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Invariant Gibbs measures for the 2-d defocusing
nonlinear wave equations (∗)

Tadahiro Oh (1) and Laurent Thomann (2)

ABSTRACT. — We consider the defocusing nonlinear wave equations (NLW) on
the two-dimensional torus. In particular, we construct invariant Gibbs measures for
the renormalized so-called Wick ordered NLW. We then prove weak universality of
the Wick ordered NLW, showing that the Wick ordered NLW naturally appears as a
suitable scaling limit of non-renormalized NLW with Gaussian random initial data.

RÉSUMÉ. — On considère les équations des ondes non-linéaires défocalisantes sur
le tore de dimension deux. On construit des mesures de Gribbs invariantes pour les
équation renormalisés au sens de Wick. On prouve ensuite une propriété d’universa-
lité faible pour ces équations renormalisés, en montrant qu’elle apparaissent comme
limites d’équations d’ondes non renormalisées avec conditions initiales aléatoires de
loi gaussienne.
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1. Introduction

1.1. Nonlinear wave equations

We consider the defocusing nonlinear wave equations (NLW) in two spa-
tial dimensions:{

∂2
t u−∆u+ ρu+ u2m+1 = 0

(u, ∂tu)|t=0 = (φ0, φ1),
(t, x) ∈ R×M, (1.1)

where ρ > 0 andm ∈ N. When ρ > 0, (1.1) is also referred to as the nonlinear
Klein–Gordon equation. We, however, simply refer to (1.1) as NLW and
moreover restrict our attention to the real-valued setting. In the following,
we mainly consider (1.1) on the two-dimensional torus M = T2 = (R/Z)2

but we also provide a brief discussion whenM is a two-dimensional compact
Riemannian manifold without boundary or a bounded domain in R2 (with
the Dirichlet or Neumann boundary condition). See Theorem 1.7 below.

Our main goal in this paper is to construct an invariant Gibbs measure
for a renormalized version of (1.1) by studying dynamical properties of the
renormalized equation.

1.2. Gibbs measures and Wick renormalization

With v = ∂tu, we can write the equation (1.1) in the following Hamilton-
ian formulation:

∂t

(
u
v

)
=
(

0 1
−1 0

)
∂H

∂(u, v) ,

where H = H(u, v) is the Hamiltonian given by

H(u, v) = 1
2

∫
T2

(
ρu2 + |∇u|2

)
dx+ 1

2

∫
T2
v2dx+ 1

2m+ 2

∫
T2
u2m+2dx.

(1.2)

By drawing an analogy to the finite dimensional setting, the Hamiltonian
structure of the equation and the conservation of the Hamiltonian suggest
that the Gibbs measure P (2m+2)

2 of the form:(1)

“dP (2m+2)
2 = Z−1 exp(−βH(u, v))du⊗ dv” (1.3)

(1) Henceforth, we use Z, ZN , etc. to denote various normalizing constants so that the
corresponding measures are probability measures when appropriate.
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is invariant under the dynamics of (1.1).(2) With (1.2), we can rewrite the
formal expression (1.3) as

dP (2m+2)
2 = Z−1e−

1
2m+2

∫
u2m+2dxe−

1
2

∫
(ρu2+|∇u|2)dxdu⊗ e−

1
2

∫
v2dxdv

∼ e−
1

2m+2

∫
u2m+2dxdµ, (1.4)

where µ is the Gaussian measure µ on D′(T2)×D′(T2) with the density(3)

dµ = Z−1e−
1
2

∫
(ρu2+|∇u|2)dxdu⊗ e−

1
2

∫
v2dxdv. (1.5)

Note that µ has a tensorial structure: µ = µ0 ⊗ µ1, where the marginal
measures µ0 and µ1 are given by

dµ0 = Z−1
0 e−

1
2

∫
(ρu2+|∇u|2)dxdu and dµ1 = Z−1

1 e−
1
2

∫
v2dxdv. (1.6)

Namely, µ0 is the Ornstein–Uhlenbeck measure and µ1 is the white noise
measure on T2.

Recall that µ is the induced probability measure under the map:(4)

ω ∈ Ω 7−→ (u, v) =
( ∑
n∈Z2

g0,n(ω)
〈n〉ρ

ein·x,
∑
n∈Z2

g1,n(ω)ein·x
)
, (1.7)

where 〈n〉ρ =
√
ρ+ |n|2 and {g0,n, g1,n}n∈Z2 is a sequence of independent

standard complex-valued Gaussian random variables on a probability space
(Ω,F , P ) conditioned that gj,−n = gj,n, n ∈ Z2, j = 0, 1. In view of (1.7), it
is easy to see that µ is supported on

Hs(T2) := Hs(T2)×Hs−1(T2), s < 0.

Moreover, we have µ(H0(T2)) = 0. This implies that
∫
u2m+2dx = ∞ al-

most surely with respect to µ. In particular, the right-hand side of (1.4)
would not be a probability measure, thus requiring a renormalization of the
potential part of the Hamiltonian. In the two-dimensional case, it is known
that a Wick ordering suffices for this purpose. See Simon [31] and Glimm–
Jaffe [15]. Also, see Da Prato–Tubaro [12] for a concise discussion on T2,
where the Gibbs measures naturally appear in the context of the stochastic
quantization equation.

(2) We simply set β = 1 in the following. While our analysis holds for any β > 0,
the resulting (renormalized) Gibbs measures are mutually singular for different values of
β > 0. See [28].

(3) On T2, we need to assume ρ > 0 in order to avoid a problem at the zeroth frequency.
See (1.7) below. In the case of a bounded domain in R2 with the Dirichlet boundary
condition, we can take ρ = 0.

(4) We drop the harmless factor 2π in the following.
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In the following, we give a brief review of the Wick renormalization on
T2. See [12] for more details. Let u denote a typical element under µ0 defined
in (1.6). Since u /∈ L2(T2) almost surely, we have∫

T2
u2dx = lim

N→∞

∫
T2

(PNu)2dx =∞

almost surely, where PN is the Dirichlet projection onto the frequencies
{|n| 6 N}.

For each x ∈ T2, PNu(x) is a mean-zero real-valued Gaussian random
variable with variance(5)

σN
def= E[(PNu)2(x)] =

∑
|n|6N

1
ρ+ |n|2 ∼ logN. (1.8)

This motivates us to define the Wick ordered monomial : (PNu)k : by

:(PNu)k(x) : = Hk(PNu(x);σN ) (1.9)

in a pointwise manner. Here, Hk(x;σ) is the Hermite polynomial of degree k
defined in (2.1). Then, with (1.7) and (1.8), it is easy to see that the random
variables XN (u) defined by

XN (u) =
∫
T2

: (PNu)2(x) : dx

have uniformly bounded second moments and converge to some random
variable in L2(dµ0) which we denote by

X∞(u) =
∫
T2

:u2 : dx ∈ L2(dµ0).

In view of the Wiener chaos estimate (Lemma 2.2), we see that XN (u) also
converges to X∞(u) in Lp(dµ0), p <∞.

In general, given any m ∈ N, one can show that the limit∫
T2

:u2m+2 : dx = lim
N→∞

∫
T2

: (PNu)2m+2 : dx (1.10)

exists in Lp(µ) for any finite p > 1. Moreover, we have the following propo-
sition.

