y 2 = 0},

i.e., the critical locus of f consists of two lines, one with multiplicity 1 and
one with multiplicity 2. Letting f ′ = [a′X2 + Z2, XY, Y 2] be another such
map, we conclude that any ϕ ∈ Hom(f, f ′) stabilizes the lines {Z = 0} and
{Y = 0}, so ϕ has the form ϕ =

(
α β γ
0 δ 0
0 0 1

)
. Equating the middle coordinates

of

f ◦ ϕ = [∗ , αδXY + βδY 2 + γδY Z, ∗],
ϕ ◦ f ′ = [∗ , δXY, ∗],

and using the fact that δ 6= 0 (since ϕ is invertible), we see that β = γ = 0.
Hence ϕ is a diagonal matrix, and we have

[a′X2 + Z2, XY, Y 2] = f ′ = fϕ = [α2aX2 + Z2, α2XY,αδ2Y 2].
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Therefore ϕ ∈ Hom(f, f ′) if and only if a = a′ and α2 = 1 and δ2 = α−1. So
if f = f ′, then we get the four maps in G4, and if f 6= f ′, then f and f ′ are
not conjugate.

Computation of Aut(f2,3) for f2,3 = [Y Z,X2 + cZ2, XY ]

To ease notation, we again drop the subscript on f . We consider two such
maps

f = [Y Z,X2 + cZ2, XY ] and f ′ = [Y Z,X2 + c′Z2, XY ],
and we compute Hom(f, f ′), where we suppose that Hom(f, f ′) 6= ∅. Let
ϕ ∈ Hom(f, f ′), and let γ =

√
−c and γ′ =

√
−c′.

The indeterminacy locus of f consists of three points and the critical
locus of f consists of three lines (with multiplicity if c = 0),

I(f) =
{

[0, 1, 0], [±γ, 0, 1]
}
,

Crit(f) = {Y = 0} ∪ {X = γZ} ∪ {X = −γZ}.
The orbit portrait of Crit(f) is

{X = ±γZ} f−−→ [1, 0,±γ] ∈ {Y = 0} f−−→ [0, 1, 0] ∈ I(f),
and similarly for f ′. Suppose first that c 6= ±1. Then [1, 0,±γ] /∈ I(f), so
the fact that the map ϕ ∈ Hom(f, f ′) sends the orbit portrait of Crit(f) to
the orbit portrait of Crit(f ′) implies that ϕ fixes the line {Y = 0} and the
point [0, 1, 0]. This means that ϕ has the form

ϕ =
(
s 0 t
0 1 0
u 0 v

)
∈ PGL3(K).

We are assuming that fϕ = f ′. We start by comparing the first and third
coordinates of f ◦ ϕ and ϕ ◦ f ′,

f ◦ ϕ = [uXY + vY Z, ∗ , sXY + tY Z],
ϕ ◦ f ′ = [tXY + sY Z, ∗ , vXY + uY Z].

Thus there is an ε ∈ K∗ such that (u, v, s, t) = (εt, εs, εv, εu), and this in
turn implies that u = εt = ε2u and v = εs = ε2v. The invertibility of ϕ
implies that u and v are not both 0, so ε = ±1. Further, setting u = εt and
v = εs, the middle coordinates of f ◦ ϕ and ϕ ◦ f ′ look like

f ◦ ϕ = [∗, (s2 + ct2)X2 + 2st(1 + c)XZ + (t2 + cs2)Z2, ∗],
ϕ ◦ f ′ = [∗, X2 + c′Z2, ∗].

Hence we must have
s2 + ct2 = ε, st(1 + c) = 0, t2 + cs2 = εc′.
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This leads to two cases (since we are assuming for the present that c 6= −1):

s = 0 =⇒ εc−1 = t2 = εc′ =⇒ cc′ = 1,
t = 0 =⇒ s2 = ε =⇒ c = c′.

We see that if f ′ 6= f , i.e., c′ 6= c, then we must have c′ = c−1 and
s = v = 0, and in this case we find that the permutation [Z, Y,X] ∈ N(G4)
is in Hom(f, f ′).

If c′ = c, i.e., we are computing Aut(f), then our assumption that c2 6= 1
means that we must have t = u = 0 and s2 = ε = ±1. This proves that

Aut(f) =
{(

s 0 0
0 1 0
0 0 εs

)
∈ PGL3(K) : ε = ±1 and s = ±

√
ε
}

= G4.

Next we consider the case that c = 1. This gives the map that is la-
beled f4.2 in Example 1.7. It is shown in that example that f4.2 is PGL3-
conjugate to the map f6.1 := [Y Z,XZ,XY ]. We proved in Proposition 8.1(c)
that Aut(f6.1) = S3G2,2 ∼= S4, and hence we find that Aut(f4.2) ∼= S4. Ex-
plicitly, Aut(f4.2) is the subgroup of PGL3 given by conjugating S3G2,2 by
the inverse of the map β given in Example 1.7.

Finally, if c = −1, then a similar calculation shows that s and t need only
satisfy the single relation s2 − t2 = ε, so

Aut(f) ⊇
{(

s 0 t
0 1 0
εt 0 εs

)
∈ PGL3(K) : ε = ±1 and

s2 − t2 = ε

}
∼= Gm o C2.

�

Proof of Proposition 9.2. — Taking ζ = i to be a primitive 4’th root of
unity, we see that the map [X, iY, Z] is τ0. Then Table 5.1 with m = 0 and
entries reduced modulo 4 is

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 0 1 0 1
Y -coord 3 1 3 0 3 0
Z-coord 0 2 0 1 0 1

Hence τ2 ∈ Aut(f) leads to the following four families of maps:

f0,0 := [aX2 + bZ2 + cXZ, dXY + eY Z, fX2 + gZ2 + hXZ],
f0,1 := [aXY + bY Z, cY 2, dXY + eY Z],
f0,2 := [aY 2, 0, bY 2],
f0,3 := [0, aX2 + bZ2 + cXZ, 0].
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For each family we use Table 5.2 to compute

µO(1)(f0,0, Lk,`) 6 max{−k, 3k + 2`, k + `,−3k − `} (k,`)=(1,−2)−−−−−−−−→ −1,

µO(1)(f0,1, Lk,`) 6 max{−`, 2k,−`,−2k − 2`,−k} (k,`)=(0,1)−−−−−−−→ −1,

µO(1)(f0,2, Lk,`) 6 max{k − 2`,−k − 3`} (k,`)=(0,1)−−−−−−−→ −3,

µO(1)(f0,3, Lk,`) 6 max{−3k − `, k + `,−k} (k,`)=(1,−2)−−−−−−−−→ −1.

This shows that all of these maps are D-unstable. �

We now investigate more closely one of the families of maps appearing in
Proposition 9.1.

Proposition 9.3. — Let f = [Y Z,X2 + cZ2, XY ] be the map from
Proposition 9.1(b). Let R(X,Z) = X2 + cZ2 and S(X,Z) = cX2 + Z2.
Then the iterates of f are given by the explicit formulas

f2k(X,Y, Z) =
[
R(X,Y )kX,S(X,Y )kY,R(X,Y )kZ

]
,

f2k+1(X,Y, Z) =
[
S(X,Y )kY Z,R(X,Y )k+1, S(X,Y )kXY

]
.

In particular, if c 6= ±1, then deg(fn) = 2n + 1, while if c = ±1, then
f2k = [X, (−1)kY,Z].

Let p(X,Y, Z) = [X,Z]. Then there is a commutative diagram

P2 f−−−−→ P2yp yp
P1 [U,V ]→[V,U ]−−−−−−−−→ P1

The second iterate f2 = [X3 + cXZ2, cX2Y + Y Z2, X2Z + cZ3] has infinte
automorphism group,

Aut(f2) ⊃
{(

1 0 0
0 t 0
0 0 1

)
: t ∈ Gm

}
.

Proof. — We need to prove that

f2k(X,Y, Z) =
[
RkX,SkY,RkZ

]
,

f2k+1(X,Y, Z) =
[
SkY Z,Rk+1, SkXY

]
.
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The proof is by induction on k. The formulas are visibly correct for k = 0.
Assuming that the formula for f2k is correct, we compute

f2k+1(X,Y, Z) = f
(
f2k(X,Y, Z)

)
= f(RkX,SkY,RkZ)
= [RkSkY Z,R2kX2 + cR2kZ2, RkSkXY ]
= [SkY Z,Rk+1, SkXY ],

which shows that the formula for f2k+1 is correct. Similarly, assuming that
the formula for f2k+1 is correct, we compute

f2k+2(X,Y, Z) = f
(
f2k+1(X,Y, Z)

)
= f(SkY Z,Rk+1, SkXY )
= [Rk+1SkXY, S2kY 2Z2 + cS2kX2Y 2, Rk+1SkY Z]
= [Rk+1X,Sk+1Y,Rk+1Z],

which shows that the formula for f2k+2 is correct. This completes the proof
of the formulas for the iterates of f .

We now ask when the coordinates of fn have a common factor. It is clear
that neither X nor Y nor Z is a common factor, so any non-trivial common
factor must be a common factor of R and S. Since

Res(R,S) = Res(X2 + cZ2, cX2 + Z2) = (c2 − 1)2,

there is no common factor if c 6= ±1. Hence if c 6= ±1, then deg(fn) = n+ 1.
On the other hand, if c = ±1, then S = ±R, so f2k = [X, (−1)kY,Z].

Finally, the commutativity of the diagram and verification that the in-
dicated matrices are in Aut(f2) are trivial calculations. This completes the
proof of Proposition 9.3. �

10. Maps with an Automorphism of Order 3

In this section we classify maps in Rat2
2 that admit an automorphism of

order 3. The classification that we give in Table 10.1 arises naturally during
the proof, but we note that later in Section 11 we will use somewhat different
normal forms in order to create the families as described in Table 1.1.
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Proposition 10.1. — Let K be an algebraically closed field of char-
acteristic 0, let G3 be the group described in Theorem 1.2, and let f ∈
Rat2

2(G3)ss be a dominant map of degree 2 with finite automorphism group.
Further define a subgroup G3,2 ⊂ PGL3(K) by

G3,2 :=
〈( 1 0 0

0 ζ 0
0 0 ζ2

)
,
(

1 0 0
0 0 1
0 1 0

)〉
∼= S3.

Then f is N(G3)-conjugate to one of the maps in Table 10.1, where the
penultimate column indicates if the given maps are morphisms and the last
column describes when two maps of the given form are N(G3)-conjugate to
one another.(7) Further, maps of Type C3(n) and C3(n′) for n 6= n′ are
not N(G3)-conjugate.

Proposition 10.2. — Let K be an algebraically closed field of charac-
teristic 0, let ζ be a primitive cube root of unity, and let f ∈ Rat2

2 be a
dominant rational map satisfying

Aut(f) ⊇
〈( 1 0 0

0 ζ 0
0 0 1

)〉
.

Then f is D-unstable.

Proof of Proposition 10.1. — During the proof we will frequently use the
fact that N(G3) = S3D; see Lemma 4.2. The map [X, ζY, ζ2Z] generating G3
is the map defined by the matrix τ2 in Section 5. Using Table 5.1 with m = 2
and entries reduced modulo 3, we find that

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 1 1 2 0
Y -coord 2 1 0 0 1 2
Z-coord 1 0 2 2 0 1

Hence assuming that τ2 ∈ Aut(f) leads to the following three families of
maps:

f := [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ],
f ′ := [aZ2 + bXY, cY 2 + dXZ, eX2 + gY Z],
f ′′ := [aY 2 + bXZ, cX2 + dXZ, eZ2 + gXY ].

