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Generalized Picard–Vessiot extensions and differential
Galois cohomology (∗)

Zoé Chatzidakis (1) and Anand Pillay (2)

ABSTRACT. — In [18] it was proved that if a differential field (K, δ) of character-
istic 0 is algebraically closed and closed under Picard–Vessiot extensions then every
differential algebraic PHS over K for a linear differential algebraic group G over K
has a K-rational point (in fact if and only if). This paper explores whether and if
so, how, this can be extended to (a) several commuting derivations, (b) one auto-
morphism. Under a natural notion of “generalized Picard–Vessiot extension” (in the
case of several derivations), we give a counterexample. We also have a counterex-
ample in the case of one automorphism. We also formulate and prove some positive
statements in the case of several derivations.

RÉSUMÉ. — On a montré dans [18] que si un corps différentiel (K, δ) de caracté-
ristique 0 est algébriquement clos et clos par extensions de Picard–Vessiot, alors tout
espace principal homogène différentiel algébrique sur K a un point K-rationnel (et
réciproquement). Cet article explore s’il est possible, et si oui comment, d’étendre ce
résultat au cas de (a) plusieurs dérivations qui commutent, (b) un automorphisme.
Pour une notion naturelle d’« extension de Picard–Vessiot généralisée » (dans le
cas de plusieurs dérivations) nous donnons un contre-exemple. Nous avons aussi un
contre-exemple dans le cas d’un automorphisme. Enfin, nous formulons et démon-
trons quelques résultats positifs dans le cas de plusieurs dérivations.

1. Introduction

This paper deals mainly with differential fields (K,∆) of characteristic
0, where ∆ = {δ1, . . . , δm} is a set of commuting derivations on K. When
m = 1, the second author showed in [18] that for a differential field (K, δ) of
characteristic 0, the following two conditions are equivalent:
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(1) K is algebraically closed and has no proper Picard–Vessiot exten-
sion.

(2) H1
δ (K,G) = {1} for every linear differential algebraic group G

over K. (Equivalently, every differential algebraic principal homo-
geneous space X for G, defined over K, has a K-point.)

It is natural to ask whether this result generalizes to the case when m > 1.
One issue is what are the “correct” analogues of conditions (1) and (2) for
several commuting derivations. Condition (2) is exactly the same and is
not controversial. However concerning (1), the Picard–Vessiot theory is a
“finite-dimensional” theory, namely deals with systems of linear equations
where the solution set is finite-dimensional, namely has ∆-type 0. So at
the minimum we should include the parametrized Picard–Vessiot (PPV)
extensions of Cassidy and Singer [1]. One of the main points of this paper is
to formulate an appropriate notion of “generalized Picard–Vessiot extension”.
This, and some variants, is carried out in Section 3, where we also adapt
cohomological arguments of Kolchin. In any case our generalized PV theory
will be a special case of the “generalized strongly normal theory” from [17]
and [11], but still properly include Landesman’s theory [10] (and the so-called
parameterized Picard–Vessiot theory). So in the case of m > 1 condition (1)
will be replaced by “K is algebraically closed and has no proper generalized
Picard–Vessiot extensions” (in fact something slightly stronger). Even with
this rather inclusive condition, the equivalence with (2) will fail, basically
due to the existence of proper definable subgroups of the additive group
which are orthogonal to all proper definable subfields. This is carried out
in Section 4. In the same section we will give a positive result (in several
derivations) around triviality of H1

∆ and closure under “generalized strongly
normal extensions of linear type”. We will also mention in Section 4, a recent
result of Minchenko and Ovchinnikov [14], written after the current paper
was submitted for publication, which says in effect that definable subgroups
of the additive group present the only obstruction to generalizing [18] to the
case m > 1.

In Section 5, we investigate the context of Picard–Vessiot extensions of
difference fields (in arbitrary characteristic), and show that the analogous
statement to (1) implies (2) fails. hold. Here the problem arises from the
existence of proper definable subgroups of the multiplicative group which
are orthogonal to the fixed field.
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2. Preliminaries

Our model-theoretic notation is standard. Unless we say otherwise, we
work in a saturated model of a given complete theory. The reader is referred
to [21] for general model theory, stability and simplicity, [15] for more on
stability, and [12] for basics of the model theory of differential fields.

We will be somewhat freer in our use of model-theoretic notions in this
paper compared with say [18]. The notion of (weak) orthogonality will be
important. Recall that complete types p(x), q(y) over a set A are weakly
orthogonal if p(x) ∪ q(y) extends to a unique complete type r(x, y) over A.
If T is a simple theory, and complete types p(x), q(y) are over a set A, then
p(x) and q(y) are said to be almost orthogonal if whenever a realizes p and b
realizes q then a and b are independent over A (in the sense of nonforking).
Likewise in the simple environment, p and q (over A again) are said to be
orthogonal if for all B ⊇ A and nonforking extensions p′, q′ of p, q over B,
p′ and q′ are almost orthogonal. For T simple, and p(x), q(y) ∈ S(A) then
weak orthogonality of p and q implies almost orthogonality, and conversely
almost orthogonality of p and q implies weak orthogonality if at least one of
p, q is stationary.

