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On reducibility of quantum harmonic oscillator on Rd

with quasiperiodic in time potential (∗)

Benoît Grébert (1) and Eric Paturel (2)

ABSTRACT. — We prove that a linear d-dimensional Schrödinger equation on Rd
with harmonic potential |x|2 and small t-quasiperiodic potential

i∂tu−∆u+ |x|2u+ εV (tω, x)u = 0, x ∈ Rd

reduces to an autonomous system for most values of the frequency vector ω ∈ Rn.
As a consequence any solution of such a linear PDE is almost periodic in time and
remains bounded in all Sobolev norms.

RÉSUMÉ. — On montre que l’équation de Schrödinger d-dimensionnelle avec po-
tentiel harmonique |x|2, perturbée par un petit potentiel quasipériodique en temps

i∂tu−∆u+ |x|2u+ εV (tω, x)u = 0, x ∈ Rd

est réductible à un système autonome pour la plupart des valeurs du vecteur de
fréquences ω ∈ Rn. En conséquence, toute solution d’une telle EDP linéaire est
presque-périodique en temps et toutes ses normes de Sobolev restent bornées.

1. Introduction

We consider the following linear Schrödinger equation in Rd

i ut(t, x)+(−∆+ |x|2)u(t, x)+εV (ωt, x)u(t, x) = 0, t ∈ R, x ∈ Rd . (1.1)
Here ε > 0 is a small parameter and the frequency vector ω of forced os-
cillations is regarded as a parameter in D an open bounded subset of Rn.
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The function V is a real multiplicative potential, which is quasiperiodic in
time: namely V is a continuous function of (ϕ, x) ∈ Tn × Rd and V is Hs
(see (1.3)) with s > d/2 with respect to the space variable x ∈ Rd and real
analytic with respect to the angle variable ϕ ∈ Td.

We consider the previous equation as a linear non-autonomous equation
in the complex Hilbert space L2(Rd) and we prove (see Theorem 2.3 below)
that it reduces to an autonomous system for most values of the frequency
vector ω.

The general problem of reducibility for linear differential systems with
time quasi periodic coefficients, ẋ = A(ωt)x, goes back to Bogolyubov [8]
and Moser [21]. Then there is a large literature around reducibility of finite
dimensional systems by means of the KAM tools. In particular, the basic
local result states the following: Consider the non autonomous linear system

ẋ = A0x+ εF (ωt)x

where A0 and F ( · ) take values in gl(k,R), Tn 3 ϕ 7→ F (ϕ) admits an
analytic extension to a strip in Cn and the imaginary part of the eigenvalues
of A satisfy certain non resonance conditions, then for ε small enough and
for ω in a Cantor set of asymptotically full measure, this linear system is
reducible to a constant coefficients system. This result was then extended in
many different directions (see in particular [10], [17] and [19]).

Essentially our Theorem 2.3 is an infinite dimensional (i.e. k = +∞)
version of this basic result.

Such kind of reducibility result for PDE using KAM machinery was first
obtained by Bambusi & Graffi (see [5]) for Schrödinger equation on R with
a xβ potential, β being strictly larger than 2. Here we follow the more recent
approach developed by Eliasson & Kuksin (see [11]) for the Schrödinger
equation on the multidimensional torus. The one dimensional case (d = 1)
was considered in [15] as a consequence of a nonlinear KAM theorem. In
the present paper we extend [15] to the multidimensional linear Schrödinger
equation (1.1) by adapting the linear algebra tools.

All the previous mentioned articles as well as this present work concern
bounded linear perturbations. Recently several results have been obtained
for unbounded linear perturbations. In this case, the Hamiltonian vector
field of the perturbation is an unbounded operator. In [1], the authors use
pseudo-differential calculus to build a symplectic change of variable that
conjugates the original Hamiltonian system to a new one where the vec-
tor field of the perturbation is bounded. This allows to apply a standard
KAM procedure. This technics was used in [12] but also in [3] and [4] where
the author considers unbounded perturbations of the 1d quantum harmonic
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oscillator. Actually this pseudo-differential approach seems to be restricted
to the one dimensional case. We also mention the very recent(1) result [6]
concerning polynomial perturbations of the quantum harmonic oscillator in
d-dimensions:
i ut(t, x) + (−∆ + |x|2)u(t, x) + εW (ωt, x,−i∇)u(t, x) = 0, t ∈ R, x ∈ Rd .
where W is a polynomial in (x, ξ) of degree at most two.

To state precisely our result we need some notations. Let
T = −∆ + |x|2 = −∆ + x2

1 + x2
2 + · · ·+ x2

d

be the d-dimensional quantum harmonic oscillator. Its spectrum is the sum
of d copies of the odd integers set, i.e. the spectrum of T equals

Ê := {d, d+ 2, d+ 4 · · · }.

For j ∈ Ê we denote the associated eigenspace Ej whose dimension is

card {(i1, i2, · · · , id) ∈ (2N− 1)d | i1 + i2 + · · ·+ id = j} := dj 6 j
d−1.

We denote {Φj,l, l = 1, · · · , dj}, the basis of Ej obtained by d-tensor product
of Hermite functions: Φj,l = ϕi1 ⊗ϕi2 ⊗ · · ·⊗ϕid for some choice of i1 + i2 +
· · ·+ id = j. Then setting

E := {(j, `) ∈ Ê × N | ` = 1, · · · , dj}
(Φa)a∈E is a basis of L2(Rd) and denoting

wj,` = j for(j, `) ∈ E
we have

TΦa = waΦa, a ∈ E .
We define on E an equivalence relation:

a ∼ b ⇐⇒ wa = wb

and denote by [a] the equivalence class associated with a ∈ E . We notice
that

card [a] 6 wd−1
a . (1.2)

For s > 0 an integer we define

Hs =
{
f ∈ Hs(Rd,C)

∣∣∣∣∣x 7→ xα∂βf ∈ L2(Rd),
for any α, β∈Nd satisfying 06 |α|+|β|6s

}
. (1.3)

We note that, for any s > 0, Hs is the form domain of T s and the domain of
T s/2 (see for instance [16, Proposition 1.6.6]) and that this allows to extend
the definition of Hs to real values of s > 0. Furthermore for s > d/2, Hs is
an algebra.

(1) Actually it was obtained after we finished the present work.
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To a function u ∈ Hs we associate the sequence ξ of its Hermite coeffi-
cients by the formula u(x) =

∑
a∈E ξaΦa(x). Then defining(2)

`2s :=
{

(ξ)a∈E

∣∣∣∣∣∑
a∈E

wsa|ξa|2 < +∞
}
,

we have for s > 0
u ∈ Hs ⇐⇒ ξ ∈ `2s. (1.4)

Then we endow both spaces with the norm

‖u‖s = ‖ξ‖s =
(∑
a∈E

wsa|ξa|2
)1/2

.

If s is a positive integer, we will use the fact that the norms on Hs are
equivalently defined as ‖T s/2ϕ‖L2(Rd) and

∑
06|α|+|β|6s ‖xα∂βϕ‖L2(Rd).

We finally introduce a regularity assumption on the potential V :

Definition 1.1. — A potential V : Tn × Rd 3 (ϕ, x) 7→ V (ϕ, x) ∈ R is
s-admissible if Tn 3 ϕ 7→ V (ϕ, · ) is real analytic with value in Hs with{

s > 0 if d = 1
s > 2(d− 2) if d > 2.

In particular if V is admissible then the map Tn 3 ϕ 7→ V (ϕ, · ) ∈ Hs
analytically extends to

Tnσ = {(a+ ib) ∈ Cn/2πZn | |b| < σ}
for some σ > 0. Now we can state our main Theorem:

Theorem 1.2. — Assume that the potential V : Tn × Rd 3 (ϕ, x) 7→ R
is s-admissible (see Definition 1.1). Then, there exists δ0 > 0 (depending
only on s and d) and ε∗ > 0 such that for all 0 6 ε < ε∗ there exists
Dε ⊂ [0, 2π)n satisfying

meas(D \ Dε) 6 εδ0 ,

such that for all ω ∈ Dε, the linear Schrödinger equation
i∂tu+ (−∆ + |x|2)u+ εV (tω, x)u = 0 (1.5)

reduces to a linear equation with constant coefficients in the energy space H1.
More precisely, for all 0 < δ 6 δ0, there exists ε0 such that for all 0 < ε < ε0
there exists Dε ⊂ [0, 2π)n satisfying

meas(D \ Dε) 6 εδ ,

(2) Take care that our choice of the weight w1/2
a instead of wa is non standard. It is

motivated by the relation (1.4).
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and for ω ∈ Dε, there exist a linear isomorphism Ψ(ϕ) = Ψω,ε(ϕ) ∈ L(Hs′),
for 0 6 s′ 6 max(1, s), unitary on L2(Rd), which analytically depends on
ϕ ∈ Tσ/2 and a bounded Hermitian operator W = Wω,ε ∈ L(Hs) such that
t 7→ u(t, · ) ∈ H1 satisfies (1.5) if and only if t 7→ v(t, · ) = Ψ(ωt)u(t, ·)
satisfies the linear autonomous equation

i∂tv + (−∆ + |x|2)v + εW v = 0 .

Furthermore, for all 0 6 s′ 6 max(1, s),

‖Ψ(ϕ)−Id‖L(Hs′ ,Hs′+2β),
∥∥Ψ(ϕ)−1−Id

∥∥
L(Hs′ ,Hs′+2β) 6 ε

1−δ/δ0 ∀ ϕ ∈ Tnσ/2.

On the other hand, the infinite matrix (W b
a)a,b∈E of the operator W written

in the Hermite basis (W b
a =

∫
Rd ΦaW (Φb)dx) is block diagonal, i.e.

W b
a = 0 if wa 6= wb

and, denoting by [V ](x) =
∫
Td V (ϕ, x)dϕ the mean value of V on the torus

Td, and by ([V ]ba)a,b∈E the corresponding infinite matrix, we have∥∥(W b
a)a,b∈E −Π

(
([V ]ba)a,b∈E

)∥∥
L(Hs) 6 ε

1/2, (1.6)

where Π is the projection on the diagonal blocks.

As a consequence of our reducibility result, we prove the following corol-
lary concerning the solutions of (1.1).

Corollary 1.3. — Assume that (ϕ, x) 7→ V (ϕ, x) is s-admissible (see
Definition 1.1). Let 1 6 s′ 6 max(1, s) and let u0 ∈ Hs

′ . Then there exists
ε0 > 0 such that for all 0 < ε < ε0 and ω ∈ Dε, there exists a unique solution
u ∈ C

(
R ; Hs

)
of (1.5) such that u(0) = u0. Moreover, u is almost-periodic

in time and satisfies

(1− εC)‖u0‖Hs′ 6 ‖u(t)‖Hs′ 6 (1 + εC)‖u0‖Hs′ , ∀ t ∈ R, (1.7)

for some C = C(s′, s, d).