Conjugating by the cyclic permutation π(X,Y, Z) = [Y,Z,X] ∈ N(G3)
gives

fπ = [eZ2 + gXY, aY 2 + bXZ, cX2 + dY Z],

fπ
2

= [cY 2 + dXZ, eX2 + gY Z, aZ2 + bXY ],

(7) In some cases we have given only the isomorphism class of Aut(f). But during
the proof of the proposition, we give an explicit description of Aut(f) as a subgroup
of PGL3(K).
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f Coeffs Aut(f) Mor? f ′ ∼ f
C3(1) : fb = [X2 + bY Z,Z2, Y 2], b ∈ K

G3,2 Yes b′ = b

C3(2) : fa,b = [aX2 + Y Z,XY, Y 2 + gXZ], a, g ∈ K not both 0
G3 No −

C3(3) : fb = [bY Z, Z2 +XY, Y 2], b ∈ K∗
G3 No −

C3(4) : fb,g = [bY Z,Z2 +XY, Y 2 + gXZ], b, g ∈ K∗
g 6= 1 G3 No (b′, g′) = (bg, g−1)
g = 1 G3,2 No −

C3(5) : fa,b = [aX2 − aY Z,Z2 −XY, bY 2 − bXZ], a, b ∈ K∗
a 6= 1 and b 6= 1 ∼= C3 No (a′, b′) = (b, a)

exactly one of a, b = 1 ∼= C3 o C2 No (a′, b′) = (b, a)
a = b = 1 ∼= S4 No −

C3(6) : fa,b := [aX2 + bY Z,Z2 +XY, Y 2], a, b ∈ K∗
G3 Yes −

C3(7) : fb,d,g = [X2 + bY Z,Z2 + dXY, Y 2 + gXZ],
b, d, g ∈ K∗, bdg 6= −1, 8

g 6= d G3 Yes −
g = d G3,2 Yes −

C3(8) : fc,e = [X2 + 2Y Z, cZ2 + 2cXY, eY 2 + 2eXZ], c, e ∈ K∗
(c, e) 6= (ζ3, ζ

2
3 ) and (ζ2

3 , ζ3) G3 Yes (c′, e′) = (e, c)
(c, e) = (ζ3, ζ

2
3 ) or (ζ2

3 , ζ3) ∼= C7 o C3 Yes (c′, e′) = (e, c)

Table 10.1. Dominant degree 2 maps f ∈ Rat2
2(G3)ss

which shows that our three families are N(G3)-conjugates. It thus suffices to
analyze one of them, so we concentrate on

f(X,Y, Z) = [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ]. (10.1)

Using Table 5.2, we see that

µO(1)(f, Lk,`) = max
{a,d,g 6=0︷︸︸︷
−k ,

b 6=0︷︸︸︷
2k ,

c 6=0︷ ︸︸ ︷
2k + 3`,

e 6=0︷ ︸︸ ︷
−k − 3`

}
,

where −k appears in the max if one or more of a, d, g is non-zero.

In Table 10.2, maps marked as being semi-stable are not stable. Also, in
the column marked a, d, g, the symbol 6= 0 means that at least one of a, d, g
is non-zero, while 0 means that all three values are 0.

To justify our assertion that the maps in Case 1 are stable, we use the
identity

(−k) + (2k + 3`) + (−k − 3`) = 0,
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Case a, d, g b c e stability
1 6= 0 ∗ 6= 0 6= 0 stable
2 6= 0 6= 0 6= 0 0 semi-stable
3 6= 0 6= 0 0 6= 0 semi-stable
4 6= 0 6= 0 0 0 semi-stable
5 0 ∗ ∗ ∗ unstable

Table 10.2. Semi-stability and stability conditions

which shows that
µO(1)(f, Lk,`) = max{−k, 2k + 3`,−k − 3`} > 0 for all (k, `) 6= (0, 0).

For Cases 2, 3 and 4 it is clear that µO(1) > 0 due to the −k and 2k terms
in the max, but taking k = 0 and ` = ±1 gives a non-zero (k, `) pair with
µO(1)(f, Lk,`) = 0. Hence these cases give maps that are semi-stable, but not
stable. Finally, in Case 5 we have

µO(1)(f, Lk,`) 6 max{2k, 2k + 3`,−k − 3`} (k,`)=(−2,1)−−−−−−−−→ −1,
which shows that these maps are unstable. (We also remark that the Case 5
map f = [bY Z, cZ2, eY 2] is not dominant, since its image is contained in the
conic b2Y Z = ceX2.)

Conjugating (10.1) by σ = [uX, vY,wZ] ∈ N(G3) yields the twist

fσ =
[
uaX2 + vw

u
bY Z,

w2

uv
cZ2 + udXY,

v2

uw
eY 2 + ugXZ

]
. (10.2)

If e = 0 and c 6= 0, we can use the permutation [X,Z, Y ] ∈ N(G3) that
swaps c and e. The remainder of the proof is a case-by-case analysis that
depends on properties of the coefficients.

c = e = 0. The map
f(X,Y, Z) = [aX2 + bY Z, dXY, gXZ]

has the property that [X, tY, t−1Z] ∈ Aut(f) for every t, so Aut(f) contains
a copy of Gm.

c = 0 and e 6= 0. We have
f(X,Y, Z) = [aX2 + bY Z, dXY, eY 2 + gXZ].

The dominance of f implies that d 6= 0, and the semi-stability of f im-
plies that b 6= 0. Using the fact that bde 6= 0, we see from the twisting
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formula (10.2) that an appropriate twist lets us take b = d = e = 1. So

f(X,Y, Z) = [aX2 + Y Z,XY, Y 2 + gXZ].

The indeterminacy locus is

I(f) =
{{

[0, 0, 1]
}

if a 6= 0,{
[0, 0, 1], [1, 0, 0]

}
if a = 0.

Suppose that ϕ ∈ Hom(f, f ′) fixes [0, 0, 1], which is forced if a 6= 0, and

is one of two possibilities if a = 0. Thus ϕ =
(
α β 0
γ δ 0
λ µ 1

)
. Comparing

ϕ ◦ f ′ = [∗, γ(a′X2 + Y Z) + δXY, ∗],
f ◦ ϕ = [∗, (αX + βY )(γX + δY ), ∗],

we see that γ = 0 because f ◦ ϕ has no Y Z term, and that βδ = 0 because
ϕ ◦ f ′ has no Y 2 term. But γ = δ = 0 contradicts the invertibility of ϕ, so
β = 0. Hence ϕ =

(
α 0 0
0 δ 0
λ µ 1

)
. Next we look at the first coordinates,

ϕ ◦ f ′ = [α(a′X2 + Y Z), ∗, ∗],
f ◦ ϕ = [a(αX)2 + (δY )(λX + µY + Z), ∗, ∗].

Since δ 6= 0, the lack of an XY term gives λ = 0 and the lack of a Y 2 term
gives µ = 0. Hence ϕ is diagonal. Then

f ′ = fϕ = [α2aX2 + δY Z, α2XY,αδ2Y 2 + α2gXZ].

Normalizing on the XY term, this formula holds if and only if

(a, α−2δ, α−1δ2, g) = (a′, 1, 1, g′).

So if and only if f ′ = f and δ = α2 and δ2 = α. Hence α is a cube root
of unity and δ = α2, which gives the copy of G3 that we already know is
in Aut(f).

Next suppose that a = 0 and that ϕ ∈ Hom(f, f ′) swaps [0, 0, 1] and
[1, 0, 0]. Then f = [Y Z,XY, Y 2 + gXZ] and ϕ =

( 0 α β
0 1 0
γ δ 0

)
, and we have

ϕ ◦ f ′ = [∗, XY, ∗], f ◦ ϕ = [∗, (αY + βZ)Y, ∗].

This gives a contradiction, so even in the case that a = 0, we obtain no new
elements.
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ce 6= 0. We see from the twisting formula (10.2) that an appropriate
twist lets us take c = e = 1, so

f(X,Y, Z) = [aX2 + bY Z,Z2 + dXY, Y 2 + gXZ].
Further, the semi-stablity of f tells us that at least one of a, d, g is non-zero.
Further, the permutation π = [X,Z, Y ] ∈ N(G3) conjugates f to

fπ = [aX2 + bY Z,Z2 + gXY, Y 2 + dXZ],
i.e., it swaps d and g. This gives two subcases: (1) d 6= 0; (2) d = g = 0.

ce 6= 0 and d = g = 0. Semi-stablity of f tells us that a 6= 0, and then
a twist (10.2) lets us set a = 1, so

f(X,Y, Z) = [X2 + bY Z,Z2, Y 2].
We observe that f is a morphism with critical set

Crit(f) = {XY Z = 0}.
We also observe that the permutation π = [X,Z, Y ] ∈ Aut(f). Let ϕ ∈
Hom(f, f ′), so ϕ permutes the three lines in Crit(f). If ϕ swaps the lines Y =
0 and Z = 0, then πϕ fixes them, so it suffices to analyze the maps ϕ that
fix the lines Y = 0 and Z = 0 and the maps ϕ that satisfy {X = 0} → {Y =
0} → {Z = 0} → {X = 0}.

The maps fixing the lines Y = 0 and Z = 0 have the form ϕ =
(
α β γ
0 δ 0
0 0 1

)
.

Then
ϕ ◦ f ′ = [α(X2 + b′Y Z) + βZ2 + Y 2, δZ2, Y 2],
f ◦ ϕ = [(αX + βY + γZ)2 + bδY Z,Z2, δ2Y 2].

Looking at the XY and XZ terms in the first coordinate tells us that αβ =
αγ = 0. The invertibility of ϕ implies that α 6= 0, so β = γ = 0, i.e., ϕ is
diagonal. Then

f ′ = fϕ = [αδX2 + α−1δ2bY Z,Z2, δ3Y 2],
so we need δ3 = αδ = 1 and b′ = α−1δ2b. But the first conditions imply that
α−1δ2 = δ3 = 1, so b′ = b, and we recover the three maps in G3 that we
already knew were in Aut(f). Composing with π gives a copy of G3,2 ∼= S3
sitting in Aut(f).

Next suppose that ϕ cyclically permutes the lines XY Z = 0 as described
earlier. Then ϕ =

( 0 0 α
β 0 0
0 γ 0

)
, and

fϕ = [γ3Y 2, β3X2, ∗].
This cannot possibly equal f ′ = [X2 + bY Z, ∗, ∗].
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dce 6= 0. In this case we can twist using (10.2) to make d = 1, so

f(X,Y, Z) = [aX2 + bY Z,Z2 +XY, Y 2 + gXZ],

and the assumed dominance of f tells us that a and b are not both 0.

We first determine when f is a morphism. Suppose that [x, y, z] ∈ I(f).
Then

ax2 = −byz, z2 = −xy, y2 = −gxz, (10.3)

and multiplying these three equations yields a(xyz)2 = −bg(xyz)2. So either
xyz = 0 or a = −bg. We start with the former and observe:

x = 0 =⇒ z = 0 =⇒ y = 0 →←,
y = 0 =⇒ z = 0 =⇒ ax2 = 0 =⇒ a = 0,
z = 0 =⇒ y = ax2 = 0 =⇒ a = 0.

Hence I(f) ∩ {XY Z = 0} is empty if a 6= 0, and it contains the point{
[1, 0, 0]

}
if a = 0.

Next suppose that xyz 6= 0 and a = −bg. If a = 0, then necessarily g = 0
(since we cannot have a and b both 0). But then y = 0, which contradicts the
case that we are studying. On the other hand, if g 6= 0, then the solutions
to (10.3) with xyz 6= 0 are the points of the form [1,−γ2, γ] with γ3 = −g.
This completes the proof that

I(f) =


∅ if a 6= 0 and a 6= −bg,{

[1, 0, 0]
}

if a = 0,{
[1,−γ2, γ] : γ3 = −g

}
if a = −bg 6= 0.

We also compute the critical locus

Crit(f) = {agX3 + bY 3 + bgZ3 − (4a+ bg)XY Z = 0}.

dce 6= 0 and a = 0. We note that since a = 0, we must have b 6= 0.
The map f has the form

f(X,Y, Z) = [bY Z,Z2 +XY, Y 2 + gXZ],

and its indeterminacy locus is a single point, I(f) =
{

[1, 0, 0]
}
. Further, the

critical locus of f is the cubic curve

Crit(f) = {Y 3 + gZ3 − gXY Z = 0}.