Remark 2.1. — Suppose T is stable, p(x) ∈ S(A), and φ(y) is a formula
over A. Then the following are equivalent:

(1) p(x) and tp(b/A) are weakly orthogonal for all tuples b of realizations
of φ(y).

(2) For some (any) realization c of p, and any tuple b of realizations of
φ, dcleq(Ac) ∩ dcleq(Ab) = dcleq(A).

Proof. — This is well-known, but also proved in Lemma 2.2(i) of [11]. �

Another piece of notation we will use is the following: LetX be a definable
set, and A some set of parameters over which X is defined. Then Xeq

A denotes
dcleq(X,A) and can also be understood as the collection of classes of tuples
from X modulo A-definable equivalence relations E (as E varies).

We now pass to differential fields. Let U be a field of characteristic 0
with a set ∆ = {δ1, . . . , δm} of m commuting derivations, m > 1, which is
differentially closed. We assume that U is sufficiently saturated. We let C
be the field of absolute constants (namely the solution set of δ1(x) = · · · =
δm(x) = 0). We refer to [7] and [8] for definitions and results in differential
algebra. Recall that the theory of U , denoted DCF0,m is ω-stable, of U-
rank ωm. It eliminates quantifiers and imaginaries, and the definable closure
dcl(A) of a subset A of U is the differential field generated by A, its algebraic
closure acl(A) is the field-theoretic algebraic closure of dcl(A). Independence
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is given by ordinary algebraic independence of the algebraic closures. See [13]
for proofs. By a differential (or ∆-) subfield of U we mean a subfield closed
under the δi’s. IfK is a differential subfield of U and a a tuple in U , thenK〈a〉
denotes the differential field generated by a over K. If L is a subfield of U ,
then Lalg denotes the algebraic closure of L in U . IfK is a differential subfield
of U , we denote by K∆ the Lie algebra of differential operators defined over
K, i.e., derivations of the formD =

∑m
i=1 aiδi, where the ai ∈ K. If y1, . . . , yn

are indeterminates, thenK{y1, . . . , yn} (orK{y1, . . . , yn}∆) denotes the ring
of ∆-polynomials in the variables y1, . . . , yn.

Fact 2.2. — Let K be a ∆-subfield of U .

(1) ([8, 0.8.13]) (Sit) Let A be a perfect ∆-ideal of the ∆-algebra K{y}.
A necessary and sufficient condition that the set of zeroes Z(A) of
A be a subring of U , is that there exist a vector subspace and Lie
subring D of K∆ such that A = [Dy] (the ∆-ideal generated by
all Dy, D ∈ D). When this is the case, there exists a commuting
linearly independent subset ∆′ of K∆ such that Z(A) is the field of
absolute constants of the ∆′-field U .

(2) ([8, 0.5.7]) Recall that a linear ∆-ideal is a ∆-ideal which is gener-
ated by homogenous linear ∆-polynomials. Let K satisfy the follow-
ing condition: whenever p is a linear ∆-ideal of K{y1, . . . , ym} with
p ∩K[y1, . . . , ym] = (0), and

0 6= D ∈ K[y1, . . . , ym]

is homogeneous and linear, then p has a zero in Km that is not a
zero of D. Then every commuting linearly independent subset of
K∆ is a subset of a commuting basis of K∆. This in particular
happens when K is constrained closed.

Corollary 2.3.

(1) If K is a differential subfield of U then the proper K-definable sub-
fields of U are precisely the common zero sets of (finite) subsets of
K∆.

(2) The definable subfields of U have U -rank of the form ωd for some
0 6 d 6 m.

Proof. — (1) is clear. For (2), let C be a definable subfield of U . By
Fact 2.2(2), we can find a commuting basis D1, . . . , Dm of U∆, such that
C is the 0-set of {D1, . . . , Dr}. But then (U ,+,×, D1, . . . , Dm) is a model
of DCF0,m, so as is well-know, in this structure C has U -rank ωm−r, so the
same is true in U equipped with the original derivations δ1, . . . , δm (as the
two structures are interdefinable). �
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Question 2.4. — Let C be a K-definable subfield of U . Consider the
structure M which has universe C and predicates for all subsets of Cn which
are defined over K in U . Does M have elimination of imaginaries? We know
this is the case working over a larger field K1, which is enough to witness
the interdefinability of {δ1, . . . , δm} with the {D1, . . . , Dm} from the proof of
Corollary 2.3(2).

Remark 2.5.

(1) We sometimes call a proper definable subfield of U a “field of con-
stants”.

(2) Let F be a K-definable field. Then F is K-definably isomorphic to
U or to a field of constants. (see [20]).

In this paper cohomology will appear in several places. Firstly, we have
the so-called constrained cohomology set H1

∆(K,G) where K is a differen-
tial subfield of U , and G is a differential algebraic group over K. This is
introduced in Kolchin’s second book [8]. H1

∆(K,G) can be defined as the
set of differential algebraic principal homogeneous spaces over K for G, up
to differential rational (over K) isomorphism. In [8] it is also described in
terms of suitable cocycles from Aut∆(Kdiff/K) to G(Kdiff). Here Kdiff is the
differential closure of K. This is discussed in some detail in the introduction
to [18]. Compatibilities with the category of definable groups and PHS’s are
discussed in the introduction to [18] (see Fact 1.5(ii) in particular).