Another way to understand the result of Theorem 1.2 is in term of Flo-
quet operator (see [10] or [22]). Consider on L2(Tn) ⊗ L2(Rd) the Floquet
Hamiltonian operator

K := i

n∑
k=1

ωk
∂

∂ϕk
−∆ + |x|2 + εV (ϕ, x), (1.8)

then we have

Corollary 1.4. — Assume that (ϕ, x) 7→ V (ϕ, x) is s-admissible (see
Definition 1.1). There exists ε0 > 0 such that for all 0 < ε < ε0 and ω ∈ Dε,
the spectrum of the Floquet operator K is pure point.
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Let us explain our general strategy of proof of Theorem 1.2.

In the phase space Hs×Hs endowed with the symplectic 2-form idu∧dū
equation (1.1) reads as the Hamiltonian system associated with the Hamil-
tonian function

H(u, ū) = h(u, ū) + εq(ωt, u, ū) (1.9)

where

h(u, ū) :=
∫
Rd

(
|∇u|2 + |x|2|u|2

)
dx,

q(ωt, u, ū) :=
∫
Rd
V (ωt, x)|u|2dx.

Decomposing u and ū on the basis (Φj,l)(j,l)∈E of real valued functions,

u =
∑
a∈E

ξaΦa, ū =
∑
a∈E

ηaΦa

the phase space (u, ū) ∈ Hs ×Hs becomes the phase space (ξ, η) ∈ Ys

Ys = {ζ = (ζa ∈ C2, a ∈ E) | ‖ζ‖s <∞}

where
‖ζ‖2s =

∑
a∈E
|ζa|2wsa.

We endow Ys with the symplectic structure idξ ∧ dη. In this setting the
Hamiltonians read

h =
∑
a∈E

waξaηa,

q = 〈ξ,Q(ωt)η〉

where Q is the infinite matrix whose entries are

Qba(ωt) =
∫
Rd
V (ωt, x)Φa(x)Φb(x)dx (1.10)

defining a linear operator on `2(E ,C) and 〈 · , · 〉 is the natural pairing on
`2(E ,C): 〈ξ, η〉 =

∑
a∈E ξaηa (no complex conjugation). Therefore Theo-

rem 1.2 is equivalent to the reducibility problem for the Hamiltonian system
associated with the quadratic non autonomous Hamiltonian∑

a∈E
waξaηa + ε〈ξ,Q(ωt)η〉. (1.11)

This reducibility is obtained by constructing a canonical change of vari-
ables close to identity that conjugates the Hamiltonian system associated
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with (1.11) to the Hamiltonian equation associated with an autonomous
Hamiltonian ∑

a∈E
waξaηa + ε〈ξ,Q∞η〉

where Q∞ is block diagonal: (Q∞)ba = 0 for wa 6= wb. This last condition
means that, in the new variables, there is no interaction between modes of
different energies, and this leads to Corollary 1.3.

The proof of the reducibility theorem is based on the following analysis
already used in [5], [11], [15]: the non homogeneous Hamiltonian system{

ξ̇a = −iwaξa − iε
(
tQ(ωt)ξ

)
a

η̇a = iwaηa + iε (Q(ωt)η)a
a ∈ E (1.12)

is equivalent to the homogeneous system
ξ̇a = −iwaξa − iε

(
tQ(ϕ)ξ

)
a

η̇a = iwaηa + iε (Q(ϕ)η)a
ϕ̇ = ω.

a ∈ E , (1.13)

Consequently the canonical change of variables is constructed applying a
KAM strategy to the Hamiltonian

H(y, ϕ, ξ, η) = ω · y +
∑
a∈E

waξaηa + ε〈ξ,Q(ϕ)η〉

in the extended phase space Ps = Rn × Tn × Ys.

Remark 1.5. — We can also prove a similar reducibility result for the
Klein Gordon equation on the sphere Sd, or for the beam equation on Td, by
adapting the matrix spaceMs,β defined in Section 2 (see [14]). Nevertheless,
since we need a regularizing effect of the perturbation (β > 0 in (2.2)), in
order to apply our method we cannot use it for NLS on compact domains.

Remark 1.6. — The resolution of the reducibility problem for a linear
Hamiltonian PDE leads naturally to a KAM result for the corresponding
nonlinear PDE. Actually the KAM procedure for nonlinear perturbations
consists, roughly speaking, in an iterative procedure where at each step one
linearizes the nonlinear equation around an approximate solution and one
reduces this linearized equation to a PDE with constant coefficients. This
approach is possible in the case of the Klein Gordon equation on the sphere
Sd (see [14]) or in the one dimensional case (see [15]) with analytic regu-
larity in the space direction x: the extension to the d-dimensional quantum
harmonic oscillator, following the realms of this paper and [14], is the goal
of a forthcoming paper.
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Remark 1.7. — As a difference with [11] and [15], we work here in spaces
of finite regularity in the space variable x. This allows us to get a better
control of the inverse of block diagonal matrices, especially when the dimen-
sions of the blocks are unbounded. In return, working with finite regularity
in x forbids any loss of regularity during the KAM step which is applied
infinitely many times (this is classically bypassed in the analytic case with
a reduction of the analyticity strip).

Acknowledgement. The authors acknowledge the support from the
projects ANR-13-BS01-0010-03 and ANR-15-CE40-0001-02 of the Agence
Nationale de la Recherche, and Nicolas Depauw for fruitful discussions about
interpolation. The authors also thank the Centre Henri Lebesgue ANR-11-
LABX-0020-01 for creating an attractive mathematical environment

2. Reducibility theorem.

In this section we state an abstract reducibility theorem for quadratic
quasiperiodic in time Hamiltonians of the form∑

a∈E
λaξaηa + ε〈ξ,Q(ωt)η〉.

2.1. Setting

First we need to introduce some notations.

Linear space. Let s > 0, we consider the complex weighted `2-space
`2s = {ξ = (ξa ∈ C, a ∈ E) | ‖ξ‖s <∞}

where
‖ξ‖2s =

∑
a∈E
|ξa|2wsa.

Then we define
Ys = `2s × `2s = {ζ = (ζa ∈ C2, a ∈ E) | ‖ζ‖s <∞}

where(3)

‖ζ‖2s =
∑
a∈E
|ζa|2wsa.

(3) We provide C2 with the euclidian norm, |ζa| = |(ξa, ηa)| =
√
|ξa|2 + |ηa|2.
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We provide the spaces Ys, s > 0, with the symplectic structure idξ ∧ dη.
To any C1-smooth function defined on a domain O ⊂ Ys, we associate the
Hamiltonian equation {

ξ̇ = −i∇ηf(ξ, η)
η̇ = i∇ξf(ξ, η)

where ∇f = t(∇ξf,∇ηf) is the gradient with respect to the scalar product
in Y0. For any C1-smooth functions, F,G, defined on a domain O ⊂ Ys, we
define the Poisson bracket

{F,G} = i
∑
a∈E

∂F

∂ξa

∂G

∂ηa
− ∂G

∂ξa

∂F

∂ηa
.

We will also consider the extended phase space
Ps = Rn × Tn × Ys 3 (y, ϕ, (ξ, η)).

For any C1-smooth functions, F,G, defined on a domain O ⊂ Ps, we define
the extended Poisson bracket (denoted by the same symbol)

{F,G} = ∇yF∇ϕG−∇yG∇ϕF + i
∑
a∈E

∂F

∂ξa

∂G

∂ηa
− ∂G

∂ξa

∂F

∂ηa
. (2.1)

Infinite matrices. We denote byMs,β the set of infinite matrices A :
E × E → C that satisfy

|A|s,β := sup
a,b∈E

(wawb)β
∥∥∥A[b]

[a]

∥∥∥(√min(wa, wb) + |wa − wb|√
min(wa, wb)

)s/2
<∞ (2.2)

where A[b]
[a] denotes the restriction of A to the block [a]× [b] and ‖ · ‖ denotes

the operator norm. Further we denote M = M0,0. We will also need the
spaceM+

s,β the following subspace ofMs,β : an infinite matrix A ∈ M is in
M+

s,β if

|A|s,β+ := sup
a,b∈E

(wawb)β(1+|wa−wb|)
∥∥∥A[b]

[a]

∥∥∥(√min(wa, wb)+|wa−wb|√
min(wa, wb)

)s/2
<∞.

The following structural lemma is proved in Appendix:

Lemma 2.1. — Let 0 < β 6 1 and s > 0 there exists a constant C ≡
C(β, s) > 0 such that

(i) Let A ∈ Ms,β and B ∈ M+
s,β. Then AB and BA belong to Ms,β

and
|AB|s,β , |BA|s,β 6 C|A|s,β |B|s,β+.
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(ii) Let A,B ∈M+
s,β. Then AB and BA belong toM+

s,β and
|AB|s,β+, |BA|s,β+ 6 C|A|s,β+|B|s,β+.

(iii) Let A ∈Ms,β. Then for any t > 1, A ∈ L(`2t , `2−t) and
‖Aξ‖−t 6 C|A|s,β‖ξ‖t.

(iv) Let A ∈M+
s,β. Then A ∈ L(`2s′ , `2s′+2β) for all 0 6 s′ 6 s and
‖Aξ‖s′+2β 6 C|A|s,β+‖ξ‖s′ .

Moreover A ∈ L(`21, `21) and
‖Aξ‖1 6 C|A|s,β+‖ξ‖1.

Notice that in particular, for all β > 0, matrices inM+
0,β define bounded

operator on `21 but, even for s large, we cannot insure thatMs,β ⊂ L(`2).

Normal form.
Definition 2.2. — A matrix Q : E × E → C is in normal form, and

we denote Q ∈ NF , if

(i) Q is Hermitian, i.e. Qab = Qba,
(ii) Q is block diagonal, i.e. Qab = 0 for all wa 6= wb.

Notice that a block diagonal matrix with bounded blocks in operator
norm defines a bounded operator on `2 and thus we haveMs,β∩NF ⊂ L(`2s).
To a matrix Q = (Qba) ∈ L(`2t , `2−t) we associate in a unique way a quadratic
form on Ys 3 (ζa)a∈E = (ξa, ηa)a∈E by the formula

q(ξ, η) = 〈ξ,Qη〉 =
∑
a,b∈E

Qbaξaηb.

