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Integrability on Direct Limits of Banach Manifolds (∗)

Patrick Cabau (1) and Fernand Pelletier (2)

ABSTRACT. — In this paper, we study several objects in the framework of di-
rect limits of anchored Banach bundles over particular convenient manifolds (direct
limits of Banach manifolds). In particular, we give a criterion of integrability for dis-
tributions on such convenient manifolds which are locally direct limits of particular
sequences of Banach anchor ranges.

RÉSUMÉ. — Dans cet article, on s’intéresse à l’étude de divers objets rencontrés
dans le cadre de limites directes de fibrés de Banach, munis d’une ancre, au dessus
de certaines variétés apparaissant comme limites directes de variétés de Banach. En
particulier, on donne un critère d’intégrabilité pour des distributions sur de telles va-
riétés qui sont localement des limites directes de suites particulières d’images d’ancres
banachiques.

1. Introduction and results

In classical differential geometry, a distribution on a smooth manifold M
is an assignment

D : x 7→ Dx ⊂ TxM
on M , where Dx is a subspace of TxM . This distribution is integrable if, for
any x ∈ M , there exists an immersed submanifold f : L → M such that
x ∈ f(L) and for any z ∈ L, we have Tf(TzL) = Df(z). On the other hand,
D is called involutive if, for any vector fields X and Y on M tangent to D,
their Lie bracket [X,Y ] is also tangent to D.
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On a finite dimensional manifold, when D is a subbundle of TM, the
classical Frobenius Theorem gives an equivalence between integrability and
involutivity. In the other case, the distribution is singular and, even un-
der assumptions of smoothness on D, in general, the involutivity is not a
sufficient condition for integrability (one needs some more additional local
conditions). These problems were clarified and resolved essentially in [30]
and [31].

In the context of Banach manifolds, the Frobenius Theorem is again
true for distributions which are complemented subbundles in the tangent
bundle. For singular Banach distributions closed and complemented (i.e. Dx
is a complemented Banach subspace of TxM) we also have the integrability
property under some natural geometrical conditions (see [5] for instance).
In a more general way, for weak Banach distributions D, the integrability
property is again true under some geometrical criterion (see [26] for more
details).

The notion of Lie algebroid A = (E, π,M, ρ, [ · , · ]E), where π : E → M
is a fiber bundle and where the anchor ρ is a morphism of Lie algebras, was
first introduced by Pradines in [29]. Such objects can be seen as generaliza-
tions of both Lie algebras and tangent vector bundles. This context is an
adapted framework for different problems one can meet in Mechanics (e.g.
non holonomic lagrangian systems, [6]) or in symplectic Geometry in view
of the symplectization of Poisson manifolds and applications to quantization
([20], [33]).

The Stefan–Sussmann’s Theorem implies the integrability of the distri-
bution ρ(E) for a finite dimensional Lie algebroid (E, π,M, ρ, [ · , · ]E). More-
over one also gets the existence of symplectic leaves for Lie–Poisson Ba-
nach manifolds under comparable assumptions. For a Banach Lie algebroid
(E, π,M, ρ, [ · , · ]E) the same result is also true under some additional as-
sumptions (see [26]).

However, the Banach context is not necessarily the most appropriate:
for instance, in the framework of Lie–Poisson structure on the dual of the
Lie algebra of an infinite-dimensional Lie group, the adapted model is not
anymore the Banach one. A lot of infinite-dimensional Lie groups G, linked
with symmetries depending on infinitely many parameters one can meet in
Mathematical Physics, can often be expressed as the union of an ascending
sequence G1 ⊂ G2 ⊂ · · · ⊂ Gi ⊂ . . . of finite or infinite-dimensional Lie
groups. Various examples of such objects can be found in papers of Glöckner
(see [11], [12] and [14]). The convenient setting as defined by [10] and [21]
seems well adapted to this framework (see for instance [11]).
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The context of this paper concerns the study of direct limits of anchored
Banach bundles over direct limits of Banach manifolds endowed with con-
venient structures and the results of [11], [12] and [14]. More precisely, es-
sentially we consider sequences (En, πn,Mn, ρn)n∈N∗ of anchored Banach
bundles where (En, πn,Mn)n∈N∗ is a strong ascending sequence of Banach
bundles (cf. Definition 4.17) where the anchors ρn and the bonding maps
λmn : En → Em and εmn : Mn → Mm fulfill conditions of compatibility given
in Definition 6.9, (2).

Given such a sequence (En, πn,Mn, ρn)n∈N∗ , we get an anchored conve-
nient bundle (E = lim−→En, π = lim−→πn,M = lim−→Mn, ρ = lim−→ ρn) (cf. Theo-
rem 6.10). Note that, according to Glöckner’s results, in order to get an in-
teresting (convenient) structure on the direct limit of Banach manifolds, an
essential hypothesis is the existence of direct limit charts (cf. Definition 4.3).
In particular, this assumption is true if each member Mn of the ascending
sequence M1 ⊂ · · · ⊂Mn ⊂ . . . of Banach manifolds can be endowed with a
Koszul connection ∇n (cf. Proposition 4.5).

Another problem in the context of direct limit of an ascending sequence
{Xn}n∈N∗ of topological spaces is the following one: even if each Xn is a
Hausdorff topological space the direct limit X = lim−→Xn, provided with
the direct limit topology, can be not Hausdorff. This leads us to introduce
the notion of non necessary Hausdorff convenient manifold structure (cf.
Definition 2.13).

When each En can be endowed with an almost Lie bracket [ · , · ]n (resp.
a Koszul connection ∇n) such that the restriction of [ · , · ]n+1 (resp. ∇n+1)
to En is [ · , · ]n (resp. ∇n) we obtain an almost Lie bracket [ · , · ] = lim−→[ · , · ]n
(resp. a Koszul connection ∇ = lim−→∇

n) on E. Moreover, if for each n ∈ N we
have [ρn(X), ρn(Y )] = ρn[X,Y ]n (resp. [ · , · ]n satisfies the Jacobi identity)
the same property is true for the direct limit [ · , · ].

Now, according to Theorem 5 of [26], we obtain the main result of this
paper:

Theorem (Criterion of integrability (cf. Theorem 7.5)). — Let ∆ be a
distribution on a convenient manifold M with the following properties:

(1) for any x ∈ M , there exists an open neighborhood U of x, a strong
ascending sequence of anchored Banach bundles (En, πn, Un, ρn)n∈N∗
endowed with a Koszul connection ∇n, such that U = lim−→Un,
lim−→ ρn(En) = ∆|U and such that En is a complemented subbundle
of En+1;
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(2) there exists an almost Lie bracket [ · , · ]n on (En, πn, Un, ρn) such
that:
• (En, πn, Un, ρn, [ · , · ]n) is a Banach Lie algebroid;
• over each point yn ∈ Un the kernel of ρn is complemented in
the fiber π−1

n (yn).
Then the distribution ∆ is integrable and each maximal integral
manifold satisfies the direct limit chart property at any point and
so is endowed with a non necessary Hausdorff convenient manifold
structure.

Note that in the framework of finite-dimensional or Hilbert manifolds,
this criterion of integrability requires much weaker assumptions (cf. Corol-
lary 7.7).

In order to make this article as self-contained as possible we first recall
various notions: the convenient differential calculus setting as defined by
Frölicher, Kriegl and Michor (Section 2), direct limits of topological vector
spaces (Section 3) or manifolds (Section 4) and linear connections on Ba-
nach bundles (Section 5). In Section 6, Theorem 6.10, we prove that certain
limits of Almost Lie Banach algebroids can be endowed with a structure
of Almost Lie convenient algebroid. In the last part, we prove the previous
theorem which is a criterion of integrability for distributions and we give an
application to actions of direct limits of Banach Lie groups.

2. Convenient differential calculus

Differential calculus in infinite dimensions has already a long history
which goes back to the beginnings of variational calculus developed by
Bernoulli and Euler. During the last decades, a lot of theories of differentia-
tion have been proposed in order to differentiate in spaces more general than
Banach ones; the traditional calculus for Banach spaces is not satisfactory
for the categorical point of view since the space C∞(E,F ) of smooth maps
between Banach spaces is no longer a Banach space.

The setting of convenient differential calculus discovered by A. Frölicher
and A. Kriegl (see [10]) is chosen. The reference for this section is the
tome [21] which includes some further results.

In order to define the smoothness on locally convex topological vector
spaces (l.c.t.v.s.) E, the basic idea is to test it along smooth curves (cf. Def-
inition 2.6), since this notion in this realm is a concept without problems.
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On the one hand, a curve c : R → E is differentiable if, for all t, the
derivative c′(t) exists where c′(t) = limh→0

1
h (c(t+ h)− c(t)). It is smooth if

all iterative derivatives exist.

On the other hand, if J is an open subset of R, we say that c is Lipschitz
on J if the set { c(t2)−c(t1)

t2−t1 ; t1, t2 ∈ J, t1 6= t2} is bounded in E. The curve
c is locally Lipschitz if every point in R has a neighborhood on which c is
Lipschitz. For k ∈ N, the curve c is of class Lipk if c is derivable up to order
k, and if the kth-derivative c : R→ E is locally Lipschitz.

We then have the following link between both these notions ([21, Sec-
tion 1.2]):

Proposition 2.1. — Let E be a l.c.t.v.s, and let c : R→ E be a curve.
Then c is C∞ if and only if c is Lipk for all k ∈ N.

The space C∞(R, E) of such curves does not depend on the locally convex
topology on E but only on its associated bornology (system of bounded sets).
Note that the topology can vary considerably without changing the bornol-
ogy; the bornologification Eborn of E is the finest locally convex structure
having the same bounded sets.

One can note that the link between continuity and smoothness in infinite
dimension is not as tight as in finite dimension: there are smooth maps which
are not continuous!

The c∞-topology on a l.c.v.s. is the final topology with respect to all
smooth curves R → E; it is denoted by c∞E. Its open sets will be called
c∞-open.

For every absolutely convex closed bounded setB, the linear span EB ofB
in E is equipped with the Minkowski functional pB(v) = inf{λ> 0 : v ∈λ.B}
which is a norm on EB .

We then have the following characterization of c∞-open sets ([21, Theo-
rem 2.13]):

Proposition 2.2. — U ⊂ E is c∞-open if and only if U ∩ EB is open
in EB for all absolutely convex bounded subsets B ⊂ E.

Remark 2.3. — The c∞-topology is in general finer than the original
topology and E is not a topological vector space when equipped with the
c∞-topology.

For Fréchet spaces and so Banach spaces, this topology coincides with
the given locally convex topology.
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Definition 2.4. — A locally convex vector space E is called bornological
if any bounded linear mapping(1) f : E → F (where F is any Banach space)
is continuous.

Lemma 2.5. — Let E be a bornological vector space. The c∞-topology
and the locally convex topology coincide (i.e. c∞E = E) if the closure of
subsets in E is formed by all limits of sequences in the subset.

Definition 2.6. — Let E and F be l.c.t.v.s. A mapping f : E → F is
called conveniently smooth if it maps smooth curves into smooth curves, i.e.
if f ◦ c ∈ C∞(R, F ) for all c ∈ C∞(R, E).

Note that in finite dimensional spaces E and F this corresponds to the
usual notion of smooth mappings as proved by Boman (see [3]).

In finite-dimensional analysis, we use the Cauchy condition, as a necessary
condition for the convergence of a sequence, to define completeness of the
space. In the infinite-dimensional framework, we use the notion of Mackey–
Cauchy sequence (cf. [21, Section 2]).

Definition 2.7. — A sequence (xn) in E is called Mackey–Cauchy if
there exists a bounded absolutely convex subset B of E such that (xn) is a
Cauchy sequence in the normed space EB.

Definition 2.8. — A locally convex vector space is said to be c∞-compl-
ete or convenient if any Mackey–Cauchy sequence converges (c∞-complet-
eness).

We then have the following characterizations:

Proposition 2.9. — A locally convex vector space is convenient if one
of the following equivalent conditions is satisfied:

(1) For every absolutely convex closed bounded set B the linear span EB
of B in E, equipped with the norm pB is complete.

(2) A curve c : R → E is smooth if and only if λ ◦ c is smooth for
all λ ∈ E′ where E′ is the dual consisting of all continuous linear
functionals on E.

(3) Any Lipschitz curve in E is locally Riemann integrable.

Example 2.10. — The vector space R∞, also denoted by R(N) or Φ, of all
finite sequences is a countable convenient vector space ([21, 47.1]) which is
not metrizable. A basis of R∞ is (ei)i∈N∗ where ei = (0, ..., 0, 1ith term1, 0, ...).

(1) A linear map between locally convex vector spaces is bounded if it maps every
bounded set to a bounded one.
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Theorem 2.11. — Let U be a c∞-open set of a convenient vector space
E and let F and G be convenient vector spaces.

(1) The space C∞(U,F ) may be endowed with a structure of convenient
vector space. The subspace L(E,F ) of all bounded linear mappings
from E to F is closed in C∞(E,F ).

(2) The category is cartesian closed, i.e. we have the natural diffeomor-
phism:

C∞(E × F,G) ' C∞(E,C∞(F,G)).

(3) The differential operator

d : C∞(E,F ) −→ C∞(E,L(E,F ))

df(x)v = lim
t→0

f(x+ tv)− f(x)
t

exists and is linear and smooth.
(4) The chain rule holds:

d(f ◦ g)(x)v = df(g(x))dg(x)v.

Proposition 2.12. — The following constructions preserve c∞-compl-
eteness: limits, direct sums, strict direct limits of sequences of closed embed-
dings.

In general, an inductive limit of c∞-complete spaces needs not be c∞-
complete (cf. [21, 2.15] for example).