Secondly we have a related but distinct theory appearing in Kolchin’s
earlier book [7], Chapter VII, Section 8, which he calls differential Galois
cohomology. This concerns suitable cocycles from the “Galois group” of a
strongly normal extension L of a differential field toG whereG is an algebraic
group defined over the (absolute) constants ofK. In Chapter V of [7] Kolchin
also discusses purely algebraic-geometric cohomology theories (although in
his own special language), namely Galois cohomology H1(K,G) for K a
field and G an algebraic group over K (as in [19]) and what he calls K-
cohomology, H1

K(W,G) for W a variety over K and G an algebraic group
over K. The interaction between these three cohomology theories is studied
in Chapter V and VI (Sections 9 and 10) of [7] and plays an important role
in Kolchin’s description of strongly normal extensions in terms of so-called
G-primitives and V -primitives. Generalizing and adapting these notions and
work of Kolchin to a more general Galois theory of differential fields will be
the content of the proof of Proposition 3.8 below.

In the title of the current paper we use the expression “differential Galois
cohomology” to refer both to differential Galois cohomology in the sense
of [7] and constrained cohomology in the sense of [8].
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3. Generalized Picard–Vessiot extensions and variants

We are still working in the context of a saturated differentially closed field
U with respect to the set ∆ = {δ1, . . . , δm} of derivations. We first recall a
definition from [11] (Definition 3.3) which is itself a slight elaboration on a
notion from [17].

Definition 3.1. — Let K be a (small) subfield of U , X some K-def-
inable set, and L a differential field extension of K which is finitely gener-
ated over K (as a differential field). L is said to be an X-strongly normal
extension of K if

(1) for any σ ∈ Aut(U/K), σ(L) ⊆ L〈X〉, and
(2) K〈X〉 ∩ L = K.

Remark 3.2. — In the context of Definition 3.1, let L = K〈b〉 and let
q = tp(b/K). Then (1) says that for any realization b1 of q, b1 ∈ dcl(K, b,X),
and (2) says that q is weakly orthogonal to tp(a/K) for any tuple a of
elements of X. (See Remark 2.1.) Moreover, in this situation (i.e when (1)
and (2) hold), the type q is isolated (see [11, Lemma 2.2(ii)]).

We will need to know something about the Galois group associated to an
X-strongly normal extension. This is contained in Theorem 2.3 of [11]. But
we give a summary. So we assume L is an X-strongly normal extension of K
and we use notation from Remark 3.2. In particular we are fixing b such that
L = K〈b〉. Let Q be the set of realizations of the (isolated) type q = tp(b/K).
Then Q is a K-definable set, which moreover isolates a complete type over
K〈X〉. Let Aut(Q/K,X) be the group of permutations of Q induced by
automorphisms of U which fix pointwise K and X. Then

Fact 3.3. — Aut(Q/K,X) acts regularly (i.e. strictly transitively) on Q.
In other words Q is a principal homogeneous space for Aut(Q/K,X) (under
the natural action).

Fact 3.4. — There is a definable group G, living in Xeq
K , and defined over

K, K-definable surjective functions f : Q×G→ Q and h : Q×Q→ G, and
an isomorphism µ : Aut(Q/K,X)→ G with the following properties:

(1) For b1, b2 ∈ Q and g ∈ G, h(b1, b2) = d iff f(b1, d) = b2.
(2) For each σ ∈ Aut(Q/K,X), µ(σ) = h(b, σ(b)) (equals the unique

d ∈ G such that f(b, d) = σ(b)).
(3) for b1, b2, b3 ∈ Q, h(b1, b2) · h(b2, b3) = h(b1, b3)
(4) The group operation of G is: d1 · d2 = h(b, f(f(b, d1), d2))
(5) The action of G on Q (induced by the isomorphism µ) is d · b1 =

f(f(b, d), h(b, b1)).
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Remark 3.5.

(1) On the face of it, G and its group structure are defined over K〈b〉,
but as dcl(K, b) ∩ X is contained in K, it is defined over K. On
the other hand the action of G on Q DOES need the parameter
b. The G we have described is the analogue of the “everybody’s
Galois group” from the usual strongly normal theory (where it is
an algebraic group in the absolute constants). In any case, with a
different choice of h and f (but the same b) would give the same G
up to K-definable isomorphism.

(2) In the above we have worked in an ambient saturated model U . But
we could have equally well worked with the differential closure of K
(in which L lives) in place of U .

Definition 3.6.

(1) Let K be a differential field, and X a K-definable set. We call L an
X-strongly normal extension of linear type, if
(a) L is an X-strongly normal extension of K, and
(b) The Galois group G as in Fact 3.4 K-definably embeds in

GLn(U).
(2) Let K be a differential field and C a K-definable field of constants.

We call L a generalized PV extension of K with respect to C if
(a) L is a C-strongly normal extension of K, and
(b) the Galois group G from 3.4 K-definably embeds in GLn(C)

(some n).