We notice for later use that
{q1, q2}(ξ, η) = −i〈ξ, [Q1, Q2]η〉 (2.3)

where
[Q1, Q2] = Q1Q2 −Q2Q1

is the commutator of the two matrices Q1 and Q2. If Q ∈Ms,β then

sup
a,b∈E

∥∥∥(∇ξ∇ηq)[b]
[a]

∥∥∥ 6 |Q|s,β
(wawb)β

( √
min(wa, wb)√

min(wa, wb) + |wa − wb|

)s/2
. (2.4)

Parameter. In all the paper ω will play the role of a parameter belonging
to D0 = [0, 2π)n. All the constructed functions will depend on ω with C1

regularity. When a function is only defined on a Cantor subset of D0 the
regularity has to be understood in the Whitney sense.
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A class of quadratic Hamiltonians. Let s > 0, β > 0, D ⊂ D0 and
σ > 0. We denote byMs,β(D, σ) the set of C1 mappings

D × Tσ 3 (ω, ϕ)→ Q(ω, ϕ) ∈Ms,β

which is real analytic in ϕ ∈ Tσ := {ϕ ∈ Cn | |=ϕ| < σ}. This space is
equipped with the norm

[Q]D,σs,β = sup
ω∈D, j=0,1
|=ϕ|<σ

|∂jωQ(ω, ϕ)|s,β . (2.5)

In view of Lemma 2.1(iii), to a matrix Q ∈Ms,β(D, σ) we can associate the
quadratic form on Y1

q(ξ, η;ω, ϕ) = 〈ξ,Q(ω, ϕ)η〉
and we have
|q(ξ, η;ω, ϕ)| 6 [Q]D,σs,β ‖(ξ, η)‖21 for(ξ, η) ∈ Y1, ω ∈ D, ϕ ∈ Tσ . (2.6)

The subspace ofMs,β(D, σ) formed by Hamiltonians S such that S(ω, ϕ) ∈
M+

s,β is denoted byM+
s,β(D, σ) and is equipped with the norm

[S]D,σs,β+ = sup
ω∈D, j=0,1
|=ϕ|<σ

|∂jωS(ω, ϕ)|s,β+ .

The space of Hamiltonians N ∈ Ms,β(D, σ) that are independent of ϕ will
be denoted byMs,β(D) and is equipped with the norm

[N ]Ds,β = sup
ω∈D, j=0,1

|∂jωN(ω)|s,β .

Hamiltonian flow. To any S ∈M+
s,β with s > 0 and β > 0 we associate

the symplectic linear change of variable on Ys:

(ξ, η) 7→ (e−i
tSξ, eiSη).

It is well defined and invertible in L(Ys′) for all 0 6 s′ 6 max(1, s) as a
consequence of Lemma 2.1(iv). We note that it corresponds to the flow at
time 1 generated by the quadratic Hamiltonian (ξ, η) 7→ 〈ξ, Sη〉. Notice that
a necessary and sufficient condition for this flow to preserve the symmetry
η = ξ (verified by any initial condition considered in this paper) is

tS = S , (2.7)
that is, S is a hermitian matrix.

When S also depends smoothly on ϕ, Tn 3 ϕ 7→ S(ϕ) ∈ M+
s,β we as-

sociate to S the symplectic linear change of variable on the extended phase
space Ps:

ΦS(y, ϕ, ξ, η) 7→ (ỹ, ϕ, e−i
tSξ, eiSη) (2.8)
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where ỹ is the solution at time t = 1 of the equation ˙̃y = 〈e−i tSξ,∇ϕSeiSη〉
with ỹ(0) = y. We note that it corresponds to the flow at time 1 generated
by the Hamiltonian (y, ϕ, ξ, η) 7→ 〈ξ, S(ϕ)η〉. Concretely we will never cal-
culate ỹ explicitly since the non homogeneous Hamiltonian system (1.12) is
equivalent to the system (1.13) where the variable conjugated to ϕ is not
required.

2.2. Hypothesis on the spectrum

Now we formulate our hypothesis on λa, a ∈ E :
Hypothesis H1 (Asymptotics). — We assume that there exists an ab-

solute constant c0 > 0 such that
λa > c0 wa a ∈ E (2.9)

and
|λa − λb| > c0|wa − wb| a, b ∈ E (2.10)

Hypothesis H2 (second Melnikov condition in measure). — There exist
absolute constants α1 > 0, α2 > 0 and C > 0 such that the following holds:
for each κ > 0 and K > 1 there exists a closed subset D′ = D′(κ,K) ⊂ D
(where D is the initial set of vector frequencies) satisfying

meas(D \ D′) 6 CKα1κα2 (2.11)
such that for all ω ∈ D′, all k ∈ Zn with 0 < |k| 6 K and all a, b ∈ E we
have

|k · ω + λa − λb| > κ(1 + |wa − wb|). (2.12)

2.3. The reducibility Theorem

Let us consider the non autonomous Hamiltonian
Hω(t, ξ, η) =

∑
a∈E

λaξaηa + ε〈ξ,Q(ωt)η〉 (2.13)

and the associated Hamiltonian system on Ys{
ξ̇ = −iN0ξ − iε tQ(ωt)ξ
η̇ = iN0η + iεQ(ωt)η

(2.14)

where N0 = diag(λa | a ∈ E).
Theorem 2.3. — Fix s > 0, σ > 0, β > 0. Assume that (λa)a∈E sat-

isfies Hypotheses A1, A2, and that Q ∈ Ms,β(D, σ). Fix 0 < δ 6 δ0 :=
β2α2

16(2+d+2βα2)(d+2β) . Then there exists ε∗ > 0 and if 0 < ε < ε∗, there exist

– 988 –



On reducibility of quantum harmonic oscillator on Rd

(i) a Cantor set Dε ⊂ D with Meas(D \ Dε) 6 εδ;
(ii) a C1 family (in ω ∈ Dε) of real analytic (in ϕ ∈ Tσ/2) linear,

unitary and symplectic coordinate transformation on Y0:{
Y0 → Y0

(ξ, η) 7→ Ψω(ϕ)(ξ, η) = 〈Mω(ϕ)ξ,Mω(ϕ)η〉, ω ∈ Dε, ϕ ∈ Tσ/2 ;

(iii) a C1 family of quadratic autonomous Hamiltonians in normal form

Hω = 〈ξ,N(ω)η〉, ω ∈ Dε ,

where N(ω) ∈ NF , in particular block diagonal (i.e. N b
a = 0 for

wa 6= wb), and is close to N0 = diag(λa | a ∈ E): N(ω)−N0 ∈Ms,β

and
‖N(ω)−N0‖s,β 6 2ε ω ∈ Dε ; (2.15)

such that t 7→ (ξ(t), η(t)) is a solution of (2.14) in Y1 if and only if t 7→
Ψω(ωt)((ξ(t), η(t))) is a solution of the autonomous Hamiltonian system as-
sociated with Hω: {

ξ̇ = −iN(ω)ξ
η̇ = iN(ω)η .

Furthermore Ψω(ϕ) and Ψω(ϕ)−1 are bounded operators from Ys′ into itself
for all 0 6 s′ 6 max(1, s) and they are close to identity:

‖Mω(ϕ)− Id‖L(`2
s′ ,`

2
s′+2β) ,

∥∥Mω(ϕ)−1 − Id
∥∥
L(`2

s′ ,`
2
s′+2β) 6 ε

1−δ/δ0 . (2.16)

Remark 2.4. — Although Ψω(ϕ) is defined on Y0, the normal form N (in
particular N0) defines a quadratic form on Ys only when s > 1. Nevertheless
its flow is well defined and continuous from Y0 into itself (cf. (3.7)). Fortu-
nately our change of variable Ψω(ϕ) is always well defined on Y1 even when
Q ∈ M0,β(D, σ) (i.e. when s = 0). This is essentially a consequence of the
second part of Lemma 2.1(iv).

Remark 2.5. — Notice that Ψω(ϕ) − Id ∈ L(Ys, Ys+2β), i.e. it is a regu-
larizing operator.

Theorem 2.3 is proved in Section 4.

3. Applications to the quantum harmonic oscillator on Rd

In this section we prove Theorem 1.2 as a corollary of Theorem 2.3. We
use notations introduced in the introduction.
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3.1. Verification of the hypothesis

We first verify the hypothesis of Theorem 1.2:

Lemma 3.1. — When λa = wa, a ∈ E, Hypothesis H1 and H2 hold true
with c0 = 1/2 and D = [0, 1]n.

Proof. — The asymptotics A1 are trivially verified with c0 = 1. For τ > n
we define the diophantine set

Gτ (κ) :=
{
ω ∈ [0, 2π)n

∣∣∣∣ |〈ω, k〉+j| > κ

|k|τ
, for all j ∈ Z and k ∈ Zn \ {0}

}
.

A classical argument leads to

meas
(
[0, 2π)n \Gτ (κ)

)
6 Cκ

∑ 1
|k|τ

6 C(τ)κ.

Since wa − wb ∈ Z, Hypothesis A2 is satisfied choosing
D = [0, 1]n, D′ = Gn+1(κKn+1), α1 = n+ 1andα2 = 1.

�

Lemma 3.2. — Let d > 1. Suppose that{
s > 0 if d = 1
s > 2(d− 2) if d > 2

and V ∈ Hs. Then there exists β(d, s) > 0 such that the matrix Q defined by

Qba =
∫
Rd
V (x)Φa(x)Φb(x)dx

belongs toMs,β(d,s). Moreover, there exists C(d, s) > 0 such that
|Q|s,β 6 C(d, s) ‖V ‖s .

As a consequence if V is admissible (see Definition 1.1) then, defining

Qba(ϕ) =
∫
Rd
V (ϕ, x)Φa(x)Φb(x)dx,

the mapping ϕ 7→ Q(ϕ) belongs toMs,β(D0, σ) for some σ > 0.

Proof. — First we notice that∥∥∥Q[b]
[a]

∥∥∥ = sup
‖u‖,‖v‖=1

|〈Q[b]
[a]u, v〉| = sup

Ψa∈E[a], ‖Ψa‖=1
Ψb∈E[b], ‖Ψb‖=1

∣∣∣∣∫
Rd
V (x)ΨaΨb dx

∣∣∣∣ ,
where E[a] (resp. E[b]) is the eigenspace of T associated with the cluster [a]
(resp. [b]). Then we follow arguments developed in [2, Proposition 2] and
already used in the context of the harmonic oscillator in [13]. The basic idea
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lies in the following commutator lemma: Let A be a linear operator which
maps Hs into itself and define the sequence of operators

AN := [T,AN−1], A0 := A

then by [2, Lemma 7], we have for any a, b ∈ E with wa 6= wb, for any
Ψa ∈ E[a], Ψb ∈ E[b] and any N > 0

|〈AΨa,Ψb〉| 6
1

|wa − wb|N
|〈ANΨa,Ψb〉| =

1
|wa − wb|N

‖Ψb‖L∞‖ANΨa‖L1 .