Proposition 1.1. — Let m ∈ N. Then

RN (u) def= e
− 1

2m+2

∫
T2 :(PNu)2m+2: dx ∈ Lp(µ),

(5) Note that σN defined in (1.8) is independent of x ∈ T2. When M is a two-
dimensional compact Riemannian manifold without boundary or a bounded domain in
R2, the variance σN (x) = E[(PNu)2(x)] depends on x ∈ M but satisfies the logarithmic
bound in N . See (1.12) below.
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for any finite p > 1 with a uniform bound in N , depending on p > 1.
Moreover, for any finite p > 1, RN (u) converges to some R(u) in Lp(µ) as
N →∞.

This proposition follows from the hypercontractivity of the Ornstein–
Uhlenbeck semigroup and Nelson’s estimate [26]. See also [12, 30]. Denoting
the limit R(u) ∈ Lp(µ) by

R(u) = e
− 1

2m+2

∫
T2 :u2m+2: dx

,

Proposition 1.1 allows us to define the Gibbs measure P (2m+2)
2 associated

with the Wick ordered Hamiltonian:

HWick(u, v) = 1
2

∫
T2

(
ρu2 + |∇u|2

)
dx+ 1

2

∫
T2
v2dx+ 1

2m+ 2

∫
T2

:u2m+2 : dx

by

dP (2m+2)
2 = Z−1e−HWick(u,v)du⊗ dv = Z−1e

− 1
2m+2

∫
T2 :u2m+2: dxdµ

= Z−1R(u)dµ.

It follows from Proposition 1.1 that P (2m+2)
2 � µ and, in particular, P (2m+2)

2
is a probability measure on Hs(T2) \ H0(T2), s < 0. Moreover, defining
P

(2m+2)
2,N by

dP (2m+2)
2,N = Z−1

N RN (u)dµ,

we see that P (2m+2)
2,N converges “uniformly” to P

(2m+2)
2 in the sense that

given any ε > 0, there exists N0 ∈ N such that∣∣P (2m+2)
2,N (A)− P (2m+2)

2 (A)
∣∣ < ε

for any N > N0 and any measurable set A ⊂ Hs(T), s < 0.

Lastly, let us briefly discuss the construction of the Gibbs measure
P

(2m+2)
2 whenM is a two-dimensional compact Riemannian manifold with-

out boundary or a bounded domain in R2 (with the Dirichlet or Neumann
boundary condition). In this case, the Gaussian measure µ in (1.5) represents
the induced probability measure under the map:

ω ∈ Ω 7−→ (u, v) =
(∑
n∈N

g0,n(ω)
(ρ+ λ2

n) 1
2
ϕn(x),

∑
n∈N

g1,n(ω)ϕn(x)
)
, (1.11)

where {ϕn}n∈N is an orthonormal basis of L2(M) consisting of eigenfunc-
tions of the Laplace–Beltrami operator −∆ with the corresponding eigen-
values {λ2

n}n∈N, which we assume to be arranged in the increasing order. It
is easy to see from (1.11) that µ is supported on Hs(M) \ H0(M), s < 0.
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Given N ∈ N, we define σN by

σN (x) = E[(PNuN )2(x)] =
∑
λn6N

ϕn(x)2

ρ+ λ2
n

. logN, (1.12)

where PN denotes the spectral projector defined by

PNu =
∑
λn6N

û(n)ϕn.

Note that unlike the situation on T2, σN (x) now depends on x ∈ M. The
last inequality in (1.12), however, holds independently of x ∈ M thanks
to Weyl’s law λn ≈ n

1
2 (see [33, Chapter 14]) and [8, Proposition 8.1].

With this definition of σN (x), we can define the Wick ordered monomials
: (PNu)k : as in (1.9) and :uk : by the limiting procedure. Then, the discussion
above for T2, in particular Proposition 1.1, also holds onM. See Section 4
of [30]. While the presentation in [30] is given in the complex-valued set-
ting, a straightforward modification yields the corresponding result for the
real-valued setting.

In the next subsection, we discuss the dynamical problem. Our main goal
in this paper is to construct dynamics for the renormalized equation associ-
ated with the Wick ordered Hamiltonian HWick with initial data distributed
according to the Gibbs measure P (2m+2)

2 .

1.3. Dynamical problem: Wick ordered NLW

We now consider the following dynamical problem on T2 associated with
the Wick ordered Hamiltonian:

∂t

(
u

v

)
=
(

0 1
−1 0

)
∂HWick

∂(u, v)

(u, v)|t=0 = (φω0 , φω1 ),

(1.13)

where the initial data (φω0 , φω1 ) is distributed according to the Gibbs measure
P

(2m+2)
2 . In view of the absolute continuity of P (2m+2)

2 with respect to the
Gaussian measure µ (Proposition 1.1), we consider the random initial data
(φω0 , φω1 ) distributed according to µ in the following discussion. Namely, we
assume that (

φω0 , φ
ω
1
)

=
( ∑
n∈Z2

g0,n(ω)
〈n〉ρ

ein·x,
∑
n∈Z2

g1,n(ω)ein·x
)
, (1.14)

where {g0,n, g1,n}n∈Z2 is as in (1.7). Note that, at this point, the potential
part 1

2m+2
∫
T2 :u2m+2 : dx of the Wick ordered Hamiltonian is defined only

– 6 –
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for u distributed according to the Gaussian measure µ via (1.10). In the
following, we extend this definition to a wider class of functions in order to
treat the Cauchy problem (1.13).

Given N ∈ N, define the truncated Wick ordered Hamiltonian HN
Wick by

HN
Wick(u, v) = 1

2

∫
T2

(
ρu2 + |∇u|2

)
dx+ 1

2

∫
T2
v2dx

+ 1
2m+ 2

∫
T2

: (PNu)2m+2 : dx (1.15)

and consider the associated Hamiltonian dynamics:
∂t

(
uN

vN

)
=
(

0 1
−1 0

)
∂HN

Wick
∂(uN , vN )

(uN , vN )|t=0 = (φω0 , φω1 ).

Thanks to (1.9) and ∂xHk(x;σ) = kHk−1(x;σ), we can rewrite the sys-
tem (1.15) as the following truncated Wick ordered NLW:{

∂2
t uN −∆uN + ρuN + PN

[
: (PNuN )2m+1 :

]
= 0

(uN , ∂tuN )|t=0 = (φω0 , φω1 ),
(1.16)

where the truncated Wick ordered nonlinearity is interpreted as
PN

[
: (PNuN )2m+1 :

]
= PN

[
H2m+1(PNuN ;σN )

]
.

Let z = zω denote the random linear solution:

z(t) = S(t)(φω0 , φω1 ) = cos(t〈∇〉ρ)φω0 + sin(t〈∇〉ρ)
〈∇〉ρ

φω1 , (1.17)

where 〈∇〉ρ =
√
ρ−∆. In view of the Duhamel formula, it is natural to

decompose the solution uN to (1.16) as
uN = z + wN .