Remark 3.7.

(1) Note that taking X = C, (2) is stronger than (1) since we impose
that the Galois group K-definably embeds into GLn(C), and not
only GLn(U). Could we replace Definition 3.6(2) by simply “L is a
C-strongly normal extension of linear type”? The issue includes the
following: Suppose the Galois group G definably embeds in GLn(U),
and is also in dcl(C,K). Does G K-definably embed in GLn(C)?

(2) According to the classical theory ([7]) a Picard–Vessiot extension L
of K is a differential field extension of K generated by a solution B
of a system δ1Z = A1Z,. . . ,δmZ = AmZ, where Z ranges over GLn,
each Ai is an n by n matrix over K, the Ai satisfy the Frobenius
(integrability) conditions, AND CL = CK where CK denotes C ∩K
etc. So we see easily that this is an example of a generalized PV -
extension.

(3) The so-called parameterized Picard–Vessiot theory in [1] gives an-
other example of a generalized PV extension of K (with respect to
the field of δ1-constants). Here we consider a single linear differential
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equation δ1Z = AZ where again Z ranges over GLn and A is an n
by n matrix over K. A PPV extension L of K for such an equation
is a ∆-extension L of K generated by a solution B of the equation
such that K and L have the same δ1-constants. This is put in a
somewhat more general context in [5].

Proposition 3.8. — Suppose that K is a differential field, X a K-
definable set, and L = K〈b〉 an X-strongly normal extension of K of linear
type, with Galois group G < GLn(U). Let µ be the isomorphism between
Aut(Q/K,X) and G as in Fact 3.4. Then there is α ∈ GLn(L) such that
µ(σ) = α−1σ(α) for all σ ∈ Aut(Q/K,X).

Proof. — This is an adaptation of the proof of Corollary 1, Chapter VI,
from [7]. When X(K) = X(Kdiff) (which was part of the definition of X-
strongly normal extension in the original paper [17]), and K is algebraically
closed, it is easier, and is Proposition 3.4 of [17] (in the one derivation case
which extends easily to several derivations).

We use the objects and notation in Fact 3.4. As G is a subgroup of GLn,
we can consider h as a K-definable function from Q×Q→ GLn. We already
have q = tp(b/K). Let now q0 be tp(b/K) in ACF . Let n be the number
of types tp(b, c/K) in DCF0 where c realizes q and c is independent from b
(in the sense of DCF0). Likewise let n0 be the number of types tp(b, c/K) in
ACF0 where c realizes q0 and is independent from b over K in ACF0.

Claim. — After replacing b by some larger finite tuple in L we may as-
sume that

(1) h( · , · ) is aK-rational function (rather thanK-differential rational),
and

(2) n = n0.

Proof of the Claim. — We know that if L1, L2 are differential fields con-
taining K then the differential field generated by L1 and L2 coincides with
the field generated by L1 and L2. So we can apply compactness to the im-
plication: if b, c realize q then h(b, c) is contained in the field generated by
K〈b〉 and K〈c〉 to obtain the required conclusion (1). Clearly we can further
extend b so as to satisfy (2). �

Let W be the (affine) algebraic variety over K whose generic point is
b, i.e. whose generic type is q0. Then by Step I we have the K-rational
function h( · , · ) such that h(b1, b2) is defined whenever b1, b2 are independent
realizations of q0. Moreover if b1, b2, b3 are independent realisations of q0 then
h(b1, b2) ·h(b2, b3) = h(b1, b3) (using 3.4(3)). We now refer to [7, Chapter V,
Section 17] which is just about algebraic varieties, and by Proposition 24
there, there is a Zariski-dense, Zariski open over K subset U of W such that
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h extends to a K-rational function to GLn(U), which we still call h, which
is defined on U × U , satisfies the cocycle condition, and h(u, u) = 1 for all
u ∈ U and h(v, u) = h(u, v)−1.

Let us now pick u ∈ U(Kalg), and define hu : Gal(Kalg/K)→ GLn(Kalg)
by hu(σ) = h(u, σ(u)) for σ ∈ Gal(Kalg/K). Then by Theorem 12 of [7,
Chapter V], hu ∈ H1(K,GLn), namely is continuous and satisfies the con-
dition hu(στ) = hu(σ)τ(huτ). As H1(K,GLn) is trivial, the cocycle hu is
“trivial” namely there is x ∈ GLn(Kalg) such that hu(σ) = x−1σ(x) for all
σ ∈ Gal(Kalg/K). As in the proof of part (b) of Theorem 12 in [7, Chapter V]
there is a K-rational function g : W → GLn such that h(u, v) = g(u)−1g(v)
for all (u, v) ∈ dom(h). Returning to the differential algebraic setting, it fol-
lows that h(b, σ(b)) = g(b)−1 ·g(σ(b))−1 for all σ ∈ Aut(Q/K,X). Let g(b) =
α ∈ GLn(L). Then g(σ(b)) = σ(g(b)) = σ(α) for all σ ∈ Aut(Q/K,X), as
required. �

Corollary 3.9. — Under the same assumptions as the proposition
above, there is α ∈ GLn(L) such that K〈α〉 = L and the coset α ·G is defined
over K. (Hence L is a generated by a solution of the “PDE” ν(z) = a where
ν is the K-definable map from GLn(U) to W = GLn(U)/G, and a ∈W (K).)