Let A be the operator given by the multiplication by the function V (x).
Then, by an induction argument,

AN =
∑

06|α|6N

Cα,ND
α withCα,N =

∑
06|β|62N−|α|

Pα,β,N (x)DβV

and Pα,β,N are polynomials of degree less than 2N − |α| − |β|.

We first address the case d = 1, that we treat in the same way as in [15].
In this case, we have in [18] the following estimate on L∞ norm of Hermite
eigenfunctions with ‖Ψb‖L2 = 1,

‖Ψb‖L∞ 6 w−1/12
b . (3.1)

On the other hand, for N > 0, we have
‖ANΨa‖L1

6
∑

06|α|6N

∑
06|β|62N−|α|

‖Pα,β,N (x)DβV DαΨa‖L1

6 C
∑

06|α|6N

∑
06|β|62N−|α|

∑
|γ|62N−|α|−|β|

‖〈x〉γDβV DαΨa‖L1

6 C
∑

06|α|6N

∑
06|β|62N−|α|

∑
|γ|62N−|β|

‖〈x〉γDβV ‖L2

∑
|γ′|6α

‖〈x〉−γ
′
DαΨa‖L2

6 C‖V ‖2N‖Ψa‖N ,

where 〈x〉α = Πd
i=1(1 + |xi|2)αi/2 for α ∈ Nd. Moreover, since TΨa = waΨa

and ‖Ψa‖L2 = 1,
‖Ψa‖N 6 Cw

N/2
a . (3.2)

Therefore choosing N = s/2, we obtain∣∣∣∣∫
Rd

ΨaΨbV dx
∣∣∣∣ 6 C

w
1/12
b

( √
wa

|wa − wb|

)s/2
‖V ‖s.

If √wa 6 |wa − wb| this leads to∣∣∣∣∫
Rd

ΨaΨbV dx
∣∣∣∣ 6 C 2s/2

w
1/12
b

( √
wa√

wa + |wa − wb|

)s/2
‖V ‖s. (3.3)
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On the other hand, if √wa > |wa − wb| then
√
wa√

wa+|wa−wb| >
1
2 and since,

using (3.1),∣∣∣∣∫
Rd

ΨaΨbV dx
∣∣∣∣ 6 ‖Ψb‖L∞ ‖ψa‖L2 ‖V ‖L2 6 w

− 1
12

b ‖V ‖L2

(3.3) is still true providing that C is large enough. Exchanging a and b gives

∣∣∣∣∫
Rd

ΨaΨbV dx
∣∣∣∣ 6 2s/2C

max(wa, wb)1/12

( √
min(wa, wb)√

min(wa, wb)+ |wa−wb|

)s/2
‖V ‖s

6
2s/2C

(wawb)1/24

( √
min(wa, wb)√

min(wa, wb)+ |wa−wb|

)s/2
‖V ‖s , (3.4)

hence Q ∈ Ms,1/24 and |Q|s,1/24 6 C(d, s)‖V ‖s. The case s 6∈ 2N comes
after a standard interpolation argument, the Stein–Weiss theorem (see e.g. [7,
Corollary 5.5.4]): indeed, fixing a, b and s0 = 2N , we may estimate the norm
of the linear form V 7→

∫
Rd ΨaΨbV dx acting on Hs for s = θs0, θ ∈ [0, 1],

using the direct estimate∣∣∣∣∫
Rd

ΨaΨbV dx
∣∣∣∣ 6 C ′

(wawb)1/24 ‖V ‖L2

and (3.4), and we get

∣∣∣∣∫
Rd

ΨaΨbV dx
∣∣∣∣ 6 C ′

(wawb)1/24

( √
min(wa, wb)√

min(wa, wb) + |wa − wb|

)θs0/2

‖V ‖θs0 .

We now treat the case d > 2. Take p > 2 if d = 2 and 2 < p < 2d
d−2 if

d > 3. Using the Hölder inequality, we get, for 1
p + 1

q = 1,

|〈AΨa,Ψb〉| 6
1

|wa − wb|N
‖Ψb‖Lp‖ANΨa‖Lq .

In [18], the Lp estimate on Hermite eigenfunctions (with ‖Ψb‖L2 = 1)
gives

‖Ψb‖Lp 6 w−β̃(p)
b ,

with β̃(p) = 1
3p if d = 2 (and p > 10/3) and β̃(p) = 1

2

(
d
3p −

d−2
6

)
> 0 if

d > 2 and 2(d+3)
d+1 6 p < 2d

d−2 . Moreover, we may estimate ‖ANΨa‖Lq , using
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Young inequality (with 1
2 + 1

r = 1
q )

‖ANΨa‖Lq 6
∑

06|α|6N

∑
06|β|62N−|α|

‖Pα,β,N (x)DβV DαΨa‖Lq

6 C

( ∑
06|α|6N/2

06|β|62N−|α|

∑
|γ|62N−β

‖〈x〉γDβV ‖L2

∑
|γ′|6α

‖〈x〉−γ
′
Ψa‖Lr

+
∑

N/2<|α|6N
06|β|62N−|α|

∑
|γ|62N−|α|−|β|

‖〈x〉γDβV ‖Lr‖DαΨa‖L2

)

6 C
(
‖V ‖2N‖Ψa‖N/2+ν + ‖V ‖3N/2+ν‖Ψa‖N

)
,

using the embedding Hν(Rd) ↪→ Hν(Rd) composed with the Sobolev em-
bedding Hν(Rd) ↪→ Lr(Rd), valid for ν > d

( 1
2 −

1
r

)
= d

p >
d−2

2 . Hence, for
s = 2N and ν 6 N

2 = s
4 , i.e. s > 2(d− 2), we have∣∣∣∣∫

Rd
ΨaΨbV dx

∣∣∣∣ 6 CN

w
β̃(p)
b

1
|wa − wb|s/2

‖Ψa‖s/2 ‖V ‖s

6
CN

w
β̃(p)
b

w
s/4
a

|wa − wb|s/2
‖V ‖s ,

and thus∣∣∣∣∫
Rd

ΨaΨbV dx
∣∣∣∣

6
C ′N

(wawb)β̃(p)/2

(
min(wa, wb)1/2

min(wa, wb)1/2 + |wa − wb|

)s/2
‖V ‖s , (3.5)

using the same trick as in the case d = 1. Now fixing p(d, s) satisfying all
the constraints 2 < p < 2d

d−2 and p > 4d
s (which is always possible since

4d
s < 2d

d−2 ) and defining β(d, s) = β̃(p(d, s)) gives the result for an even
integer s satisfying s > 2(d − 2). In order to get the estimate for any real
number s > 2(d−2), we interpolate: we take any even integer s0 larger than
s, and define s1 = 0 and p = +∞ in the case d = 2, and s1 = 2(d − 2),
p = 2d

d−2 if d > 2. There exists θ ∈]0, 1] such that s = θs0 + (1 − θ)s1.
Moreover, following the last computations, we easily find∣∣∣∣∫

Rd
ΨaΨbV dx

∣∣∣∣ 6 C ( min(wa, wb)1/2

min(wa, wb)1/2 + |wa − wb|

)s1/2

‖V ‖s1 . (3.6)

Hence, using [7, Corollary 5.5.4], (3.5) and (3.6), interpolation gives the
desired estimate for s1 < s 6 s0. �
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3.2. Proof of Theorem 1.2 and Corollaries 1.3, 1.4

The Schrödinger equation (1.5) is a Hamiltonian system on Hs × Hs
(s > 1) governed by the Hamiltonian function (1.9). Expanding it on the
orthonormal basis (Φa)a∈E , it is equivalent to the Hamiltonian system on Ys
governed by (1.11) which reads as (2.14) with λa = wa and Q given by (1.10).
By Lemmas 3.1, 3.2, if V is s-admissible, we can apply Theorem 2.3 to (1.11)
and this leads to Theorem 1.2. More precisely, in the new coordinates given
by Theorem 2.3, (ξ′(t), η′(t)) = (Mω(ωt)ξ,Mω(ωt)η), the system (1.12) be-
comes autonomous and decomposes in blocks as follows (remark that since
N is in normal form we have tN = N):{

ξ̇′[a] = −iN [a]ξ
′
[a] a ∈ Ê

η̇′[a] = iN[a]η
′
[a] a ∈ Ê .

(3.7)

In particular, the solution u(t, x) of (1.5) corresponding to the initial datum
u0(x) =

∑
a∈E ξ(0)aΦa(x) ∈ H1 reads u(t, x) =

∑
a∈E ξ(t)aΦa(x) with

ξ(t) = tMω(ωt)e−iNt Mω(0)ξ(0) . (3.8)

In other words, let us define the transformation Ψ(ϕ) ∈ L(Hs) by

Ψ(ϕ)
(∑
a∈E

ξaΦa(x)
)

=
∑
a∈E

(
Mω(ϕ)ξ

)
a

Φa(x) .

Then u(t, x) satisfies (1.5) if and only if v(t, · ) = Ψ(ωt)u(t, · ) satisfies

i∂tv + (−∆ + |x|2)v + εW (v) = 0 ,

where W is defined as follows:

W

(∑
a∈E

ξaΦa

)
=
∑
a∈E

(Nωξ)a Φa .

Furthermore, remembering the construction of Nω (see (4.36) and (4.25))
we get that

‖Nω − (N0 + Ñ1)‖ 6 2ε1 = 2ε3/2

which leads to (1.6). This achieves the proof of Theorem 1.2.

To prove Corollary 1.3 let us explicit the formula (3.8). The exponential
map e−iNt decomposes on the finite dimensional blocks:

(e−iNt)[a] = e−iN [a]t

and N [a] diagonalizes in orthonormal basis:

P[a]N [a]
tP[a] = diag(µc), P[a]

tP[a] = Ida
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where P[a] is some block matrix and µc are real numbers that, in view
of (2.15), satisfy

|µa − λa| 6 C
ε

w2β
a

, a ∈ E .

Thus
u(t, x) =

∑
a∈E

ξa(t)Φa(x)

where
ξ(t) = tMω(ωt)PD(t) tPMω(0)ξ(0) (3.9)

with
D(t) = diag(eiµct, c ∈ E)

and P is the `2 unitary block diagonal map whose diagonal blocks are P[a]. In
particular the solutions are all almost periodic in time with frequencies vector
(ω, µ). Furthermore, since ‖Pξ‖s = ‖ξ‖s and Mω(ϕ) is close to identity (see
estimate (2.16)) we deduce (1.7).

Now it remains to prove Corollary 1.4. Defining, for any c ∈ E the se-
quence δc ∈ `2 as δcc = 1 and δca = 0 if a 6= c, then the function u(t, x) defined
as

u(t, x) = eiµct
∑
a∈[c]

(
tMω(ωt)Pδc

)
a

Φa(x)

solves (1.5) if and only if µc + k · ω is an eigenvalue of K defined in (1.8),
with associated eigenfunction

(θ, x) 7→ eik·θ
∑
a∈[c]

(
tMω(θ)Pδc

)
a

Φa(x) .