According to [21, Section 27.1], a C∞-atlas modelled on a setM modelled
on a convenient space E is a family {(Uα, uα)}α∈A of subsets Uα of M and
maps uα from Uα to E such that:

• uα is a bijection of Uα onto a c∞-open subset of E for all α ∈ A;
• M =

⋃
α∈A Uα;

• for any α and β such that Uαβ = Uα ∩ Uβ 6= ∅, uαβ = uα ◦ u−1
β :

uβ(Uαβ)→ uα(Uαβ) is a conveniently smooth map.

Classically, we have a notion of equivalent C∞-atlases on M . An equiva-
lent class of C∞-atlases on M is a maximal C∞-atlas. Such an atlas defines
a topology on M which is not in general Hausdorff.

Definition 2.13. — A maximal C∞-atlas on M is called a non nec-
essary Hausdorff convenient manifold structure on M (n.n.H. convenient
manifold M for short); it is called a Hausdorff convenient manifold struc-
ture on M when the topology defined by this atlas is a Hausdorff topological
space.
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Following the classical framework, when E is a Banach space (resp. a
Fréchet space) we say that M is a Banach manifold (resp. Fréchet mani-
fold) if M is provided with a C∞- atlas (modelled on E) which generates a
Hausdorff topological space.

The notion of vector bundle modelled on a convenient space over a n.n.H.
convenient manifold is defined in a classic way (cf. ([21, 29]). Note that since
a convenient space is Hausdorff, a vector bundle modelled on a convenient
space has a natural structure of n.n.H. convenient manifold which is Haus-
dorff if and only if the base is a Hausdorff convenient manifold.

3. Direct limits of topological vector spaces

In this section the reader is referred to [4], [11] and [12].

Let (I,6) be a directed set. A direct system in a category A is a pair S =
(Xi, ε

j
i )i∈I, j∈I, i6j where Xi is an object of the category and εji : Xi → Xj

is a morphism (bonding map) where:

(1) εii = IdXi ;
(2) ∀ (i, j, k) ∈ I3, i 6 j 6 k ⇒ εkj ◦ ε

j
i = εki .

A cone over S is a pair (X, εi)i∈I where X ∈ obA and εi : Xi → X is
such that εj ◦ εji = εi whenever i 6 j.

A cone (X, εi)i∈I is a direct limit of S if for every cone (Y, θi)i∈I over S
there exists a unique morphism ψ : X → Y such that ψ ◦ εi = θi. We then
write X = lim−→S or X = lim−→Xi.

When I = N with the usual order relation, countable direct systems are
called direct sequences.

3.1. Direct limit of sets

Let S = (Xi, ε
j
i )i∈I, j∈I, i6j be a direct system of sets (we then have

A = SET).

Let U =
∐
i∈I Xi = {(x, i) : x ∈ Xi} be the disjoint union of the sets Xi

with the canonical inclusion
ıi : Xi −→ U

x 7−→ (x, i).
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We define an equivalence relation on U as follows: ıi(x) ∼ ıj(y) if there
exists k ∈ I: i 6 k and j 6 k s.t. εki (x) = εkj (y). We then have the quotient
set X = U/ ∼ and the map εi = π ◦ ıi where π : U → U/ ∼ is the canonical
quotient map. Then (X, εi) is the direct limit of S in the category SET. If
each εji is injective then so is εi, whence S is equivalent to the direct system
of the subsets εi(Xi) ⊂ X, together with the inclusion maps.

3.2. Direct limit of topological spaces

If S = (Xi, ε
j
i )i∈I, j∈I, i6j is a direct system of topological spaces and

continuous maps, then the direct limit (X, εi)i∈I of the sets becomes the
direct limit in the category TOP of topological spaces if X is endowed with
the direct limit topology (DL-topology for short), i.e. the finest topology
which makes the maps εi continuous. So O ⊂ X is open if and only if
ε−1
i (O) is open in Xi for each i ∈ I.

When S = (Xn, ε
m
n )n∈N∗,m∈N∗, n6m is a direct sequence of topological

spaces such that each εmn is injective, without loss of generality, we may
assume that we have

X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ . . .

and εn+1
n becomes the natural inclusion. Therefore S will be called an as-

cending sequence of topological spaces and simply denoted (Xn)n∈N∗ .

Moreover, if each εmn is a topological embedding, then we will say that
S is a strict ascending sequence of topological spaces (expanding sequence in
the terminology of [17]). In this situation, each εn is a topological embedding
on Xn in X = lim−→Xn.

Let us give some properties of ascending sequences of topological spaces
([12, Lemma 1.7]):

Proposition 3.1. — Let (Xn)n∈N∗ be an ascending sequence of topo-
logical spaces. Equip X =

⋃
n∈N∗ Xn with the final topology with respect to

the inclusion maps εn : Xn → X (i.e. the DL-topology). Then we have:

(1) If each Xn is T1, then X is T1.
(2) If On ⊂ Xn is open and O1 ⊂ O2 ⊂ . . . , then O =

⋃
n∈N∗ On is

open in X and the DL-topology on O = lim−→On coincides with the
topology induced by X.

(3) If each Xn is locally compact, then X is Hausdorff.
(4) If each Xn is T1 and K ⊂ X is compact, then K ⊂ Xn for some n.
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Unfortunately, in general, a direct limit of Hausdorff topological spaces is
not Hausdorff (see [18] for an example of such a situation). Sufficient condi-
tions on (Xn)n∈N∗ under which the direct limit X =

⋃
n∈N∗ Xn is Hausdorff

can be found in [16]. However, we have:

Proposition 3.2. — Let (Xn)n∈N∗ be a strict ascending sequence of
topological spaces; equip X =

⋃
n∈N∗ Xn with the DL-topology. Then we have:

(1) Assume that for each n, Xn is closed in Xn+1.
(a) If each Xn is normal then X is normal.
(b) If each Xn is Hausdorff and paracompact then X is normal.
In particular, in each previous situation, X is Hausdorff.

(2) Assume that for each n, Xn is open in Xn+1 and Hausdorff, then
X is Hausdorff.

Proof.

(1a). — See [17, Proposition 4.3(i)].

(1b). — It is well known that any Hausdorff and paracompact topolog-
ical space is normal and then such a topological space is Hausdorff.

(2). — See [17, Proposition 4.2]. �

Remark 3.3. — The direct limit of an ascending sequence (Xn)n∈N∗ is
equal to the direct limit of (Xn)n∈N∗, n>n0

Let (Xn, i
m
n )n6m, m∈N∗,n∈N∗ and (Yn, jmn )n6m, m∈N∗,n∈N∗ be two ascend-

ing sequences of topological spaces. Then assume that we are given a se-
quence of maps fn : Xn → Yn which is consistent, i.e. that we have for any
n 6 m, fm ◦ imn = jmn ◦ fn. Then these sequences induce a map f : X =
lim−→Xn → Y = lim−→Yn s.t. f ◦ in = in ◦ fn where in : Xn → X = lim−→Xn and
jn : Yn → Y = lim−→Yn are the associate inclusions respectively.

If every map fn is continuous, then the induced map f is continuous with
respect to the DL-topologies on X and Y (continuity criterion, [19]).

3.3. Direct limit of Banach spaces

Let (En)n∈N∗ be an ascending sequence of Banach spaces. It is easy to
see that we can choose a norm ‖ · ‖n on En, for n ∈ N∗, such that:

‖ · ‖n+1 6 ‖ · ‖n on En for each n ∈ N∗.

In this paper, we always make such a choice.
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Given such an ascending sequence of Banach spaces, then E =
⋃
n∈N∗ En

is called the direct limit of this sequence. The finest locally convex vector
topology making each inclusion map En → E continuous, is called the locally
convex direct limit topology and denoted LCDL-topology for short.

A convex set O ⊂ E is open in this topology if and only if O∩En is open
in En for each n ∈ N∗.

If En is a Banach subspace of En+1 for each n ∈ N∗, we have a strict
ascending sequence of Banach spaces.

Definition 3.4. — A locally convex limit of ascending sequence of Ba-
nach spaces is called an (LB)-space. If the sequence is strict we speak of
LB-space or strict (LB)-space.

Of course, an (LB)-space does not have a structure of convenient space
in general. However, since every Banach space is convenient, then each LB-
space has a structure of convenient space (see [21, Theorem 2.15]). In partic-
ular the direct limit of an ascending sequence of finite dimensional Banach
spaces has a structure of convenient space.

Note that if E = lim−→En and F = lim−→Fn are LB-spaces, then we can
identify E × F = lim−→(En × Fn) with lim−→En × lim−→En as locally convex
topological spaces (cf. [19, Theorem 4.3]) and so E×F is a convenient space
(cf. [21]).

We now consider a general situation which gives rise to a convenient
structure on a direct limit of an ascending sequence of Banach spaces.

Proposition 3.5. — Let (En)n∈N∗ be an ascending sequence of Banach
spaces. Assume that there exists an infinite subset I ⊂ N∗ such that EI =⋃
i∈I Ei = lim−→Ei is an LB-space. Then E =

⋃
n∈N∗ En = EI and E is an

LB-space.

Proof. — We set J = N∗ \ I. An index of I (resp. J) will be denoted il,
l ∈ N∗ (resp. jk, k ∈ N∗). In the category of SET, we have EI =

⋃
l∈N∗ Eil =

lim−→Eil and EJ =
⋃
k∈N∗ Ejk = lim−→Ejk . From our assumption, EI is a con-

venient space and for any il ∈ I there exists jk ∈ J such that Eil ⊂ Ejk
and conversely. Therefore we have the equality EI = Ej = E. Thus in the
category SET we have

E = lim−→Eil = lim−→Ejk .

Consider an open set O =
⋃
l∈N∗ Oil of Ei. Given any jk ∈ J , the space Ejk

is contained in some Eil0 for il0 < jk. Therefore O ∩Ejk = O ∩Oil0 . As the
inclusion ιil0ik : Ejk → Eil0 is continuous (as composition of a finite number
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of continuous inclusions), O ∩ Ejk is an open set of Ejk . It follows that the
DL-topology of E = lim−→En and EI coincide. In particular E is Hausdorff.

Of course, the algebraic structure of vector space on each set E, Ei coin-
cide and then E and EI have the same convex sets. As a set, O is an open
set of the LCDL-topology on E if and only if O is convex and O ∩ En is
open in En for all n ∈ N∗. Again, as each Ejk is contained is some Eil0 for
some il0 > jk, it follows that O is an open set of the LCDL-topology on E
if and only if O is an open set for LCDL-topology on EI . It follows that
the LCDL-topology on E and EI also coincide. Finally, the locally convex
vector spaces EI and E have the same convex bounded sets. It follows that
E is a convenient space with the same structure as EI and also the same
c∞-topology. �

Lemma 3.6. — If E = lim−→En is an LB-space, then for the LCDL-
topology we have:

(1) E is Hausdorff and bounded regular (i.e. every bounded subset of E
is contained in some En).

(2) Let f : E → F be a linear map where F is a Banach space. The
following properties are equivalent:
(a) f is bounded;
(b) each restriction fn of f to En is continuous;
(c) f is continuous.

Proof.

(1). — As E is endowed with a convenient structure, it must be Haus-
dorff. On the other hand, since E is an LB-space, it must be bounded regular
(see for example [27]).

(2a) ⇒ (2b). — If f is bounded, then its restriction fn of f to En is
bounded, so fn : En → F is continuous.

(2b)⇒ (2c). — Assume that each restriction fn of f to En is continuous.
To prove that f is continuous, it is sufficient to show that for any ball B(0, r)
in F , then f−1(B(0, r)) is an open convex set of E. But we have

f−1(B(0, r)) =
⋃
n∈N∗

f−1
n (B(0, r)).

As each fn is continuous, Un = f−1
n (B(0, r)) is an open set of En. Moreover,

Un ⊂ Un+1. On the other hand, as B(0, r) is convex, so is Un. There U =
f−1(B(0, r)) =

⋃
n∈N∗ Un is also convex. So U is an open set of E (relative

to the LCDL-topology).

(2c)⇒ (2a). — Assume now that f is continuous and consider a bounded
set B of E. From part (1), B is contained in some En. But as the inclusion
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of En in E is continuous, fn is continuous and so f(B) = fn(B) is bounded
in F . �

Proposition 3.7. — On an LB-space E = lim−→En, the DL-topology co-
incides with the c∞-topology.

Proof. — Let B be an absolutely convex bounded set of E. From Lem-
ma 3.6, B is contained in some En and then EB is a vector subspace of
En equipped with the Minkowski norm pB . The closed unit ball Bn in En
is also an absolutely convex bounded set and there exists α > 1 such that
B ⊂ α.Bn. Remark that if pn is the given norm on En, then pn is the
Minkowski functional associated to Bn. If v ∈ EB , then v

pB(v) belongs to
α.Bn; so we get

pn 6 αpB .

Therefore the inclusion of EB in En is continuous. Let U be an open set of
the DL-topology on E. Then for any n ∈ N∗, U ∩ En is open in En. Thus,
given any absolutely convex bounded set B of E, if EB is contained in En,
then U ∩EB = U ∩En ∩EB is open in EB . It follows from Proposition 2.2
that U is a c∞-open.

Conversely, if U is a c∞-open, as En = EBn and the norm pBn is the
given norm on En, again from Proposition 2.2, it follows that U is an open
set of the DL-topology on E. �

Remark 3.8. — In Proposition 3.7, the fact that an LB-space is regular
is essential. More generally, if an (LB)-space is convenient and bounded
regular, such a result is also true. However, for the sake of simplicity, we
limit ourselves to the LB-space context.

Recall that from the classical differential calculus in locally convex topo-
logical spaces, for r ∈ N∪ {∞}, the map f is of class Cr (Cr-map for short)
if it is continuous and, for all k ∈ N such that k 6 r, the iterated direc-
tional derivatives dkf(x, y1, . . . , yk) := Dy1 . . . Dykf(x) exist for all x ∈ U
and y1, . . . , yk ∈ E and the associated map dkf : U ×Ek → F is continuous.
When r =∞ we say that f is smooth.