Note that we have PNwN = wN . By recalling the following identities for the
Hermite polynomials:

Hk(x+ y) =
k∑
`=0

(
k
`

)
H`(y) · xk−` and Hk(x;σ) = σ

k
2Hk(σ− 1

2x), (1.18)

we have
:(PNuN )2m+1: = H2m+1(zN + wN ;σN )

=
2m+1∑
`=0

(
2m+ 1

`

)
H`(zN ;σN ) · w2m+1−`

N , (1.19)
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where zN = PNz. This shows that applying the Wick ordering to the mono-
mial

(PNuN )2m+1 = (zN + wN )2m+1 =
2m+1∑
`=0

(
2m+ 1

`

)
z`N · w2m+1−`

N (1.20)

is equivalent to Wick ordering all the monomials z`N . Namely, replacing each
z` in (1.20) by

:z`N : = H`(zN ;σN )
yields the Wick ordered monomial : (PNuN )2m+1 : via (1.19). In Proposi-
tion 2.3 below, we prove that

:z`N :∈ Lp(Ω;Lq([−T, T ];W−ε,r(T2)))
for any p, q, r < ∞, T > 0, and ε > 0 with a bound uniform in N . More-
over, the sequence {:z`N :}N∈N is a Cauchy sequence in the same space, thus
allowing us to define

:z` : = :z`∞ : def= lim
N→∞

:z`N : (1.21)

in Lp(Ω;Lq([−T, T ];W−ε,r(T2))) for any p, q, r <∞, T > 0, and ε > 0 (and
for any ` ∈ N). Now, consider a function u of the form

u = z + w (1.22)

for some “nice” w. Then, we can use (1.18) and (1.21) to define the Wick
ordered monomial :u2m+1 : for functions u of the form (1.22) by

:u2m+1: = :(z + w)2m+1: =
2m+1∑
`=0

(
2m+ 1

`

)
:z` : ·w2m+1−`. (1.23)

Hence, we finally arrive at the defocusing Wick ordered NLW :{
∂2
t u−∆u+ ρu+ :u2m+1 : = 0

(u, ∂tu)|t=0 = (φω0 , φω1 ),
(1.24)

where (φω0 , φω1 ) is as in (1.14).

Before we state our main result, we first recall two critical regularities as-
sociated with (1.1) on R2 with ρ = 0. On the one hand, the scaling symmetry
for (1.1) induces the so-called scaling critical Sobolev index: s1 = 1− 1

m . On
the other hand, the Lorentzian invariance (conformal symmetry) induces an-
other critical regularity: s2 = 3

4 −
1

2m (at least in the focusing case). Hence,
we set scrit by

scrit = max
(

1− 1
m
,

3
4 −

1
2m

)
=
{

1
4 if m = 1,
1− 1

m if m > 2.

We now state our main result.
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Theorem 1.2. — Let M = T2, m ∈ N, and ρ > 0. Then, the Wick
ordered NLW (1.24) is almost surely locally well-posed with respect to the
Gaussian measure µ defined in (1.5). More precisely, letting (φω0 , φω1 ) be as
in (1.14), there exist C, c > 0 such that for each T � 1, there exists a set
ΩT ⊂ Ω with the following properties:

(i) P (ΩcT ) 6 C exp
(
− 1

T c

)
,

(ii) For each ω ∈ ΩT , there exists a (unique) solution u to (1.24) with
(u, ∂tu)|t=0 = (φω0 , φω1 ) in the class

S(t)(φω0 , φω1 ) + C([−T, T ];Hs(T2)) ∩Xs, 1
2 +

T ⊂ C([−T, T ];H−ε(T2))

for any s ∈ (scrit, 1) and ε > 0. Here, Xs, 1
2 +

T denotes the local-in-
time version of the hyperbolic Sobolev space. See Section 3.

We emphasize that the Wick ordered NLW (1.24) is defined only for
functions u of the form (1.22). Then, the residual term w = u − z satisfies
the following perturbed Wick ordered NLW:{

∂2
tw −∆w + ρw+ :(w + z)2m+1 : = 0

(w, ∂tw)|t=0 = (0, 0).
(1.25)

By writing (1.25) in the Duhamel formulation, we obtain

w(t) = −
∫ t

0

sin((t− t′)〈∇〉ρ)
〈∇〉ρ

: (w + z)2m+1(t′) : dt′

= −
2m+1∑
`=0

∫ t

0

sin((t− t′)〈∇〉ρ)
〈∇〉ρ

(
2m+ 1

`

)
:z`(t′) : ·w2m+1−`(t′)dt′.

(1.26)

We prove Theorem 1.2 by solving the fixed point problem (1.26) for w in
C([−T, T ];Hs(T2)) ∩Xs, 1

2 +
T , s > scrit. In Section 2, we study the regularity

of the random linear solution z and the associated Wick ordered monomials
:z` :. In particular, while they are rough, : z` : enjoys enhanced integrabil-
ity both in space and time. See Proposition 2.3. In Section 3, we then use
the standard Fourier restriction norm method to solve the fixed point prob-
lem (1.26). The original idea of this argument with the decomposition (1.22)
appears in McKean [25] and Bourgain [4] in the context of the nonlinear
Schrödinger equations on Td, d = 1, 2. See also Burq–Tzvetkov [9]. In the
field of the stochastic PDEs, this method is known as Da Prato–Debussche
trick [11].

Remark 1.3. — As in the study of singular stochastic PDEs, our proof
consists of factorizing the ill-defined solution map: (φω0 , φω1 ) 7→ u into a
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canonical lift followed by a (continuous) solutions map Ψ:

(φω0 , φω1 ) lift7−→ (zω1 , zω3 , . . . , zω2m+1) Ψ7−→w ∈ C([−T, T ];Hs(T2))
7−→u = z + w ∈ C([−T, T ];H−ε(T2)),

for s ∈ (scrit, 1) and ε > 0, where zk
def= : zk : . On the one hand, we use

probability theory to construct the data set {z2j+1}mj=0 in the first step.
On the other hand, the second step is entirely deterministic. Moreover, the
solution map Ψ in the second step is continuous from

∏m
j=0 S

j
T to Xs, 1

2 +
T ,

where SjT denotes some appropriate Strichartz space for z2j+1. See Section 3.

Remark 1.4. — The same almost sure local well-posedness holds for the
truncated Wick ordered NLW (1.16). More precisely, we can choose ΩT , in-
dependent of N ∈ N, such that the statement in Theorem 1.2 holds for (1.24)
and (1.16). Moreover, by possibly shrinking the time, one can also prove that
the solution uN = uωN to (1.16) converges to the solution u = uω to (1.24)
as N →∞.

Once we have almost sure local well-posedness of (1.24), the invariant
measure argument by Bourgain [3, 4] yields the following almost sure global
well-posedness of (1.24) and invariance of the Gibbs measure P (2m+2)

2 .

Theorem 1.5. — LetM = T2, m ∈ N, and ρ > 0. Then, the defocusing
Wick ordered NLW (1.24) is almost surely globally well-posed with respect
to the Gibbs measure P (2m+2)

2 . Moreover, P (2m+2)
2 is invariant under the

dynamics of (1.24).

The proof of Theorem 1.5 exploits the invariance of the truncated Gibbs
measure P (2m+2)

2,N for the truncated Wick ordered NLW (1.16) and combines
it with an approximation argument. See Remark 1.4. As this argument is
standard by now, we omit the proof. See Bourgain [4] and Burq–Tzvetkov [10]
for details.