Proof. — Let α ∈ GLn(L) be as in the conclusion of Proposition 3.8
above. Then for each σ ∈ Aut(Q/K,X), σ(α) ∈ α ·G, whereby α ·G is fixed
(setwise) by Aut(Q/K,X). This implies that α ·G is defined over K,X. But
it is also clearly defined over L. Hence, by our assumptions, it is defined over
K. On the other hand, if σ ∈ Aut(Q/K,X) fixes α then µ(σ) = 1 ∈ G, so σ
is the identity, so fixes L. So L = K〈α〉. �

Remark 3.10. — The obvious analogies of Proposition 3.8 and Corol-
lary 3.9 hold if the Galois group G is assumed to K-definably embed in an
algebraic group H for which H1(K,H) = {1}.

We now want to get somewhat more explicit information when L is a
generalized PV extension of K. The following easy lemma which is left to
the reader tells how to eliminate the interpretable set GLn(U)/GLn(C) when
C is a definable subfield of U .

Lemma 3.11. — Let C be a “field of constants” defined by the set of com-
mon zeros of definable derivations D1, . . . , Dr. Fix n. Let b1, b2 ∈ GLn(U).
Then b1 GLn(C) = b2 GLn(C) iff Di(b1) · b−1

1 = Di(b2) · b−1
2 for i = 1, . . . , r.

Corollary 3.12. — Let K be a differential field subfield of U , and let
C be a K-definable field of constants, defined by the common zero set of
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D1, . . . , Dr where the Di ∈ K∆. Let L be a differential field extension of K.
Then the following are equivalent:

(1) L is a generalized Picard–Vessiot extension of K with respect to C,
(2) for some n there are n by n matrices A1, . . . , Ar over K, and a

solution α ∈ GLn(U) of the system D1Z = A1Z, . . . ,DrZ = ArZ,
such that L = K〈α〉, and K〈α〉 ∩K〈C〉 = K.

Proof.

(2)⇒ (1). — First note that the set of common solutions of the system
D1Z = A1Z, . . . ,DrZ = ArZ is precisely the coset b·GLn(C) inside GLn(U).
Letting q = tp(b/K), every realization b1 of q is of the form bc for some
c ∈ GLn(C). So bearing in mind the second part of (2), L = K〈b〉 is a C-
strongly normal extension of K. Let Q be the set of realizations of the type
q (which we know to be isolated and moreover implies a complete type over
K,C). Taking h(b1, b2) to be b−1

1 b2 (from Q × Q → GLn(C)), and f(b1, c)
to be b1c, we see that the Galois group G from Fact 3.4 is a K-definable
subgroup of GLn(C). Hence L is a generalized PV extension of K with
respect to C.

(1)⇒ (2). — Assume that L = K〈b〉 is a generalized PV extension of K
with respect to C. So we may assume that the Galois group G is a subgroup
of GLn(C). Let α ∈ GLn(L) be given by Corollary 3.9, namely L = K〈α〉
(so tp(α/K) implies tp(α/K,C)) and the coset α ·G is defined over K. But
then the coset α · GLn(C) is also defined over K. Let Ai = Di(α)α−1 for
i = 1, . . . , r. By Lemma 3.11, each Ai is an n × n matrix over K, so (2)
holds. �

The following follows from the proof of Proposition 4.1 of [17] and is
essentially a special case of that proposition.

Remark 3.13.

(1) Let F0 be a differentially closed ∆-field, C an F0-definable field of
constants, and G an F0-definable subgroup of GLn(C). Then there
are differential fields F0 < K < L such that L ∩ F0〈C〉 = F0, and
L is a generalized Picard–Vessiot extension of K with respect to C
with Galois group G.

(2) K0 be a differential field (subfield of U) which is contained in the
field of δ1-constants C of U and is differentially closed as a ∆ \ {δ1}
field. LetG be a subgroup of GLn(C) defined over F0. Then there are
again differential subfields F0 < K < L of U , such that C ∩L = C0,
and L is a PPV extension of K with Galois group G.

The reader should note that in the remark above, the base K is generated
(over F0,K0, respectively) by something which is ∆-transcendental.
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4. Main results

Here we prove both the positive and negative results around trying to
extend [18] to the context of several commuting derivations.

Definition 4.1.

(1) K is closed under generalized strongly normal extensions of linear
type, if for no K-definable set X does K have a proper X-strongly
normal extension of linear type.

(2) K is strongly closed under generalized strongly normal extensions
of linear type if for every K-definable subgroup G of GLn(U) and
K-definable coset Y of G in GLn(U), there is α ∈ Y ∩GLn(K).

(3) K is closed under generalized PV -extensions if K has no proper
generalized PV -extension.

(4) K is strongly closed under generalized PV -extensions if for every
K-definable field of constants C defined by derivations D1, . . . , Dr,
and consistent system D1Z = A1Z, . . . ,DrZ = ArZ where the Ai
are over K, there is a solution α ∈ GLn(K).