We have the following link between C∞-smoothness on each member En
and conveniently smoothness on E for an LB-space (cf. [12, Lemma 1.9]):

Lemma 3.9. — Let E = lim−→En be an LB-space, U ⊂ E = lim−→En an
open set of E (for the DL-topology) and Un = U ∩ En the associated open
set in En. Given a map f : U → F where F is a convenient space, f is
conveniently smooth if and only if fn = f|U∩En is C∞ for each n ∈ N∗.

Proof. — This proof is an adaption of the proof of Lemma 1.9 of [12].
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First, note that on an open set of a Banach space, we have equivalence
between conveniently smoothness and C∞-differentiability (cf. [3]).

Assume that f is conveniently smooth on U . Given any smooth curve
γ : R→ U ∩En, then γ is a smooth curve in U , so f ◦γ is smooth. As U ∩En
is an open set of a Banach space, it follows that fn = f|U∩En is C∞.

Conversely(2) assume that fn = f|U∩En is C∞ and let γ : R → U be a
smooth curve. Fix a < b and k ∈ N. From the bounded regularity of E, it
follows that there exists N ∈ N, N > n, such that all the sets{

(γ(j)(t)− γ(j)(s))
s− t

: (s, t) ∈ ]a, b[× ]a, b[, s 6= t

}
and γ(j)(]a, b[)

where γ(j) : R→ E is the jth derivative of γ, are contained and bounded in
EN for all j = 0, . . . , k. Since γ(j)

|]a,b] is a Lipschitz curve in the Banach space
EN , so there exists a primitive ηj on ]a, b[. Thus ηj and γ(j−1)

|]a,b] have the same
derivative γ(j)

|]a,b] and so these curves differ by a constant for all j = 1, . . . , k.
We conclude that γ(j−1) : ]a, b[ → EN is a C1-curve whose derivative is
γ

(j)
|]a,b]. As a consequence, γ|]a,b] is a Lipk-curve in EN . We can choose b− a

small enough such that γ(]a, b[) ⊂ U ∩En ⊂ U ∩EN . Since the restriction of
f to U ∩En is smooth, it follows that, for any k ∈ N, f ◦γ : ]a, b[→ R is Lipk
for any a < b where b−a is small enough. From Proposition 2.1, we get that
f ◦γ is smooth in E and so f is conveniently smooth (cf. Definition 2.6). �

Proposition 3.10. — Let E = lim−→En and F = lim−→Fn be LB-spaces
and U1 ⊂ · · · ⊂ Un ⊂ . . . an ascending sequence (Un) of open sets of (En)
and set U =

⋃
n∈N∗ Un. Assume that we have a sequence of fn : Un =

U ∩ En → Fn which are C∞.

(1) Then f = lim−→ fn is a conveniently smooth map from U to F .
(2) Let fn : En → Fn be a sequence of continuous linear maps; then

f is a linear map from E to F which is conveniently smooth and
continuous for the DL-topologies.

Proof.

(1). — According to Proposition 3.1, U is an open set of E and U =
lim−→Un. So f = lim−→ fn : U → F is a well defined continuous map (for the
DL-topology). From Lemma 3.9, f is then a conveniently smooth map from
U to F .

(2) We are grateful to the anonymous referee for this part of the proof.
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(2). — Under the assumption of (2), the associated map f = lim−→ fn
is linear and continuous. Now, as fn is continuous linear between Banach
spaces, fn must be C∞ and by part (1), f must be conveniently smooth. �

4. Direct limit of manifolds

4.1. Direct limit of ascending sequence of Banach manifolds

Let M be a n.n.H. convenient manifold modelled on a convenient space
E and TM its kinematic tangent bundle (cf. [21, 28.1]). We adapt to our
context the notion of weak submanifold used in [26].

Definition 4.1. — A weak submanifold of M is a pair (N,ϕ) where
N is a n.n.H. convenient connected manifold (modelled on a convenient
space F ) and ϕ : N →M is a conveniently smooth map such that:

• there exists a continuous injective linear map i : F → E (for the
structure of l.c.v.s. of E)
• ϕ is an injective conveniently smooth map and the tangent map
Txϕ : TxN → Tϕ(x)M is an injective continuous linear map with
closed range for all x ∈ N .

Note that for a weak submanifold ϕ : N →M , on the subset ϕ(N) of M ,
we have two topologies:

• the induced topology from M ;
• the topology for which ϕ is a homeomorphism from N to ϕ(N).

With this last topology, via ϕ, we get on ϕ(N) a n.n.H. convenient mani-
fold structure modelled on F . Moreover, the inclusion from ϕ(N) into M is
continuous as a map from the manifold ϕ(N) to M . In particular, if U is an
open set ofM , then ϕ(N)∩U is an open set for the topology of the manifold
on ϕ(N). Therefore, if M is Hausdorff so is ϕ(N).

Lemma 4.2. — LetM = (Mn)n∈N∗ be an ascending sequence of Banach
C∞-manifolds, where Mn is modelled on the Banach space En and where
the inclusion εn+1

n : Mn →Mn+1 is a C∞ injective map such that εn+1
n (Mn)

is a weak submanifold of Mn+1.

(i) There exist injective continuous linear maps ιn+1
n : En → En+1 such

that (En)n∈N is an ascending sequence of Banach spaces.
(ii) Assume that for x ∈ M = lim−→Mn, there exists a family of charts

(Un, φn) of Mn, for each n ∈ N∗, such that:
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• (Un)n∈N∗ is an ascending sequence of chart domains;
• φn+1 ◦ εn+1

n = ιn+1
n ◦ φn.

Then U = lim−→Un is an open set of M endowed with the DL-topology
and φ = lim−→φn is a well defined map from U to E = lim−→En. More-
over, φ is a continuous homeomorphism from U onto the open set
φ(U) of E.

Note that, from Remark 3.3, the direct limit of M = (Mn)n∈N∗ is the
same as the direct limit of (Mn)n∈N∗,n>n0 . The result of part (ii) of this
Lemma is still true if there exists an integer n0 such that the assumptions
of part (ii) are satisfied for all n > n0.

Proof.

(i). — As (Mn, ε
n+1
n ) is a weak submanifold ofMn, there exists an injec-

tive continuous linear map in+1
n : En → En+1 for each n. Therefore (En)n∈N∗

is an ascending sequence of Banach spaces.

(ii). — Under the assumption of part (ii), we set Vn = ϕn(Un). First,
from Proposition 3.1, as Vn is an open of E, we have U =

⋃
n∈N∗ Un = lim−→Un

and V =
⋃
n∈N∗ Vn = lim−→Vn. Moreover, U (resp V ) is an open neighborhood

of x (resp. y). According to the continuity criterion, f = lim−→ fn is a con-
tinuous map from U to V which is injective and surjective. As each fn is a
homeomorphism, we can apply the same arguments to the family f−1

n , which
ends the proof. �

Definition 4.3. — We say that an ascending sequenceM = (Mn)n∈N∗
of Banach C∞-manifolds has the direct limit chart property at x ∈ M =
lim−→Mn if (Mn)n∈N∗ satisfies the assumptions of Lemma 4.2(ii).

Once more, note that the direct limit of M = (Mn)n∈N∗ is the same as
the direct limit of (Mn)n∈N∗,n>n0 (cf. Remark 3.3).

Example 4.4. — The existence of a direct limit chart is a natural require-
ment which is satisfied in many examples. We give some of them below.

(1) According to Theorem 3.1 of [12], if (Mn)n∈N∗ is an ascending se-
quence of C∞ finite dimensional manifolds, then such a sequence
has the direct limit chart property at any x ∈M .

(2) If M is a compact analytic manifold, it is well known that the
set Diff(M) of analytic diffeomorphisms of M can be described
as a direct limit of an ascending sequence of Banach manifolds
(Mn)n∈N∗ which has the direct limit chart property for any point
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of Diff(M). Note that, in this case, (Mn)n∈N∗ is modelled on a se-
quence (En)n∈N∗ of Banach spaces whose direct limit E is a Silva
space(3).

(3) In [8], the reader can find examples of Lie groups which can be de-
scribed as direct limits of ascending sequences of Banach manifolds
(Mn)n∈N∗ modelled on sequences of Banach spaces lp whose direct
limits E are not Silva spaces.

(4) In the introduction of [14], one can also find many examples of Lie
groups which have the direct limit chart property at each point.

(5) Let (Mn)n∈N∗ and (Nn)n∈N∗ be two ascending sequences of Ba-
nach manifolds which have the direct limit chart property at x ∈
M = lim−→Mn and at y ∈ N = lim−→Nn respectively. Then (Mn ×
Nn)n∈N∗ has the direct limit chart property at (x, y) ∈ M × N =
lim−→(Mn × Nn). Therefore, given any Banach manifold M and any
ascending sequence (Nn)n∈N∗ of C∞ finite dimensional manifolds,
(M × Nn)n∈N∗ has the direct limit chart property at any point of
M ×N = lim−→(M ×Nn).

We now give a general context under which an ascending sequenceM =
(Mn)n∈N∗ of Banach C∞-manifolds has the direct limit chart property at
each point of M = lim−→Mn.

Proposition 4.5. — Let M = (Mn)n∈N∗ be an ascending sequence of
Banach C∞-manifolds modelled on the ascending sequence (En)n∈N∗ . We
assume that:

(i) En is a complemented subspace in En+1 for each n ∈ N∗;
(ii) there exists a linear connection(4) on TMn for each n ∈ N∗.

Then E = lim−→En is an LB-space and M has the direct limit chart property
at each point of M = lim−→Mn.

Example 4.6. — By application of Proposition 4.5, M = (Mn)n∈N∗ has
the direct limit chart property at each point in the following cases:

(1) Each space Mn is a paracompact finite dimensional manifold
(cf. [12]).

(2) Each manifoldMn is a smooth paracompact(5) Hilbert submanifold
of Mn+1.

(3) A locally convex limit of ascending sequence of Banach spaces where each inclusion
is compact is called a Silva space or a (DFS)-space (for dual of Fréchet Schwartz space).

(4) For the definition of a connection on a Banach manifold see for instance [9]. For
more details see also Subsection 5.2.

(5) i.e. Mn is paracompact and every locally finite open covering of Mn admits a
conveniently smooth partition of unity subordinated to it.
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(3) Each manifold Mn is a smooth paracompact Banach submanifold
of Mn+1.

The proof of Proposition 4.5 requires the following Lemma:

Lemma 4.7. — Let N1 be a Banach complemented immersed submani-
fold, modelled on F1, of a Banach manifold N , modelled on F with F1 ⊂ F .
Assume that there exists a linear connection on TN . Given any chart (U1, φ1)
of x in N1 such that U1 is a contractible set, there exists a chart (U,Φ) of
x ∈ N1 such that U is contractible, U ∩N1 = U1 and Φ|U1 = φ1.

Proof. — LetN1 be an immersed complemented submanifold of a Banach
manifold N . If N1 (resp. N) is modelled on F1 (resp. F ), there exists a
Banach subspace F2 of F such that F = F1 ⊕ F2.

Assume that there exists a linear connection on TN . Therefore we have
an exponential map Exp : O ⊂ TN → N where O is an open neighborhood
of the zero section in TN . Note that Exp|TxN is a local diffeomorphism.

Choose a chart (U1, φ1) of N1 around x such that U1 is a contractible set.
Now, as N1 is immersed in N , for each z ∈ U1, there exists a chart (Uz,Φz)
of N such that

Φz(Uz ∩N1) = φ1(Uz ∩ U1)× {0F2} and Φz|Uz∩U1
= φ1|Uz∩U1

Then U =
⋃
z∈U1

Uz is an open neighborhood containing U1 and we have

U ∩N1 =
⋃
z∈U1

(Uz ∩N1) = U1.

Therefore U1 is a closed submanifold of U .

As U1 is a contractible set, the restriction of TN to U1 is trivial (cf. [1,
Theorem 3.4.35]). Therefore we have a diffeomorphism Θ : TN|U1 → U1×F .
In the trivial bundle U1 × F , we can consider the subbundle U1 × F2 and
we have TN|U1 = TU1 ⊕ Θ−1(U1 × F2). As φ1(U) is an open set of F1 and
F1 is paracompact, so is U1. Therefore by same arguments used in the proof
of Theorem 5.1 of [22, Chapter IV], we can build a diffeomorphism Ψ from
an open neighborhood U of the zero section of Θ−1(U1 × F2) on an open
neighborhood U of U1 in N . Note that U is a fibration on the zero section
of Φ−1(U1×F2). Moreover, from the property of Exp, we can choose U such
that each fiber is a contractible set. We denote by Φ the composition defined
by Φ−1 = Θ ◦Ψ−1 ◦ ((φ1)−1 × IdF2). As Exp|TuN (0)(u) = u we finally have
Φ−1(v, 0) = (φ1)−1(v). �

Proof of Proposition 4.5. — We have already seen that E = lim−→En is
an LB-space (cf. Proposition 2.12).
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Now consider any point x ∈ M = lim−→Mn. Then x belongs to some En.
Let l0 be the first integer l such that x belongs to Ml. Assume that for each
integer l0 6 l 6 k we have the following property: there exists a family of
charts (Un, φn) of Mn, for each l0 6 n 6 l, such that:

• (Un)l06n6l is an ascending sequence of chart domains around x;
• φn+1|Un = φn for all l0 6 n < l.

From Lemma 4.7, this assumption is true for l = l0 +1. The proof is obtained
by induction using Lemma 4.7. �

Now we can prove the following result which generalizes [12, Theorem 3.1].

