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The separating semigroup of a real curve (∗)

Mario Kummer (1) and Kristin Shaw (2)

ABSTRACT. — We introduce the separating semigroup of a real algebraic curve
of dividing type. The elements of this semigroup record the possible degrees of the
covering maps obtained by restricting separating morphisms to the real part of the
curve. We also introduce the hyperbolic semigroup which consists of elements of the
separating semigroup arising from morphisms which are compositions of a linear
projection with an embedding of the curve to some projective space.

We completely determine both semigroups in the case of maximal curves. We
also prove that any embedding of a real curve of dividing type to projective space
of sufficiently high degree is hyperbolic. Using these semigroups we show that the
hyperbolicity locus of an embedded curve is in general not connected.

RÉSUMÉ. — Nous introduisons le semi-groupe séparant d’une courbe algébrique
réelle séparante. Les éléments de ce semi-groupe gardent trace des degrés possibles
des revêtements du cercle obtenus par restriction à la partie réelle de la courbe
des morphismes séparants. Nous introduisons aussi le semi-groupe hyperbolique,
composé des éléments du semi-groupe séparant provenant des morphismes qui sont
la composition d’une projection linéaire et d’un plongement de la courbe dans un
espace projectif.

Nous déterminons les deux groupes dans le cas des courbes maximales. Nous
démontrons aussi que tout plongement d’une courbe réelle séparante de degré suffi-
samment grand est hyperbolique. En utilisant ces semi-groupes, nous montrons que
le lieu hyperbolique d’une courbe plongée n’est en général pas connexe.
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1. Introduction

Here a curve will always be a non-singular projective and geometrically
irreducible algebraic curve over R. Furthermore, we always use Pn to denote
the projective space defined over R. For a variety V defined over R we denote
by V (R) and V (C) the real and complex points of V , respectively.

A basic fact concerning the classification of real algebraic curves, or real
Riemann surfaces, is the following dichotomy which goes back to Klein [19,
§23]: If X is a curve, then the set X(C) rX(R) has either one or two con-
nected components. If the latter is the case, X is called of dividing type.
Curves of dividing type are often called curves of type I or separating in
the literature. If there exists a morphism f : X → P1 with the property
f−1(P1(R)) = X(R), then X(C)rX(R) can not be connected. This is since
P1(C) r P1(R) has two connected components and their preimages under f
yield two connected components of X(C) r X(R). Therefore, such a mor-
phism is also called separating since it certifies that X is of dividing type. It
follows from the work of Ahlfors [1, §4.2], though proved in a different con-
text, that conversely every separating curve admits a separating morphism.

Rokhlin [30] used the existence of separating morphisms given by pen-
cils as a certification of certain real plane curves being of dividing type.
In Mikhalkin’s [23] study of extremal topology of real curves in (C∗)2, he
showed that the logarithmic Gauss map of a simple Harnack curve is sepa-
rating. Conversely, it was shown by Passare and Risler [26] that if a planar
curve has separating logarithmic Gauss map, then it is a Harnack curve.

The existence of separating morphisms and their properties have been
considered by several authors [7, 8, 10, 17]. For example, Gabard [10] showed
that every separating curve X admits a separating morphism of degree at
most g+r+1

2 where g is the genus and r the number of connected components
of X(R). Later Coppens [7] constructed, for every value of k between r and
g+r+1

2 , a separating curve X of genus g with X(R) having r components
such that k is the smallest possible degree of a separating morphism.

In this work, we take a complementary approach. Namely, we fix a curve
X of dividing type of genus g and study the set of all separating morphisms
X → P1. Let X(R) consist of r connected components X1, . . . , Xr. Since X
is of dividing type r + g must be odd. A separating morphism f is always
unramified over X(R) [20, Theorem 2.19]. Therefore, the restriction of f
to each Xi is a covering map of P1(R). This implies that the degree of a
separating morphism is at least r. Let N denote the positive integers, so
0 6∈ N. We denote by di(f) ∈ N the degree of the covering map Xi → P1

and set d(f) := (d1(f), . . . , dr(f))∈ Nr. For d = (d1, . . . , dr) ∈ Nr we let
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|d| :=
∑r

i=1 di. Our first main object of interest is the set of all such degree
partitions.

Definition 1.1. — The set
Sep(X) = {d(f) ∈ Nr | f : X → P1 separating}

is called the separating semigroup.