If g 6= 0, then Crit(f) is a nodal cubic with node [1, 0, 0], while if g = 0,
then Crit(f) is the triple line Y 3 = 0. We consider these cases separately.
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dce 6= 0 and a = g = 0. We are now in the case that f(X,Y, Z) =
[bY Z,Z2 + XY, Y 2], I(f) =

{
[1, 0, 0]

}
, and Crit(f) = {Y = 0}. Any ϕ ∈

Hom(f, f ′) maps I(f) and Crit(f) to I(f ′) and Crit(f ′), so must have the
form ϕ =

( 1 µ λ
0 α 0
0 γ δ

)
. Comparing the first coordinates of

ϕ ◦ f ′ =
[
b′Y Z + µ(Z2 +XY ) + λY 2, ∗, ∗

]
,

f ◦ ϕ =
[
b(αY )(γY + δZ), ∗, ∗

]
,

the lack of a Z2 term in the latter forces µ = 0. We also see that b′ = αδb
and λ = bδ. Setting µ = 0 gives

ϕ ◦ f ′ =
[
∗, α(Z2 +XY ), ∗

]
,

f ◦ ϕ =
[
∗, (γY + δZ)2 + (X + λZ)(αY ), ∗

]
.

The lack of a Y 2 term in the former forces γ = 0, and thus

ϕ ◦ f ′ =
[
b′Y Z + λY 2, αZ2 + αXY, δY 2],

f ◦ ϕ =
[
αδbY Z, δ2Z2 + αXY + αλY Z, α2Y 2].

The lack of a Y 2 term in the first coordinate forces λ = 0, so ϕ is diagonal,
and then comparing the remaining terms, we see that

ϕ ◦ f ′ = f ◦ ϕ ⇐⇒ [b′, α, α, δ] = [αδb, δ2, α, α2].

Hence ϕ ◦ f ′ = f ◦ ϕ if and only if α3 = δ3 = 1 and δ = α2 and b′ = b,
which completes the proof (in this case) that b is an N(G3) invariant and
that Aut(f) ∼= C3.

dceg 6= 0 and a = 0. We are working with maps of the form
f(X,Y, Z) = [bY Z,Z2 + XY, Y 2 + gXZ]. As in the previous case, we have
I(f) =

{
[1, 0, 0]

}
, but now the critical locus is a nodal cubic curve,

C : Y 3 + gZ3 − gXY Z = 0,

with node at [1, 0, 0]. Let ϕ ∈ Hom(f, f ′). Then ϕ fixes [1, 0, 0], and also
induces an isomorphism C → C ′. In particular, the two tangent lines at the
nodes form a ϕ-invariant set, so ϕ either leaves each of the lines Y Z = 0
invariant, or it swaps them.

Suppose first that it leaves them invariant. Then ϕ has the form ϕ =(
α β γ
0 δ 0
0 0 1

)
and we find that

ϕ ◦ f ′ = [∗, ∗, Y 2 + g′XZ],
f ◦ ϕ =

[
∗, ∗, δ2Y 2 + g(αX + βY + γZ)Z

]
.
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The lack of Y Z and Z2 monomials and the assumption that g 6= 0 gives
β = γ = 0. Hence ϕ is diagonal, which yields

fϕ = [α−1δbY Z, δ−1Z2 + αXY, δ2Y 2 + αgXZ].

Therefore

f ′ = fϕ ⇐⇒ [α−1δb, δ−1, α, δ2, αg] = [b′, 1, 1, 1, g′].

The middle three coordinates give δ−1 = α = δ2, which is equivalent to
α3 = δ3 = 1 and δ = α2. Then the other coordinates force b′ = b and g′ = g,
so we obtain only the three maps in Aut(f) that we already knew.

Next we consider the case that ϕ swaps the nodal tangent lines, which
means that ϕ has the form ϕ =

(
α β γ
0 0 δ
0 1 0

)
. Then

ϕ ◦ f ′ = [∗, ∗, Z2 +XY ],
f ◦ ϕ =

[
∗, ∗, (δZ)2 + g(αX + βY + γZ)Y

]
.

The lack of Y 2 and Y Z monomials (and the fact that g 6= 0) tells us that β =
γ = 0. Then

fϕ = [α−1δbY Z, δ2Z2 + αgXY, δ−1Y 2 + αXZ],

so f ′ = fϕ if and only if

[α−1δb, δ2, αg, δ−1, α] = [b′, 1, 1, 1, g′].

A bit of algebra shows that this last equality is equivalent to the following
four conditions:

g′ = g−1, b′ = bg, δ3 = 1, α = (δg)−1.

So first we find that f ′ 6= f is N(G3)-conjugate to f if and only if (b′, g′) =
(bg, g−1). And second, we find that Aut(f) has elements of this form if and
only if g = 1, in which case taking δ3 = 1 and α = gδ2 gives three additional
elements, making Aut(f) isomorphic to C3 o C2.

adce 6= 0 and a = −bg. In this case our maps look like

f(X,Y, Z) = [−bgX2 + bY Z,Z2 +XY, Y 2 + gXZ].

To make our computation notationally less cumbersome, we twist by
[uX, vY,wZ] with w = g−1/3, v = 1, and u = −w2. Then f has the form

f(X,Y, Z) = [bgX2 − bgY Z,Z2 −XY, gY 2 − gXZ].

The indeterminacy locus consists of three points,

I(f) =
{

[1, ρ, ρ2] : ρ ∈ µ3
}
.
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We make another change of variables to move the points in I(f) to the
standard basis vectors. Thus we let ζ be a primitive cube root of unity and

U =
(

1 1 1
1 ζ ζ2

1 ζ2 ζ

)
. Then fU has indeterminacy locus

I(fU ) =
{

[1, 0, 0], [0, 1, 0], [0, 0, 1]
}
.

To ease notation, we let F = fU . Letting π = ζ − 1, a short calculation
shows that F has the form

F (X,Y, Z) = [AXY +BXZ + CY Z,BXY + CXZ +AY Z,

CXY +AXZ +BY Z],
where

A = πbg − (2π + 3)g + (π + 3),
B = πbg + (π + 3)g − (2π + 3),
C = πbg + πg + π.

This system of linear equations relating (A,B,C) to (bg, g, 1) has determi-
nant 27, so A,B,C are not all 0. Further, some linear algebra yields

A = B ⇐⇒ g = 1,
A = B = 0 ⇐⇒ b = g = 1.

Momentarily writing F = FA,B,C to indicate the dependence on the co-
efficients, we observe that conjugation by the permutations

σ(X,Y, Z) := [Z,X, Y ] and τ(X,Y, Z) := [Y,X,Z]
has the effect

FσA,B,C = FA,B,C and F τA,B,C = FB,A,C .

Thus σ ∈ Aut(FA,B,C) and τ ∈ Hom(FA,B,C , FB,A,C). In particular, if A =
B, then τ ∈ Aut(FA,B,C).

Let ϕ ∈ Hom(F, F ′). Then ϕ permutes the points in I(F ) = I(F ′).
Suppose first that ϕ fixes the three points in I(F ), so ϕ =

( 1 0 0
0 β 0
0 0 γ

)
is a

diagonal matrix. Then

Fϕ = [βAXY + γBXZ + βγCY Z,BXY + β−1γCXZ + γAY Z,

βγ−1CXY +AXZ + βBY Z],

so F ′ = Fϕ if and only if

[A′, A′, A′, B′, B′, B′, C ′, C ′, C ′]
= [A, βA, γA,B, βB, γB, βγC, β−1γC, βγ−1C].
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We first observe that

A 6= 0 =⇒ [A′, A′, A′] = [A, βA, γA] =⇒ β = γ = 1,
B 6= 0 =⇒ [B′, B′, B′] = [B, βB, γB] =⇒ β = γ = 1.

Hence if either A or B is non-zero, then β = γ = 1 and ϕ is the identity
matrix and F = F ′.

On the other hand, if A = B = 0, then we have the single map
[Y Z,XZ,XY ], and we already computed in Proposition 8.1(c) that

Aut([Y Z,XZ,XY ]) = S3G2,2 ∼= S4.

Using the fact that σ ∈ Aut(FA,B,C) together with the fact that τ ∈
Aut(FA,B,C) if and only if A = B, we have proven that{

ϕ ∈ Aut(FA,B,C) : ϕ leaves I(FA,B,C) invariant
}

⊇


〈σ〉 ∼= C3 if A 6= B,
〈σ, τ〉 = S3 if A = B 6= 0,
S3G2,2 ∼= S4. if A = B = 0.

(10.4)

And further, if FA′,B′,C′ 6= FA,B,C , then{
ϕ ∈ Hom(FA,B,C , FA′,B′,C′) : ϕ leaves I(FA,B,C) invariant

}
⊇

{
∅ if (A′, B′, C ′) 6= (B,A,C),
{τ, τσ, τσ2} if (A′, B′, C ′) = (B,A,C).

(10.5)

Next suppose that ϕ ∈ Hom(F, F ′) induces a cyclic permutation of the
three points in I(F ). Then σiϕ fixes I(F ) for some i ∈ {1, 2}, and we also
know that σ ∈ Aut(F ), so σiϕ ∈ Hom(F, F ′). It follows that we get no new
elements of Aut(F ) beyond those already described in (10.4), and we get no
new possibilities for Hom(F, F ′).

Finally, suppose that ϕ induces a transposition on the set I(F ). Then for
an appropriate choice of i ∈ {0, 1, 2}, the map τσiϕ fixes I(F ). Hence τσiϕ
is one of the maps described by (10.4) (if F ′ = F ) or by (10.5) (if F ′ 6= F ),
and in all cases we see that ϕ is already included in the list of maps in (10.4)
or (10.5).

adce 6= 0 and a 6= −bg. Our map looks like

f(X,Y, Z) = [aX2 + bY Z,Z2 +XY, Y 2 + gXZ].

It is a morphism, and its critical locus is the cubic curve

gX3 + bY 3 + bgZ3 − (4a+ bg)XY Z = 0.
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We consider various subcases depending on whether b and/or g vanishes.

adce 6= 0 and b = 0. Our map looks like
f(X,Y, Z) = [aX2, Z2 +XY, Y 2 + gXZ].

It is a morphism, and its critical locus is the reducible cubic curve
gX3 − 4aXY Z = 0.

If g 6= 0, then Crit(f) is the union of the line X = 0 and a conic, while if
g = 0, then Crit(f) is the union of the three lines XY Z = 0.

Suppose first that ϕ ∈ Hom(f, f ′) fixes the line X = 0 (which is necessary
if g 6= 0). Then ϕ has the form ϕ =

( 1 0 0
λ α β
µ γ δ

)
. We note that ϕ ◦ f ′ has no Y Z

monomials, while
f ◦ ϕ = [· · · , 2γδY Z + · · · , 2αβY Z + · · · ].

Hence αβ = γδ = 0. The non-singularity of ϕ precludes some possibilities,
so either α = δ = 0 or β = γ = 0.

Suppose first that β = γ = 0. Then
ϕ ◦ f ′ = [· · · , no XZ monomial, no XY monomial],
f ◦ ϕ = [· · · , 2µδXZ + · · · , 2λαXY + · · · ].

The non-singularity of ϕ forces αδ 6= 0, so we find that µ = λ = 0, i.e., the
matrix ϕ is diagonal. Then

fϕ = [aX2, α−1δ2Z2 +XY,α2δ−1 + gXZ],
so f ′ = fϕ if and only if

[a′, 1, 1, 1, g′] = [a, α−1δ2, 1, α2δ−1, g].
This occurs if and only if (a′, g′) = (a, g) and α3 = δ3 = 1 and δ = α2. So
we find only the three elements of Aut(f) that we already had.