Theorem 4.8. — Let (Mn)n∈N∗ be an ascending sequence of Banach
C∞-manifolds, modelled on the Banach spaces En. Assume that (Mn)n∈N∗
has the direct limit chart property at each point x ∈ M = lim−→Mn and
E = lim−→En is an LB-space. Then there is a unique n.n.H. convenient man-
ifold structure on M = lim−→Mn modelled on the convenient space E such
that the topology associated to this structure is the DL-topology on M . In
particular, for each n ∈ N∗, the canonical injection εn : Mn → M is an in-
jective conveniently smooth map and (Mn, εn) is a weak submanifold of M .
Moreover, if each Mn is locally compact or is open in Mn+1 or is a paracom-
pact Banach manifold closed in Mn+1, then M = lim−→Mn is provided with a
Hausdorff convenient manifold structure.

A direct application of this theorem gives rise to the following result:

Corollary 4.9. — Let (Mn)n∈N∗ be an ascending sequence of Banach
paracompact C∞-manifolds where Mn is closed in Mn+1. If the sequence
(Mn)n∈N∗ satisfies the assumptions of Proposition 4.5, then M = lim−→Mn,
provided with the DL- topology, has a unique structure of Hausdorff conve-
nient manifold modelled on an LB-space.

Proof of Theorem 4.8. — As in Lemma 4.2(ii), we consider the set A of
all sequences of charts {(Uαn , φαn)n∈N∗}α∈A of (Mn)n∈N∗ such that (Un) is an
ascending sequence of chart domains. We set V αn = φαn(Uαn ), Uα = lim−→Uαn
and φα = lim−→φαn. From Lemma 4.2(ii), φα is a homeomorphism from Uα to
the open set V α = φα(Uα) = lim−→V αn of E. Then Uα and V α are open sets of
the DL-topology onM and E respectively (cf. Proposition 3.1(2)). From our
assumption, A is then a topological atlas of M modelled on the convenient
space E. Note that, from Proposition 3.7, each V α is also a c∞-open set.

Let us prove that the change of charts are conveniently smooth diffeo-
morphisms. Consider two charts (Uα, φα) and (Uβ , φβ) around x ∈ M . We
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consider
τβαn = φβn ◦ (φαn)−1 : φαn(Uαn ∩ Uβn ) −→ φβn(Uαn ∩ Uβn ).

For each n ∈ N∗, the pairs (Uαn , φαn) and (Uβn , φβn) are charts of Mn and the
intersection of their domains is not empty. It follows that the map τβαn is a
C∞ local diffeomorphism of En. But the construction of Uα and Uβ implies
that Uα ∩ Uβ is the direct limit of (Uan ∩ Uβn )n∈N∗ in M . It follows that
φα(Uα ∩ Uβ) is the direct limit of φαn(Uαn ∩ Uβn )n∈N∗ . In the same way, we
have φα(Uα ∩ Uβ) = lim−→φαn(Uαn ∩ Uβn ). Therefore we get a direct limit map
τβα = lim−→ τβαn from the open set φα(Uα∩Uβ) onto the open set φβ(Uα∩Uβ)
of E. Again the sets φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) are c∞-open sets of E.
As each τβαn is a C∞ diffeomorphism of En, Lemma 3.9 implies that ταβ is a
conveniently smooth diffeomorphism from φα(Uα ∩ Uβ) onto φβ(Uα ∩ Uβ).
Therefore we obtain that A is convenient atlas onM. Note that the topology
ofM defined by such an atlas is exactly the DL-topology onM . Therefore, if
Mn locally compact, then M is Hausdorff from Proposition 3.1. In the same
way, from Proposition 3.2, if Mn is open in Mn+1 or is paracompact and
closed in Mn+1 for each n, then M is Hausdorff. Thus in each of the pre-
vious particular cases, M is provided with a Hausdorff convenient manifold
structure.

Now we prove the uniqueness of this convenient structure. Assume that Y
is a convenient manifold structure modelled on the convenient vector space
E and hn : Mn → Y a C∞ map for each n ∈ N∗ s.t. (Y, (hn)n∈N∗) is a cone
over S. Then there is a uniquely determined continuous map h : M → Y
s.t. h|Mn

= hn. Let x ∈M ; we can find a chart (U,ϕ) around x in the atlas
A where f = lim−→ fnU for charts ϕn : Un → En. Let ψ : W ⊂ Y → V be
a chart for Y (W is an open set of Y ). Then O = (h ◦ ϕ−1)−1(W ) is an
open set of U ⊂ E and On = O ∩ En is open in En for each n. Consider
g = ψ ◦ h ◦ ϕ−1|VO : O → V . Then g|On = ψ ◦ hn ◦ ϕ−1

n |VOn : On → V is C∞
for each n ∈ N∗. Hence g is c∞ (cf. Proposition 3.10), so is h on the open
neighborhood U of x and hence on all of M because x is arbitrary. Thus
(M, (εn)n∈N∗) = lim−→S in the category of c∞-manifolds. The uniqueness of a
convenient structure of manifold on M follows from the universal property
of direct limits. �

4.2. Direct limit of Lie groups

The reader is referred to [14].

Interesting infinite-dimensional Lie groups often appears as direct limits
G =

⋃
n∈N∗ Gn of ascending Lie groups G1 ⊂ G2 ⊂ . . . where the bonding
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maps (inclusion maps εn+1
n : Gn → Gn+1) are smooth homomorphisms (e.g.

the group Diffc(M) of compactly supported diffeomorphisms of a σ−compact
smooth manifold M or the test function groups C∞c (M,H) of compactly
supported smooth maps with values in a finite-dimensional Lie group H).

When the Lie groups Gn are finite dimensional it is well known that the
direct limit lim−→Gn can be endowed with a structure of Lie group (see [12]).

Here we give conditions on the direct sequences G = (Gn, εmn )n,m∈N∗, n6m
of Lie groups in order to obtain a structure of Lie group on their direct limit.

We first recall the essential notion of candidate for a direct limit chart:

Definition 4.10. — Let G =
⋃
n∈N∗ Gn be the union of an ascending

sequence of C∞-Lie groups Gn where the inclusion maps εmn : Gn → Gm are
C∞-homomorphisms and Gn is a subgroup of G.

We say that G has a candidate for a direct limit chart if there exist charts
φn : Gn ⊃ Un → Vn ⊂ gn of Gn around the identity for n ∈ N∗(where gn
stands for the Lie algebra of Gn) such that Un ⊂ Um and φm|Un = L(imn )◦φn
if n 6 m and V =

⋃
n∈N∗ Vn is open in the locally convex direct limit lim−→ gn

which we assume to be Hausdorff.

Glöckner obtains the following result (cf. [14, Proposition 1.4.3]):

Proposition 4.11. — Let G =
⋃
n∈N∗ Gn be a group which is the union

of an ascending sequence of C∞-Lie groups. Assume that G has a candidate
φ : U → V ⊂ lim−→ gn for a direct limit chart and assume that one of the
following conditions is satisfied:

(i) Gn is a Banach Lie group for each n ∈ N∗ and the inclusion map
gn → gm is a compact linear operator for all n < m;

(ii) gn is a kω−space for each n ∈ N∗.

Then on G = lim−→Gn there exists a unique C∞-Lie group structure making
φ|W a direct chart limit for G around 1, where W is an open neighbourhood
of 1 contained in U .

Glöckner gives also results in the convenient setting where V =
⋃
n∈N∗ Vn

is a c∞-open set in lim−→ gn endowed with a suitable locally convex topology
(cf. [13, Remark 14.8]):

Proposition 4.12. — Let G =
⋃
n∈N∗ Gn be a group which is the union

of an ascending sequence of (Hausdorff) convenient Lie groups. Equip the
vector space lim−→ gn with the locally convex vector topology associated with
the direct limit bornology which is assumed to be Hausdorff. We require that
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G admits a candidate for a direct limit chart in the convenient sense and
that each bounded subset in g is a bounded subset of some gn. Then G may
be endowed with a structure n.n.H. convenient Lie group

This criterion permits to obtain:

Theorem 4.13. — Let G =
⋃
n∈N∗ Gn be a group which is the union of

an ascending sequence of Banach Lie groups. Assume that the direct limit
g = lim−→ gn of the ascending sequence (gn)n∈N∗ of associated Lie algebras is
an LB-space. If G admits a candidate for a direct limit chart, then G can
be endowed with a structure of n.n.H. convenient Lie group modelled on the
LB-space g.

Therefore, Proposition 4.11(ii) can be seen as a corollary of this theorem.
According to Proposition 3.5, if G admits a candidate for a direct limit chart
then assume that there exists a countable subset I ⊂ N∗ such that the direct
limit gI = lim−→{gi, i ∈ I} is an LB-space, then G is endowed with a structure
of convenient Lie group modelled on the LB-space g. Now since gn is a
kω−space for each n ∈ N∗, by direct chart limit property and using the fact
that direct limits of ascending sequences of locally kω-spaces are locally kω-
spaces and so are Hausdorff (see [14]), the topology on G must be Hausdorff.

On the other hand, the reader can find the following criterion in [8]:

Theorem 4.14. — Let G = (Gn)n∈N∗ be an ascending sequence of Ba-
nach Lie groups such that all inclusion maps jn : Gn → Gn+1 are analytic
group morphisms and assume that we have the following properties:

(1) For each n ∈ N∗, there exists a norm ‖ · ‖n on the Lie algebra gn
defining its Banach space structure, such that its Lie bracket satisfies
the inequality ‖[x, y]‖n 6 ‖x‖n‖y‖n for all x and y in gn and such
that the bounded linear operator L(jn) : gn → gn+1 has a norm
operator bounded by 1;

(2) The locally convex structure of vector space g = lim−→ gn is Hausdorff;
(3) The map expG =

⋃
n∈N∗ expGn :

⋃
n∈N∗ gn →

⋃
n∈N∗ Gn is injective

on some neighborhood of 0.

Then G = lim−→Gn =
⋃
n∈N∗ Gn has an analytic structure of Lie group mod-

elled on g and expG is an analytic diffeomorphism from some neighborhood
of 0 to a neighborhood of 1 ∈ G.

We end this subsection with an application of this result(6) :

(6) This result is certainly well known by specialists but it is an easy corollary of
Theorem 4.14 and so we give a proof here.
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Theorem 4.15. — Let (En)n∈N∗ be an ascending sequence of Banach
spaces such that En is a complemented Banach subspace of En+1. Then
E =

⋃
n∈N∗ En is an LB-space and L(E) =

⋃
n∈N∗ L(En) is also an LB-

space, where L(En) is the Banach space of continuous linear operators of
En. Moreover, GL(E) =

⋃
n∈N∗ GL(En) has a structure of convenient Lie

group modelled on L(E), where GL(En) is the Banach Lie group of linear
continuous automorphisms of En.

For the proof of this theorem we need the following lemma:

Lemma 4.16. — Let E and F be two Banach spaces such that E is
a complemented Banach subspace of F . Given a norm ‖ · ‖E on E, there
exists a norm ‖ · ‖F on F and an embedding λ : L(E) → L(F ) which is
an isometry with respect to the corresponding operator norms on L(E) and
L(F ) respectively.

Moreover, we have [λ(T ), λ(T ′)] = λ([T, T ′]) where, as classically, the
bracket is given by [T, T ′] = T ◦ T ′ − T ′ ◦ T .

Proof. — Let E′ be a subspace of F such that F = E ⊕ E′. We endow
E′ with a norm ‖ · ‖′ and let ‖ · ‖F be the norm on F defined by ‖x‖F =
‖x1‖E + ‖x2‖′ if x = x1 + x2 with x1 ∈ E and x2 ∈ E′. Denote by λ the
natural inclusion of E in F . By construction, λ is an isometry. We define
Λ : L(E)→ L(F ) where Λ(T ) is the operator on F whose restriction to E is
T and whose restriction to E′ is the null operator. Clearly Λ is injective and
the operator norm of Λ is 1. Indeed if Π is the projection of F on E with
kernel E′, we have

‖Λ(T )(x)‖F
‖x‖F

6
‖T ◦Π(x)‖F
‖Π(x)‖E

6 ‖T‖L(E).

We deduce ‖Λ(T )‖L(F ) 6 ‖T‖L(E). On the other hand

‖T‖L(E) = sup
{
‖T (x)‖E
‖x‖E

, x ∈ E
}

6 sup
{
‖T (x)‖E
‖x‖F

, x ∈ F
}

= sup
{
‖Λ(T )(x)‖F
‖x‖F

, x ∈ F
}
.

Finally, it is easy to verify that we have Λ(T ◦ T ′) = Λ(T ) ◦ Λ(T ′), which
ends the proof. �

Proof of Theorem 4.15. — According to Lemma 4.16, by induction, we
can build a sequence of norms ‖ · ‖n on each En and an isometry Λn :
L(En) → L(En+1). For simplicity, we identify L(En) with Λn(L(En)) in
L(En+1). Then L(En) is a Banach subspace of L(En+1) with the induced
topology. It follows that G =

⋃
n∈N L(En) = lim−→L(En) is a convenient space.
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On the other hand, for the operator norm in each L(En) we have

‖[T, T ′]‖L(En) 6 2‖T‖L(En)‖T ′‖L(En)

On each L(En), we consider the norm νn = 2‖ · ‖L(En). Then νn defines the
topology of L(En). The inclusion Λn is still an isometry and we have

νn([T, T ′]) 6 νn(T )νn(T ′).

Given T ∈ G, then T belongs to some L(En); we then have

expG(T ) =
∑
k∈N

T k

k!