Since we assume that X is a separating curve, the set Sep(X) is always
non-empty. The term semigroup is justified by the fact that this set turns
out to be closed under componentwise addition, see Proposition 2.1.

In Corollary 3.4, we show that d + Zr
>0 ⊂ Sep(X) for every d ∈ Sep(X)

with |d| sufficiently large. Our main technique is making use of interlacing
sections: Two sections s and s′ of a line bundle on X are called interlacing
if they both have only simple and real zeros and if on each component Xi

between each two consecutive zeros of s there is exactly one zero of s′.
This notion generalizes the notion of interlacing polynomials to sections of
line bundles on algebraic curves. The concept of interlacing polynomials has
attracted a lot of attention since Marcus, Spielman and Srivastava used it
to solve the Kadison–Singer problem as well as to find bipartite Ramanujan
graphs of all degrees [21, 22]. We will make use of the fact that the morphism
to P1 defined by s and s′ is separating if and only if s and s′ are interlacing.
This is proved in Lemma 2.10.

We also study the subset Sep(X) consisting of all degree partitions that
are realized by a separating morphism which is actually a linear projection
of some embedding of X in projective space from a linear space disjoint from
X. This is motivated by the following definition from [32].

Definition 1.2. — Let X ⊂ Pn be a curve and E ⊂ Pn be a linear
subspace of codimension two such that E ∩ X = ∅. Then X is hyperbolic
with respect to E if the linear projection πE : X → P1 from E is separating.

Following the terminology of [32] we will call such embedded curves hyper-
bolic. These curves are a generalization of planar curves defined by hyperbolic
polynomials in three homogeneous variables. In general hyperbolic polyno-
mials have attracted interest in different areas of mathematics like partial
differential equations [11, 16], optimization [13, 29] and combinatorics [4, 5].

Whereas at first sight hyperbolicity might seem to be a rare phenomenon,
it is actually quite ubiquitous in the case of curves as justified by the next
theorem. It says that for a given separating curve X, every embedding of
high enough degree turns out to be hyperbolic. We first remark any divisor
D on a curve X with degree k > 2g is very ample by [14, Corollary 3.2b)],
and therefore the map X → P(L (D)∨) is an embedding.
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Theorem 1.3. — Let X be a curve of dividing type of genus g. There
exists a k > 2g with the following property: For any divisor D of degree at
least k the corresponding embedding of X to P(L (D)∨) is hyperbolic.

Definition 1.4. — The hyperbolic semigroup Hyp(X) is the set of all
elements of Sep(X) where the corresponding f can be chosen to be the com-
position of a linear projection with an embedding of X to some Pn, where
the center of the projection is disjoint from X.

Remark 1.5. — Replacing Pn by P3 in Definition 1.4 results in an equiv-
alent condition [20, §2]. Also, in the definition of Hyp(X), one could equiv-
alently just require f to be separating and f∗OP1(1) to be very ample.

The set Hyp(X) also turns out to be a semigroup, see Proposition 2.1. In
Proposition 2.12, we give an equivalent criterion for a curve to be hyperbolic
in terms of the linking numbers of its components with the linear subspace
from which we project.

For a planar curve X of dividing type, a pencil of curves is said to be
totally real with respect to X if every curve in the pencil intersects X in
only real points. In [33], Fiedler–Le Touzé asks if for every planar curve of
dividing type there exists a totally real pencil. Using our techniques we can
answer this question in the affirmative even when the base points of the
pencil are not contained in the curve. In the next theorem, we let V denote
the subvariety of P2 defined by a collection of homogeneous polynomials in
R[x, y, z].

Theorem 1.6. — If X ⊂ P2 is a curve of dividing type, then there exists
an integer k such that for any k′ > k there are homogeneous polynomials
f, g ∈ R[x, y, z] of degree k′ for which V(f, g) ∩ X(R) = ∅ and such that
V(λf +µg) intersects X only in real points for every λ, µ ∈ R not both zero.

A curve X of genus g is called an M -curve if X(R) has r = g + 1 con-
nected components. Every M -curve is of dividing type. In the case of M -
curves we give a complete description of both the separating and hyperbolic
semigroups.

Theorem 1.7. — Let X be an M -curve.

(a) If g = 0, then Hyp(X) = Sep(X) = N.
(b) If g = 1, then Sep(X) = N2 and Hyp(X) = N2 r {(1, 1)}.
(c) If g > 1, then Sep(X) = Ng+1 and Hyp(X) = {d ∈ Ng+1 :∑g+1

i=1 di > g + 3}.