Next suppose that α = δ = 0. Then
ϕ ◦ f ′ = [· · · , no XY monomial, no XZ monomial],
f ◦ ϕ = [· · · , 2µγXY + · · · , 2λβXZ + · · · ].

The non-singularity of ϕ tells us that βγ 6= 0, so λ = µ = 0. Then
fϕ = [aX2, γ−1β2Z2 + gXY, β−1γ2Y 2 +XZ].

Hence f ′ = fϕ if and only if
[a′, 1, 1, 1, g′] = [a, γ−1β2, g, β−1γ2, 1].

This forces g′ = g and a = a′g and a′ = ag′, which combine to give g = g′ =
±1. Further β3 = γ3 and γ2 = gβ. Hence β6 = γ6 = (gβ)3 = gβ3, so β3 = g.
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Thus if g = 1, then f ′ = f and Aut(f) contains three additional elements
corresponding to taking β ∈ µ3 and γ = β2, while if g = −1, then we find
that the maps fa,−1 and f−a,−1 are PGL3(K)-conjugate.

To recapitulate, if g 6= 0, then

Aut(f) =


〈(

1 0 0
0 ζ 0
0 0 ζ2

)〉
= G3 if g 6= 1,〈(

1 0 0
0 ζ 0
0 0 ζ2

)
,

(
1 0 0
0 0 ζ

0 ζ2 0

)〉
∼= C3 o C2 if g = 1,

Further, distinct maps fa,g and fa′,g′ are N(G3)-conjugate if and only if
g = g′ = −1 and a′ = −a.

If g = 0, then Aut(f) contains the above maps, but we must also con-
sider the possibility that ϕ ∈ Aut(f) non-trivially permutes the three lines
XY Z = 0 in Crit(f), which is the following case.

adce 6= 0 and b = g = 0. Our map looks like

f(X,Y, Z) = [aX2, Z2 +XY, Y 2],

and we are looking for maps ϕ ∈ Hom(f, f ′) that induce a non-trivial per-
mutation of the lines XY Z = 0. Such a ϕ has the form ϕ = ψπ with
π ∈ S3 and ψ diagonal. The map fψ has the form FA,B,C := [AX2, BZ2 +
CXY,DY 2] for some non-zero A,B,C,D. We claim that a non-trivial per-
mutation π ∈ S3 cannot take a map of the form FA,B,C to another map of
the same form. Lacking a clever argument, we simply compute the effect of
each permutation:

π = [Y,X,Z] FπA,B,C = [BZ2 + CXY,AY 2, DX2],
π = [Z, Y,X] FπA,B,C = [DY 2, BX2 + CZY,AZ2],
π = [X,Z, Y ] FπA,B,C = [AX2, DZ2, BY 2 + CXZ],
π = [Y,Z,X] FπA,B,C = [DZ2, AY 2, BX2 + CY Z],
π = [Z,X, Y ] FπA,B,C = [BY 2 + CXZ,DX2, AZ2].

This completes the proof that we obtain no new maps if b = g = 0.

abdce 6= 0 and g = 0. Our map looks like

f(X,Y, Z) = [aX2 + bY Z,Z2 +XY, Y 2].

Its critical locus is the singular irreducible cubic curve

bY 3 + bgZ3 − 4aXY Z = 0
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having a node at [1, 0, 0], and the two tangent lines at the node are Y Z = 0.
Hence any ϕ ∈ Hom(f, f ′) must either fix or swap the two lines Y Z = 0
(which will also force it to fix their intersection point [1, 0, 0]).

Suppose first that it fixes the nodal tangent lines. Then ϕ has the form
ϕ =

( 1 λ ν
0 β 0
0 0 γ

)
, and we find that

ϕ ◦ f ′ = [· · · , βZ2 + βXY, · · · ],
f ◦ ϕ = [· · · , γ2Z2 + βXY + βλY 2 + βνY Z, · · · ].

The absence of Y 2 and Y Z terms, together with the invertibility of ϕ (which
implies that β 6= 0) forces λ = ν = 0, i.e., ϕ is diagonal. Then

fϕ = [aX2 + βγbY Z, β−1γ2Z2 +XY, β2γ−1Y 2],

so f ′ = fϕ if and only if

[a′, b′, 1, 1, 1] = [a, βγb, β−1γ2, 1, β2γ−1],

so if and only if a′ = a and b′ = βγb and β−1γ2 = β2γ−1 = 1. The last
condition is equivalent to β3 = 1 and γ = β2, so in particular βγ = 1. Hence
f ′ = fϕ if and only if f ′ = f and ϕ is one of the three maps that we already
knew was in Aut(f).

Next suppose that ϕ swaps the nodal tangent lines. Then ϕ has the form
ϕ =

( 1 λ ν
0 0 β
0 γ 0

)
, and we find that

ϕ ◦ f ′ = [· · · , · · · , γZ2 + γXY ],
f ◦ ϕ = [· · · , · · · , β2Z2].

The lack of an XY monomial forces γ = 0, contradicting the invertibility
of ϕ. Hence there are no ϕ ∈ Hom(f, f ′) that swap the lines XY = 0.

abcdeg 6= 0 and ace 6= −bdg. We have resumed using the general form

f(X,Y, Z) = [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ],

so the earlier dehomogenized condition a 6= −bg for f to be a morphism
becomes ace 6= −bdg.

It is clear that every diagonal map ϕ ∈ PGL3 preserves the form of f ,
as does the transposition [X,Z, Y ]. We are going to prove that the full set
of elements of PGL3 that preserves this general form is the group generated
by diagonal maps and this transposition, except for one exceptional case.

The map f is a morphism, and its critical locus is the cubic curve

Crit(f) : adgX3 + bdeY 3 + bcgZ3 − (bdg + 4ace)XY Z = 0. (10.6)
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Conjugating by ψ := [uX, vY,wZ] gives

fψ = [uaX2 + u−1vwbY Z, v−1w2cZ2 + udXY, v2w−1eY 2 + ugXZ]

with critical locus

Crit(fψ) : u3adgX3 + v3bdeY 3 + w3bcgZ3 − uvw(bdg + 4ace)XY Z = 0.

So taking u3 = (adg)−1, v3 = (bde)−1, and w3 = (bcg)−1, the critical locus
becomes

Crit(fψ) = {X3 + Y 3 + Z3 −∆XY Z = 0},
where ∆ = (ace)−1/3(bdg)−2/3(bdg+4ace). A short computation shows that
the cubic curve Crit(fψ) is non-singular if and only if ∆3 6= 27. (As we will
see later, if ∆3 = 27, then Crit(fψ) is a union of three lines.) Using the
formula for ∆, we observe that

∆3 − 27 = (bdg + 4ace)3 − 27(ace)(bdg)2

= (bdg + ace)(bdg − 8ace)2.

We have ruled out bdg = −ace, so we are reduced to two cases, which we
consider in turn.

abcdeg 6= 0 and bdg 6= −ace and bdg 6= 8ace. The Hessian of X3 +
Y 3 + Z3 −∆XY Z is

det
(

6X −∆Z −∆Y
−∆Z 6Y −∆X
−∆Y −∆X 6Z

)
= −6∆2(X3 + Y 3 + Z3) + 2(108−∆3)XY Z.

The flex points of the smooth cubic curve Crit(fψ) are thus the roots of
(27−∆3)XY Z = 0. Our assumptions imply that ∆3 6= 27, so the flex points
are the nine points with XY Z = 0, i.e., the points

Pi :=


[1,−ζi, 0], for i = 0, 1, 2,
[0, 1,−ζi], for i = 3, 4, 5,
[−ζi, 0, 1], for i = 6, 7, 8,

where we recall that ζ is a primitive cube root of unity.

To ease notation, we let F = fψ, and we write F as

F (X,Y, Z) = [AX2 +BY Z,CZ2 +DXY,EY 2 +GXZ], (10.7)

where A, . . . , G are monomials in fractional powers of a, . . . , g. More pre-
cisely, tracking through their dependence on a, . . . , g, they satisfy the mul-
tiplicative relations

AD = BC, AG = BE, BCG = 1,
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and if a, . . . , g are generic, these are the only such relations that they sat-
isfy.(8) We also let

Γ = {flex points of Crit(F )} = {P0, P1, . . . , P8}.

Suppose that ϕ ∈ Hom(F, F ′). Then ϕ permutes the nine points in Γ, but
not entirely independently. The line through any two points in Γ contains
a unique third point of Γ, so the ϕ-images of two points in Γ determines
the ϕ-image of a third point. So if we choose three non-colinear points, for
example P0, P1, P3, then the map ϕ is uniquely determined by the images of
these three points, where those images must be chosen from among the non-
colinear triples in Γ. Unfortunately, there are a large number of possibilities.

For each triple of indices (i, j, k) such that Pi, Pj , Pk are not co-linear, we
let ϕ ∈ PGL3 be a general map satisfying

ϕ(P0) = Pi, ϕ(P1) = Pj , ϕ(P3) = Pk.

Thus ϕ has the form

ϕ =
( ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)( 1 0 0
0 β 0
0 0 γ

)( 1 1 0
−1 −ζ 1
0 0 −1

)−1
,

where the matrix with ∗ entries is the matrix whose columns are the point Pi,
Pj , Pk, and where β, γ ∈ K∗ are arbitrary. (If necessary, we may write
ϕi,j,k,β,γ to indicate the dependence of ϕ on the various parameters.)

We compute Fϕ and pick out the coefficients of the 12 monomials that
do not appear in F ′. Each of those coefficients is a linear combination
of A, . . . , G, with coefficients that are polynomials in β and γ. We accu-
mulate this data in the form

coeff of Y 2 in X-coord of Fϕ
coeff of Z2 in X-coord of Fϕ
coeff of XY in X-coord of Fϕ
coeff of XZ in X-coord of Fϕ
coeff of X2 in Y -coord of Fϕ
coeff of Y 2 in Y -coord of Fϕ
coeff of XZ in Y -coord of Fϕ
coeff of Y Z in Y -coord of Fϕ
coeff of X2 in Z-coord of Fϕ
coeff of Z2 in Z-coord of Fϕ
coeff of XY in Z-coord of Fϕ
coeff of Y Z in Z-coord of Fϕ


= Mi,j,k

 A
B
C
D
E
G

 , (10.8)

where Mi,j,k is a 12-by-6 matrix whose entries are polynomials in the ring
Q(ζ)[β, γ]. (At times we may write Mi,j,k(β, γ) to indicate the dependence
of Mi,j,k on β and γ.) The fact that Fϕ is not allowed to have any of the
indicated monomials implies that (10.8) is the zero vector, and then our

(8) These formulas will explain why, when we compute the maps ϕ ∈ PGL3 that
preserve the form (10.7), we don’t get all diagonal matrices. More precisely, the effect
of the diagonal matrix with entries α, β, γ is to multiply AB−1C−1D by (α/γ)3 and to
multiply BCG by γ3, so α and γ must be cube roots of 1.
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assumption that A, . . . , G are all non-zero implies that the matrixMi,j,k has
rank at most 5. (Indeed, it implies the far stronger statement that the column
null space of Mi,j,k contains a vector whose coordinates are all non-zero.)

Unfortunately, there are 432 valid i, j, k triples, and even exploiting var-
ious symmetries, there are too many cases to check by hand. So we give a
computer assisted proof via the following algorithm.

Step 1. For each valid choice of i, j, k, we computed the determinants
of various of the 6-by-6 minors of Mi,j,k and set them equal to 0. This
gave many simultaneous equations for the two unknowns β and γ. We used
resultants on pairs of equations to eliminate γ, and then took the gcd of pairs
of equations with respect to β. Taking the square-free part, we obtained a
separable polynomial Πi,j,k(β) satisfying:

rankMi,j,k(β, γ) 6 5 for some β, γ ∈ K∗ =⇒ Πi,j,k(β) = 0.

The output from our program showed that

Πi,j,k(β)
∣∣∣ (β6 − 1)

(
β + 1

2

)
.