This shows that the spectrum of the Floquet operator (1.8) equals {µc+ k ·ω |
k ∈ Zn, c ∈ E} and thus Corollary 1.4 is proved.

4. Proof of Theorem 2.3

4.1. General strategy

Let h be a Hamiltonian in normal form:

h(y, ϕ, ξ, η) = ω · y + 〈ξ,N(ω)η〉 (4.1)

with N in normal form (see Definition 2.2). Notice that at the beginning of
the procedure N is diagonal,

N = N0 = diag(wa, a ∈ E)
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and is independent of ω. Let q be a quadratic Hamiltonian of the form

q(ξ, η) = 〈ξ,Q(ϕ)η〉

and of size O(ε).

We search for a quadratic hamiltonian χ(ϕ, ξ, η) = 〈ξ, S(ϕ)η〉 with S =
O(ε) such that its time-one flow ΦS ≡ Φt=1

S transforms the Hamiltonian
h+ q into

(h+ q(ϕ)) ◦ ΦS = h+ + q+(ϕ),
where h+ is a new normal form, ε-close to h, and the new perturbation q+
is of size O(ε2).

As a consequence of the Hamiltonian structure we have (at least formally)
that

(h+ q(ϕ)) ◦ ΦS = h+ {h, χ}+ q(ϕ) +O(ε2).
So to achieve the goal above we should solve the homological equation:

{h, χ} = h+ − h− q(ϕ) +O(ε2). (4.2)

or equivalently (see (2.1) and (2.3))

ω · ∇ϕS − i[N,S] = N+ −N −Q+O(ε2). (4.3)

Repeating iteratively the same procedure with h+ instead of h, we will con-
struct a change of variable Φ such that

(h+ q(ϕ)) ◦ Φ = h∞ ,

with h∞ = ω ·y+〈ξ,N∞(ω)η〉 in normal form. Note that we will be forced to
solve the homological equation, not only for the diagonal normal form N0,
but for more general normal form Hamiltonians (4.1) with N close to N0.

4.2. Homological equation

In this section we will consider a homological equation of the form

ω · ∇ϕS − i[N,S] +Q = remainder (4.4)

with N in normal form close to N0 and Q ∈ Ms,β . We will construct a
solution S ∈M+

s,β .

Proposition 4.1. — Let D ⊂ D0. Let D 3 ρ 7→ N(ω) ∈ NF be a C1

mapping that verifies ∥∥∂jω(N(ω)−N0)[a]
∥∥ 6 c0

4w2β
a

(4.5)

– 996 –



On reducibility of quantum harmonic oscillator on Rd

for j = 0, 1, a ∈ E and ω ∈ D. Let Q ∈ Ms,β, 0 < κ 6 c0/2 and K > 1.
Then there exists a subset D′ = D′(κ,K) ⊂ D, satisfying

meas(D \ D′) 6 CKγ1κγ2 , (4.6)

and there exist C1-functions Ñ : D′ → Ms,β ∩ NF , S : Tnσ × D′ → M+
s,β

hermitian and R : Tnσ ×D′ →Ms,β, analytic in ϕ, such that

ω · ∇ϕS − i[N,S] = Ñ −Q+R (4.7)

and for all (ϕ, ω) ∈ Tnσ′ ×D′, σ′ < σ, and j = 0, 1∣∣∂jωR(ϕ, ω)
∣∣
s,β
6 C

K1+ d
2 e−

1
2 (σ−σ′)K

κ1+ d
2β (σ − σ′)n

sup
|=ϕ|<σ
j=0,1

|∂jωQ(ϕ)|s,β , (4.8)

∣∣∂jωS(ϕ, ω)
∣∣
s,β+ 6 C

Kd+1

κ
d
β+2(σ − σ′)n

sup
|=ϕ|<σ
j=0,1

|∂jωQ(ϕ)|s,β , (4.9)

∣∣∣∂jωÑ(ω)
∣∣∣
s,β
6 sup
|=ϕ|<σ
j=0,1

|∂jωQ(ϕ)|s,β . (4.10)

The constant C depends on n, d, s, β and |ω|, γ2 = βα2
d+1+βα2

and γ1 =
max(α1, 2 + d+ n).

Proof. — Written in Fourier variables (w.r.t. ϕ), (4.7) reads

iω · k Ŝ(k)− i[N, Ŝ(k)] = δk,0Ñ − Q̂(k) + R̂(k) (4.11)

where δk,j denotes the Kronecker symbol.

We decompose the equation into “components” on each product block
[a]× [b]:

L Ŝ
[b]
[a](k) = −iδk,0Ñ [b]

[a] + iQ̂
[b]
[a](k)−iR̂[b]

[a](k) (4.12)

where the operator L := L(k, [a], [b], ω) is the linear operator, acting in the
space of complex [a]× [b]-matrices defined by

LM =
(
k · ω I −N[a](ω)

)
M +MN[b](ω)

with N[a] = N
[a]
[a] .

First we solve this equation when k = 0 and wa = wb by defining

Ŝ
[a]
[a](0) = 0, R̂

[a]
[a](0) = 0andÑ [a]

[a] = Q̂
[a]
[a](0).

Then we set Ñ [b]
[a] = 0 for wa 6= wb in such a way Ñ ∈ Ms,β ∩ NF and

satisfies
|Ñ |s,β 6 |Q̂(0)|s,β .
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The estimates of the derivatives with respect to ω are obtained by differen-
tiating the expressions for Ñ .

It remains to consider the case when k 6= 0 or wa 6= wb. The matrix N[a]
can be diagonalized in an orthonormal basis:

tP[a]N[a]P[a] = D[a].

Then we denote Ŝ′
[b]
[a] = tP[a]Ŝ

[b]
[a]P[b], Q̂′

[b]
[a] = tP[a]Q̂

[b]
[a]P[b] and R̂′

[b]
[a] =

tP[a]R̂
[b]
[a]P[b] and we notice for later use that ‖M̂ ′[b][a]‖ = ‖M [b]

[a]‖ for M =
S,Q,R. In this new variables the homological equation (4.12) reads

(k · ω −D[a])Ŝ′
[b]
[a](k) + S′

[b]
[a](k)D[b] = iQ̂′

[b]
[a](k)−iR̂′[b][a](k). (4.13)

This equation can be solved term by term: let a, b ∈ E , we set

R̂′
[b]
[a](k) = 0 for |k| 6 K,

R̂′j`(k) = Q̂′j`(k), j ∈ [a], ` ∈ [b], |k| > K,
(4.14)

and

Ŝ′
[b]
[a](k) = 0 for |k| > K or for k = 0 and wa = wb,(

Ŝ′
[b]
[a](k)

)
j`

= i

k · ω − αj + β`

(
Q̂′

[b]
[a](k)

)
j`

in the other cases.
(4.15)

Here αj(ω) and β`(ω) denote eigenvalues of N[a](ω) and N[b](ω), respec-
tively. Before the estimations of such matrices, first remark that with this
resolution, we ensure that(

Q̂′
[b]
[a](k)

)
j`

=
(
Q̂′

[a]
[b] (−k)

)
`j
⇒
(
Ŝ′

[b]
[a](k)

)
j`

=
(
Ŝ′

[a]
[b] (−k)

)
`j

hence, if Q′ verifies condition (2.7), then this is also the case for S′, hence
the flow induced by S preserves the symmetry η = ξ.

First notice that (4.14) classically leads to (see for instance [20])

|R(ϕ)|s,β = |R′(ϕ)|s,β 6 C
e−

1
2 (σ−σ′)K

(σ − σ′)n sup
|=θ|<σ

|Q(θ)|s,β , for|=ϕ| < σ′.

In order to estimate S, we will use Lemma 4.3 stated at the end of this
section and proved in the appendix. We face the small divisors

k · ω − αj(ω) + β`(ω), j ∈ [a], ` ∈ [b]. (4.16)

To estimate them, we have to distinguish two cases, depending on whether
k = 0 or not.

– 998 –



On reducibility of quantum harmonic oscillator on Rd

The case k = 0. — In that case, we know that wa 6= wb and we
use (4.5)(4) and (2.10) to get

|αj(ω)− β`(ω)| > c0|wa − wb| −
c0

4w2β
a

− c0

4w2β
b

> κ(1 + |wa − wb|).

This last estimate allows us to use Lemma 4.3 to conclude that

|Ŝ(0)|β+ 6 C
1

κ1+ d
2β
|Q̂(0)|β . (4.17)

The case k 6= 0. — Using Hypothesis A2, for any η > 0, there is a set
D1 = D(2η,K),

meas(D \ D1) 6 CKα1ηα2 ,

such that for all ω ∈ D1 and 0 < |k| 6 K

|k · ω − λa(ω) + λb(ω)| > 2η(1 + |wa − wb|).

By (4.5) this implies

|k · ω − αj(ω) + β`(ω)| > 2η(1 + |wa − wb|)−
c0

4w2β
a

− c0

4w2β
b

> η(1 + |wa − wb|)

if
wb > wa >

( c0
2η

) 1
2β
.

Let now wa 6 ( c0
2η )

1
2β . We note that |k ·ω −λa(ω) +λb(ω)| 6 1 implies that

wb 6 1 + ( c0
2η )

1
2β + C|k| 6 C(( c0

2η )
1

2β + K). Since |∂ω(k · ω)( k
|k| ))| = |k| > 1,

we get, using condition (4.5),∣∣∣∣∂ω (k · ω − αj(ω) + β`(ω)
(
k

|k|

))∣∣∣∣ > 1/2 . (4.18)

Then we recall the following classical lemma:

Lemma 4.2. — Let f : [0, 1] 7→ R a C1-map satisfying |f ′(x)| > δ for all
x ∈ [0, 1] and let κ > 0 then

meas{x ∈ [0, 1] | |f(x)| 6 κ} 6 κ

δ
.

Using (4.18) and the Lemma 4.2, we conclude that

|k · ω − αj(ω) + β`(ω)| > κ(1 + |wa − wb|) ∀ j ∈ [a], ∀ ` ∈ [b] (4.19)

holds outside a set F[a],[b],k of measure 6 Cwdawdb (1 + |wa − wb|)κ.

(4) We use that the modulus of the eigenvalues are controlled by the operator norm of
the matrix.
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If F is the union of F[a],[b],k for |k| 6 K, [a], [b] ∈ Ê such that wa 6 ( c0
2η )

1
2β ,

wb 6 C(( c0
2η )

1
2β +K) and |wa − wb| 6 CK, we have

meas(F ) 6 C
( c0

2η

) 1
2β
(( c0

2η

) 1
2β +K

)
Kn

(( c0
2η

) 1
2β +K

)d( c0
2η

) d
2β
Kκ

6 CKn+d+2η−
1+d
β κ .

Now we choose η such that

ηα2 = η−
d+1
β κ i.e.η = κ

β
d+1+βα2 .