On one hand, classically, the exponential map expn : L(En) → GL(En)
is an analytic diffeomorphism over the ball Bn(0, ln(2)) (relative to the
norm νn on L(En)) in GL(En). On the other hand, we have the relations:
expn+1|L(En) = expn and Bn+1(0, 1

2 ln(2))
⋂
En = Bn(0, 1

2 ln(2)). It follows
that expG is injective on

⋃
n∈NBn(0, 1

2 ln(2)). Therefore all the assumptions
of Theorem 4.14 are satisfied and we get the announced result. �

4.3. Direct limit of Banach vector bundles

Definition 4.17. — A sequence (En, πn,Mn)n∈N∗ of Banach vector
bundles is called a strong ascending sequence of Banach vector bundles if
the following assumptions are satisfied:

(A) M = (Mn)n∈N∗ is an ascending sequence of Banach C∞-manifolds,
where Mn is modelled on the Banach space Mn such that Mn is a
complemented Banach subspace of Mn+1 and the inclusion εn+1

n :
Mn →Mn+1 is a C∞ injective map such that (Mn, ε

n+1
n ) is a weak

submanifold of Mn+1 ;
(B) The sequence (En)n∈N∗ is an ascending sequence such that the se-

quence of typical fibers (En)n∈N∗ of (En)n∈N∗ is an ascending se-
quence of Banach spaces such that En is a complemented Banach
subspace of En+1;

(C) For each n ∈ N∗, πn+1 ◦λn+1
n = εn+1

n ◦πn where λn+1
n : En → En+1

is the natural inclusion;
(D) Any x ∈ M = lim−→Mn has the direct limit chart property for (U =

lim−→Un, φ = lim−→φn);
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(E) For each n ∈ N∗, there exists a trivialization Ψn : (πn)−1(Un) →
Un × En such that the following diagram is commutative:

(πn)−1(Un)

Ψn
��

λn+1
n // (πn+1)−1(Un+1)

Ψn+1

��
Un × En

(εn+1
n ×ιn+1

n ) // Un+1 × En+1.

For example, the sequence (TMn, πn,Mn)n∈N∗ is a strong ascending se-
quence of Banach vector bundles whenever (Mn)n∈N∗ is an ascending se-
quence which has the direct limit chart property at each point of x ∈ M =
lim−→Mn whose model Mn is complemented in Mn+1.

Proposition 4.18. — Let (En, πn,Mn)n∈N∗ be a strong ascending se-
quence of Banach vector bundles. We have:

(1) lim−→En has a structure of n.n.H convenient manifold modelled on
the LB-space lim−→Mn × lim−→En which has a Hausdorff convenient
structure if and only if M is Hausdorff.

(2) (lim−→En, lim−→πn, lim−→Mn) can be endowed with a structure of conve-
nient vector bundle whose typical fiber is lim−→En and whose structural
group is a metrizable complete topological group, projective limit of
a sequence of Banach–Lie groups.

Proof. —

(1). — Consider (x, v) in some En; in particular x belongs to Mn.
According to the assumptions (C) and (D), there exists a chart (U, φ) of
M = lim−→Mi around x where φ : U =

⋃
i>n Ui → V =

⋃
i>n φi(Ui),

(Ui, φi) being a chart around xi and Vi = φi(Ui) ⊂ Mi. A local trivial-
ization Ψi : π−1

i (Ui) → Ui × Ei gives rise, via the chart φi : Ui → Vi, to a
chart ψi : π−1

i (Ui)→ Vi × Ei ⊂Mi × Ei.

From the assumption (E), we get the commutativity of the diagram

(πi)−1(Ui)

Ψi
��

λj
i // (πj)−1(Uj)

Ψj
��

Ui × Ei
(εj
i
×ιj
i
)
// Uj × Ej

The previous arguments imply that the sequence of Banach manifolds
{En}n∈N∗ has the direct limit chart property at any point (x, v) ∈ lim−→En.
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Therefore, from Theorem 4.8, there exists a unique structure of n.n.H. con-
venient manifold on E = lim−→En whose topology coincides with the DL-
topology on E. In particular this structure is Hausdorff if and only if M
is so.

(2). — The main difficulty is to define the structural group(7), say G(E)
where E = lim−→En.

Let E1 ⊂ E2 ⊂ . . . be the direct sequence of complemented Banach
spaces associated to the direct sequence E1 ⊂ E2 ⊂ . . . ; so there exist
Banach subspaces E′1,E′2, . . . such that:{

E1 = E′1,
∀ i ∈ N∗,Ei+1 w Ei × E′i+1.

For i, j ∈ N∗, i 6 j, we have the injection
ιji : Ei w E′1 × · · · × E′i −→ Ej w E′1 × · · · × E′j

(x′1, . . . , x′i) 7−→ (x′1, . . . , x′i, 0, . . . , 0)

Any An+1 ∈ GL(En+1) is represented by
(
An Bn+1
A′n B

′
n+1

)
where An ∈ L(En,En),

A′n ∈ L(En,E′n+1), Bn+1 ∈ L(E′n+1,En) and B′n+1 ∈ L(E′n+1,E′n+1).

The group
GL0(En+1|En) = {A ∈ GL(En+1) : A(En) = En}

can be identified with the Banach–Lie sub-group of operators of type(
An Bn+1
0 B′n+1

)
(cf. [5]).

The set
Gn = {An ∈ GL(En) : ∀ k ∈ {1, . . . , n− 1}, An(Ek) = Ek}

can be endowed with a structure of Banach–Lie subgroup.

An element An of Gn can be seen as

An =



A1 B2 B3 B4
Bi

Bn

0 B′2
0 B′3

0 B′4
. . .

0 B′i
. . .

0 B′n


(7) As the referee pointed out, the structural group is much larger than the direct limit

of the linear groups GL(En).
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For 1 6 i 6 j 6 k, we consider the following diagram

Ek
Ak // Ek

Pkj
��

Ej
Aj //

ιkj

OO

Ej

P j
i

��
Ei

Ai //

ιj
i

OO

Ei

where P ji : Ej → Ei is the projection along the direction E′i+1 ⊕ · · · ⊕ E′j .

The map
θji : Gj −→ Gi

Aj 7−→ P ji ◦Aj ◦ ι
j
i

is perfectly defined and we have:

(θji ◦ θ
k
j )(Ak) = θji [θ

k
j (Ak)] = θji (P

k
j ◦Aj ◦ ιkj ) = P ji ◦ P

k
j ◦Aj ◦ ιkj ◦ ι

j
i .

Because P ji ◦ P kj = P ki (projective system) and ιkj ◦ ι
j
i = ιki (inductive

system), we have

(θji ◦ θ
k
j )(Ak) = P ki ◦Aj ◦ ιki = θki (Ak)

So (Gi, θji )i6j is a projective system of Banach–Lie groups and the pro-
jective limit G(E) = lim←−Gn can be endowed with a structure of metrizable
complete topological group.

From assumptions (C) and (D) it follows that we have a well defined
conveniently smooth projection π = lim−→πi : lim−→Ei → lim−→Mi given by
π(x, v) = x and, with the previous notations, we also have lim−→(πi)−1(Ui) =
π−1(lim−→Ui).

The map Ψi : π−1
i (Ui)→Ui×Ei can be written Ψi(yi, ui)=(yi, Ψ̃i(yi)(ui))

where ui 7→ Ψ̃i(yi)(ui) is an isomorphism of Banach spaces from π−1
i (yi)

to Ei.

Consider an atlas A = {(Uα = lim−→Uαi , φα = lim−→φαi )}α∈A on M .
From the proof of the first part, the set Â = {(π−1(Uα) = lim−→π−1

i (Uαi ),
ψα = lim−→ψαi )}α∈A is an atlas for the manifold E.

Now, if Uαi ∩ U
β
i 6= ∅,

Ψα
i ◦ (Ψβ

i )−1 : φβi (Uαi ∩U
β
i )×E′1× · · · ×E′i −→ φαi (Uαi ∩U

β
i )×E′1× · · · ×E′i
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can be written
(yβi , u′

β

1 , . . . , u
′β
i ) 7→ (φαi ◦ (φβi )−1(yβi ), [Ψ̃α

i (yi)] ◦ [Ψ̃β
i (yi)]−1(u′β1 , . . . , u′

β

i ))

where yβi = φβi (yi). With these notations, yβi 7→ Θαβ
i (yβi ) = [Ψ̃α

i (yi)] ◦
[Ψ̃β

i (yi)]−1 is a conveniently smooth map.

From assumption (C) and assumption (E) written over the open sets Uαi
and Uαj (resp. Uβi and Uβj ), we have

(Ψ̃α
j (yj))−1 ◦ ιji = λji ◦ (Ψ̃α

i (yi))−1.

Finally we get
Θαβ
j (ȳj) ◦ ιji = ιji ◦Θαβ

i (ȳi)
So if ȳ = lim−→ ȳi, from the above relation, one can define the transition
function Θαβ(ȳ) as an element of the metrizable complete topological
group G(E). �

5. Linear connections on direct limit of anchored Banach bundles

5.1. Bundle structures on the tangent bundle to a vector bundle

LetM be a smooth Banach manifold modelled on a Banach space M and
let π : E →M be a smooth Banach vector bundle on M whose typical fiber
is a Banach space E. Let pE : TE→ E and pM : TM→M be the canonical
projections of each tangent bundle.

There exists an atlas {Uα, φα}α∈A of M for which E|Uα is trivial; there-
fore we obtain a chart (UαE , φαE) on E, where UαE = π−1(Uα) and s.t. φαE is a
diffeomorphism from UαE on φα(Uα) × E. We also have a chart (UαTM, φαTM)
on TM where UαTM = p−1

M (Uα) and φαTM = (φα, TpM ).

Hence the family {T (E|Uα), TφαE}α∈A where
TφαE : T (E|Uα) −→ T (φα(Uα)× E) = φα(Uα)× E×M× E

is the atlas describing the canonical vector bundle structure of (TE, pE , E).

Let (x, u) be an element of Ex = π−1(x) where x ∈ Uαβ = Uα ∩
Uβ 6= ∅ and let (x, u, y, v) be an element of T(x,u)E. For (xα, uα, yα, vα) =
TφαE(x, u, y, v), we have the transition functions:

(T ((φα × IdE) ◦ φαE) ◦ (T ((φβ × IdE) ◦ φβE))−1)((xβ , uβ , yβ , vβ))

=
(
φαβ(xβ), φαβE ((φβ)−1(yβ))uβ , dφαβ(xβ)yβ , (d(φαβE ◦ (φβ)−1)(xβ)yβ)uβ

)
+ φαβE ((φβ)−1(xβ)vβ)

– 936 –



Integrability on Direct Limits of Banach Manifolds

where φαβ = φα ◦ (φβ)−1 and (xβ , φαβE (xβ)uβ) = (φαE ◦ (φβE)−1)(xβ , uβ) for
xβ ∈ φα(Uαβ).

So, for fixed (xβ , uβ), the transition functions are linear in (yβ , vβ) ∈
M× E. This describes the vector bundle structure of the tangent bundle
(TE, pE , E).

On the other hand, for fixed (xβ , yβ) the transition functions of TE are
also linear in (uβ , vβ) ∈ E × E and we get a vector bundle structure on
(TE, Tπ,TM) which appears as the derivative of the original one on E.

5.2. Connections on a Banach bundle

The kernel of Tπ : TE→ TM is denoted by VE and is called the vertical
bundle over E. It appears as a vector bundle over M . It is well known that
VE can also be seen as the pull-back of the bundle π : E → M over π as
described by the following diagram:

E ×M E ' π∗E π̂ //

��

E

π

��
E

π // M

We have a canonical isomorphism E ×M E → VE called the vertical lift
vlE defined by

vlE(x, u, v) = γ̇(0)
where γ(t) = u+ tv. This map is fiber linear over M .

Let J : VE→ TE be the canonical inclusion. According to [32] we have:
Definition 5.1. — A (non linear) connection on E is a bundle mor-

phism V : TE→ VE such that V ◦ J = IdVE.

The datum of a connection V on E is equivalent to the existence of a
decomposition TE = HE⊕VE of the Banach bundle E with HE = kerV .

We then have the following diagram:

VE TEVoo

D

��
π∗E

vlE

OO

π̂ // E

The bundle morphism D = π̂◦vl−1
E ◦V : TE→ E is called the connection

map or connector which is a smooth morphism of fibrations. Note that, in
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each fiber T(x,u)E, the kernel of D is exactly the subspace H(x,u)E of HE in
T(x,u)E. Therefore, the datum of D is equivalent to the datum of V .

We then have, modulo the identification VE ' π∗E via vlE :
D : TE −→ E

(x, u, y, v) 7−→ (x, v + ω(x, u)y)
where ω(x, u) ∈ L(TxM,T(x,u)E).

If moreover, D is linear on each fiber, then the connection is called a
linear connection.

Modulo the identification of U ⊂M and φ(U) ⊂M we have the following
identifications:

• E|U ≡ U × E
• TM|U ≡ U ×M
• TE|π−1(U) ≡ (U × E)× (M× E)
• VE|π−1(U) ≡ (U × E)× E

According to these identifications, we obtain the following characterizations
of V and D:

V (x, u, y, v) = (x, u, 0, v + ω(x, u)y)
D(x, u, y, v) = (x, v + ω(x, u)y)

where ω is a smooth map from U×E to the space L(M,E) of bounded linear
operators from M to E.

This connection is linear if and only if ω is linear in the second variable.
In this case, the relation Γ(x)(u, y) = ω(x, u)y gives rise to a smooth map
Γ from U to the space of bilinear maps L2(E,M;E) called local Christoffel
components of the connection.

Conversely, a connection can be given by a collection (Uα, ωα) of local
maps ωα : Uα × E → L(M,E) on a covering (Uα) of M with adequate
classical conditions of compatibility between (Uα, ωα) and (Uβ , ωβ) where
Ua ∩ Uβ 6= ∅.