Remark 1.6. — We point that the convergence result in Remark 1.4 and
invariance of the Gibbs measure in Theorem 1.5 already appear (without a
proof) in the lecture note by Bourgain [5]. See [5, Theorem 111 on p. 63]
and a comment that follows (118) in [5, p. 64]. To the best of our knowledge,
however, there seems to be no proof available in a published paper. In fact,
one of the main purposes of this paper is to present the details of the proof
of Bourgain’s claim in [5].

Next, we briefly discuss the situation when the spatial domainM is a two-
dimensional compact Riemannian manifold without boundary or a bounded
domain in R2 (with the Dirichlet or Neumann boundary condition). In this
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case, one can exploit the invariance of the truncated Gibbs measures P (2m+2)
2,N

for (1.16) to construct global-in-time weak solutions (without uniqueness)
to the Wick ordered NLW (1.24). Moreover, it also allows us to establish
invariance of the Gibbs measure P (2m+2)

2 in some mild sense.

Theorem 1.7. — Let m ∈ N and ρ > 0. Let M be a two-dimensional
compact Riemannian manifold without boundary or a bounded domain in R2

(with the Dirichlet or Neumann boundary condition). In the latter case with
the Dirichlet boundary condition, we can also take ρ = 0. Then, there exists
a set Σ of full measure with respect to P (2m+2)

2 such that for every φ ∈ Σ, the
defocusing Wick ordered NLW (1.24) with initial data distributed according
to P (2m+2)

2 has a global-in-time solution u ∈ C(R;Hs(M)) for any s < 0.
Moreover, for all t ∈ R, the law of the random function (u, ∂tu)(t) is given
by P (2m+2)

2 .

In [30], we proved an analogous result for the defocusing Wick ordered
nonlinear Schrödinger equations onM. Theorem 1.7 follows from repeating
the argument presented in [30] with systematic modifications and thus we
omit details. See also [1, 8, 11, 29]. The main ingredient for Theorem 1.7 is to
establish tightness (= compactness) of measures νN on space-time functions,
emanating from the truncated Gibbs measure P (2m+2)

2,N and then upgrading
the weak convergence of νN (up to a subsequence) to an almost sure con-
vergence of the corresponding random variables via Skorokhod’s theorem.
Due to the compactness argument, Theorem 1.7 claims only the existence of
a global-in-time solution u. Lastly, note that Theorem 1.7 only claims that
the law of the Hs-valued random variable (u, ∂tu)(t) is given by the Gibbs
measure P (2m+2)

2 for any t ∈ R. In particular, this mild invariance for a gen-
eral geometric setting is weaker than the invariance stated in Theorem 1.5
for the Wick ordered NLW (1.24) on T2.

Remark 1.8. — On the one hand, the defocusing/focusing nature of the
equation does not play any role in the almost sure local well-posedness result
(Theorem 1.2) and thus Theorem 1.2 also holds in the focusing case. It can
also be extended to Wick ordered even power monomials in the equation.
On the other hand, the defocusing nature of the equation plays a crucial role
in the proof of Proposition 1.1 and hence in Theorems 1.5 and 1.7. In the
focusing case (i.e. with −u2m+1, m ∈ N, in (1.1)), it is known that the Gibbs
measure can not be normalized in the two dimensional case. See Brydges–
Slade [6]. Lastly, we point out that in the case of the quadratic nonlinearity
(which is neither defocusing nor focusing), one can introduce the following
modified Gibbs measure:

dP (3)
2 = Z−1e−

1
3

∫
:u3:−A(

∫
:u2: )2

dµ

– 11 –
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for sufficiently large A � 1 and study the associated dynamical problem.
See [5] for the construction of this modified Gibbs measure P (3)

2 .

1.4. Wick ordered NLW as a scaling limit

As an application of the local well-posedness argument, we show how the
Wick ordered NLW (1.24) appears as a scaling limit of non-renormalized
NLW equations on dilated tori. This part of the discussion is strongly moti-
vated by the weak universality result for the Wick ordered stochastic NLW
on T2 studied by the first author with Gubinelli and Koch in [16].

Fix ρ > 0. Given small ε > 0, we consider the following non-renormalized
NLW equation on a dilated torus T2

ε
def= (ε−1T)2:{

∂2
t vε −∆vε + ρεvε = f(vε)

(vε, ∂tvε)|t=0 = (ψωε,0, ψωε,1),
(t, x) ∈ R× T2

ε (1.27)

with Gaussian random initial data (ψωε,0, ψωε,1), where f : R→ R is a smooth
odd(6) function with the following bound:

|f (4)(x)| . 1 + |x|M (1.28)
for some M > 0 and ρε is a parameter to be chosen later. In the following,
we choose ψωε,0 and ψωε,1 to be a smoothed Ornstein–Uhlenbeck process and
a smoothed white noise on T2

ε, respectively. For the sake of concreteness, we
set(7)

(ψωε,0, ψωε,1) =
( ∑
n∈(εZ)2

|n|61

g0,ε−1n

ε−1
√
ε2ρ+ |n|2

ein·x

ε−1 ,
∑

n∈(εZ)2

|n|61

g1,ε−1n
ein·x

ε−1

)
,

where {g0,n, g1,n}n∈Z2 is as in (1.7). Our main goal is to study the behavior
of the solution to (1.27) as ε→ 0 by applying a suitable scaling.

Let uε(t, x) def= ε−1vε(ε−1x, ε−1t). Then, uε satisfies{
∂2
t uε −∆uε + ρuε = ε−3{f(εuε) + ε(ε2ρ− ρε)uε

}
(uε, ∂tuε)|t=0 = (φωε,0, φωε,1),

(t, x) ∈ R× T2,

(1.29)

(6) It follows from the proof of Theorem 1.9 that it suffices to assume that f(0) =
f ′′(0) = 0 for the cubic case considered in Theorem 1.9.

(7) Note that {εein·x}n∈(εZ)2 forms an orthonormal basis of L2(T2
ε). Moreover, re-

call that the Fourier–Wiener series
∑

n∈(εZ)2
g0,n

ε−1|n|
ein·x

ε−1 represents the periodic Wiener
process on T2

ε.
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where (φωε,0, φωε,1) on T2 is given by

(φωε,0, φωε,1) =
( ∑

n∈Z2

|n|6ε−1

g0,n√
ρ+ |n|2

ein·x,
∑
n∈Z2

|n|6ε−1

g1,ne
in·x

)
. (1.30)

Note that (φωε,0, φωε,1) converges to (φω0 , φω1 ) in (1.14) distributed according
to the Gaussian measure µ defined in (1.5).

The rescaled model (1.29) on T2 allows us to study the large temporal
and spatial scale behavior of the solution vε to (1.27). Moreover, by suitably
choosing ρε, the family {uε}ε>0 converges to the solution u to the Wick
ordered NLW on T2 with a parameter λ = λ(f), depending only on f .