Then, as β 6 1, η > κ and we have

meas(F ) 6 CKn+d+2κ
βα2

d+1+βα2 .

Let D2 = D1 ∪ F , we have

meas(D \ D2) 6 CKα1ηα2 + CKn+d+2κ
βα2

d+1+βα2 6 CKγ1κγ2

with γ1 = max(α1, 2 + d + n), γ2 = βα2
d+1+βα2

. Further, by construction, for
all ρ ∈ D3, 0 < |k| 6 K, a, b ∈ E and j ∈ [a], ` ∈ [b] we have

|〈k, ω〉 − αj(ω) + β`(ω)| > κ(1 + |wa − wb|).

Hence using Lemma 4.3 and in view of (4.15), we get that Ŝ′(k) ∈M+
s,β and

|Ŝ′(k)|s,β+ 6 C
|Q̂(k)|s,βK

d
2

κ1+ d
2δ

, 0 < |k| 6 K .

Combining this last estimate with (4.17) we obtain a solution S satisfying
for any |=ϕ| < σ′

|S(ϕ)|s,β+ 6C
K

d
2

(σ − σ′)nκ1+ d
2δ

sup
|=ϕ|<σ

|Q(ϕ)|s,β

The estimates for the derivatives with respect to ρ are obtained by dif-
ferentiating (4.12) which leads to

L(∂ωŜ[b]
[a](k, ω)) = −(∂ωL)Ŝ[b]

[a](k, ω) + i∂ωQ̂
[b]
[a](k, ω)− i∂ωR̂[b]

[a](k, ω)

which is an equation of the same type as (4.12) for ∂ωŜ
[b]
[a](k, ω) and

∂ωR̂
[b]
[a](k, ω) where iQ̂[b]

[a](k, ω) is replaced by B[b]
[a](k, ω) = −(∂ωL)Ŝ[b]

[a](k, ω)+
i∂ωQ̂

[b]
[a](k, ω). This equation is solved by defining

∂ωŜ
[b]
[a](k, ω) = χ|k|6K(k)L(k, [a], [b], ω)−1B

[b]
[a](k, ω),

∂ωR̂
[b]
[a](k, ω) = −iχ|k|>K(k)B[b]

[a](k, ω) = χ|k|>K(k)∂ρQ̂[b]
[a](k, ω)
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Since
|(∂ωL)Ŝ(k, ω)|s,β 6 C(K + 2(‖∂ωA0‖+ δ0))|Ŝ(k, ω)|s,β 6 CK|Ŝ(k, ω)|s,β

we obtain
|B(k, ω)|s,β 6 CKκ−

d
2β−1Kd/2|

(
|Q̂(k)|s,β + |∂ωQ̂(k)|s,β

)
and thus following the same strategy as in the resolution of (4.12) we get for
|=ϕ| < σ′

|∂ωS(ϕ)|s,β+ .
Kd+1

κ
d
β+2(σ − σ′)n

(
sup
|=ϕ|<σ

|Q(ϕ)|s,β + sup
|=ϕ|<σ

|∂ωQ(ϕ)|s,β
)
,

|∂ωR(ϕ)|s,β .
K1+ d

2 e−
1
2 (σ−σ′)K

κ1+ d
2β (σ − σ′)n

(
sup
|=ϕ|<σ

|Q(ϕ)|s,β + sup
|=ϕ|<σ

|∂ωQ(ϕ)|s,β
)
.

�

We end this section with the key Lemma which is an adaptation of Propo-
sition 2.2.4 in [9] (a similar Lemma is also proved in [14]):

Lemma 4.3. — Let A ∈M and let B(k) defined for k ∈ Zn by

B(k)lj = 1
k · ω − µj + µl

Alj , j ∈ [a], ` ∈ [b] (4.20)

where ω ∈ Rn and (µa)a∈E is a sequence of real numbers satisfying

|µa − wa| 6 min
(
Cµ
wδa

,
1
4

)
, for all a ∈ E (4.21)

for a given Cµ > 0 and δ > 0, and such that for all a, b ∈ E and all |k| 6 K
|k · ω − µa + µb| > κ(1 + |wa − wb|). (4.22)

Then B ∈ M and there exists a constant C > 0 depending only on Cµ, |ω|
and δ such that∥∥∥B(k)[b]

[a]

∥∥∥ 6 C K
d
2

κ1+ d
2δ (1 + |wa − wb|)

∥∥∥A[b]
[a]

∥∥∥ for alla, b ∈ E , |k| 6 K.

The proof is based on the fact that the lemma is trivially true when
µa = wa is constant on each block. It is given in Appendix B.

4.3. The KAM step

Theorem 2.3 is proved by an iterative KAM procedure. We begin with
the initial Hamiltonian Hω = h0 + q0 where

h0(y, ϕ, ξ, η) = ω · y + 〈ξ,N0η〉 , (4.23)
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N0 = diag(wa, a ∈ E), ω ∈ D0 and the quadratic perturbation q0(ϕ, ξ, η) =
〈ξ,Q0(ω, ϕ)η〉 with Q0 = εQ ∈ Ms,β(σ0,D0) where σ0 = σ. Then we
construct iteratively the change of variables ΦSm , the normal form hm =
ω · y + 〈ξ,Nmη〉 and the perturbation qm(ϕ, ξ, η;ω) = 〈ξ,Qm(ω, ϕ)η〉 with
Qm ∈Ms,β(σm,Dm) as follows: assume that the construction is done up to
step m > 0 then

(1) using Proposition 4.1 we construct Sm+1(ω, ϕ) solution of the ho-
mological equation for ω ∈ Dm+1 and ϕ ∈ Tnσm+1

ω · ∇ϕSm+1 − i[Nm, Sm+1] +Qm = Ñm +Rm (4.24)

with Ñm(ω), Rm(ω, ϕ) defined for ω ∈ Dm+1 and ϕ ∈ Tσm+1 by

Ñm(ω) = ((δ[j]=[`]Q̂m(0))j`)j,`∈E (4.25)

Rm(ω, ϕ) =
∑
|k|>Km

Q̂m(ω, k)eik·ϕ ; (4.26)

(2) we define Qm+1, Nm+1 for ω ∈ Dm+1 and ϕ ∈ Tσm+1 by

Nm+1 = Nm + Ñm , (4.27)

and

Qm+1 = Rm +
∫ 1

0
eitSm+1

[
(1− t)(Nm+1 −Nm +Rm+1)

+ tQm, Sm+1

]
e−itS̄m+1dt . (4.28)

By construction, if Qm and Nm are hermitian, so are Rm, Sm+1, by the
resolution of the homological equation, and also Nm+1 and Qm+1. Then we
define

hm+1(y, ϕ, ξ, η;ω) = ω · y + 〈ξ,Nm+1(ω)η〉 ,
sm+1(y, ϕ, ξ, η;ω) = 〈ξ, Sm+1(ω, ϕ)η〉 ,
qm+1(y, ϕ, ξ, η;ω) = 〈ξ,Qm+1(ω, ϕ)η〉 .

(4.29)

Recall that ΦtS denotes the time t flow associated with S (see (2.8)) and
ΦS = Φ1

S . For any regular Hamiltonian f we have, using the Taylor expansion
of g(t) = f ◦ ΦtSm+1

between t = 0 and t = 1

f ◦ ΦSm+1 = f + {f, sm+1}+
∫ 1

0
(1− t){{f, sm+1}, sm+1} ◦ ΦtSm+1

dt .
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Therefore we get for ω ∈ Dm+1

(hm + qm) ◦ ΦSm+1 = hm + {hm, sm+1}

+
∫ 1

0
(1− t){{hm, sm+1}, Sm+1} ◦ ΦtSm+1

dt

+ qm +
∫ 1

0
{qm, sm+1} ◦ ΦtSm+1

dt

= hm + 〈ξ, (Ñm +Rm)η〉

+
∫ 1

0
{(1− t)〈ξ, (Ñm +Rm)η〉+ tqm, sm+1} ◦ ΦtSm+1

dt

= hm+1 + qm+1

where for the last equality we used (2.3) and (2.8).

4.4. Iterative lemma

Following the general scheme (4.24)–(4.29) we have
(h0 + q0) ◦ Φ1

S1
◦ · · · ◦ Φ1

Sm = hm + qm

where qm(ξ, η) = 〈ξ,Qmη〉 with Qm ∈ Ms,β(Dm, σm) and hm = ω · y +
〈ξ,Nmη〉 with Nm in normal form. At stepm the Fourier series are truncated
at order Km and the small divisors are controlled by κm. Now we specify the
choice of all the parameters for m > 0 in term of εm which will control(5)

[Qm]Dm,σms,β .

First we define ε0 = ε, σ0 = σ and for m > 1 we choose
σm−1 − σm = C∗σ0m

−2,

Km = 2(σm−1 − σm)−1 ln ε−1
m ,

κm = εδm−1

where (C∗)−1 = 2
∑
j>1

1
j2 and δ > 0.

Lemma 4.4. — Let 0 < δ′ 6 δ′0 := β
8(d+2β) . There exists ε∗ depending

on δ′, d, n, s, β, γ, α1, α2 and h0 such that, for 0 < ε 6 ε∗ and

εm = ε
(3/2)m
0 m > 0 ,

we have the following: For all m > 1 there exist Dm ⊂ Dm−1, Sm ∈
Ms,β+(Dm, σm), hm = 〈ω, y〉+ 〈ξ,Nmη〉 where Nm ∈ Ms,β(Dm) is in nor-
mal form and there exists Qm ∈Ms,β(Dm, σm) such that for m > 1

(5) The norm [ · ]Dm,σm
s,β

is defined in (2.5).

– 1003 –



Benoît Grébert and Eric Paturel

(i) The mapping
Φm( · , ω, ϕ) = Φ1

Sm : Ys → Ys, ω ∈ Dm, ϕ ∈ Tσm (4.30)
is a linear isomorphism linking the Hamiltonian at step m− 1 and
the Hamiltonian at step m, i.e.

(hm−1 + qm−1) ◦ Φm = hm + qm.

(ii) we have the estimates

meas(Dm−1 \ Dm) 6 εαδ
′

m−1, (4.31)

[Ñm−1]Dms,β 6 εm−1, (4.32)

[Qm]Dm,σms,β 6 εm, (4.33)

‖Φm( · , ω, ϕ)− Id‖L(Ys,Ys+2β) 6 ε
1−νδ′

m−1 , forϕ ∈ Tσm , ω ∈ Dm . (4.34)

The exponent α and ν are given by the formulas ν = 4( dβ + 2) and α =
βα2

2+d+2βα2
.