Finally, in Section 5 we study the hyperbolicity locus of an embedded
curve in an example. Given an embedded curve X in Pn, Shamovich and
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Vinnikov asked if the subset of the Grassmannian Gr(n − 1, n + 1) corre-
sponding to the linear spaces from which the projection of X is separating
is connected [32]. In Example 5.1, using the hyperbolic semigroup we con-
struct an example where the answer is negative. In fact, this example is a
member of a family of curves constructed independently by Mikhalkin and
Orevkov [24, Theorem 3]. Their construction immediately implies that there
exists an M -curve in P3 of genus g such that its hyperbolicity locus consists
of g + 1 connected components.

2. The separating and hyperbolic semigroups

We begin by showing that the sets Sep(X) and Hyp(X) are indeed semi-
groups.

Proposition 2.1. — Let X be a curve of dividing type. Then both
Sep(X) and Hyp(X) are semigroups.

Proof. — Let f1, f2 : X → P1 be two separating morphisms. Let X+ be
one of the connected components of X(C) r X(R). Without loss of gener-
ality we may assume that f1(X+) = f2(X+) = H+ is the upper half-plane.
Identify P1(C) with C∪{∞} and let φ : P1(C)→ P1(C) be a Möbius transfor-
mation sending the circle |z| = 1 to P1(R). Define the map g : X → P1(C) by

g(x) = φ−1(f1(x)) · φ−1(f2(x)).
The preimage g−1(z) of any point z with |z| = 1 is contained in P1(R).
Moreover, this preimage consists of exactly di(f1) + di(f2) points on Xi for
i = 1, . . . , r. Then the composition f = φ ◦ g(x) is a separating map which
satisfies d(f) = d(f1) + d(f2). This proves that Sep(X) is a semigroup.

To show that Hyp(X) is a semigroup, suppose that L1 = f∗1OP1(1) and
L2 = f∗2OP1(1) are both very ample. Then the line bundle f∗OP1(1) =
L1 ⊗L2, where f is defined as above, is also very ample. Therefore Hyp(X)
is also a semigroup. �

When X = P1 we have 1 ∈ Hyp(P1). Therefore, the next corollary is an
immediate consequence of Proposition 2.1.

Corollary 2.2. — We have Sep(P1) = Hyp(P1) = N.

Example 2.3. — In fact, we have Sep(X) = N if any only if X = P1, since
a map of degree 1 is an isomorphism.

Remark 2.4. — For a dividing curve X of genus g, every d ∈ Sep(X) with
|d| > 2g + 1 is also in Hyp(X). This is because every line bundle L on X
with deg(L ) > 2g + 1 is very ample [14, Corollary 3.2b)].
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Example 2.5. — Let X be a hyperelliptic curve of genus g = 2 given by
x2

2 = p(x0, x1) where p is a positive definite form of degree six. We consider
X to be a subvariety of the weighted projective space P2(1, 1, 3), so that it is
non-singular. Then the canonical map is separating. Since r+g must be odd
and f is unramified over the real points, we conclude that r = 1. Thus, we
have 2 ∈ Sep(X). By [1, §4.2] we also have 3 ∈ Sep(X) but we do not have
1 ∈ Sep(X) because the curve is not rational. Thus, we have Sep(X) = N>2.

Remark 2.6. — In general, the separating and hyperbolic semigroups do
not only depend on r and g. For example, it is possible to construct a hy-
perelliptic curve of genus three whose canonical map is separating. In that
case we have r = 2. But there are also separating curves of genus three with
r = 2 that are not hyperelliptic and therefore do not admit a separating
morphism of degree two.

Example 2.7. — Let g = 1 and suppose that r = 2. Then there is an
automorphism of X that sends X1 to X2. Thus, Sep(X) is stable under
the action of the symmetric group S2. From embeddings to P2 we obtain
(2, 1), (1, 2) ∈ Hyp(X). One also has (1, 1) ∈ Sep(X) r Hyp(X).