Remark 5.2. — It is classical that if M is smooth paracompact, then
there always exists a connection on M and also on each Banach bundle over
M . However, these assumptions impose the same assumptions on the Banach
space M.

On the other hand, it is well known that there exist linear connections on
a Banach manifold without such assumptions. For instance, if TM ≡M ×M
there always exists a (trivial) connection on M . But there are further situa-
tions for which a linear connection exists on a Banach manifold. For example,
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there exist linear connections on loop spaces (see for instance [7]) or on the
manifoldM(µ) of strictly positive probability densities of a probability space
(Ω,Σ, µ) (cf. [24]).

Definition 5.3. — A Koszul connection on E is a R-bilinear map ∇ :
X(M)× E → E which fulfills the following properties:

(i) ∇X(fσ) = df(X)σ + f∇Xσ
(ii) ∇fXσ = f∇Xσ

for any function f on M , X ∈ χ(M) and σ ∈ E.

Given a linear connection D on a Banach bundle π : E →M , we obtain
a covariant derivative ∇ : X(M) × E → E which is a Koszul connection.
Since any (linear) connection induces naturally a (linear) connection on the
restriction E|U of E to any open set U of M , we also obtain a covariant de-
rivative ∇U : X(U)×E|U → E|U with the correspondent previous properties
for any function f on U , X ∈ X(U) and σ ∈ E|U .

Unfortunately, in general, a Koszul connection may be not localizable in
the following sense: since any local section of E (resp. any local vector field
on M) can not be always extended to a global section of E (resp. to a global
vector field on M), the previous operator ∇ can not always induce a (local)
operator ∇U as previously. Therefore, in this work, a Koszul connection will
always be taken in the sense of the covariant derivative associated to a linear
connection D on E. In particular, for any x ∈ M , the value ∇Xσ(x) only
depends on of the value of X at x and the 1-jet of σ at x.

In a local trivialization E|U ≡ U×E, a local section σ of E, defined on U ,
can be identified with a map σ : U → E. Then ∇ has the local expression:

∇Xσ = dσ(X) + Γ(σ,X)

where Γ, smooth map from U to L2(E,M;E), is the local Christoffel com-
ponents of the connection D which will be also called the local Christoffel
components of ∇.

Remark 5.4. — If M is smooth regular, then, as classically in finite di-
mension, any covariant derivative ∇ : X(M) × E → E which fulfills the
previous properties (i) and (ii) is localizable. Therefore, in this case, there
is a one-to-one correspondence between such covariant derivative and linear
connection on E as in the finite dimensional framework.

Finally if E|U ≡ U × E and E|U ′ ≡ U ′ × E are local trivializations such
that U ∩ U ′ 6= ∅, then we have a smooth map g : U ∩ U ′ → GL(E) such
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that σ|U ′ = gσ|U for any section defined on U ∪U ′. Therefore the Christoffel
component Γ and Γ′ of ∇ on U ∩ U ′ are linked by the relation

Γ′(X,σ) = g−1dg(X,σ) + g−1Γ(X, gσ).

5.3. Direct limit of Banach connections

Definition 5.5. — Let (En, πn,Mn)n∈N∗ be a strong ascending sequence
of Banach vector bundles where εn+1

n : Mn →Mn+1 and λn+1
n : En → En+1

are the compatible bonding maps. A sequence of connections Dn : TEn → En
is called a strong ascending sequence of Banach connections if

λn+1
n ◦Dn = Dn+1 ◦ Tλn+1

n .

Theorem 5.6. — Let (Dn)n∈N∗ be a strong ascending sequence of Ba-
nach connections on an ascending sequence (En, πn,Mn)n∈N∗ of Banach bun-
dles and assume that (Mn)n∈N∗ has the direct limit chart property at each
point of x ∈M = lim−→Mn.

Then the direct limit D = lim−→Dn is a connection on the convenient vector
bundle (lim−→En, lim−→πn, lim−→Mn).

Proof. — Let x be in lim−→Mn. We suppose that x ∈ Mn0 . According to
Definition 4.17, let (Uα, φα) be a chart of M = lim−→Mn around x which
satisfies the assumption (D) and (E), where φα : Uα =

⋃
i>n0

Uαi → Oα =⋃
i>n0

Oαi with (Uαi , φαi ) is a chart around xi and Oαi = φαi (Uαi ) ⊂ Mi.
Moreover, Ei|Ui is trivial.

Denote byDα
i the expression of the connectionDi in local charts. We then

haveDα
i (xαi , uαi , yαi , vαi ) = (xαi , vαi +ωαi (xαi , uαi )yαi ) where ωαi is a smooth map

from Oαi × Ei to the space L(Mi,Ei) of bounded linear operators from Mi

to Ei.

Using the relations λi+1
i ◦Di=Di+1◦Tλi+1

i we have the following diagram:

Oαi ×Ei×Mi×Ei

Dαi

��

T (Ei|Uα
i

)
TφαEioo

Di

��

Tλi+1
i // T (Ei+1|Uα

i+1
)

Di+1

��

TφαEi+1// Oαi+1×Ei+1×Mi+1×Ei+1

Dαi+1

��
Oαi ×Ei Ei|Uα

i

φαEioo λi+1
i // Ei+1|Uα

i+1

φαEi+1 // Oαi+1×Ei+1

Using the expression in local coordinates ε̂i+1
i

α

: Oαi → Oαi+1 and the
map λ̂i+1

i : Ei → Ei+1 we then obtain that (Dα
i )i>n can be realized as a
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direct limit because we have:

(ε̂i+1
i

α

× λ̂i+1
i ) ◦Dα

i = (ε̂i+1
i

α

× λ̂i+1
i ) ◦ (φαEi ◦Di ◦ (TφαEi)

−1)
= φαEi+1

◦ λi+1
i ◦Di ◦ (TφαEi)

−1

= φαEi+1
◦Di+1 ◦ Tλi+1

i ◦ (TφαEi)
−1

= φαEi+1
◦ (φαEi+1

)−1 ◦Dα
i+1 ◦ TφαEi+1

◦ Tλi+1
i ◦ (TφαEi)

−1

= Dα
i+1 ◦ (ε̂i+1

i

α

× λ̂i+1
i × ε̂i+1

i × λ̂i+1
i )

We obtain an analogous result for the smooth Banach local forms
ωαi : Uαi × Ei → L(Mi,Ei). �

Using the intrinsic link between a connection D and a Koszul connection
∇ we get the following result:

Corollary 5.7. — Let (Dn)n∈N∗ be a strong ascending sequence of Ba-
nach connections on a direct sequence (En, πn,Mn)n∈N∗ of Banach bun-
dles and consider the associated Koszul connections (∇n)n∈N∗ . The direct
limit ∇ = lim−→∇n is a Koszul connection on the convenient vector bundle
(lim−→En, lim−→πn, lim−→Mn).

Example 5.8. — Denote by Lploc(Rm) the space of locally Lp functions
on Rm (1 6 p < +∞). A function belongs to Lploc(Rm) if and only if its
restriction to any compact set K of Rm belongs to Lp(K). Since Rm is an

ascending sequence of compact sets Km
n (where Km

n ⊂
◦

Km
n+1), we have

Lploc(R
m) = lim−→Lp(Km

n ).

Moreover, the closure K̂m
n of the open set Km

n+1\Km
n is also compact and

we have Lp(Km
n+1) = Lp(Km

n )⊕Lp(K̂m
n ). Therefore the sequence of Banach

spaces (Lp(Km
n ))n∈N∗ is an ascending sequence of complemented Banach

spaces. Since the tangent bundle to each Lp(Km
n ) is trivial, there exists a

(trivial) Koszul connection on this Banach bundle. Therefore we get a Koszul
connection on Lploc(Rm).

Example 5.9. — Let (Hn)n∈N∗ be a sequence of Banach Lie groups and
consider the Banach Lie group of cartesian products Gn =

∏n
k=1Hk. The

weak direct product
∏∗
k∈N∗Hk is the set of all sequences (hn)n∈N∗ such that

hn = 1 for all but finitely many n. The weak direct product is a topological
group for the box topology (see [14, 4]). In fact, this weak direct product has
a structure of Lie group modelled on the locally convex topological space⊕

k∈N∗Hk where Hk is the Lie algebra of Hk. The tangent space TGn is the
vector bundle Gn ×

⊕n
k=1Hk. Moreover, TGn is a complemented subbundle

of TGn+1 and is naturally endowed with the (trivial) Koszul connection.
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5.4. Sprays on an anchored Banach bundle

We begin this subsection with a brief presentation of the theory of semi-
sprays on a Banach anchored bundle according to [2].

Let π : E → M be a Banach vector bundle on a Banach manifold mod-
elled on a Banach space M whose fiber is modelled on a Banach space E.

Definition 5.10. — A morphism of vector bundles ρ : E → TM is
called an anchor. (E, π,M, ρ) is then called a Banach anchored bundle.

Definition 5.11. — A semi-spray on an anchored bundle is a vector
field S on E such that Tπ ◦ S = ρ.

This means that, in a local trivialization E|U ≡ U × E, we have
Tπ(S(x, u)) = ρ(x)u for all (x, u) ∈ E|U .

A smooth curve c : I ⊂ R→ E is called admissible if the tangent vector
γ′(t) of γ = π ◦ c is precisely ρ(c(t)).

From [2], we have the following characterization of a semi-spray:

Theorem 5.12. — A vector field S on E is a semi-spray if and only if
each integral curve of S is an admissible curve.

In a local trivialization E|U ≡ U ×E, a semi-spray can be written as
S(x, u) = (x, u, ρ(x)u,−2G(x, u)).

The Euler field C is the global vector field on E which is tangent to
the fiber of π (i.e. vertical) and such that the flow of C is an infinitesimal
homothety on each fiber. A semi-spray S is called a spray if S is invariant by
the flow of C. This condition is equivalent to the nullity of the Lie bracket
[C, S]. In this case, in a local trivialization, the function G in Definition 5.11
is linear in the second variable.

Conversely, a spray can be given by a collection (Uα, Gα) of local maps
Gα : Uα × E → L(E,E) on a covering Uα of M with adequate classical
conditions of compatibility between (Uα, Gα) and (Uβ , Gβ) when Uα∩Uβ 6=
∅ (cf. [2]).

Given a Koszul connection ∇ on E and an admissible curve c : I → E as
in the infinite dimensional case, we associate an operator of differentiation
∇c of the set of sections of E along γ = π ◦ c given by ∇cσ = ∇γ̇σ. In
particular c is a section along γ.

Definition 5.13. — An admissible curve c is called a geodesic of ∇ if
∇γ̇c = ∇cc ≡ 0.
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In a local trivialization E|U ≡ V × E, an admissible curve c : I → E|U
is a geodesic of ∇ if and only π ◦ c is a solution of the following differential
equation: {

ẋ = ρ(x)u
u̇ = Γ(x)(u, ẋ)

where Γ is the local Christoffel component of ∇ on E|U . Therefore, if we set
G(x, u) = − 1

2Γ(x)(u, ρ(x)u), we get a vector field SU on E|U which satisfies
the relation given in Definition 5.11 and so is a spray on E|U . Now, according
to the compatibility conditions between the local Christoffel components,
we obtain a unique global spray associated to ∇. Conversely, as in the case
of E = TM (cf. [32]), given a spray S on E, we can associate a unique
connection ∇ whose associated spray is S.

Taking into account the classical theorem of existence of a local flow of a
vector field on a Banach manifold, we obtain:

Theorem 5.14. — Let (E,M, ρ) be a Banach anchored bundle. There
exists a spray on E if and only there exists a Koszul connection ∇ on E.
Moreover, there exists a canonical correspondence one-to-one between sprays
and Koszul connections on E so that an admissible curve is a geodesic of
the Koszul connection ∇ if and only if this curve is an integral curve of the
unique S associated to ∇.

When E = TM, there exists an exponential map Exp : U ⊂ TM → M ,
defined on an open neighborhood U of the zero section, such that pM |U : U →
M is a fibration whose each fiber Ux is a star-shaped open neighborhood of 0
in TxM . Moreover, the differential of the restriction Expx of Exp to Ux is
equal to IdTxM at 0. In particular, Expx is a diffeomorphism of a star-shaped
open neighborhood of 0 ∈ TxM onto an open neighborhood of x ∈M .

6. Direct limits of sequences of almost Banach Lie algebroids

6.1. Almost Banach Lie algebroids

Let (E, π,M, ρ) be a Banach anchored bundle.

If E denotes the C∞(M)-module of smooth sections of E, the morphism
ρ gives rise to a C∞(M)-module morphism ρ : E → TM = X(M) defined
for every x ∈ M and every section s of E by: (ρ(s))(x) = ρ(s(x)) and still
denoted by ρ.
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Definition 6.1. — An almost Lie bracket on an anchored bundle
(E, π,M, ρ) is a bilinear map [ · , · ]E : E × E :→ E which satisfies the fol-
lowing properties:

(1) [ · , · ]E is antisymmetric;
(2) (Leibniz property)
∀ s1, s2 ∈ E, ∀ f ∈ C∞(M), [s1, fs2]E = f.[s1, s2] + df(ρ(s1)).s2.

Definition 6.2. — A Lie bracket is an almost Lie bracket whose jaco-
biator vanishes:

∀ s1, s2, s3 ∈ E, [s1, [[s2, s3]] + [s2, [[s3, s1]] + [s3, [[s1, s2]] = 0

Definition 6.3. — An almost Banach Lie algebroid is an anchored bun-
dle (E, π,M, ρ) provided with an almost Lie bracket [ · , · ]E. When [ · , · ]E is
in fact a Lie bracket the associated structure (E,M, ρ, [ · , · ]E) is called a
Banach Lie algebroid.