Proof. — At step 1, h0 = ω · y + 〈ξ,N0η〉 and thus hypothesis (4.5) is
trivially satisfied and we can apply Proposition 4.1 to construct S1, N1, R1
and D1 such that for ω ∈ D1

ω · ∇ϕS1 − i[N0, S1] = N1 −N0 −Q0 +R1.

Then, using (4.6), we have

meas(D \ D1) 6 CKγ
1 κ

2α
1 6 ε

αδ′

0

for ε = ε0 small enough. Using (4.9) we have for ε0 small enough

[S1]D1,σ1
s,β+ 6 C

Kd+1
1

κ
d
β+2
1 (σ0 − σ1)n

ε0 6 ε
1− 1

2νδ
′

0

with ν = 4( dβ + 2) and thus in view of (2.8) and assertion (iv) of Lemma 2.1
we get

‖Φ1( · , ω, ϕ)− Id‖L(Ys,Ys+2β) 6 ε
1−νδ′

0 .

Similarly using (4.8), (4.10) we have

[N1 −N0]D1
s,β 6 ε0,

and
[R1]D1,σ1

s,β 6 ε2−νδ′

0

for ε = ε0 small enough. Thus using (4.28) we get

[Q1]D1,σ1
s,β 6 C[R1]D1,σ1

s,β + C([N1 −N0]D1
s,β + [R1]D1,σ1

s,β + [Q0]D1,σ1
s,β )[S1]D1,σ1

s,β+

6 Cε2−νδ′

0 .
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Thus for δ′ 6 δ′0 and ε0 small enough

[Q1]D1,σ1
s,β 6 ε3/2

0 = ε1.

Now assume that we have verified Lemma 4.4 up to step m. We want to
perform the step m+ 1. We have hm = ω · y + 〈ξ,Nmη〉 and since

[Nm −N0]Dms,β 6 [Nm −N0]Dms,β + · · ·+ [N1 −N0]D1
s,β 6

m−1∑
j=0

εj 6 2ε0,

hypothesis (4.5) is satisfied and we can apply Proposition 4.1 to construct
Sm+1, Nm+1, Rm+1 and Dm+1 such that for ω ∈ Dm+1

ω · ∇ϕSm+1 − i[Nm, Sm+1] = Nm+1 −Nm −Qm +Rm+1.

Then, using (4.6), we have

meas(Dm \ Dm+1) 6 CKγ
m+1κ

2α
m+1 6 ε

αδ′

m

for ε0 small enough. Using (4.9) we have for ε0 small enough

[Sm+1]Dm+1,σm+1
s,β+ 6 C

Kd+1
m+1

κ
d
β+2
m+1(σm − σm+1)n

εm 6 ε
1− 1

2νδ
′

m .

Thus in view of (2.8) and assertion (iv) of Lemma 2.1 we get

‖Φm+1( · , ω, ϕ)− Id‖L(Ys,Ys+2β) 6 ε
1−νδ′

m .

Similarly using (4.8), (4.10) we have

[Nm+1 −Nm]Dm+1
s,β 6 εm,

and
[Rm+1]Dm+1,σm+1

s,β 6 ε2−νδ′

m

for ε0 small enough. Thus using (4.28) we get

[Qm+1]Dm+1,σm+1
s,β

6 C[Rm+1]Dm+1,σm+1
s,β + C

(
[Nm+1 −Nm]Dm+1

s,β + [Rm+1]Dm+1,σm+1
s,β

+ [Qm]Dm+1,σm+1
s,β

)
[Sm+1]Dm+1,σm+1

s,β+

6 Cε2−νδ′

m .

Thus for δ′ 6 δ′0 and ε0 small enough

[Qm+1]Dm+1,σm+1
s,β 6 ε3/2

m = εm+1. �
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4.5. Transition to the limit and proof of Theorem 2.3

Let
D′ = ∩m>0Dm.

In view of (4.31), this is a Borel set satisfying

meas(D \ D′) 6
∑
m>0

εαδ
′

m 6 2εαδ
′

0 .

Let us denote Φ1
N ( · , ω, ϕ) = Φ1( · , ω, ϕ) ◦ · · · ◦ ΦN ( · , ω, ϕ). Due to (4.30),

it maps Ys to Ys and due to (4.34) it satisfies for M 6 N and for ω ∈ D′,
ϕ ∈ Tσ/2

‖Φ1
N ( · , ω, ϕ)− Φ1

M ( · , ω, ϕ)‖L(Ys,Ys+2β) 6
N∑

m=M
ε1−νδ′

m 6 2ε1−νδ′

M .

Therefore (Φ1
N ( · , ω, ϕ))N is a Cauchy sequence in L(Ys, Ys+2β). Thus when

N → ∞ the maps Φ1
N ( · , ω, ϕ) converge to a limit mapping Φ1

∞( · , ω, ϕ) ∈
L(Ys). Furthermore since the convergence is uniform on ω ∈ D′ and ϕ ∈
Tσ/2, (ω, ϕ)→ Φ1

∞( · , ω, ϕ) is analytic in ϕ and C1 in ω. Moreover, defining
δ = αδ′/2 and taking δ0 = α/(4ν), we get

‖Φ1
∞( · , ω, ϕ)− Id‖L(Ys,Ys+2β) 6 2ε1−νδ′

0 < ε
1−δ/δ0
0 . (4.35)

By construction, the map Φ1
m( · , ω, ωt) conjugates the original Hamiltonian

system associated with

H0 = Hω(t, ξ, η) = 〈ξ,N0η〉+ ε〈ξ,Q(ω, ωt)η〉

into the Hamiltonian system associated with

Hm(t, ξ, η) = 〈ξ,Nmη〉+ 〈ξ,Qm(ω, ωt)η〉.

By (4.33), Qm → 0 when m → ∞ and by (4.32) Nm → N when m → ∞
where the operator

N ≡ N(ω) = N0 +
+∞∑
k=1

Ñk (4.36)

is C1 with respect to ω and is in normal form, since this is the case for all
the Nk(ω). Further for all ω ∈ D′ we have using (4.32)

‖N(ω)−N0‖s,β 6
∞∑
m=0

εm 6 2ε.

Let us denote Ψω(ϕ) = Φ1
∞( · , ω, ϕ). By construction,

Ψω(ϕ) = 〈Mω(ϕ)ξ,Mω(ϕ)η〉 ,
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where
Mω(ϕ) = lim

j→+∞
eiS1(ω,ϕ) . . . eiSj(ω,ϕ) .

Further, denoting the limiting Hamiltonian Hω(ξ, η) = 〈ξ,Nη〉, the sym-
plectic change of variables Ψω(ωt) conjugates the original Hamiltonian sys-
tem associated with Hω into the Hamiltonian system associated with Hω.

This concludes the proof of Theorem 2.3.

Appendix A. Proof of Lemma 2.1

We start with two auxiliary lemmas

Lemma A.1. — Let j, k, ` ∈ N \ {0} then√
min(j, k)√

min(j, k) + |j − k|

√
min(`, k)√

min(`, k) + |`− k|
6

√
min(j, `)√

min(j, `) + |j − `|
. (A.1)

Proof. — Without loss of generality we can assume j 6 `.

If k 6 j then |k − `| > |j − `| and thus√
min(j, `)√

min(j, `) + |j − `|
=

√
j√

j + |j − `|
>

√
j√

j + |k − `|

>

√
k√

k + |k − `|
=

√
min(k, `)√

min(k, `) + |k − `|

which leads to (A.1). The case ` 6 k is similar.

In the case j < k < ` inequality (A.1) is equivalent to
√
k(
√
j + `− j) 6 (

√
j + k − j)(

√
k + `− k)

and splitting `− j = (`− k) + (k − j) leads to
√
k(`− k) 6

√
j(`− k) + (k − j)(`− k)

which is true since
√
k −
√
j 6 (

√
k −
√
j)(
√
k +
√
j) = k − j. �

Lemma A.2. — Let j ∈ N then∑
k∈N

1
kβ(1 + |k − j|) 6 C(β)

for a constant C(β) > 0 depending only on β > 0.
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Proof. — We note that∑
k∈N

1
kβ(1 + |k − j|) = a ? b(j)

where ak = 1
kβ

for k > 1, ak = 0 for k 6 0 and bk = 1
1+|k| , k ∈ Z. We have

that b ∈ `p for any 1 < p 6 +∞ and that a ∈ `q for any 1
β < q 6 +∞. Thus

by Young inequality a ? b ∈ `r for r such that 1
p + 1

q = 1 + 1
r . In particular

choosing q = 2
β and p = 2

2−β we conclude that a ? b ∈ `∞. �

Proof of Lemma 2.1. — In this proof we extend the definition of the
weight wa, a ∈ E , as follows: when j ∈ Ê we denote wj = j.

(i). — Let a, b ∈ E∥∥∥(AB)[b]
[a]

∥∥∥ 6∑
c∈Ê

∥∥∥A[c]
[a]

∥∥∥∥∥∥B[b]
[c]

∥∥∥
6
|A|s,β+|B|s,β

(wawb)β

( √
min(wa, wb)√

min(wa, wb) + |wa − wb|

)s/2∑
c∈Ê

1
w2β
c (1 + |wa − wc|)

6 C
|A|s,β+|B|s,β

(wawb)β

( √
min(wa, wb)√

min(wa, wb) + |wa − wb|

)s/2
where we used that by Lemma A.1√

min(wa, wb)√
min(wa, wb) + |wa − wb|

>

√
min(wa, wc)√

min(wa, wc) + |wa − wc|

√
min(wc, wb)√

min(wc, wb) + |wc − wb|

and that by Lemma A.2,
∑
c∈Ê

1
w2β
c (1+|wa−wc|)

6 C where C only depends
on β.

(ii). — Similarly let a, b ∈ L and assume without loss of generality that
wa 6 wb∥∥∥(AB)[b]

[a]

∥∥∥ 6∑
c∈Ê

∥∥∥A[c]
[a]

∥∥∥∥∥∥B[b]
[c]

∥∥∥
6
|A|s,β+|B|s,β+

(wawb)β

( √
min(wa, wb)√

min(wa, wb) + |wa − wb|

)s/2
∑
c∈Ê

1
w2β
c (1 + |wa − wc|)(1 + |wb − wc|)
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6
2|A|s,β+|B|s,β+

(wawb)β(1 + |wa − wb|)

( √
min(wa, wb)√

min(wa, wb) + |wa − wb|

)s/2
( ∑

c∈Ê
wc6 1

2 (wa+wb)

1
w2β
c (1 + |wa − wc|)

+
∑
c∈Ê

wc> 1
2 (wa+wb)

1
w2β
c (1 + |wb − wc|)

)

6 C
|A|s,β+|B|s,β+

(wawb)β(1 + |wa − wb|)

( √
min(wa, wb)√

min(wa, wb) + |wa − wb|

)s/2
.