Indeed, the roots of Πi,j,k(β) are 6’th roots of unity except in the six cases
M6,8,0,M7,8,0,M6,8,1,M7,8,1,M6,8,2,M7,8,2, for which Πi,j,k(β) also had β =
− 1

2 as a root.

Step 2. Loop through all valid i, j, k and all β0 ∈ µ6 ∪ {− 1
2}. We let

r = ri,j,k(β0, γ) := rankMi,j,k(β0, γ)

denote the rank of Mi,j,k(β0, γ) over the function field K(γ), i.e., where γ
is an indeterminate. We also write ri,j,k(β0, γ0) for the rank of the matrix
when we set γ = γ0.

Step 2.1. If ri,j,k(β0, γ) 6 5, compute the null space ofMi,j,k(β0, γ) over
the function field C(γ). We found that there are 144 choices of (i, j, k, β0) for
which ri,j,k(β0, γ) 6 5, and in every case, every vector in Null

(
Mi,j,k(β0, γ)

)
has at least one coordinate equal to 0.

Example 10.3. — We illustrate with an example. Let k ∈ {3, 4, 5}. Then
r0,1,k(1, γ) = 3, i.e., the matrix M0,1,k(1, γ) has rank 3 over the function
field C(γ). One then checks that every vector

[A, . . . , G] ∈ NullC(γ)
(
M0,1,k(1, γ)

)
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has B = E = 0. However, if we further specialize by setting γ = 1, then
M0,1,k(1, 1) is the 0-matrix. The associated elements of PGL3 are the diag-
onal matrices

ϕ0,1,3,1,1 =
(

1 0 0
0 1 0
0 0 1

)
, ϕ0,1,4,1,1 =

( 1 0 0
0 1 0
0 0 ζ

)
, ϕ0,1,5,1,1 =

( 1 0 0
0 1 0
0 0 ζ2

)
.

Step 2.2. Let M ′i,j,k(β0, γ) be a 12-by-r matrix whose column span over
the function field C(γ) is the same as the column span of Mi,j,k(β0, γ). (In
most cases we have r = 6 and M ′ = M , but as noted in Step 2.1, there
are 144 cases with r 6 5.)

We computed the determinants of various r-by-r minors of M ′i,j,k(β0, γ)
and then computed their gcd. We found exactly 72 values of (i, j, k, β0) such
that there exists some γ0 with

ri,j,k(β0, γ0) < ri,j,k(β0, γ),
i.e., such that the generic rank over C(γ) is strictly larger than the specialized
rank over C for some γ = γ0 ∈ C. More precisely, there are 36 cases with
generic rank ri,j,k(β0, γ) = 6 and 18 cases each with ri,j,k(β0, γ) = 5 and 3.
Further, and most importantly, we found in all 72 cases that β3

0 = 1 and
γ6

0 = 1. The complete set of (i, j, k, β0) is given in Table 10.3.

Step 3. It remains to compute the null space of Mi,j,k(β0, γ0) as β0
and γ0 range over β0 ∈ µ3 and γ0 ∈ µ6. For each (i, j, k, β0, γ0) such
that ϕi,j,k is invertible, we check whether the null space of Mi,j,k(β0, γ0)
contains a vector (A,B,C,D,E,G) whose coordinates are all non-zero. It
turns out that in every such case the matrix Mi,j,k(β0, γ0) is identically 0.
Table 10.4 lists the values of (i, j, k, β0, γ0), together with the associated
map ϕ ∈ PGL3. We observe that the ϕ in Table 10.4 consist of the 9 diag-
onal maps satisfying ϕ3 = 1, together with the conjugation of these 9 maps
by the transposition [X,Z, Y ].

This long calculation completes the proof that under our assumptions
that abcdeg 6= 0 and ace 6= −bdg, maps of the form

f(X,Y, Z) = [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ] (10.9)
satisfy

Hom(f, f ′) ⊆ D ∪ πD,
where D ⊂ PGL3 is the group of diagonal matrices and π is the transpo-
sition π = [X,Z, Y ]. We normalize maps of the form (10.9) by conjugating
by [uX, vY,wZ] with u = a−1, v3 = c−1e−2, and w3 = c−2e−1. This puts f
into the normalized form

fb,d,g(X,Y, Z) = [X2 + bY Z,Z2 + dXY, Y 2 + gXZ]

– 793 –



Michelle Manes and Joseph H. Silverman

M r β0

M0,1,3 3 1
M0,1,4 3 1
M0,1,5 3 1
M2,0,3 3 1
M2,0,4 3 1
M2,0,5 3 1
M1,2,3 3 1
M1,2,4 3 1
M1,2,5 3 1
M7,6,3 3 ζ2

M6,8,3 3 ζ2

M8,7,3 3 ζ2

M7,6,4 3 ζ2

M6,8,4 3 ζ2

M8,7,4 3 ζ2

M7,6,5 3 ζ2

M6,8,5 3 ζ2

M8,7,5 3 ζ2

M r β0

M1,0,3 5 ζ

M1,0,4 5 ζ

M1,0,5 5 ζ

M0,2,3 5 ζ

M0,2,4 5 ζ

M0,2,5 5 ζ

M2,1,3 5 ζ

M2,1,4 5 ζ

M2,1,5 5 ζ

M6,7,3 5 ζ2

M8,6,3 5 ζ2

M7,8,3 5 ζ2

M6,7,4 5 ζ2

M8,6,4 5 ζ2

M7,8,4 5 ζ2

M6,7,5 5 ζ2

M8,6,5 5 ζ2

M7,8,5 5 ζ2

M r β0

M0,1,6 6 ζ

M0,1,7 6 ζ

M0,1,8 6 ζ

M2,0,6 6 ζ

M2,0,7 6 ζ

M2,0,8 6 ζ

M1,2,6 6 ζ

M1,2,7 6 ζ

M1,2,8 6 ζ

M1,0,6 6 ζ2

M1,0,7 6 ζ2

M1,0,8 6 ζ2

M0,2,6 6 ζ2

M0,2,7 6 ζ2

M0,2,8 6 ζ2

M2,1,6 6 ζ2

M2,1,7 6 ζ2

M2,1,8 6 ζ2

M r β0

M8,7,1 6 1
M7,8,1 6 1
M9,7,1 6 1
M7,9,1 6 1
M9,8,1 6 1
M8,9,1 6 1
M8,7,2 6 1
M7,8,2 6 1
M9,7,2 6 1
M7,9,2 6 1
M9,8,2 6 1
M8,9,2 6 1
M8,7,2 6 1
M7,8,2 6 1
M9,7,2 6 1
M7,9,2 6 1
M9,8,2 6 1
M8,9,2 6 1

Table 10.3. Matrices Mi,j,k(β0, γ) with generic rank r such that there
exists a γ0 such that Mi,j,k(β0, γ0) has rank strictly smaller than r

that depends on three non-zero parameters b, d, g satisfying bdg 6= −1.

We consider first conjugation by a diagonal map ϕ = [X,βY, γZ]. Then

fϕb,d,g(X,Y, Z) = [X2 + βγbY Z, β−1γ2Z2 + dXY, β2γ−1Y 2 + gXZ].

The map fϕb,d,g is thus in normalized form if and only if

[βγ, β−1γ2, β2γ−1, 1, d, g] = [1, 1, 1, 1, d, g].

This is true if and only if β ∈ µ3 and γ = β2, i.e., if the map ϕ is in the
subgroup of order 3 that we already know is contained in Aut(f).

Next we conjugate by the composition of a diagonal map and the trans-
position [X,Z, Y ], i.e., by a map of the form ϕ = [X,βZ, γY ]. Then

fϕb,d,g(X,Y, Z) = [X2 + βγbY Z, β2γ−1Z2 + gXY, β−1γ2Y 2 + dXZ].

The map fϕb,d,g is thus in normalized form if and only if

[βγ, β2γ−1, β−1γ2, 1, g, d] = [1, 1, 1, 1, d, g].

The first four coordinates force β ∈ µ3 and γ = β2, as expected. The
last three coordinates force d = g, so we find that fb,d,g and fb,g,d are
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M β0 γ0 φ

M1,2,4 = 0 1 1
(

1 0 0
0 1 0
0 0 1

)
M1,2,5 = 0 1 1

(
1 0 0
0 1 0
0 0 ζ2

)
M1,2,6 = 0 1 1

(
1 0 0
0 1 0
0 0 ζ

)
M3,1,4 = 0 1 ζ

( 1 0 0
0 ζ 0
0 0 ζ

)
M3,1,5 = 0 1 ζ

(
1 0 0
0 ζ 0
0 0 1

)
M3,1,6 = 0 1 ζ

( 1 0 0
0 ζ 0
0 0 ζ2

)
M2,3,4 = 0 1 ζ2

( 1 0 0
0 ζ2 0
0 0 ζ2

)
M2,3,5 = 0 1 ζ2

( 1 0 0
0 ζ2 0
0 0 ζ

)
M2,3,6 = 0 1 ζ2

(
1 0 0
0 ζ2 0
0 0 1

)

M β0 γ0 φ

M8,7,4 = 0 ζ2 1
( 1 0 0

0 0 ζ
0 ζ 0

)
M7,9,4 = 0 ζ2 1

(
1 0 0
0 0 1
0 1 0

)
M9,8,4 = 0 ζ2 1

( 1 0 0
0 0 ζ2

0 ζ2 0

)
M8,7,5 = 0 ζ2 ζ

( 1 0 0
0 0 ζ2

0 ζ 0

)
M7,9,5 = 0 ζ2 ζ

(
1 0 0
0 0 ζ
0 1 0

)
M9,8,5 = 0 ζ2 ζ

(
1 0 0
0 0 1
0 ζ2 0

)
M8,7,6 = 0 ζ2 ζ2

(
1 0 0
0 0 1
0 ζ 0

)
M7,9,6 = 0 ζ2 ζ2

(
1 0 0
0 0 ζ2

0 1 0

)
M9,8,6 = 0 ζ2 ζ2

( 1 0 0
0 0 ζ
0 ζ2 0

)
Table 10.4. Matrices Mi,j,k(β0, γ0) with β0, γ0 ∈ C∗ such that
Null

(
Mi,j,k(β0, γ0)

)
contains a vector with all non-zero coordinates,

with the associated ϕ ∈ PGL3

PGL3-conjugates, and if d = g, then Aut(fb,d,g) contains the transposi-
tion [X,Z, Y ], so is isomorphic to C3 o C2.

abcdeg 6= 0 and bdg = 8ace. We want to make a change of variables
so that b = 2a, d = 2c and g = 2e. Conjugating by [uX, vY,wZ] with

u = (adg)−1/3, v = (bde)−1/3, w = (bcg)−1/3

puts f into this form, i.e.,

f(X,Y, Z) =
[
a(X2 + 2Y Z), c(Z2 + 2XY ), e(Y 2 + 2XZ)

]
. (10.10)

N.B. This only works because of our assumption that bdg = 8ace. So we are
reduced to studying f = fa,c,e in this normalized form. The critical locus is

Crit(fa,c,e) = {X3 + Y 3 + Z3 − 3XY Z = 0}.

The critical locus decomposes as a union of three lines via the factorization

X3 + Y 3 + Z3 − 3XY Z = (X + Y + Z)(X + ζY + ζ2Z)(X + ζ2Y + ζZ).

The pairwise intersections of these three lines in Crit(fa,c,e) gives the follow-
ing set of three points, {

[1, 1, 1], [1, ζ, ζ2], [1, ζ2, ζ]
}
.
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Every ϕ ∈ Hom(f, f ′) stabilizes this set, so has the form

ϕ =
(

1 1 1
1 ζ ζ2

1 ζ2 ζ

)( 1 0 0
0 β 0
0 0 γ

)
π

(
1 1 1
1 ζ2 ζ

1 ζ ζ2

)
∈ PGL3

for some β, γ ∈ K∗ and some permutation π ∈ S3.