Theorem 1.9. — Let ρ > 0. Then, there exists a choice of ρε such that,
as ε → 0, the family of the solutions {uε}ε>0 to (1.29) converges almost
surely to the solution u to the following Wick ordered cubic NLW on T2:{

∂2
t u−∆u+ ρu = λ :u3 :

(u, ∂tu)|t=0 = (φω0 , φω1 ),
(1.31)

where the convergence takes place in C([−Tω, Tω];Hs(T2)), s < 0, for some
Tω > 0. Here, the constant λ is given by λ = f(3)(0)

6 , depending only on the
function f .

This theorem shows a kind of weak universality for the Wick ordered
NLW. See [16] for a similar result for the Wick ordered stochastic NLW. We
also refer readers to [17, 18, 19] for more discussion on weak universality (for
stochastic parabolic equations, in particular the KPZ equation).

Remark 1.10. — By starting with the following NLW on T2
ε:{

∂2
t vε −∆vε + ρεvε +

∑m−1
j=1 aj(ε)v2j+1

ε = f(vε)
(vε, ∂tvε)|t=0 = (ψωε,0, ψωε,1),

we can tune the m parameters ρε, aj(ε), j = 1, . . . ,m − 1, such that by a
small modification of the proof of Theorem 1.9, we obtain the following Wick
ordered NLW: {

∂2
t u−∆u+ ρu = λ :u2m+1 :

(u, ∂tu)|t=0 = (φω0 , φω1 ),

for some λ = λ(f), as ε → 0. In this case, one needs to use the scaling
uε(t, x) = ε−γvε(ε−1x, ε−1t) for some suitably chosen γ = γ(m) > 0 and
also assume a bound analogous to (1.28) for a higher order derivative of f .
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2. Probabilistic tools

In this section, we first recall basic probabilistic tools. Then, we prove a
uniform (in N) bound on the Wick ordered monomials :z`N : = H`(zN , σN ),
consisting of the random linear solution (Proposition 2.3). Moreover, we
prove that {:z`N :}N∈N is a Cauchy sequence, allowing us to define : z` :
by (1.21).

2.1. Hermite polynomials and white noise functional

First, recall the Hermite polynomials Hk(x;σ) defined via the generating
function:

F (t, x;σ) := etx−
1
2σt

2
=
∞∑
k=0

tk

k!Hk(x;σ). (2.1)

For simplicity, we set Hk(x) := Hk(x; 1). In the following, we list the first
few Hermite polynomials for readers’ convenience:

H0(x;σ) = 1, H1(x;σ) = x, H2(x;σ) = x2 − σ,
H3(x;σ) = x3 − 3σx, H4(x;σ) = x4 − 6σx2 + 3σ2.

(2.2)

Next, we define the white noise functional. Let ξ(x;ω) be the (real-valued)
mean-zero Gaussian white noise on T2 defined by

ξ(x;ω) =
∑
n∈Z2

gn(ω)ein·x,

where {gn}n∈Z2 is a sequence of independent standard complex-valued
Gaussian random variables conditioned that g−n = gn, n ∈ Z2. It is easy
to see that ξ ∈ Hs(T2) \ H−1(T2), s < −1, almost surely. In particular, ξ
is a distribution, acting on smooth functions. In fact, the action of ξ can be
defined on L2(T2).

We define the white noise functional W(·) : L2(T2)→ L2(Ω) by

Wf (ω) = 〈f, ξ(ω)〉L2 =
∑
n∈Z2

f̂(n)gn(ω) (2.3)

for a real-valued function f ∈ L2(T2). Note that Wf = ξ(f) is basically the
Wiener integral of f . In particular, Wf is a real-valued Gaussian random
variable with mean 0 and variance ‖f‖2L2 . Moreover, W(·) is unitary:

E
[
WfWh] = 〈f, h〉L2

x
(2.4)

for f, h ∈ L2(T2). The following lemma extends the relation (2.4) to a more
general setting.
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Lemma 2.1. — Let f, h ∈ L2(T2) such that ‖f‖L2 = ‖h‖L2 = 1. Then,
for k,m ∈ Z>0, we have

E
[
Hk(Wf )Hm(Wh)

]
= δkmk![〈f, h〉]k.

Here, δkm denotes the Kronecker’s delta function.

This lemma follows from computing the left-hand side of

E[F (t,Wf )F (s,Wh)] =
∞∑

k,m=0

tk

k!
sm

m!E
[
Hk(Wf )Hm(Wh)

]
and comparing the coefficients. See [12, 29] for details.

We also recall the following Wiener chaos estimate [31, Theorem I.22].

Lemma 2.2. — Fix k ∈ N and c(n1, . . . , nk) ∈ C. Given d ∈ N, let
{gn}dn=1 be a sequence of independent standard complex-valued Gaussian
random variables and set g−n = gn. Define Sk(ω) by

Sk(ω) =
∑

Γ(k,d)

c(n1, . . . , nk)gn1(ω) · · · gnk(ω),

where Γ(k, d) is defined by

Γ(k, d) =
{

(n1, . . . , nk) ∈ {0,±1, . . . ,±d}k
}
.

Then, for p > 2, we have

‖Sk‖Lp(Ω) 6 (p− 1) k2 ‖Sk‖L2(Ω). (2.5)

The crucial point is that the constant in (2.5) is independent of d ∈ N.
This lemma is a direct corollary to the hypercontractivity of the Ornstein–
Uhlenbeck semigroup due to Nelson [26].

2.2. Stochastic estimate on Wick ordered monomials

In this subsection, we study the Wick ordered monomials :z`N : and :z` :,
consisting of the random linear solution z defined in (1.17). From (1.14)
and (1.17), we have

ẑ(t, n) = cos(t〈n〉ρ)
〈n〉ρ

g0,n + sin(t〈n〉ρ)
〈n〉ρ

g1,n. (2.6)

In order to avoid the combinatorial complexity in higher ordered monomials,
we use the white noise functional as in [30]. We, however, need to adapt the

– 15 –



Tadahiro Oh and Laurent Thomann

white noise functional to z(t). In view of (2.6), we define the white noise
functional W t

(·) : L2(T2)→ L2(Ω) with a parameter t ∈ R by

W t
f (ω) = 〈f, ξt(ω)〉L2 =

∑
n∈Z2

f̂(n)gtn(ω). (2.7)

Here, ξt denotes (a specific realization of) the white noise on T2 given by

ξt(x;ω) =
∑
n∈Z2

gtn(ω)ein·x,

where gtn is define by

gtn = cos(t〈n〉ρ)g0,n + sin(t〈n〉ρ)g1,n.

Note that E[gtn] = 0 and Var(gtn) = cos2(t〈n〉ρ) + sin2(t〈n〉ρ) = 1. Thus, for
each fixed t ∈ R, {gtn}n∈Z2 is a sequence of independent standard Gaussian
random variables conditioned that gt−n = gtn for all n ∈ N. Therefore, the
white noise functional W t

(·) defined in (2.7) satisfies the same properties as
the standard white noise functional W(·) defined in (2.3). Lastly, note that,
in view of (2.6), the random linear solution zN = PNz can be expressed as

zN (t, x) =
∑
|n|6N

gtn(ω)
〈n〉ρ

ein·x. (2.8)

In the following, we use the short-hand notation LqT = Lqt ([−T, T ]), etc.