If (E, π,M, ρ[ · , · ]E) is a Banach Lie algebroid, ρ : E → X(M) is a Lie
algebra morphism; in particular, we have [ρs1, ρs2] = ρ([s1, s2]E).

Notice that the converse is not true in general (take ρ ≡ 0 for instance).

Definition 6.4. — When we have [ρs1, ρs2] = ρ([s1, s2]E) for all
sections s1, s2 ∈ E, we will say that ρ is a Lie morphism. In this case
(E, π,M, ρ), [ · , · ]E) is called an algebroid.

In general the almost Lie bracket of an algebroid (E, π,M, ρ, [ · , · ]) does
not satisfy the Jacobi identity.

Remark 6.5. — Since the terminology of almost Poisson bracket seems
generally adopted in the most recent papers on nonholonomic mechanics, in
this work we have adopted the definition of an almost Lie algebroid given
in [23]. Therefore taking into account the relation between almost Linear
Poisson bracket and almost Lie bracket, this terminology seems to us well
adapted. Therefore and according to [28], we use the denomination “alge-
broid” for an almost algebroid such that the anchor is a morphism of Lie
algebras. Note that in [28] or in [15] an almost Lie algebroid corresponds
to the previous definition of an algebroid and our denomination “almost
algebroid” corresponds to “quasi-Lie algebroid” in [28] or in [15].

Example 6.6. — Consider a smooth right action ψ : M × G → M of
a connected Lie group G on a Banach manifold M . Denote by G the Lie
algebra of G. We then have a natural morphism ξ of Lie algebras from G to
X(M) defined by:

ξX(x) = T(x,e)ψ(0, X).
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For any X and Y in G, we have: ξ{X,Y } = [ξX , ξY ] where { · , · } denotes
the bracket on the Lie algebra G (see for instance [21, 36.12]).

On the trivial bundleM×G, each section can be identified with a map σ :
M → G.We then define a Lie bracket {{ · , · }} on the set of such sections by:

{{σ1, σ2}}(x) = {σ1(x), σ2(x)}+ dσ1(ξσ2(x))− dσ2(ξσ1(x)).

An anchor Ψ : M × G → TM is defined by Ψ(x,X) = ξX(x). Then
(M × G,pr1,M,Ψ, {{ · , · }}) is a Banach Lie algebroid.

Moreover, if we denote by Gx the closed subgroup of isotropy of a point
x ∈ M and by Gx ⊂ G its Lie subalgebra, we have ker Ψx = Gx. If Gx is
complemented in G for any x ∈ M and ρ has closed range, then the weak
distribution D = Ψ(M × G) is integrable and the leaf through x is its orbit
ψ(x,G) (cf. [26, Example 4.3, 3]).

Note that in finite dimension it is classical that a Lie bracket [ · , · ]E on
an anchored bundle (E, π,M, ρ) respects the sheaf of sections of π : E →M
or, for short, is localizable (see for instance [25]), if the following properties
are satisfied:

(i) for any open set U of M , there exists a unique bracket [ · , · ]U on
the space of sections E|U ) such that, for any s1 and s2 in E|U ), we
have:

[s1|U , s1|U ]U = ([s1, s2]E)|U
(ii) (compatibility with restriction) if V ⊂ U are open sets, then, [ · , · ]U

induces a unique Lie bracket [ · , · ]UV on E|V ) which coincides with
[ · , · ]V (induced by [ · , · ]E).

By the same arguments as in finite dimension, whenM is smooth regular
any Lie bracket [ · , · ]E on an anchored bundle (E, π,M, ρ) is localizable
(cf. [26]).

But, in general, for analog reasons as for Koszul connection, we can not
prove that any Lie bracket is localizable. Unfortunately in the Banach frame-
work, we have no example of Lie algebroid for which is not localizable. There-
fore at least for finding conditions under which a Banach Lie algebroid is
integrable this condition is necessary. This condition of localization implies
also that a bracket depends on the one jets of sections. Therefore, in the
sequel, we will assume that all almost Lie bracket [ · , · ]E are localizable.

Remark 6.7. — If there exists a Koszul connection ∇ on E, then we get
an almost Lie bracket [ · , · ]∇ defined by

[s1, s2]∇ = ∇ρs1s2 −∇ρs2s1.
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Note that since a ∇ is localizable, so is [ · , · ]∇

When (E, π,M, ρ, [ · , · ])E is an almost Banach Lie algebroid we can define
the following operators:

(i) Lie derivative Lρs according to a section s of E:
for a smooth function f ∈ Ω0(M,E) = F ,

Lρs(f) = Lρ◦s(f) = iρ◦s(df);

for a q–form ω ∈ Ωq(M,E) (where q > 0)

(Lρsω)(s1, . . . , sq) = Lρs(ω(s1, . . . , sq))

−
q∑
i=1

ω(s1, . . . , si−1, [s, si]E , si+1, . . . , sq). (6.1)

(ii) Ω(M,E)-value derivative according to a section s of E: for a smooth
function f ∈ Ω0(M,E) = F

dρf = tρ ◦ df ;

for a q–form ω ∈ Ωq(M,E) (where q > 0)

(dρω)(s0, . . . , sq) =
q∑
i=0

(−1)iLρsi(ω(s0, . . . , ŝi, . . . , sq))

+
q∑

06i<j6q
(−1)i+j(ω([si, sj ]E , s0, . . . , ŝi, . . . , ŝj , . . . , sq)).

In general, we have dρ ◦ dρ 6= 0. However, (E,M, ρ, [ · , · ])E is a Banach
Lie algebroid if and only if dρ ◦ dρ = 0.

Definition 6.8. — Let ψ : E → E′ be a linear bundle morphism over
f : M →M ′.

(1) A section s′ of E′ →M ′ and a section s of E →M are ψ-related if
s′ ◦ f = ψ ◦ s.

(2) ψ is a morphism of almost Banach Lie algebroids from (E, π,M, ρ,
[ · , · ]E) to (E′, π′,M ′, ρ′, [ · , · ]E′) if:
(a) ρ′ ◦ ψ = Tf ◦ ρ;
(b) for any pair of ψ-related sections s′i and si (i = 1, 2), we have:

ψ([s1, s2]) = [s′1, s′2]′ ◦f , i.e. the Lie bracket [s′1, s′2]′ and [s1, s2]
are ψ-related.
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In a dual way, a morphism ψ : E → E′ which satisfies property (a) is an
almost Banach Lie algebroid morphism if the mapping ψ∗ : Ωq(M,E′) →
Ωq(M,E) defined by:

(ψ∗α′)x(s1, . . . , sq) = α′f(x)(ψ ◦ s1, . . . , ψ ◦ sq)

commutes with the differentials:

dρ ◦ ψ∗ = ψ∗ ◦ dρ′ .

Notice that an almost Banach Lie algebroid (E, π,M, ρ, [ · , · ]E) is a Ba-
nach algebroid if and only if the anchor ρ is a morphism of Banach Lie
algebroids from (E, π,M, ρ, [ · , · ]E) to the canonical Banach Lie algebroid
(TM, pM ,M, IdTM, [ · , · ]).

6.2. Direct limit of almost Banach Lie algebroids

As in the Banach framework, if π : E →M is a convenient bundle over a
n.n.H. convenient manifoldM , then we can define the convenient algebroid or
Lie algebroid structure(8) (E, π,M, ρ, [ · , · ]E) in an obvious way. Now coming
back to the context of sequence of Banach anchored bundles, we have:

Definition 6.9.

(1) A sequence (En, πn,Mn, ρn)n∈N∗ is called a strong ascending se-
quence of anchored Banach bundles if
(a) (En, πn,Mn, )n∈N∗ is a direct sequence of Banach bundles;
(b) For all n 6 m, we have

ρm ◦ λmn = Tεmn ◦ ρn.

where λmn : En → Em and εmn : Mn → Mm are the bonding
morphisms.

(2) A sequence (En, πn,Mn, ρn, [ · , · ]n)n∈N∗ is called a strong ascending
sequence of almost Banach Lie algebroids if (En, πn,Mn, ρn)n∈N∗
is a strong ascending sequence of anchored Banach bundles with
the additional property: λmn : En → Em is an almost Banach
algebroid morphism between the almost Banach Lie algebroids
(En, πn,Mn, ρn, [ · , · ]n) and (Em, πm,Mm, ρm, [ · , · ]m).

(8) In this case E has a structure of n.n.H. convenient manifold.
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Theorem 6.10.

(1) If (En, πn,Mn, ρn))n∈N∗ is a strong ascending sequence of anchored
bundles, then (lim−→En, lim−→πn, lim−→Mn, lim−→ ρn)) is a convenient an-
chored bundle. Moreover, (lim−→En, lim−→πn, lim−→Mn, lim−→ ρn, lim−→[ · , · ]n)
is a convenient algebroid (resp. a convenient Lie algebroid) if each
(En, πn,Mn, ρn, [ · , · ]n) is a Banach algebroid (resp. a Banach Lie
algebroid) for n∈ N∗.

(2) If (En, πn,Mn, ρn, [ · , · ]n)n∈N∗ is a strong ascending sequence of
almost Banach Lie algebroids, then (lim−→En, lim−→πn, lim−→Mn, lim−→ ρn,

lim−→[ · , · ]n) is an almost convenient Lie algebroid. Moreover,
(lim−→En, lim−→πn, lim−→Mn, lim−→ ρn, lim−→[ · , · ]n) is a convenient algebroid
(resp. a convenient Lie algebroid) if each (En, πn,Mn, ρn, [ · , · ]n) is
a Banach algebroid (resp. a Banach Lie algebroid) for n ∈ N∗.

Proof.

Step 1. — According to Proposition 4.18, (lim−→En, lim−→πn, lim−→Mn) can
be endowed with a structure of convenient vector bundle whose base is mod-
elled on the LB-space lim−→Mn and whose structural group is the metrizable
complete topological group G(E).

Step 2. — Let (s1
n)n∈N∗ and (s2

n)n∈N∗ be sequences of sections of the
linear bundles πn : En →Mn, i.e. fulfilling the conditions :{

λmn ◦ s1
n = s1

m ◦ εmn
λmn ◦ s2

n = s2
m ◦ εmn .

(6.2)

In order to define a structure of almost convenient Lie structure on the
direct limit we have to prove the compatibility of the brackets

λmn ◦ [s1
n, s

2
n]En = [s1

m, s
2
m]Em ◦ εmn (6.3)

and the compatibility of the Leibniz properties:

λmn ◦ [s1
n, gn × s2

n]En = [s1
m, gm × s2

m]Em ◦ εmn (6.4)

Step 2a. — In order to prove (6.3) we use the morphisms λmn : En → Em
of Lie algebroids over εmn : Mn →Mm :

dρn ◦ (λmn )∗ = (λmn )∗ ◦ dρm (6.5)

applied to αm ∈ Ω1(Mm, Em).

We then have (dρn ◦ (λmn )∗(αm))(s1
n, s

2
n) = ((λmn )∗ ◦ dρm(αm))(s1

n, s
2
n),
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For the LHS, we have:

(dρn ◦ (λmn )∗(αm))(s1
n, s

2
n)

= Lρn◦s1
n
(((λmn )∗(αm))(s2

n))− Lρn◦s2
n
(((λmn )∗(αm))(s1

n))
− ((λmn )∗(αm))[s1

n, s
2
n]En

= X1
m(αm(λmn ◦ s2

n))−X2
m(αm(λmn ◦ s1

m))− αm(λmn ◦ [s1
n, s

2
n]En)

where Xa
m = ρm ◦ sam with a = 1, 2 fulfill the relation Xa

m(fm) = Xa
n(fn) for

fm = αm ◦ sm.

For the RHS, we get:

((λmn )∗(dρm(αm)))(s1
n, s

2
n)

= dρm(αm)(λmn ◦ s1
n, λ

m
n ◦ s2

n).
= Lρm◦λmn ◦s1

n
(αm(λmn ◦ s2

n))− Lρm◦λmn ◦s2
n
(αm(λmn ◦ s1

n))
− αm[λmn ◦ s1

n, λ
m
n ◦ s2

n]Em
= Lρm◦s1

m
(αm(λmn ◦s2

n))−Lρm◦s2
m

(αm(λmn ◦s1
n))−αm[λmn ◦s1

n, λ
m
n ◦s2

n]Em
= X1

m(αm(λmn ◦ s2
n))−X2

m(αm(λmn ◦ s1
m))− αm[λmn ◦ s1

n, λ
m
n ◦ s2

n]Em .

Finally, we have for all αm ∈ Ω1(Mm, Em), αm(λmn ([s1
n, s

2
n]En)) =

αm[λmn ◦s1
n, λ

m
n ◦s2

n]Em and we obtain: λmn ◦ [s1
n, s

2
n]En = [λmn ◦s1

n, λ
m
n ◦s2

n]Em .
Using λmn ◦ san = sam ◦ εmn , we have: λmn ◦ [s1

n, s
2
n]En = [s1

m, s
2
m]Em ◦ εmn .

Step 2b. — To prove (6.4) we are going to establish that

λmn ◦ (gn × [s1
n, s

2
n]En + (ρn(s1

n))(gn)× s2
n)

= (gm × [s1
m, s

2
m]Em + (ρm(s1

m))(gm)× s2
m) ◦ εmn

We can write:

λmn ◦ (gn × [s1
n, s

2
n]En + (ρn(s1

n))(gn)× s2
n)

= λmn ◦ (gn × [s1
n, s

2
n]En) + λmn ◦ ((ρn(s1

n))(gn)× s2
n)

= gn × (λmn ◦ [s1
n, s

2
n]En) + λmn (X1

n(gn))× λmn ◦ s2
n (λmn is a morphism)

= gn × ([s1
m, s

2
m]Em ◦ εmn ) +X1

m(gm) ◦ εmn × s2
m ◦ εmn cf. (6.3)

= (gm ◦ εmn )× ([s1
m, s

2
m]Em ◦ εmn ) + (X1

m(gm)× s2
m) ◦ εmn

= (gm × [s1
m, s

2
m]Em) ◦ εmn + (ρm(s1

m)(gm)× s2
m) ◦ εmn

= (gm × [s1
m, s

2
m]Em + (ρm(s1

m))(gm)× s2
m) ◦ εmn .