(iii). — Let ξ ∈ `2t , with t > 1. We have

‖Aξ‖2−t 6
∑
a∈Ê

w−ta

(∑
b∈Ê

‖A[b]
[a]‖‖ξ[b]‖

)2

6 |A|2s,β
∑
a∈Ê

(∑
b∈Ê

‖wt/2b ξ[b]‖
w
t/2+β
a w

t/2+β
b

( √
min(wa, wb)√

min(wa, wb)+|wa−wb|

)s/2)2

6
∑
a∈Ê

1
wt+2β
a

∑
b∈Ê

1
wt+2β
b

|A|2s,β ‖ξ‖
2
t

where we have used the Cauchy Schwarz inequality to get the last line.

(iv). — Let ξ ∈ `2s. We have

‖Aξ‖2s+2β 6
∑
a∈Ê

ws+2β
a

(∑
b∈Ê

‖A[b]
[a]‖‖ξ[b]‖

)2

6 |A|2s,β+
∑
a∈Ê

(∑
b∈Ê

w
s/2
a ‖ws/2b ξ[b]‖

w
s/2+β
b (1 + |wa − wb|)( √

min(wa, wb)√
min(wa, wb) + |wa − wb|

)s/2)2

6 2s+1|A|2s,β+
∑
a∈Ê

( ∑
b∈Ê

wa62wb

‖ws/2b ξ[b]‖
wβb (1 + |wa − wb|)

+
∑
b∈Ê

wa>2wb

‖ws/2b ξ[b]‖min(wa, wb)
s
2

w
s/2+β
b (1 + |wa − wb|)

)2
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6 2s+1|A|2s,β+
∑
a∈Ê

(∑
b∈Ê

‖ws/2b ξ[b]‖
wβb (1 + |wa − wb|)

)2

where we used that wa√
minwa,wb)+|wa−wb|

6
√

minwa, wb) . Then we note
that ∑

b∈Ê

‖ws/2b ξ[b]‖
wβb (1 + |wa − wb|)

= u ? v(a)

with ub = ‖ws/2−βb ξ[b]‖ and vb = 1
(1+|wb|) . Writing upb = ‖ws/2b ξ[b]‖p w−βpb

and using the Hölder inequality we get for 2 + 1
r = 1

∑
b∈Ê

upb 6

(∑
b∈Ê

‖ws/2b ξ[b]‖2
)p/2(∑

b∈Ê

w−βprb

)1/r

.

Choosing p = 2
1+β < 2 we have r = 1+β

β and thus βpr = 2 > 1. Therefore
u ∈ `p. On the other hand, choosing q = 2

2−β > 1, we have v ∈ `q. Since
1/p+ 1/q = 3/2 we conclude by Young inequality that u ? v ∈ `2 and

‖u ? v‖`2 6 C ‖u‖`p ‖v‖`q .

This leads to the first part of (iv) since ‖u‖`p 6 C‖ξ‖s. Now we prove the
second assertion of (iv) in a similar way: let ξ ∈ `21, we have

‖Aξ‖21 6
∑
a∈Ê

wa

(∑
b∈Ê

‖A[b]
[a]‖‖ξ[b]‖

)2

6 |A|2s,β+
∑
a∈Ê

(∑
b∈Ê

w
1/2
a ‖w1/2

b ξ[b]‖
(wawb)βw1/2

b (1 + |wa − wb|)( √
min(wa, wb)√

min(wa, wb) + |wa − wb|

)s/2)2

6 2s+1|A|2s,β+
∑
a∈Ê

( ∑
b∈Ê

wa62wb

‖w1/2
b ξ[b]‖

(wawb)β(1 + |wa − wb|)

+
∑
b∈Ê

wa>2wb

‖w1/2
b ξ[b]‖w

(1−s)/2
a

(wawb)βw1/2−s/4
b (1 + |wa − wb|)

)2
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The last sum may be bounded above by (notice that |wa − wb| > wb)

∑
b∈Ê

wa>2wb

‖w1/2
b ξ[b]‖w

(1−s)/2
a

(wawb)βw1/2−s/4
b (1 + |wa − wb|)

6
∑
b∈Ê

wa>2wb

‖w1/2
b ξ[b]‖

(wawb)βw1/2−s/4
b (1 + |wa − wb|)1/2+s/2

6
1
wβa

∑
b∈Ê

‖w1/2
b ξ[b]‖

w
1/2+β/2
b (1 + |wa − wb|)1/2+β/2

,

and this last sum is the convolution product u′ ? v′(a), with u′b = ‖w1/2
b

ξ[b]‖
w

1/2+β
b

,

which defines a `1 sequence thanks to Cauchy Schwarz inequality, and v′b =
1

(1+wb)1/2+β/2 , which defines a `2 sequence. Therefore, it is a `2 sequence with
index a. We treat the first sum in the same way as before, and we obtain

‖Aξ‖21 6 C|A|2s,β+‖ξ‖21 . �

Appendix B. Proof of Lemma 4.3

Since we estimate the operator norm of B[b]
[a], we need to rewrite the

definition (4.20) in a operator way: denoting by D[a] the diagonal (square)
matrix with entries µj , for j ∈ [a] and D′[a] the diagonal (square) matrix
with entries k · ω + µj , for j ∈ [a], equation (4.20) reads

D′[a]B
[b]
[a] −B

[b]
[a]D[b] = A

[b]
[a] . (B.1)

Then we distinguish 3 cases:

Case 1. — Suppose that a, b satisify

max(wa, wb) > K1 min(wa, wb)

take for instance wa > K1wb. For j ∈ [a] we have

|k · ω + µj | > wa −
1
4 −K|ω| >

wa
2 (B.2)

if K|ω| 6 1/4wa. In particular this holds true assuming

K1 > 4K|ω|. (B.3)
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As a consequence if (B.3) is satisfied then D′[a] is invertible and wa
2 is an

upper bound for the operator norm of its inverse. Then (B.1) is equivalent to

B
[b]
[a] −D

′
[a]
−1
B

[b]
[a]D[b] = D′[a]

−1
A

[b]
[a] . (B.4)

Next consider the operator L 1
[a]×[b] acting on matrices of size [a] × [b] such

that
L 1

[a]×[b]

(
B

[b]
[a]

)
:= D′[a]

−1
B

[b]
[a]D[b] . (B.5)

We have ∥∥∥L 1
[a]×[b]

(
B

[b]
[a]

)∥∥∥ 6 2wb
wa

∥∥∥B[b]
[a]

∥∥∥ 6 2
K1

∥∥∥B[b]
[a]

∥∥∥ , (B.6)

hence, in operator norm, ‖L 1
[a]×[b]‖ 6

1
2 if K1 > 4. Then the operator

Id−L 1
[a]×[b] is invertible and∥∥∥B[b]

[a]

∥∥∥ 6 ∥∥∥(Id−L[a]×[b]
)−1
∥∥∥∥∥∥D′[a]

−1
A

[b]
[a]

∥∥∥
6

4
wa

∥∥∥A[b]
[a]

∥∥∥ .
But in case 1, 1 + |wa − wb| 6 1 + wa 6 2wa, therefore∥∥∥B[b]

[a]

∥∥∥ 6 8 1
1 + |wa − wb|

∥∥∥A[b]
[a]

∥∥∥. (B.7)

Case 2. — Suppose that a, b satisfy
max(wa, wb) 6 K1 min(wa, wb) and max(wa, wb) > K2 .

Notice that these two conditions imply that

min(wa, wb) >
K2

K1
.

We define the square matrix D̃[a] = wa1[a], where 1[a] is the identity matrix.
Then ∥∥D[a] − D̃[a]

∥∥ 6 Cµ
wδa

, (B.8)

and equation (4.20) may be rewritten as

L 2
[a]×[b]

(
B

[b]
[a]

)
− (D̃[a] −D[a])B

[b]
[a] +B

[b]
[a](D̃[b] −D[b]) = A

[b]
[a] , (B.9)

where we denote by L 2
[a]×[b] the operator acting on matrices of size [a]× [b]

such that
L 2

[a]×[b]

(
B

[b]
[a]

)
:= (k · ω + wa − wb)B[b]

[a] . (B.10)

This dilation is invertible and (4.22) then gives, in operator norm,∥∥∥∥(L 2
[a]×[b]

)−1
∥∥∥∥ 6 1

κ(1 + |wa − wb|)
. (B.11)
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This allows to write (B.9) as

B
[b]
[a] −

(
L 2

[a]×[b]

)−1
K[a]×[b]

(
B

[b]
[a]

)
=
(
L 2

[a]×[b]

)−1 (
A

[b]
[a]

)
, (B.12)

where K[a]×[b]
(
B

[b]
[a]
)

= (D̃[a]−D[a])B
[b]
[a]−B

[b]
[a](D̃[b]−D[b]). We have, thanks

to (4.21), in operator norm,

‖K[a]×[b]‖ 6 Cµ
(

1
wδa

+ 1
wδb

)
6 Cµ

(
K1

K2

)δ
. (B.13)

Then for

K2 > K1

(
2Cµ
κ

)1/δ
, (B.14)

the operator Id−(L 2
[a]×[b])−1K[a]×[b] is invertible and from (B.12) we get∥∥∥B[b]

[a]

∥∥∥ =
∥∥∥∥(Id−(L 2

[a]×[b])−1K[a]×[b]

)−1
∥∥∥∥∥∥∥∥(L 2

[a]×[b]

)−1 (
A

[b]
[a]

)∥∥∥∥
6 2

∥∥∥∥(L 2
[a]×[b]

)−1 (
A

[b]
[a]

)∥∥∥∥ .
Hence in this case ∥∥∥B[b]

[a]

∥∥∥ 6 2
κ(1 + |wa − wb|)

∥∥∥A[b]
[a]

∥∥∥ . (B.15)

Case 3. — Suppose that a, b ∈ L satisfy
max(wa, wb) 6 K1 min(wa, wb) and max(wa, wb) 6 K2 .

In that case the size of the blocks are less than Kd
2 and we have

|Blj | =
∣∣∣∣ 1
〈k, ω〉 + µj − µl

∣∣∣∣ |Alj | 6 1
κ(1 + |wa − wb|)

|Alj | (B.16)

A majoration of the coefficients gives a poor majoration of the operator norm
of a matrix, but it is sufficient here:∥∥∥B[b]

[a]

∥∥∥ 6 K
d/2
2

κ(1 + |wa − wb|)

∥∥∥A[b]
[a]

∥∥∥ . (B.17)

Collecting (B.7), (B.15) and (B.17) and taking into account (B.3), (B.14)
leads to the result. �
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