Just as in the previous case, for each π ∈ S3 we compute fϕ and pick
out the coefficients of the 12 monomials that do not appear in f ′. Each of
those coefficients is a linear combination of a, c, e, with coefficients that are
polynomials in β and γ. Just as in (10.8), we accumulate this data in the
form 

coeff of Y 2 in X-coord of fϕ
coeff of Z2 in X-coord of fϕ

...
coeff of XY in Z-coord of fϕ
coeff of Y Z in Z-coord of fϕ

 = Mπ

(
a
c
e

)
, (10.11)

where Mπ is a 12-by-3 matrix whose entries are polynomials in the ring
Q(ζ)[β, γ]. (At times we may write Mπ(β, γ) to indicate the dependence
of Mπ on β and γ.) The fact that fϕ is not allowed to have any of the
indicated monomials implies that (10.11) is the zero vector, and then our
assumption that a, c, e do not vanish implies that the matrixMπ has rank at
most 2. (Indeed, it implies the far stronger statement that the column null
space of Mπ contains a vector whose coordinates are all non-zero.)

There are only 6 choices for π ∈ S, which we compute in turn. For each π
we computed the determinants of the 3-by-3 minors of Mπ. Of these 220
minors, exactly 160 have non-zero determinant, and aside from factors of
the form cβiγj with c ∈ Z, these 160 non-zero determinants yield exactly 8
distinct polynomials in Q(ζ3)[β, γ]. Taking pairwise resultants to eliminate β
(respectively γ) and then pairwise gcds, we find that a necessary condition
for rankMπ(β, γ) 6 2 is that β and γ satisfy

β7 = γ7 = 1.

For each such pair (β, γ), we compute the null space of Mπ(β, γ) and use it
to find all maps f of the form (10.10) and all ϕ such that fϕ has the same
form.

For example, taking β = γ = 1 gives Mπ(1, 1) = 0, so we obtain maps ϕ
that are allowed for every f . More precisely, the elements π ∈ S3 of order
dividing 3 give the three maps

[X,Y, Z], [X, ζY, ζ2Z], [X, ζ2Y, ζZ] ∈ Aut(f)

that we already know are in Aut(f), while the three elements π ∈ S3 of
order 2 give maps ϕ satisfying fϕa,c,e = fa,e,c.
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More interesting are the cases for which β = ζ7 is a primitive 7’th root
of unity. Writing ζ3 instead of ζ for our chosen primitive cube root of unity,
we find that β = ζ7 is possible in exactly the following situations:

γ = ζ3
7 and [a, c, e] = [1, ζ3, ζ2

3 ],
γ = ζ5

7 and [a, c, e] = [1, ζ2
3 , ζ3].

Since we know how to swap c and e, it suffices to consider the first case, for
which we find that Aut(f) contains the following element of order 7:(

ζ3
7 +ζ7+1 ζ3ζ

3
7−ζ

2
3ζ7+1 ζ2

3ζ
3
7 +ζ3ζ7+1

ζ2
3ζ

3
7 +ζ3ζ7+1 ζ3

7 +ζ7+1 ζ3ζ
3
7−ζ

2
3ζ7+1

ζ3ζ
3
7−ζ

2
3ζ7+1 ζ2

3ζ
3
7 +ζ3ζ7+1 ζ3

7 +ζ7+1

)
∈ Aut

(
f1,ζ3,ζ

2
3

)
.

Of course, Aut(f) also contains the powers of this map, and composing with
one of the transpositions in S3 gives a map in Hom

(
f1,ζ3,ζ

2
3
, f1,ζ2

3 ,ζ3

)
.

We note that these two maps f for which Aut(f) contains an element
of order 7 are both conjugate to the map [Z2, X2, Y 2] that we studied in

Propositions 6.1 and 6.2. Indeed, one finds that ϕ =
(

1 ζ2
3 ζ3

1 ζ3 ζ
2
3

1 1 1

)
gives

[Z2, X2, Y 2]ϕ = [X2 + 2Y Z, ζ3(Z2 + 2XY ), ζ2
3 (Y 2 + 2XZ)].

So we can refer to Proposition 6.2 for the fact that these maps have auto-
morphism group exactly equal to C7 o C3.

It remains to check that maps of Types C3(n) and C3(n′) are not N(G3)-
conjugate for n 6= n′, nor indeed are they PGL3-conjugate. To do this, we
note that the only case in which the indeterminacy and critical loci for C3(n)
and C3(n′) have the same geometry is

C3(2) ?= C3(3), I(f) = 1 point, Crit(f) = triple line.
Any ϕ ∈ Hom(f, f ′) preserves the geometry of these loci, so we ask if the
maps

f = [aX2 + Y Z,XY, Y 2] and f ′ = [bY Z,Z2 +XY, Y 2]
can be conjugate to one another. Since Crit(f) = Crit(f ′) is the line Y = 0
(with multiplicity 3), we must have ϕ

(
{Y = 0}

)
= {Y = 0}. But we observe

that
f
(
Crit(f)

)
= f

(
{Y = 0}

)
=
{

[1, 0, 0]
}
∈ Crit(f),

f ′
(
Crit(f ′)

)
= f ′

(
{Y = 0}

)
=
{

[0, 1, 0]
}
/∈ Crit(f ′).

Hence if there were a map ϕ ∈ Hom(f, f ′), then we would find that
f ′
(
Crit(f ′)

)
= fϕ

(
Crit(fϕ)

)
= fϕ

(
Crit(f)ϕ

)
=
(
f
(
Crit(f)

))ϕ
∈ Crit(f)ϕ = Crit(fϕ) = Crit(f ′).
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This contradiction shows that f and f ′ are not PGL3(K)-conjugate. �

Proof of Proposition 9.2. — The map [X, ζY, Z] is the map τ0 defined
in Section 5. Setting m = 0 in Table 5.1 and reducing the entries modulo 3
yields

X2 Y 2 Z2 XY XZ Y Z

X-coord 0 2 0 1 0 1
Y -coord 2 1 2 0 2 0
Z-coord 0 2 0 1 0 1

Hence assuming that τ0 ∈ Aut(f) leads to the following three families of
maps:

f0,0 := [aX2 + bZ2 + cXZ, dXY + eY Z, gX2 + hZ2 + iXZ],
f0,1 := [aXY + bY Z, cY 2, dXY + eY Z],
f0,2 := [aY 2, bX2 + cZ2 + dXZ, eY 2].

For the first two maps we use Table 5.2 to compute

µO(1)(f0,0, Lk,`) 6
{
−k, 3k + 2`, k + `,−3k − `} (k,`)=(1,−2)−−−−−−−−→ −1,

µO(1)(f0,1, Lk,`) 6
{
−`,−2k,−2k − 2`} (k,`)=(1,1)−−−−−−−→ −1.

Hence f0,0 and f0,1 are D-unstable. (The latter also has degree 1, of course.)
And finally, we see that the map f0,2 is not dominant, since its image is
contained in the line {eX = aZ}. (Or, if a = e = 0, then f0,2(P2) =
[0, 1, 0].) �

11. Proof of Theorems 1.2 and 1.3 and of Corollary 1.4

In this and the next section, we use our accumulated results to prove
Theorems 1.2 and 1.3 and Corollary 1.4. We recall that the assumptions
for both the theorem and corollary are that f : P2 99K P2 is a dominant
rational map of degree 2 lying in the semi-stable locus of Rat2

2 and such that
∞ > # Aut(f) > 3.

We remark that the computation of the indeterminacy and critical loci
of maps in the various families as described in Table 1.1 is an elementary,
albeit tedious, calculation, so in some cases we have omitted the details.

We start with the assumption that Aut(f) is finite and of order at least 3.
Let G be a finite group of order at least 3. Then either p | #G for some odd
prime p, or else G is a 2-group of order at least 4. In the former case, Cauchy’s
theorem says that G contains an element of order p, while in the latter case,
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the strong form of the first Sylow theorem [8, Theroem 2.12.1] says that G
contains a subgroup of order 4, hence contains a copy of either C2

2 or C4.

Suppose that there is an odd prime p with p | Aut(f), and let G ⊂
Aut(f) be a subgroup of order p. Lemma 4.1(a) tells us that after PGL3(K)-
conjugation, we may assume that

G =
〈(

1 0 0
0 ζ 0
0 0 ζm

)〉
for some primitive p’th root of unity ζ and some integer m. For future refer-
ence, we also remark that when m = 1, we may instead use the map

( 1 0 0
0 ζ 0
0 0 1

)
,

which is PGL3-conjugate to
( 1 0 0

0 ζ 0
0 0 ζ

)
.

We consider the case that p > 5. Then Proposition 6.1 and the semi-
stability assumption tell us that f has one of the following three forms:

[aX2 + Y Z, bXY, cXZ], [Y Z,X2, Y 2], [Z2, X2, Y 2].

Proposition 6.2 says that maps f in the first family have a copy of Gm
in Aut(f), while the second map satisfies Aut(f) ∼= C5, and the third map
satisfies Aut(f) ∼= C7 oC3. (A conjugate of this last case also appears in the
compendium of maps for which Aut(f) contains an element of order 3.) This
completes the proof of the automorphism parts of Theorems 1.2 and 1.3 and
of Corollary 1.4 in the case that # Aut(f) is divisible by a prime p > 5.

Similarly, if p = 3, i.e., if 3 | # Aut(f), then the automorphism parts
of Theorems 1.2 and 1.3 and of Corollary 1.4 can be deduced from Propo-
sition 10.1, although we need to do some work to put the maps into the
indicated forms. (Using the above remark and Proposition 10.1(b), we need
only consider the case m = 2.)

Thus let f = [aX2 + bY Z, cZ2 + dXY, eY 2 + gXZ]. If ace 6= 0, then the
transformation

ψ(X,Y, Z) =
[
(ce)2/3X, ac1/3Y, ae1/3Z

]
yields

fψ(X,Y, Z) = [X2 + ab(ce)−1Y Z,Z2 + a−1dXY, Y 2 + a−1gXZ].

In other words, if ace 6= 0, we can find a normal form for f with a = c = e =
1. We apply this transformation to the maps of Type C3(1), C3(5), C3(6),
C3(7), and C3(8) in Table 10.1, which serves to give them a more uniform
description. Types C3(1) and C3(7) already have this form.

For C3(5) we find that

fψ(X,Y, Z) = [X2 − a2b−1Y Z,Z2 − a−1XY, Y 2 − a−1bXZ].
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Thus
fψ(X,Y, Z) = [X2 +BY Z,Z2 +DXY, Y 2 +GXZ] with BDG = −1.

Further, the conditions that a and/or b equal 1 become
a = b = 1⇐⇒ D = G = −1, a = 1, b 6= 1⇐⇒ D = −1 6= G,

a 6= 1, b = 1⇐⇒ D = G 6= −1, a 6= 1, b 6= 1⇐⇒ D 6= −1, D 6= G.

For C3(6) we find that

fψ(X,Y, Z) = [X2 + abY Z,Z2 + a−1XY, Y 2].
So with a slight relabeling, Type C3(6) becomes simply

fψ(X,Y, Z) = [X2 + bY Z,Z2 + dXY, Y 2],
i.e., it’s C3(7) with g = 0.

And for C3(8), we find that

fψ(X,Y, Z) = [X2 + 2(ce)−1Y Z,Z2 + 2cXY, Y 2 + 2eXZ].
In other words, we obtain the C3(7) form with bdg = 8. Further, the only
cases with Aut(f) 6= C3 are c a primitive cube root of unity and e = c2, with
these two cases being conjugate. In particular, ce = 1.

We next consider Types C3(2), C3(3), and C3(4). We claim that they
may all be put into the form fa,c,g := [aX2 + Y Z, cZ2 + XY, Y 2 + gXZ]
with (a, b, g) 6= (0, 0, 0) and one or more of a, c, g equal to 0. For Type C3(2),
we already have f = fa,0,g. For Types C3(3) and C3(4), which have the
form f = [bY Z,Z2 + XY, Y 2 + gXZ] with b 6= 0, the transformation ψ =
[b2/3X, b1/3Y,Z] yields fψ = [Y Z, b−1Z2 +XY, Y 2 + gXZ], so we get maps
f0,c,g with c 6= 0. We also observe that the PGL3-conjugacies for Type C3(4)
become the maps ϕ = [c1/3X, c2/3g1/3Y, g2/3Z] which have the effect fϕ0,c,g =
f0,c/g,1/g.