Proposition 2.3. — Let ` ∈ N and ρ > 0. Then, given 2 6 q, r < ∞
and ε > 0, there exist C, c > 0 such that

P
(
‖〈∇〉−ε :z`N : ‖Lq

T
Lrx

> λ
)
6 C exp

(
− c λ

2
`

T
2
q`

)
(2.9)

for any T > 0, λ > 0, and any N ∈ N. Moreover, the sequence {:z`N :}N∈N is
a Cauchy sequence in Lp(Ω;Lq([−T, T ];W−ε,r(T2))). In particular, denoting
the limit by : z` :, we have : z` :∈ Lq([−T, T ];W−ε,r(T2)) almost surely,
satisfying the tail estimate (2.9).

Before proceeding to the proof of Proposition 2.3, we introduce some
notations. Let σN be as in (1.8). For fixed x ∈ T2 and N ∈ N, we also define

ηN (x)(·) def= 1

σ
1
2
N

∑
|n|6N

en(x)
〈n〉ρ

en(·) and γN (·) def=
∑
|n|6N

1
〈n〉2ρ

en(·),

(2.10)
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where en(y) = ein·y. Note that ηN (x)(·) is real-valued with ‖ηN (x)‖L2(T2) =
1 for all x ∈ T2 and all N ∈ N. Moreover, we have

〈ηM (x), ηN (y)〉L2 = 1

σ
1
2
Mσ

1
2
N

γN (y − x) = 1

σ
1
2
Mσ

1
2
N

γN (x− y), (2.11)

for fixed x, y ∈ T2 and M > N > 1.

Proof. — From (2.8) and (2.10), we have

zN (t, x) = σ
1
2
N

zN (t, x)

σ
1
2
N

= σ
1
2
NW

t

ηN (x) = σ
1
2
NW

t
ηN (x). (2.12)

Then, from (1.18) and (2.12), we have

:z`N (t, x) : = H`(zN (t, x);σN ) = σ
`
2
NH`

(
W t
ηN (x)

)
. (2.13)

Given n ∈ Z2, define Γ`(n) by

Γ`(n) = {(n1, . . . , n`) ∈ (Z2)` : n1 + · · ·+ n` = n}.

Then, for (n1, . . . , n`) ∈ Γ`(n), we have maxj |nj | & |n|. Thus, it follows
from Lemma 2.1 with (2.13) and (2.11) that

‖〈 :z`N (t) :, en〉‖2L2(Ω) =σ`N

∫
T2
x×T2

y

en(x)en(y)
∫

Ω
H
(̀
W t
ηN (x)

)
H
(̀
W t
ηN (y)

)
dPdxdy

= `!
∫
T2
x×T2

y

[γN (x− y)]`en(x− y)dxdy

= `! · F [γ`N ](n) = `!
∑

Γ`(n)
|nj |6N

∏̀
j=1

1
〈nj〉2ρ

.
1

〈n〉2(1−θ)

(2.14)

for any θ > 0. On the other hand, for n 6= n′, we have∫
Ω
〈 :z`N (t) :,en〉〈 :z`N (t) :, en′〉dP

= σ`N

∫
T2
x×T2

y

en(x)en′(y)
∫

Ω
H`

(
W t
ηN (x)

)
H`

(
W t
ηN (y)

)
dPdxdy

= `!
∫
T2
x

∫
T2
y

[γN (x− y)]`en′(x− y)dy en(x)en′(x)dx

= `! · F [γ`N ](n′)
∫
T2
x

en(x)en′(x)dx = 0. (2.15)
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Hence, given x ∈ T2 and t ∈ R, it follows from (2.14) and (2.15) that

‖〈∇〉−ε :z`N (t, x) : ‖L2(Ω) =
∥∥∥∥ ∑
n∈Z2

〈n〉−εFx
[

:z`N (t) :
]
(n) ein·x

∥∥∥∥
L2(Ω)

6 C`

( ∑
n∈Z2

〈n〉−2εF [γ`N ](n)
) 1

2

6 C`

( ∑
n∈Z2

〈n〉−2(1+ε−θ)
) 1

2

<∞, (2.16)

uniformly in N ∈ N, as long as 0 < θ < ε.

Fix 2 6 q, r < ∞. Then, by Minkowski’s integral inequality, Lemma 2.2
(with (2.8)), and (2.16), we have∥∥∥‖〈∇〉−ε :z`N : ‖Lq

T
Lrx

∥∥∥∥
Lp(Ω)

6
∥∥∥‖〈∇〉−ε :z`N (t, x) : ‖Lp(Ω)

∥∥∥∥
Lq
T
Lrx

6 C` p
`
2

∥∥∥‖〈∇〉−ε :z`N (t, x) : ‖L2(Ω)

∥∥∥
Lq
T
Lrx

. T
1
q p

`
2 , (2.17)

for all p > max(q, r). Finally, (2.9) follows from (2.17) and Chebyshev’s
inequality.

A similar computation with Lemma 2.1, (2.11), and Lemma 2.2 shows
that the sequence {:z`N :}N∈N is a Cauchy sequence in Lp(Ω;Lq([−T, T ];
W−ε,r(T2))). �

Remark 2.4. — As a corollary to Proposition 2.3, we can show that the
tail estimate (2.9) and the convergence of : z`N : to : z` : hold even when
q = ∞ and/or r = ∞. This follows from applying Sobolev’s inequality (in
time and/or space) and using the fact that z solves the linear wave/Klein–
Gordon equation. See [7]. With this observation, we can easily show that
:z`N :, :z` :∈ C([−T, T ];W−ε,r(T2)) almost surely. See also [16, 27].

3. Local well-posedness of the Wick ordered NLW

In this section, we present the proof of Theorem 1.2. We combine the
deterministic analysis via the Fourier restriction norm method (with the
hyperbolic Sobolev spaces) and the stochastic estimate on the Wick ordered
monomials :z` : (Proposition 2.3). In the following, we fix ρ > 0.
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3.1. Hyperbolic Sobolev spaces and Strichartz estimates

We first recall the hyperbolic Sobolev space Xs,b due to Klainerman–
Machedon [22] and Bourgain [2], defined by the norm

‖u‖Xs,b(R×T2) = ‖〈n〉s〈|τ | − 〈n〉ρ〉bû(τ, n)‖`2
nL

2
τ (R×Z2).

For b > 1
2 , we have X

s,b ⊂ C(R;Hs). Given an interval I ⊂ R, we define the
local-in-time version Xs,b(I) as a restriction norm:

‖u‖Xs,b(I) = inf
{
‖v‖Xs,b(R×T2) : v|I = u

}
.

When I = [−T, T ], we set Xs,b
T = Xs,b(I).

The main deterministic tool for the proof of Theorem 1.2 is the following
Strichartz estimates for the linear wave/Klein–Gordon equation. Given 0 6
s 6 1, we say that a pair (q, r) is s-admissible if 2 < q 6∞, 2 6 r <∞,

1
q

+ 2
r

= 1− s, and 1
q

+ 1
2r 6

1
4 .

Then, we have the following Strichartz estimates.