Step 3. — Now, from the previous construction of lim−→[ · , · ]n, it is clear
that if ρn is a morphism of almost algebroids from (En, πn,Mn, ρn, [ · , · ]n) to
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the canonical Banach Lie algebroid (TMn, πn,Mn, IdTMn
, [ · , · ]), then lim−→ ρn

satisfies
lim−→ ρn(lim−→[ · , · ]n) = [lim−→ ρn( · ), lim−→ ρn( · )].

Moreover, it is also easy to show that if each bracket [ · , · ]n satisfies the
Jacobi identity, then lim−→[ · , · ]n satisfies also a Jacobi identity. These last
proofs are left to the reader. �

Corollary 6.11. — Let (Dn)n∈N∗ be a strong ascending sequence of
Banach connections on a strong ascending sequence (En, πn,Mn)n∈N∗ of Ba-
nach bundles. Then there exists an almost convenient Lie algebroid structure
on the bundle (lim−→En, lim−→πn, lim−→Mn).

Proof. — On each anchored bundle (En, πn,Mn, ρn), we denote by
∇n the En-Koszul connection associated to Dn. Therefore [s1

n, s
2
n]n =

∇nρn(s1
n)s

2
n − ∇nρn(s2

n)s
1
n defines an almost Lie bracket on (En, πn,Mn, ρn).

Since (Dn)n∈N∗ is a direct sequence of Banach connections, it follows that
the sequence ([ · , · ]n)n∈N∗ of almost brackets satisfies a property of Defini-
tion 6.9. Therefore, from Theorem 6.10, lim−→[ · , · ]n is an almost Lie bracket
on the convenient anchored bundle (lim−→En, lim−→πn, lim−→Mn, lim−→ ρn). �

7. Integrability of distributions which are direct limit of local
Koszul Banach bundles

7.1. Integrability of the range of an anchor

We first recall the classical definitions of distribution, integrability and
involutivity.

Definition 7.1. — Let M be a Banach manifold.

(1) A distribution ∆ on M is an assignment ∆ : x 7→ ∆x ⊂ TxM on
M where ∆x is a subspace of TxM .

(2) A vector field X on M , defined on an open set Dom(X), is called
tangent to a distribution ∆ if X(x) belongs to ∆x for all x ∈
Dom(X).

(3) A distribution ∆ on M is called integrable if, for all x0 ∈M , there
exists a weak submanifold (N,φ) of M such that φ(y0) = x0 for
some y0 ∈ N and Tφ(TyN) = ∆φ(y) for all y ∈ N . In this case
(N,φ) is called an integral manifold of ∆ through x.

(4) A distribution ∆ is called involutive if for any vector fields X and
Y on M tangent to ∆ the Lie bracket [X,Y ] defined on Dom(X) ∩
Dom(Y ) is tangent to ∆.
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Classically, in Banach context, when ∆ is a complemented subbundle of
TM, according to the Frobenius Theorem, involutivity implies integrability.

In finite dimension, the famous results of H. Sussman and P. Stefan give
necessary and sufficient conditions for the integrability of smooth distribu-
tions.

A generalization of these results in the context of Banach manifolds can
be found in [5] and [26].

We are now in a position to prove the following theorem which will be
useful for the proof of the main theorem on the integrability of a distribution
on a direct limit of Banach manifolds endowed with Koszul connections.

Theorem 7.2. — Let (E, π,M, ρ, [ · , · ]E) be a Banach algebroid (cf. Sub-
section 6.1). Assume that for each x ∈M , the kernel of ρx is complemented
in each fiber Ex and Dx = ρ(Ex) is closed in TxM . Then D is an integrable
weak distribution of M .

Assume that there exists a linear connection on E. Then there exists a
non linear connection on the tangent bundle of each leaf of the distribution D.

Proof. — The first part of this theorem is an easy adaptation of the proof
of Theorem 5 in [26].

We consider a leaf L of D. If ι : L → M is the natural inclusion, it is a
smooth immersion of L in M . Let x be any point of L and denote Kx the
kernel of ρx : π−1(x) = Ex → TxM . According to the assumption on E, we
have a decomposition Ex = Kx ⊕ Fx. From the proof of Theorem 2 of [26],
L is a Banach manifold modelled on F := Fx. Consider the pull back EL of
E over L via ι : L→M . We have a bundle morphism ι̂ from EL in E over ι
which is an isomorphism on each fiber. Therefore, the kernel of ρ̂ = ρ ◦ ι is a
Banach subbundle KL of EL and we have a subbundle FL of EL such that
EL = KL⊕FL. In particular, we have an isomorphism ρL from FL to TL. It
follows that the tangent map TρL : TFL → T (TL) is also an isomorphism.
On the other hand, according to the decomposition EL = KL⊕FL, we have
also a decomposition TEL = TKL ⊕ TFL.

Now, assume that there exists a non linear connection on E and let D :
TE→ E be the associated map connection. The map D̂L = D ◦ ι̂ ◦ (TρL)−1

is smooth and maps the fiber of T(x,u)(TL) over (x, u) ∈ TL into the fiber of
(EL)x over x ∈ L. As ι̂ is an isomorphism from (EL)x to the fiber Ex over
ι(x), it follows that D̂L is a linear continuous map between these fibers. In
particular, we can consider D̂L as a map from T (TL) into EL. Now if ΠL

is the projection of EL on FL parallel to KL, the map DL = ρL ◦ ΠL ◦ D̂L

defines a Koszul connection on TL. �
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7.2. Criterion of integrability for local direct limits of local Koszul
Banach bundles

Let M be a n.n.H. convenient manifold and denote by TM its dynamical
tangent bundle. In the same way, a distribution ∆ on M is again an assign-
ment ∆ : x 7→ ∆x ⊂ TxM onM where ∆x is a subspace of TxM . The notion
of integrability and involutivity of a distribution recalled in Subsection 7.1
can be clearly adapted to the convenient context.

We will now give a criterion of integrability for direct limit of local Koszul
Banach bundles. More precisely we have:

Definition 7.3. — A distribution ∆ on a n.n.H. convenient manifold
M is called a local direct limit of local Koszul Banach bundles if the following
property is satisfied:

(∗) for any x ∈ M , there exists an open neighbourhood U of x
and a strong ascending sequence of anchored Banach bundles
(En, πn, Un, ρn)n∈N∗ endowed with a Koszul connection ∇n such that
U = lim−→Un, lim−→ ρn(En) = ∆|U and such that En is a complemented
subbundle of En+1.

Remark 7.4. — In the context of paracompact finite dimensional mani-
folds or Hilbert manifolds, the condition of the existence of a Koszul connec-
tion ∇n and En complemented in En+1 are automatically satisfied.

We then have the following criterion of integrability:

Theorem 7.5. — Let ∆ be a local direct limit of local Koszul Banach
bundles. Assume that in the property (∗) there exists an almost Lie bracket
[ · , · ]n on (En, πn, Un, ρn) such that (En, πn, Un, ρn, [ · , · ]n) is a Banach al-
gebroid, and over each point yn ∈ Un the kernel of ρn is complemented in
the fiber π−1

n (yn) and the range of ρn is closed.

Then the distribution ∆ is integrable and the maximal integral manifold
N through x = lim−→xn is a weak n.n.H. convenient submanifold of M which
is a direct limit of the set of maximal leaves Nn of ρn(En) through xn in
Mn. Moreover, each maximal leaf has the limit chart property at any point
and if M is Hausdorff so is each leaf.

Proof. — At first, for each n ∈ N∗, we can apply the first part of The-
orem 7.2. Therefore, with the notation of property (∗), if we fix some x =
lim−→xn, there exists a maximal integral manifold Nn of ρn(En) through xn
in Un. Recall that we have Un ⊂ Un+1 and En ⊂ En+1 over Un. There-
fore, according to Property (2) of Definition 6.9, for any y ∈ Nn, we have
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TyNn ⊂ TyNn+1 on Nn ∩Nn+1. Since Nn+1 is a maximal integral manifold
of ρn+1(En+1) in Un+1 and Un ⊂ Un+1, if y belongs to Nn, we have a smooth
curve in Nn which joins xn to y and since En ⊂ En+1 over Un this curve
must be contained in Nn+1 and so Nn must be contained in Nn+1. Now,
on the one hand, over each point of Un the kernel of ρn is complemented in
each fiber and, on the other hand, over Nn the kernel of ρn is a subbundle
of En|Nn . The same property is true for En+1|Nn+1 . But over Nn ⊂ Nn+1,
we have

ρn(En|Nn) = TNn ⊂ (TNn+1)|Nn = ρn+1(En+1|Nn).

Therefore (ker ρn+1)|Nn ⊂ (ker ρn)|Nn . But, from our assumption, we have
the following Whitney decomposition:

En+1|Nn = Fn+1 ⊕ (ker ρn+1)|Nn and En|Nn = Fn ⊕ (ker ρn)|Nn .

Therefore
(ker ρn)|Nn = (ker ρn+1)|Nn ⊕ Fn+1 ∩ (ker ρn)|Nn

Finally we obtain:
(TNn+1)|Nn = TNn ⊕ ρn+1(Fn+1 ∩ (ker ρn)|Nn).

Now, from property (∗) and the second part of Theorem 7.2, we have
a linear connection on TNn. Thus the ascending sequence (Nn) satisfies
the assumption of Corollary 4.9, N = lim−→Nn has a structure of conve-
nient manifold modelled on an LB-space. Moreover, by construction, we
have TN = ∆|N . This means that ∆ is an integral manifold of ∆ through
x. Moreover, N satisfies the direct limit chart property.

Take any maximal integral manifold L of ∆ and choose some x = lim−→xn
in L. From our previous construction we have a sequence of Banach integral
manifolds (Nn) such that N = lim−→Nn is an integral manifold of ∆ through
x. Therefore N is open in L. Since N has the direct limit chart property, the
same is true of L.

Now as the intersection of an open set in M with any leaf L is an open
set of L, thus, if M is an Hausdorff topological space, L inherits of this
property. �

From this result we easily obtain:

Corollary 7.6. — Let (En, πn,Mn, ρn, [ · , · ]n)n∈N∗ be a strong ascend-
ing sequence of Banach algebroids provided with a Koszul connection on each
En such that over each point xn ∈ Mn the kernel of ρn is complemented in
the fiber π−1

n (xn) and the range of ρn is closed. Then ∆ = lim−→ ρn(En) is an
integrable distribution on M = lim−→Mn. Moreover, for any x = lim−→xn, the
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maximal leaf through x is a weak n.n.H. convenient submanifold of M and
there exists a leaf Nn of ρn(En) in Mn through xn such that the sequence
(Nn)n∈N∗ is an ascending sequence of Banach manifolds whose direct limit
N = lim−→Nn is an integral manifold of ∆ through x such that N has the
direct limit chart property at x. Moreover, if M is Hausdorff so is each leaf.

Now according to Remark 7.4 we also easily obtain:

Corollary 7.7. — Let ∆ be a distribution on a direct limit M =
lim−→Mn of finite dimensional (resp. Hilbert) paracompact manifolds. Assume
that, for any x = lim−→xn, there exists a sequence of finite rank (resp. Hilbert)
algebroids (En, πn, Un, ρn)n∈N∗ such that U = lim−→Un, lim−→ ρn(En) = ∆|U .
Then ∆ is integrable and the maximal integral manifold N through x =
lim−→xn is a weak convenient submanifold of M which is the direct limit of
the set of maximal leaves Nn of ρn(EN ) through xn in Mn. Moreover, each
maximal leaf has the limit chart property at any point and is a Hausdorff
convenient manifold.

7.3. Application

Consider a direct sequence of Banach Lie groups G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂
. . . such that the Lie algebra Gn is complemented in the Lie algebra Gn+1
for all n ∈ N∗.

Note that this situation always occurs if for all n ∈ N∗, each Lie group Gn
is finite dimensional or is a Hilbert Lie group. This assumption is also valid
for the sequence Gn = GL(En) where En is a direct sequence of Banach
spaces such that each En is closed and complemented in En+1.

According to Example 6.6, assume that for each n ∈ N∗, we have a
smooth right action ψn : Mn × Gn → Mn of Gn over a Banach manifold
Mn where M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ . . . is an ascending sequence such that
Mn is a Banach submanifold of Mn+1. We get a strong ascending sequence
Lie Banach algebroids (Mn × Gn, πn,Mn,Ψn, [ · , · ]Gn). Since each Banach
bundle Mn × Gn is trivial, we obtain a sequence of Banach Lie algebroids
with anchors

Ψn : Mn × Gn −→ TMn

(xn, Xn) 7−→ T(xn,en)ψn(0, Xn)

Because these bundles are trivial, we get a sequence of compatible trivial
Koszul connections ∇n onMn×Gn. Now, from the Corollary 7.6, we obtain:
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Theorem 7.8. — In the previous context, we obtain a smooth right ac-
tion ψ = lim−→ψn of G = lim−→Gn on the convenient manifold M = lim−→Mn.
Moreover, if the kernel of Ψn is complemented in each fiber π−1

n (xn) and the
range of Ψn is closed, then the orbit ψ(x,G) of this action through x = lim−→xn
is a weak n.n.H. convenient submanifold of M which is the direct limit of
the set of Gn-orbits {ψn(xn, Gn)}n∈N∗ . If M is Hausdorff, so is each orbit.
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