Note that we could restate (4) in the same way as (2): every K-definable
coset Y of GLn(C) in GLn(U) has a K-point.

Remark 4.2.

(1) In the definition above, (2) implies (1) and (4) implies (3).
(2) We might also want to define K to be very strongly closed under

generalized PV -extensions, if we add to (3) or equivalently (4), that
for every K-definable field C of constants C(K) = C(Kdiff).

A first attempt at generalizing [18] to several commuting derivations
might be to ask whether K is algebraically closed and (strongly) closed
under generalized PV extensions iff H1

∆(K,G) is trivial for all linear differ-
ential algebraic groups defined over K. Right implies left is trivial. But the
following gives a counterexample to left implies right when m = 2. In this
case we can simply quote results of Suer. We will point out the extension to
arbitrary m > 1 later.

Fact 4.3 (m = 2). — Let G be the subgroup of (U ,+) defined by ∂1(y) =
∂2

2(y) (the so-called heat variety).

(1) Then the U -rank of G is ω and the generic type of G is orthogonal to
stp(c/A) where c is any tuple from an A-definable field of constants
(i.e. proper A-definable subfield of U).
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(2) Let p be a type (over some differential field K) realised in (U ,+),
and assume that if a, b are independent realisations of p over K, then
a−b realises the generic type of G over K. If C is a K-definable field
of constants, then p is orthogonal to tp(c/K) for any c generating a
C-strongly normal extension of K of linear type.

Proof.

(1). — Let p0 be the generic type of G (a stationary type over ∅). By
Proposition 4.5 of [20], p0 has U -rank ω. By Proposition 4.4, Proposition 3.3,
and Theorem 5.6 of [20], p0 is orthogonal to the generic type of any definable
subfield F of U and is orthogonal to any type of rank < ω. Hence it is
orthogonal to any type realised in a field of constants.

(2). — Over any realisation of p, there is a definable bijection between
the set of realisations of p and the elements of G. Similarly, there is a c-
definable bijection between the set of realisations of tp(c/K) and some de-
finable subgroup of GLn(K〈C〉). As p0 is orthogonal to all types realised in
constant subfields of U , we obtain that p and q are orthogonal. �

Proposition 4.4 (m = 2). — There is a differential subfield K of U
which is algebraically closed and very strongly closed under generalized PV
extensions, but such that H1

∆(K,G) 6= {1} where G is the heat variety above.

Proof. — Let Q denote the operator δ1 − δ2
2 . Then Q is a ∅-definable

surjective homomorphism from (U ,+) to itself, whose fibres are the cosets
of G in (U ,+). Choose generic α ∈ U , namely U(tp(α/∅)) = ω2, and let d =
Q(α). Then d is also generic in U (by the U -rank inequalities for example).
Let Xd = Q−1(d) (the solution set of Q(y) = d), and p = tp(α/d). The
following is basically a repetition of Claim 1 in the proof of Proposition 4.1
in [17]:

Claim. — α realizes the generic type of Xd, and is moreover isolated by
the formula y ∈ Xd.

Proof of the Claim. — If β ∈ Xd then β is generic in U so tp(β) = tp(α).
But Q(β) = Q(α) = d, hence tp(β/d) = tp(α/d). As β could have been
chosen to be generic in Xd, the claim is proved. �

By the Claim and Fact 4.3,

(∗) for any A ⊂ U , if C is an A-definable field of constants and c is a
tuple of elements of C, then p is orthogonal to tp(c/A). Furthermore,
p is orthogonal to any tp(b/A) with A〈b〉 C-strongly normal over A.
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Let K0 be the algebraic closure of the differential subfield of U generated
by d (namely K0 = acl(d)). So p, being stationary, has a unique extension
over K0. Fix a differential closure Kdiff

0 of K0. For each K0-definable field
of constants C and consistent system D1Z = A1Z, . . . ,DrZ = ArZ over
K0 (where C is defined as the zero set of D1, . . . , Dr), adjoin to K0, both
C(Kdiff

0 ) and a solution of the system in GLn(Kdiff
0 ). Let K1 be the algebraic

closure of the resulting differential field. Then Kdiff
0 = Kdiff

1 , and by (∗), p
implies a unique type over K1. Build K2, K3,. . . similarly and let K be
the union. Then by construction K is algebraically closed and very strongly
closed under generalized PV -extensions, but p isolates a unique complete
type over K, which precisely means that Xd, a PHS for the linear differential
algebraic group G, has no solution in K. �

For m > 2 we can extend the results of [20] to show that the subgroup G
of the additive group defined by ∂1(y) = ∂2

2(y) is orthogonal to any definable
field of constants. Indeed, the computations made in Theorem II.2.6 of [7]
(taking E = {δ2

2}) give that G has ∆-type m−1 and typical ∆-dimension 2.
Hence the generic of G is orthogonal to all types of ∆-type < m− 1, and to
all types of ∆-type m − 1 and typical ∆-dimension 1 ([20, Proposition 2.9
and Theorem 5.6]). In particular it is orthogonal to any type realised in a
“field of constants” ([20, Proposition 3.3]). Proposition 4.4 readily adapts,
giving a counterexample for any m > 1 to “natural” analogues of the main
results of [18].