Lemma 3.1. — Let T 6 1. Given 0 6 s 6 1, let (q, r) be s-admissible.
Then, we have

‖S(t)(φ0, φ1)‖Lq
T
Lrx(T2) . ‖(φ0, φ1)‖Hs(T2). (3.1)

See Ginibre–Velo [14], Lindblad–Sogge [24], and Keel–Tao [20] for the
Strichartz estimates on Rd. See also [21]. The Strichartz estimates (3.1) on T2

in Lemma 3.1 follows from those on R2 and the finite speed of propagation.

When b > 1
2 , the X

s,b-spaces enjoy the transference principle. In particu-
lar, as a corollary to Lemma 3.1, we obtain the following space-time estimate.
See [23, 32] for the proof.

Lemma 3.2. — Let T 6 1. Given 0 6 s 6 1, let (q, r) be s-admissible.
Then, for b > 1

2 , we have

‖u‖Lq
T
Lrx
. ‖u‖Xs,b

T
.

Lastly, we state the nonhomogeneous linear estimate. See [13].

Lemma 3.3. — Let − 1
2 < b′ 6 0 6 b 6 b′ + 1. Then, for T 6 1, we have∥∥∥∥∫ t

0

sin((t− t′)〈∇〉ρ)
〈∇〉ρ

F (t′)dt′
∥∥∥∥
Xs,b
T

. T 1−b+b′‖F‖
Xs−1,b′
T

.
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3.2. Proof of Theorem 1.2

In the following, we simply consider the case s = scrit + δ with δ � 1.
Given T 6 1, define Ψ(w) by

Ψ(w)(t) = Ψω(w)(t) def=
∫ t

0

sin((t− t′)〈∇〉ρ)
〈∇〉ρ

: (w + z)2m+1(t′) : dt′.

Let b = 1
2+. Then, for 0 < θ 6 1− b, by Lemma 3.3, we have

‖Ψ(w)‖Xs,b
T
. T θ‖ : (w + z)2m+1: ‖Xs−1,b−1+θ

T
. (3.2)

From (1.23), we have

:(w + z)2m+1: =
2m+1∑
`=0

(
2m+ 1

`

)
w2m+1−` :z` : .

Then, by duality, we have

‖ : (w + z)2m+1: ‖Xs−1,b−1+θ
T

6
2m+1∑
`=0

Cm,`‖w2m+1−` :z` : ‖Xs−1,b−1+θ
T

6
2m+1∑
`=0

Cm,` sup
h`

∣∣∣∣ ∫∫ 1[−T,T ] w̃
2m+1−` :z` : h` dxdt

∣∣∣∣, (3.3)

for any extension w̃ of w, where the supremum is taken over h` ∈ X1−s,1−b−θ

with ‖h`‖X1−s,1−b−θ = 1. By choosing θ > 0 sufficiently small, we have
1− b− θ = 1

2−.

Case 1: m = 1. — In this case, we have s = scrit + δ = 1
4 + δ. Noting

that
( 12

1+2δ ,
3

1−δ
)
is
( 1

4 + 1
2δ
)
-admissible, it follows from Lemma 3.2 that

‖〈∇〉εw̃‖
L

12
1+2δ
T

L
3

1−δ
x

. ‖w̃‖
X

1
4 + 1

2 δ+ε, 1
2 + . ‖w̃‖Xs, 1

2 +

for any extension w̃ of w, as long as ε 6 1
2δ. By taking an infimum over all

the extensions w̃ of w, we obtain

inf
w̃|[−T,T ]=w

‖〈∇〉εw̃‖
L

12
1+2δ
T

L
3

1−δ
x

. ‖w‖
X
s, 1

2 +
T

. (3.4)

On the one hand, noting that
( 4

1−2δ ,
1
δ

)
is
( 3

4 −
3
2δ
)
-admissible, Hölder’s

inequality (with T 6 1) and Lemma 3.2 yield

‖〈∇〉εh`‖
L

4
3−2δ
T

L
1
δ
x

. ‖〈∇〉εh`‖
L

4
1−2δ
T

L
1
δ
x

. ‖〈∇〉εh`‖
X

3
4−

3
2 δ,

1
2 + . (3.5)
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On the other hand, applying Hölder’s inequality in t and Sobolev’s inequality
in x, we have

‖〈∇〉εh`‖
L

4
3−2δ
T

L
1
δ
x

. ‖〈∇〉εh`‖
L2
T
L

1
δ
x

. ‖〈∇〉εh`‖X1−2δ,0 . (3.6)

Interpolating (3.5) and (3.6) with sufficiently small θ > 0, we obtain

‖〈∇〉εh`‖
L

4
3−2δ
T

L
1
δ
x

. ‖h`‖
X

3
4−

5
4 δ+ε,1−b−θ . ‖h`‖X1−s,1−b−θ (3.7)

as long as ε 6 1
4δ.

For ` = 0, 1, 2, 3, define (q`, r`) by

1 = (3− `)1 + 2δ
12 + 3− 2δ

4 + 1
q`

and 1 = (3− `)1− δ
3 + δ + 1

r`
.

When ` = 0, we have q0 = r0 =∞ and :z0 : ≡ 1. Then, by fractional Leibniz
rule and Hölder’s inequality with (3.4) and (3.7), we have

inf
w̃|[−T,T ]=w

∣∣∣∣ ∫∫ 1[−T,T ]w̃
3−` :z` : h` dxdt

∣∣∣∣
= inf
w̃|[−T,T ]=w

∣∣∣∣ ∫∫ 1[−T,T ]〈∇〉ε(w̃3−`h`)〈∇〉−ε :z` : dxdt
∣∣∣∣

. inf
w̃|[−T,T ]=w

‖〈∇〉εw̃‖3−`
L

12
1+2δ
T

L
3

1−δ
x

‖〈∇〉εh`‖
L

4
3−2δ
T

L
1
δ
x

‖〈∇〉−ε :z` :‖Lq`
T
L
r`
x

. ‖w‖3−`
Xs,b
T

‖h`‖X1−s,1−b−θ‖〈∇〉−ε :z` : ‖Lq`
T
L
r`
x

= ‖w‖3−`
Xs,b
T

‖〈∇〉−ε :z` : ‖Lq`
T
L
r`
x

(3.8)

as long as 0 < ε 6 1
4δ. Hence, by Proposition 2.3 with (3.2), (3.3), and (3.8),

we obtain

‖Ψ(w)‖Xs,b
T
. T θ

3∑
`=0
‖w‖3−`

Xs,b
T

(3.9)

outside a set of probability < exp
(
− 1

T c

)
for some c > 0. Similarly, we have

‖Ψ(w1)−Ψ(w2)‖Xs,b
T
. T θ

2∑
`=0

(
‖w1‖2−`

Xs,b
T

+ ‖w2‖2−`
Xs,b
T

)
‖w1 − w2‖Xs,b

T

(3.10)

outside a set of probability < exp
(
− 1
T c

)
. Therefore, it follows from (3.9)

and (3.10) that for each T � 1, there exists a set ΩT with P (ΩcT ) <
exp
(
− 1
T c

)
such that, for each ω ∈ ΩT , Ψω is a contraction on a ball of

radius O(1) in Xs,b
T .
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Case 2: m > 2. — In this case, we have s = scrit + δ = 1− 1
m + δ. Define

(q, r) by
1
q

= 3m− 1
3m(2m+ 1) + δ

6 and 1
r

= 3m+ 4
6m(2m+ 1) −

δ

3 .