We next consider the maps such that Aut(f) contains an element of
order 4. The description of these maps in Proposition 9.1 is already in the
form that we want.

Finally we consider the maps such that Aut(f) contains a subgroup of
type C2

2 . To fit these maps, which are described in Proposition 8.1, into a
single family, we apply the transformation ψ = [X/

√
d, Y, Z] to the map f =

[X2+Y 2−Z2, dXY, eXZ]. This gives fψ = [d−1X2+Y 2−Z2, XY, ed−1XZ],
so these maps have the form fa,e = [aX2 + Y 2 − Z2, XY, eXZ]. Then one
family in Proposition 8.1 is fa,e with a 6= 0 and the other family is f0,e.

We conclude this section with the one part of Corollary 1.4 that is not
immediate from the main theorems. Corollary 1.4(b) asserts that each group
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listed in (a) occurs as the full automorphism group of a semistable map of
degree 2. Theorems 1.2 and 1.3, together with appropriately chosen maps
from Table 1.1, take care of G ∈ {C3, C4, C5, C

2
2}. That same table gives

us maps with Aut(f) ∈ {S3, S4, C7 o C3}. For these groups it suffices to
point out that the identity component of the normalizers of the associated
subgroups of PGL3 is in all cases equal to the group of diagonal matrices,
and hence semistability for (say) G3 or G7 gives semistability for the larger
group. It remains to deal with the cases G = C1 and G = C2.

Consider the family of maps
fu,v = [Y Z,X2, uXY + vY 2].

Then Aut(f1,0) ∼= C4 and Aut(f0,1) ∼= C5. Hence the generic member of this
family has Aut(fu,v) = C1.

Similarly, consider the family of maps
fu,v,w = [uY 2 + vZ2, XY,wY 2 + 2XZ].

Then Aut(f0,1,1) ∼= C4 and Aut(f1,−1,0) ∼= C2
2 , so generically Aut(fu,v,w) is

either C1 or C2. Since ϕ = [X,−Y,Z] ∈ Aut(fu,v,w), we conclude that a
generic map in the family satisfies Aut(fu,v,w) ∼= C2.

12. Computation of Dynamical and Topological Degrees

In this section we compute the dynamical and topological degrees of the
various maps in Table 1.1. The following elementary results will be useful,
especially in establishing that a map is algebraically stable, i.e., satisfies
λ1(f) = deg(f). Results of this sort, and much more, appear in [4], but for
the convenience of the reader, we give the short proofs.

Lemma 12.1. — Let f : P2 99K P2 be a dominant rational map.

(a) If f is a morphism, then
λ1(f) = deg(f) and λ2(f) = deg(f)2.

(b) λ1(f) < deg(f) if and only if there is a curve Γ ⊂ P2 and an integer
n > 1 such that fn(Γ) ⊆ I(f).

(c) Let Γ ⊂ P2 be a curve such that f(Γ) consists of a single point. Then
Γ ⊆ Crit(f).

Proof. — (a) This is standard and elementary.

(b) Let
f(X,Y, Z) = [F1(X,Y, Z), G1(X,Y, Z), H1(X,Y, Z)],
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and define inductively
[Fn+1, Gn+1, Hn+1] = [Fn(F1, G1, H1), Gn(F1, G1, H1), Hn(F1, G1, H1)].

Then
fn(X,Y, Z) = [Fn(X,Y, Z), Gn(X,Y, Z), Hn(X,Y, Z)],

so λ1(f) < deg(f) if and only if there exists an n such that Fn, Gn, Hn

have a non-trivial common factor in K[X,Y, Z]. Taking the smallest such n,
if R(X,Y, Z) is the common factor, then the curve Γ = {R = 0} satisfies
fn−1(Γ) ⊂ I(f).

(c) This is just the chain rule. We view Γ as an abstract curve with an
embedding j : Γ ↪→ P2. Differentiating the constant function f ◦ j gives
(Df ◦ j) · ∇j = 0. The fact that j is non-constant, i.e., Γ is a curve, tells us
that∇j(t) 6= 0 for all but finitely many t ∈ Γ, and hence that detDf

(
j(t)

)
=

0 for all but finitely many t ∈ Γ. Taking Zariski closures gives Γ = Image(j) ⊂
{detDf = 0} = Crit(f). �

The remainder of this section is devoted to computing the dynamical and
topological degrees of the maps in Table 1.1.

Types 1.1, 1.3, 1.5, 1.7.1.8, 3.4, 8.1.
These maps are morphisms, so Lemma 12.1 gives λ1(f) = 2 and λ2(f) = 4.

Types 1.2 (C3) : f = [X2 − Y Z,Z2 −XY, Y 2 −XZ].
A short calculation shows that f2(X,Y, Z) = [X,Y, Z], so deg(fn) alternates
between 2 and 1. In particular, λ1(f) = λ2(f) = 1.

Types 1.4, 1.6 (G3) : f = [X2 +bY Z,Z2 +dXY, Y 2 +gXZ], bdg = −1.
The critical locus has the equation dgX3 + bdY 3 + bgZ3−3XY Z = 0. Using
the assumption that bdg = −1, we find that the critical locus is the union of
the three lines

Lk = {(dg)1/3X + ζk3 (bd)1/3Y + ζ2k
3 (bg)1/3Z = 0}, k = 0, 1, 2,

where ζ3 is a primitive cube root of unity. We compute
f(Lk) =

{
[b2/3, ζk3 d2/3, ζ2k

3 g2/3]
}

for k = 0, 1, 2.
In particular, f

(
Crit(f)

)
consists of three points. The indeterminacy locus

of f is
I(f) =

{
[b1/3, g1/3, d1/3], [b1/3, ζ3g1/3, ζ2

3d
1/3], [b1/3, ζ2

3g
1/3, ζ3d

1/3]
}
,

where b1/3 and d1/3 are arbitrary fixed cube roots of b and d, and then g1/3 is
set equal to −1/b1/3d1/3. Thus for generic values of b, d, g (satisfying bdg =
−1), the orbits of the three points f(L1), f(L2), f(L3) will not hit I(f), so
generically we have λ1(f) = 2. However, we expect that there is a countable
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set of values of b, d, g such that λ1(f) < 2. To see why, we observe that for
each n > 1, the equation

fn(L0) = fn−1(b2/3, d2/3, g2/3) = [b1/3, g1/3, d1/3] ∈ I(f)
yields two homogeneous polynomial equations for the point [b1/3, g1/3, d1/3].
Substituting the inhomogeneous value g1/3 = 1/b1/3d1/3 yields two inhomo-
geneous polynomials equations for (b1/3, d1/3), and hence a finite number of
values for (b, d, g). Varying n should then yield a countable number of excep-
tional values of (b, d, g) with fn(L0) ∈ I(f), and thus with λ1(f) < 2. This
applies to Type 1.6, for which b, d, g satisfy the single relation bdg = −1.
For maps of Type 1.4 with (b, d, g) = (b, b−1,−1), there is only one degree
of freedom, so it seems plausible that for these maps we have λ1(f) = 2.

In order to compute the topological degree, we set f(X,Y, Z) = [α, β, 1]
for generic α, β and solve for [X,Y, Z]. This gives two equations

X2 + bY Z = α(Y 2 + gXZ), Z2 + dXY = β(Y 2 + gXZ).
We dehomogenize x = X/Z and y = Y/Z. Then we can solve the second
equation for x and substitute into the first equation to find

(β2 − d2α)b2d2y4 + (d2b2 − βα)bd2y3 + (β2 − d2α)by + (d2b2 − αβ) = 0.
The discriminant of this quartic equation is a mess, but part of it looks like

Disc(f) = −27b8d4(β6 − b4d8)2 + α ·
(
polynomial in Z[b, d, α, β]

)
.

In particular, since bdg = −1, we see that for generic α, β, the quartic has
distinct roots. If those roots lead to points not in I(f), which we expect to
be true for most (b, d, g) triples, then λ2(f) = #f−1(α, β) = 4. On the other
hand, the general inequality λ2 6 λ2

1 shows that we should expect λ2 < 4
for countably many (b, d, g).

We illustrate with the extreme case b = d = g = −1, which is the map of
Type 1.2. In that case, the discriminant quartic factors (essentially) as

(y3 − 1)
(
y − 1− αβ

β2 − α

)
.

The three roots with y ∈ µ3 lead to points in I(f), so we find that
#f−1(α, β) = 1, which confirms our earlier computation.

Type 2.1 (G3) : f = [Y Z,XY, Y 2 + gXZ], g 6= 0.
Here Crit(f) is a line and a conic and #I(f) = 2,

Crit(f) = {Y = 0} ∪ {Y 2 = gXZ}, I(f) =
{

[0, 0, 1], [1, 0, 0]
}
.

We have f
(
{Y = 0}

)
= [0, 0, 1] ∈ I(f), so λ1(f) < 2. The degree sequence

of f is 2, 3, 5, 8, 13, 21, 34, . . ., which suggests that deg(fn) is the (n+ 2)’nd
Fibonacci number.
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We dehomogenize Y = 1, so f(x, z) =
(
z/x, (1 + gxz)/x

)
. Setting

f(x, z) = (α, β) with generic α, β, we find that z = αx and αgx2−βx+1 = 0.
Since g 6= 0, we have λ2(f) = #f−1(α, β) = 2.

Types 2.2, 2.6 (G3) : f = [Y Z, cZ2 +XY, Y 2 + gXZ], cg 6= 0.
The critical locus is a nodal cubic that never gets mapped to a point,
so λ1(f) = 2. Dehomogenizing with respect to X and setting

(
(cz2 + y)/yz,

(y2 + gz)/yz
)

= (α, β) with generic α, β leads to y = cz2/(αz − 1) and
c(c− αβ)z3 + (cβ − gα2)z2 + 2αgz − g = 0. (Note that z = 0 is not a valid
value.) Hence λ2(f) = 3.

Types 2.3 (G3) : f = [Y Z, cZ2 +XY, Y 2], c 6= 0.
Here I(f) =

{
[1, 0, 0]

}
and Crit(f) = 3 · {Y = 0}. We have

{Y = 0} f−−→ [0, 1, 0] f−−→ [0, 0, 1] f−−→ [0, 1, 0],
so although the critical locus maps to a point, that point is part of a 2-cycle,
so it never hits I(f). Hence λ1(f) = 2. Further, f−1(X,Y, Z) = [b2Y Z −
X2, b2Z2, bXZ], so f is birational and λ2(f) = 1.

Type 2.4 (G3) : f = [aX2 + Y Z,XY, Y 2], a 6= 0.
The critical locus is a triple line, Crit(f) = 3 · {Y = 0}, and we have f

(
{Y =

0}
)

= [1, 0, 0] ∈ Fix(f). Hence by the usual argument via Lemma 12.1, we
find that λ1(f) = 2. Further, f−1(X,Y, Z) = [Y Z,Z2, XZ − aY 2] shows
that f is birational, so λ2(f) = 1.

Type 3.1 (G4) : f = [Z2, XY, Y 2], a = e = 0.
The dynamical degree of a monomial map may be computed using the for-
mula in [7]. In affine coordinates the map is f(x, y) = (y−2, xy−1) with ex-
ponent matrix

( 0 −2
1 −1

)
. Then [7] says that λ1(f) is the spectral radius of the

exponent matrix, so λ1(f) =
∣∣∣−1+

√
−7

2

∣∣∣ =
√

2. And setting f(x, y) = (α, β)
with generic α, β, we see that f−1(α, β) consists of the two points (βγ, γ)
with γ2 = α−1. Hence λ2(f) = 2.