We now give our positive result, which is close to being tautological.

Proposition 4.5. — Let K be a differential field. Then the following
are equivalent.

(1) K is algebraically closed and strongly closed under generalized
strongly normal extensions of linear type (i.e. for any K-definable
subgroup G of GLn(U) of U -rank < ωm, and K-definable coset X
of G in GLn(U), X ∩GLn(K) 6= ∅).

(2) H1
∆(K,G) = {1} for any linear differential algebraic group G defined

over K.

Proof.

(1) is a special case of (2). — If K is not algebraically closed then a
Galois extension is generated by an algebraic PHSX for a finite (so linear)
group G over K, where X has no K-point. And of course any K-definable
coset of a K-definable subgroup G of GLn(U) is a special case of a K-
definable PHS for the linear differential algebraic group G.

(1)⇒ (2). — First as K is algebraically closed, (2) holds for finite G. So
by the inductive principle (if 1→ N → G→ H → 1 is a short exact sequence
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of differential algebraic groups over K, and H1
∆(K,N) = H1

∆(K,H) = {1},
then H1

∆(K,G) = {1}. See Lemma 2.1 of [18] for a proof when |∆| = 1) we
may assume that G is connected. Now first assume that U(G) < ωm. And
suppose (G,X) is a K-definable PHS. We claim that (G,X) embeds in an
algebraic PHS(G1, X1) over K. This is stated in Fact 1.5(iii) of [18] with
reference to [16]. But we should be more precise. What we prove in [16] is
that the differential algebraic group G embeds in an algebraic group over
K. But this, together with Weil’s proof [22], easily adapts to the (principal)
homogeneous space context.

By Lemma 4.7 of [16], and the linearity of G we may assume that G1
is linear (namely a K-algebraic subgroup of GLn(U)). As K is algebraically
closed (G1, X1) is isomorphic to (G1, G1) overK, and this isomorphism takes
X to a coset of G in G1 defined over K. By (1) X has a K-point.

So by the inductive principle, we may assume that G is “m-connected”,
namely has no proper definable subgroup H with U(G/H) < ωm. Then the
last part of the proof of Theorem 1.1 in [18], more precisely the proofs of
Case 2(a) and 2(b), work to reduce to the situation when G is algebraic and
we can use Kolchin’s Theorem ([18, Fact 1.6]). �

Finally we will mention, as requested by the referee, a nice related re-
sult [14], which we became aware of after the current paper was submitted,
and which does in a sense give a satisfactory extension of [18] to the case
of several commuting derivations, although we did not check the proofs in
detail. The content of the main result of [14], using notation of the current
paper is that the following are equivalent, in the context of differential fields
(K,∆) where ∆ = {∂1, . . . , ∂m} is a finite set of commuting derivations:

(1) K is algebraically closed, strongly closed under generalized PV -
extensions, and H1

∆(K,G) is trivial for any differential algebraic
subgroup G of the additive group, defined over K.

(2) H1
∆(K,G) is trivial, for any linear differential algebraic group de-

fined over K.

So this says that the main theorem of [18] does extend naturally to several
commuting derivations, modulo the case of principal homogeneous spaces for
differential algebraic subgroups of the additive group. The proof (of (1) im-
plies (2)) in [14] essentially follows the general line of the inductive argument
of [18], reducing to the cases where G is finite, a connected subgroup of the
multiplicative group, a connected subgroup of the additive group, or non-
commutative simple. The additional assumption in (1) deals with the third
case and allows the arguments to go through (with some additional compli-
cations and use of results in the literature).
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5. The difference case

If K is a field equipped with an automorphism σ, then by a linear dif-
ference equation over (K,σ) we mean something of the form σ(Z) = A · Z
where A ∈ GLn(K) and Z is an unknown nonsingular matrix. When it
comes to a formalism for difference equations, Galois theory, etc. there is
now a slight discrepancy between algebraic and model-theoretic approaches.
In the former case, difference rings (R, σ), which may have zero-divisors,
enter the picture in a fundamental way. The latter, on the other hand, is
field-based, where the difference fields considered are difference subfields of
a “universal domain” (U , σ), a model of a certain first order theory ACFA
(analogous to DCF0). In this section we will opt for the model-theoretic
approach. Papers such as [2] and [6] discuss differences and compatibilities
between the treatments of the Galois theory of linear difference equations in
the two approaches. But we will not actually need to engage with delicate
issues regarding Picard–Vessiot extension of difference fields (or rings).

Definition 5.1. — Let (K,σ) be a difference field. We will say that
(K,σ) is strongly PV -closed if every linear difference equation σ(Z) = A ·Z
over K has a solution in GLn(K).