Noting that (q, r) is
(
scrit + 1

2δ
)
-admissible, it follows from Lemma 3.2 that

‖〈∇〉εw̃‖Lq
T
Lrx
. ‖w̃‖

Xscrit+ 1
2 δ+ε, 1

2 + . ‖w̃‖Xs, 1
2 +

for any extension w̃ of w, as long as ε 6 1
2δ. By taking an infimum over all

the extensions w̃ of w, we obtain
inf

w̃|[−T,T ]=w
‖〈∇〉εw̃‖Lq

T
Lrx
. ‖w‖

X
s, 1

2 +
T

. (3.11)

Now, define (q̃, r̃) by
1
q̃

= 1
3m −

2m+ 1
6 δ and 1

r̃
= 3m− 4

6m + 2m+ 1
3 δ.

Then, (q̃, r̃) is
(
1−scrit− 2m+1

2 δ
)
-admissible. On the one hand, by Lemma 3.2,

we have
‖〈∇〉εh`‖Lq̃

T
Lr̃x
. ‖〈∇〉εh`‖

X1−scrit−
2m+1

2 δ, 1
2 + . (3.12)

On the other hand, by Sobolev’s inequality, we have
‖〈∇〉εh`‖Lq̃

T
Lr̃x
. ‖〈∇〉εh`‖

X1− 3m−4
3m − 4m+2

3 δ, 1
2−

1
3m+ 2m+1

6 δ
. (3.13)

Note that the temporal regularity on the right-hand side of (3.13) is less
than 1

2 by choosing δ > 0 sufficiently small. Hence, by interpolating (3.12)
and (3.13) with sufficiently small θ > 0, we obtain

‖〈∇〉εh`‖Lq̃
T
Lr̃x
. ‖h`‖X1−scrit−mδ+ε,1−b−θ . ‖h`‖X1−s,1−b−θ (3.14)

as long as ε 6 (m− 1)δ.

Proceeding as before, it follows from Hölder’s inequality with (3.11)
and (3.14) that∣∣∣∣ ∫∫ inf

w̃|[−T,T ]=w
1[−T,T ]w̃

2m+1−` :z` : h` dxdt
∣∣∣∣

= inf
w̃|[−T,T ]=w

∣∣∣∣ ∫∫ 1[−T,T ]〈∇〉ε(w̃2m+1−`h`)〈∇〉−ε :z` : dxdt
∣∣∣∣

. inf
w̃|[−T,T ]=w

‖〈∇〉εw̃‖2m+1−`
Lq
T
Lrx

‖〈∇〉εh`‖Lq̃
T
Lr̃x
‖〈∇〉−ε :z` :‖

L
q
`
T
L
r
`
x

. ‖w‖2m+1−`
Xs,b
T

‖h`‖X1−s,1−b−θ‖〈∇〉−ε :z` : ‖
L
q
`
T
L
r
`
x

= ‖w‖2m+1−`
Xs,b
T

‖〈∇〉−ε :z` : ‖
L
q
`
T
L
r
`
x

(3.15)
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as long as 0 < ε 6 1
2δ. Hence, by Proposition 2.3 with (3.2), (3.3), and (3.15),

we obtain

‖Ψ(w)‖Xs,b
T
. T θ

2m+1∑
`=0
‖w‖2m+1−`

Xs,b
T

,

‖Ψ(w1)−Ψ(w2)‖Xs,b
T
. T θ

2m∑
`=0

(
‖w1‖2m−`

Xs,b
T

+ ‖w2‖2m−`
Xs,b
T

)
‖w1 − w2‖Xs,b

T

outside a set of probability < exp
(
− 1
T c

)
for some c > 0. Therefore, for each

T � 1, there exists a set ΩT with P (ΩcT ) < exp
(
− 1
T c

)
such that, for each

ω ∈ ΩT , Ψω is a contraction on a ball of radius O(1) in Xs,b
T .

This completes the proof of Theorem 1.2. �

4. Weak universality: Wick ordered NLW as a scaling limit

In this section, we present the proof of Theorem 1.9. We follow closely
the argument in [16]. With zε = zωε = S(t)(φωε,0, φωε,1), let us decompose
uε = zε + wε as in (1.22). Then, the residual term wε satisfies

∂2
twε −∆wε + ρwε = Fε(wε), (4.1)

where Fε(wε) is given by
Fε(wε) = ε−3{f(ε(zε + wε)) + ε(ε2ρ− ρε)(zε + wε)

}
= ε−2{f ′(0) + ε2ρ− ρε}(zε + wε) + f (3)(0)

6 (zε + wε)3 +Rε, (4.2)

where the second equality follows from f(0) = f ′′(0) = 0 and Taylor’s re-
mainder theorem with the remainder term Rε given by

Rε = ε

∫ 1

0

(1− θ)3

6 f (4)(θε(zε + wε))dθ · (zε + wε)4. (4.3)

From (1.30), we see that zε(t, x) is a mean-zero real-valued Gaussian
random variable with variance

σε = E[z2
ε(t, x)] ∼ log ε−1.

Note that σε is independent of x ∈ T2 and t ∈ R. Recalling from (2.2) that
x3 = H3(x;σ) + 3σx, it follows from (4.2) and (4.3) that

Fε(wε) = ε−2
{
f ′(0) + ε2ρ− ρε + 3ε2σε

f (3)(0)
6

}
(zε + wε)

+ f (3)(0)
6 H3(zε + wε;σε) +Rε.
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For each ε > 0, we set ρε by

ρε = f ′(0) + ε2ρ+ ε2σε
f (3)(0)

2
so that the first term on the right-hand side vanishes. Then, by letting λ =
f(3)(0)

6 , we obtain

Fε(wε) = λH3(zε + wε;σε) +Rε
def= λ :u3

ε : +Rε.

From (4.3) and (1.28), we have

|Rε| =
∣∣∣∣ε∫ 1

0

(1− θ)3

6 f (4)(θε(zε + wε))dθ · (zε + wε)4
∣∣∣∣

. ε
{
|zε|+ |wε|

}M+4
.

In particular, we can write (4.1) as

∂2
twε −∆wε + ρwε = λ

3∑
`=0

(
3
`

)
:z`ε : w3−`

ε +O
(
ε
{
|zε|+ |wε|

}M+4)
. (4.4)

It follows from Proposition 2.3 with (1.30) that
ε‖zε‖M+4

Lq
T
Lrx

= oε(1)

almost surely. Then, by proceeding as in Section 3 (where we handle the
second term on the right-hand side of (4.4) by applying the argument in
Section 3 with 2m + 1 > M + 4), we obtain an a priori bound on wε,
uniformly in ε > 0. Moreover, the local existence time T = Tω can be chosen
to be independent of ε > 0.

Let u be the solution to (1.31). In an analogous manner, we can estimate
the difference w−wε, where w = u−z as in (1.22). Together with the almost
sure convergence of zε to z (see Remark 2.4), we see that uε converges to u
in C([−Tω, Tω];Hs(T2)) for s < 0. This completes the proof of Theorem 1.9.
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