Type 3.2 (G4) : f = [Z2, XY, Y 2 + eXZ], e 6= 0.
We have

I(f) =
{

[1, 0, 0]
}

and Crit(f) = {Z = 0} ∪ {eXZ = 2Y 2}.

Both f
(
{Z = 0}

)
and f

(
{eXZ = 2Y 2}

)
are curves, so λ1(f) = 2. Next we

dehomogenize with Z = 1. Then f(x, y) =
(
(y2 + ex)−1, xy(y2 + ex)−1).

Setting f(x, y) = (α, β) with generic α, β leads to x = α−1βy−1 and αy3 −
y + βe = 0, so λ2(f) = #f−1(α, β) = 3.

– 804 –



Degree 2 maps f : P2 → P2 with large Aut(f)

Type 3.3 (G4) : f = [aX2 + Z2, XY, Y 2], a 6= 0.
We have

I(f) =
{

[1, 0,±
√
−a]

}
and Crit(f) = {Z = 0} ∪ 2 · {Y = 0}.

The orbit of the line Y = 0 is

{Y = 0} f−−→
{

[1, 0, 0]
} f−−→

{
[1, 0, 0]

}
,

so the orbit of Y = 0 never lands in I(f). The image of the line Z = 0 is a
curve,

{Z = 0} f−−→ {XZ = aY 2}.
Hence λ1(f) = 2. Next we dehomogenize with Z = 1. Then f(x, y) =

(
(ax2+

1)/y2, x/y
)
. Setting f(x, y) = (α, β) with generic α, β leads to x = βy and

(aβ2 − a)y2 + 1 = 0. Thus λ2(f) = #f−1(α, β) = 2.

Types 4.1, 4.2, 4.3, 4.4(G4) : f = [Y Z,X2 + cZ2, XY ].
Proposition 9.3 says that f satisfies deg(fn) 6 2n + 1, so λ1(f) = 1.
Since λ2 6 λ2

1 in general, it follows that λ2(f) = 1. (Alternatvely, it is
not hard to write down the inverse map.)

Types 5.1, 5.2, 5.3 (G2,2) : f = [Y 2 − Z2, XY, eXZ], e 6= 0.
Proposition 8.2 tells us that deg(fn) 6 n+ 1, so just as in the previous case,
we have λ1(f) = λ2(f) = 1.

Types 5.4, 5.5(G2,2) : f = [aX2 + Y 2 − Z2, XY, eXZ], ae 6= 0.
We have

I(f) =
{

[0, 1, 1], [0, 1,−1]
}

and
Crit(f) = {X = 0} ∪ {aX2 − Y 2 + Z2 = 0}.

The line X = 0 is sent to a fixed point of f ,
f
(
{X = 0}

)
= [1, 0, 0] ∈ Fix(f),

while the conic aX2 − Y 2 + Z2 = 0 is sent to another conic,

f
(
{aX2 − Y 2 + Z2 = 0}

)
=
{

[aX2 + Y 2 − Z2, XY, eXZ] : aX2 − Y 2 + Z2 = 0
}

=
{

[2aX2, XY, eXZ] : aX2 − Y 2 + Z2 = 0
}

=
{

[2aX, Y, eZ] : aX2 − Y 2 + Z2 = 0
}

=
{

[u, v, w] : a(u/2a)2 − v2 + (w/e)2 = 0
}

=
{

[X,Y, Z] : X2/4a− Y 2 + Z2/e2 = 0
}
.
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Lemma 12.1(c) tells us that the only curve in P2 that f maps to a point
is the line {X = 0}. Now suppose that λ1(f) < 2. Then Lemma 12.1(b)
says that there is a curve Γ ⊂ P2 and an n > 1 such that fn(Γ) ⊂ I(f). In
particular, fn(Γ) is a point, so there is some 0 6 m < n such that fm(Γ)
is a curve and fm+1(Γ) is a point. But we have just shown that this forces
fm(Γ) to be the line X = 0 and forces fm+1(Γ) to be the point [1, 0, 0],
which is not in I(f). This completes the proof that λ1(f) = 2.

To compute the topological degree λ2(f), we compute the inverse im-
age of a generic point. To simplify the calculation, we compute [x, y, z] ∈
f−1(α, β, eγ) with α, β, γ generic. From the last two coordinates we have
eγxy = βexz, so x = 0 or γy = βz. We cannot have x = 0, since f(0, Y, Z) =
[1, 0, 0]. Hence our point has the form [x, y, z] = [βx, βy, βz] = [βx, βy, γy],
so the homogeneous point [x, y] ∈ P1 determines [x, y, z]. We next use the
first two coordinates to deduce that β(ax2 + y2 − z2) = αdxy. Multiply-
ing this by β and using βz = γy yields (β2ax2 + β2y2 − γ2y2) = αβdxy.
Since α, β, γ are generic, this equation has two solutions in P1. This shows
that #f−1(α, dβ, eγ) = 2, so λ2(f) = 2.

Types 2.5 (G3) : f = [aX2 + Y Z,XY, Y 2 + gXZ], ag 6= 0.
Here Crit(f) is a nodal cubic curve and the image of Crit(f) is also a curve.
It follows from Lemma 12.1 that λ1(f) = 2, since no iterate of f maps a
curve to a point, much less to a point in I(f). To compute the topological
degree, we dehomogenize by setting x = X/Y and z = Z/Y and solving(
(ax2 + z)/x, (1 + gxz)/x

)
= (α, β) for generic α, β. The first coordinate

gives z = αx − ax2, and substituting into the second coordinate gives 1 +
gx(αx− ax2) = βx. Hence λ2(f) = 3.

Type 7.1 (G5) : f = [Y Z,X2, Y 2].
The map f of Type 7.1 is also monomial, but there’s an easier way to cal-
culate λ1(f). We note that f8 = [X16, Y 16, Z16], so in particular f8 is a
morphism. Hence

λ1(f) = λ1(f8)1/8 = deg(f8)1/8 = 161/8 =
√

2.

Similarly λ2(f) = λ2(f8)1/8 = 2561/8 = 2.
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an algebra error in the original proof of Lemma 4.1 that had caused us to
miss the conjugacy class (4.3).

Appendix A. Maps with Infinite Automorphism Group

As indicated earlier, we have restricted attention in this paper to maps
whose automorphism group is finite. The reason is because maps with infinite
automorphism group decompose as fiber product maps, as described by the
following general construction.

Definition. — Let X and Y be varieties, and let f : X → X be a
dominant rational map. We say that f descends to Y if there are dominant
rational maps π : X → Y and g : Y → Y such we have a commutative
diagram

X
f−−−−→ Xyπ yπ

Y
g−−−−→ Y

We note that if f : X → X descends to Y , then analyzing the dynamics
of f may be reduced, in some sense, to analyzing the dynamics of g : Y → Y
and the “twisted” dynamics on the fibers. In particular, if 1 6 dim(Y ) <
dim(X), then one is reduced to lower dimensional problems.

We let
Aut(X, f) := {ϕ ∈ Aut(X) : ϕ ◦ f = f ◦ ϕ}

and note that if the quotient of X by a subgroup G ⊆ Aut(X, f) is well-
defined, then f descends to the quotient X/G. We give two examples.

Example A.1. — Let
f = [Y Z,X2 − Z2, XY ]

be the map of Type 4.1 with c = −1 in Table 1.1. Then Aut(f) contains a
copy of Gm, {(

s 0 t
0 1 0
t 0 s

)
: s2 − t2 = 1

}
⊂ Aut(f).

The quotient of f by this subgroup yields the commutative diagram

P2 [Y Z,X2−Z2,XY ]−−−−−−−−−−−→ P2y[X2−Z2,Y 2]
y[X2−Z2,Y 2]

P1 [U,V ]→[−V,U ]−−−−−−−−−→ P1

Of course, the map f is not very interesting dynamically, since f2 =[X,−Y,Z].
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Example A.2. — Here is a more interesting example. The automorphism
group of the map

f : P2 → P2, f(X,Y, Z) = [X2 + Y Z,XY,XZ]

contains a copy of Gm via{( 1 0 0
0 t 0
0 0 t−1

)
: t 6= 0

}
⊂ Aut(f).

The quotient of f gives the diagram

P2 [X2+Y Z,XY,XZ]−−−−−−−−−−−→ P2y[X2,Y Z]
y[X2,Y Z]

P1 [U,V ]→[(U+V )2,UV ]−−−−−−−−−−−−−→ P1

Appendix B. Semistability for Subgroups

In this section we give a general result for GIT semistability relative to
subgroups. We thank Friedrich Knop for explaining how the following result
is a consequence of a general theorem of Luna [12].

Proposition B.1. — We work over an algebraically closed field K of
characteristic 0. Let

X = a smooth projective variety,
G = a reductive group acting linearly on X,
H = a subgroup of G that is also reductive,

N(H) = the normalizer of H in G.

For x ∈ X, let

Stab(x) = {g ∈ G : g · x = x},
XH = {x ∈ X : Stab(x) contains H}.

(a) Let x ∈ XH . Then

x is N(H)-semistable ⇐⇒ x is G-semistable.

(b) The map
(XH)ss/N(H) −→ Xss/G

is a finite map.
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(c) Let X̃ be the affine cone over X, and for x ∈ XH , let x̃ ∈ X̃ be a
lift. Thus each x ∈ XH determines a character χx on H via

χx : H −→ Gm, h · x̃ = χx(h)x̃.

For each character χ ∈ Ĥ := Hom(H,Gm), let XH
χ := {x ∈ XH :

χx = χ}. Then (XH)ss decomposes as a disjoint union

(XH)ss =
⋃
χ∈Ĥ

(XH
χ )ss.

(d) For χ ∈ Ĥ and π ∈ N(H), define χπ ∈ Ĥ by χπ(h) = χ(π−1hπ).
Then there is an isomorphism

XH
χ −→ XH

χπ , x 7−→ π · x.

Proof. — (a) (Knop [9]) Let X̃ be the affine cone overX, and for x ∈ XH ,
let x̃ ∈ X̃ be a lift. By definition [16], the point x isG-semistable if the closure
of the orbit Gx̃ does not contain the vertex 0, and similarly for N := N(H).
From this it is obvious that if x is G-semistable, then it is also N -semistable.

Conversely, suppose that x is N -semistable. After possibly replacing x̃
by a point in the (unique) closed N -orbit Nx̃, we may assume that Nx̃ is
closed and not equal to {0}.

The group H acts on the line Kx̃ by a character χ, and the assumption
that x is N -semistable implies that χ has finite order. In particular, χ(H) is
a finite subgroup of Gm. Let

G̃ := G× χ(H) and H̃ :=
{

(h, χ(h)−1) : h ∈ H
}
.

Then G̃ acts on X̃ and x̃ is fixed by H̃. Also note that the normalizer Ñ
of H̃ in G̃ is of finite index in N×χ(H). In particular, the orbit Ñ x̃ is closed
and not equal to {0}. Now apply [12, Corollary 1], which says that

Ñ x̃ closed =⇒ G̃x̃ closed.

Hence 0 is not in the closure of G̃x̃, and therefore x is G-semistable. This
proves (a).

(b) This is an immediate consequence of the main result of [12], which in
our terminology says that X̃H̃/Ñ → X̃/G̃ is finite.

(c) The character χx is well-defined, since if we choose some other lift x̃′
of x, then x̃′ = cx̃ for some c 6= 0. It remains to show that the union is
disjoint. So suppose that x ∈ XH

χ ∩XH
χ′ . It follows that χ(h)x̃ = χ′(h)x̃ for

all h ∈ H, and since x̃ 6= 0, we find that χ(h) = χ′(h). Hence χ = χ′.
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(d) This follows from the calculation
h · π · x̃ = π · (π−1 · h · π) · x̃ = π · χx(π−1 · h · π)x̃ = χx(π−1 · h · π)π · x̃,

which shows that χπ·x = χπx . �
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