The theory ACFA is the model companion of the theory of fields equipped
with an automorphism, in the language of unitary rings together with a
symbol for an automorphism. See the seminal paper [3] which, among other
things, describes the completions of ACFA, its relative quantifier elimination,
and its “stability-theoretic” properties (it is unstable but supersimple). We
fix a saturated model (U , σ) of ACFA. F,K,L . . . denote (small) difference
subfields of U . By a difference polynomial P (x1, . . . , xn) over K we mean
a polynomial over K in indeterminates x1, . . . , xn, σ(x1), . . . , σ(xn), σ2(x1),
. . . , σ2(xn) . . . . By a difference-algebraic variety (defined over K) we mean a
subset of some Un defined by a (finite) set of difference polynomials overK. If
V andW are two such difference-algebraic varieties over K then a difference-
algebraic morphism over K from V to W is a map whose coordinates are
given by difference polynomials over K. So we have a category of (affine)
difference-algebraic varieties. We may just say “difference variety”.

Definition 5.2.

(1) By a linear difference algebraic group (or just linear difference group)
defined over K we mean a subgroup of some GLn(U) whose under-
lying set is a difference algebraic set over K.

(2) If G is a linear difference algebraic group over K, then a difference
algebraic PHS over K for G is a difference algebraic variety X over
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K together with a difference morphism over K, G×X → X giving
X the structure of a PHS for G.

(3) If X is such a difference algebraic PHS for G over K we say that
X is trivial if X(K) 6= ∅.

Remark 5.3.

(1) We should not confuse difference-algebraic varieties and groups with
algebraic σ-varieties and groups from [9], which are objects belong-
ing to algebraic geometry.

(2) We have not formally defined H1
σ(K,G) for a linear difference-alg-

ebraic group over K, partly because there are various other choices
of what category to work in, such as the category of definable PHS’s.

Fact 5.4. — Let K be a difference subfield of U , and a a tuple (in U)
such that σ(a) ∈ K(a)alg. One defines the limit degree of a over K by

ld(a/K) = lim
n→∞

[K(a, . . . , σn+1(a)) : K(a, . . . , σn(a))]

and the inverse limit degree of a over K by

ild(a/K) = lim
n→∞

[K(a, . . . , σn+1(a)) : K(σ(a), . . . , σn+1(a))].

Then these degrees are multiplicative in tower (see [4, Section 5.16]), e.g.
ld(ab/K) = ld(a/K) ld(b/K(a, σ(a), σ2(a), . . . )). Observe that if b is alge-
braic over K, then ld(b/K) = ild(b/K). Hence, setting ∆(a/K) := ld(a/K)

ild(a/K) ,
if b ∈ K(a)alg, then

∆(a, b/K) = ∆(a/K).

Hence, the number ∆(a/K) is an invariant of the extension K(a)alg/K.
Furthermore, if the difference subfield L of U is free from K(a) over K, then
∆(a/L) = ∆(a/K). From this one easily obtains the following:

Corollary 5.5. — Let a, b be tuples in U , with a and b of transcendence
degree 1 over K, and such that σ(a) ∈ K(a)alg, σ(b) ∈ K(b)alg. Assume that
∆(a/K) 6= ∆(b/K). Then tp(a/K) and tp(b/K) are orthogonal.

Recall that the main theorem of [18] can be expressed as: if K is a differ-
ential subfield of U |= DCF0 which is algebraically closed and has a solution
B ∈ GLn(K) of every linear differential equation δ(Z) = AZ over K, and G
is a linear differential algebraic group overK then every differential algebraic
PHS over K for G has a K-point.

So the following gives a counterexample to the analogous statement in
our set-up. The result should translate easily into a counterexample in the
more difference ring and difference scheme-based set-up.
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Proposition 5.6. — There is a difference subfield K of U which is al-
gebraically closed and strongly PV -closed but for some linear difference al-
gebraic group G and difference-algebraic PHSX for G over K, X(K) = ∅.

Proof. — We will take for G the subgroup of (U∗,×) = GL1(U) defined
by σ(x) = x2, rewritten as σ(x)/x2 = 1.

Fix generic a ∈ U , that is a is difference transcendental over ∅. There is
a unique such type, which is moreover stationary. Consider the a-definable
subset X: σ(x) = ax2 of (U∗,×). It is a coset of G, hence a linear difference
algebraic PHS for G defined over K0 where K0 is the difference subfield
generated by a. Now X is clearly a coset of G in GL1(U). If b, c ∈ X, then
both realise the generic type over ∅, hence they have the same type over a,
and tp(b/K0) = tp(c/K0). Moreover, if b ∈ X, then ∆(b/K0) = 1/2 6= 1,
and by Corollary 5.5, tp(b/K0) is orthogonal to the generic type of Fix(σ).
Hence it is orthogonal to any type which is realised in a PV extension of K0.

One can construct an extension M of K0 which is algebraically closed,
and closed under PV extensions with the following property:M =

⋃
α<κMα,

where M0 = K0, Mα =
⋃
β<αMβ when α is a limit ordinal, and Mα+1 =

Mα(c)alg, where c is a fundamental solution of some linear difference equa-
tion σ(Z) = AZ over Mα. By the above and using induction on α, if b ∈ X,
then tp(b/K0) and tp(c/Mα) are orthogonal, so that b /∈ Mα+1. Hence
X(M) = ∅. �
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