Example 2.8. — In this example we show that the separating semigroup
of a planar hyperbolic curve X of degree k is not symmetric for k > 4.
This version of the argument was suggested by Erwan Brugallé following
our original approach for k = 4. The number of connected components of
X(R) is r = dk

2 e. A linear system of rank 2 on a curve X of genus g > 3
is unique, [25, §2.3] or [2, A.18]. So we can label the connected components
X1, . . . , Xr from the innermost oval X1 to the outermost oval Xr if k is even.
If k is odd then Xr−1 is the outermost and Xr is the unique pseudoline. By
our hyperbolicity assumption (2, 2, . . . , 2) ∈ Hyp(X) ⊂ Sep(X) if k is even
and (2, 2, . . . , 2, 1) ∈ Hyp(X) ⊂ Sep(X) if k is odd.

The gonality of a planar curve X of degree k is k − 1 and moreover
every map f : X → P1 of degree k − 1 is induced by a projection P2 → P1

whose center is a point on X, [25, §2.3] or [2, A.18]. Therefore, we have
(1, 2, . . . , 2) ∈ Sep(X) if k is even and, if k is odd (1, 2, . . . , 2, 1) ∈ Sep(X).
However, no other permutation of these degree sequences is possible, since
a projection whose center is not on the innermost oval of X would not be a
separating morphism.

Therefore, the semigroup Sep(X) is in general not preserved under the ac-
tion of the symmetric group. Moreover, it follows that the semigroup Sep(X)
is an invariant of the curve X which is capable of distinguishing which con-
nected component of X(R) is the innermost oval of a hyperbolic embedding
to P2 when g > 3.
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2.1. Separating morphisms and interlacing sections

The following definition generalizes the interlacing property for polyno-
mials [9] to sections of line bundles.

Definition 2.9. — Let L be a line bundle on X. Let s0, s1 ∈ Γ(X,L )
be two global sections that both have only simple and real zeros. We say that
s0 and s1 interlace if each connected component of X(R) r {P | s0(P ) = 0}
contains exactly one zero of s1 and vice versa.

Lemma 2.10. — Let L be a line bundle on X and let s0, s1 ∈ Γ(X,L )
be global sections that generate L and that both have only simple and real
zeros. Then the morphism X → P1 given by x 7→ (s0(x) : s1(x)) is separating
if and only if s0 and s1 are interlacing.

Proof. — Assume that s0 and s1 interlace. If the map is not separating,
then there is a λ ∈ R such that s0 +λs1 has a double zero on X(R). Since s0
and s1 generate L , the section s0 +λs1 does not vanish on any zero of s1 for
any λ. Thus, because s0 has exactly one zero on each connected component
of X(R)r{P | s1(P ) = 0}, a double root of s0 +λs1 is impossible. Therefore,
interlacing implies separating.

Conversely, assume that the morphism under consideration is separat-
ing. It follows immediately that all zeros of s0 and s1 are real. The other
properties of interlacing sections follow from the fact that the restriction of
separating morphisms to the real part is unramified [20, Theorem 2.19]. �

To verify the interlacing property of a pair of sections we have the fol-
lowing sufficient criterion which we will use later on.

Proposition 2.11. — Let L be a line bundle on X and let s0, s1 ∈
Γ(X,L ) be global sections that generate L . Let s0 have only simple and
real zeros. Let I be the set of indices i such that s0 has more than one zero
on Xi. Assume that for each i ∈ I there is exactly one zero of s1 on each
connected component of Xir{P | s0(P ) = 0}. Then s0 and s1 are interlacing
and the morphism X → P1 given by x 7→ (s0(x) : s1(x)) is separating.

Proof. — As in the proof of the preceding lemma we show that there is
no λ ∈ R such that s0 + λs1 has a double zero on X(R). Indeed, as shown
in the proof of the preceding lemma, two zeros on one of the Xi for i ∈ I
cannot come together as λ varies. Since there is only one zero of s0 on the
other components, the claim is also true for those. �
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Figure 2.1. The twisted cubic drawn in green is hyperbolic with re-
spect to the red line.

2.2. Conditions for hyperbolic morphisms

We first point out that a curve being hyperbolic with respect to some
linear space is a purely topological property.

We begin by recalling linking numbers of spheres embedded in the n-
dimensional sphere Sn. For the general definition of linking numbers and
more detailed information we refer to [28]. Suppose thatX and Y are disjoint
embedded oriented spheres in Sn of dimensions p and q respectively where
n = p+ q + 1. Consider the fundamental cycles [X] and [Y ] as cycles in the
integral homology of Sn. There exists a chain W whose boundary is [X].
The linking number lk(X,Y ) is defined to be the intersection number of W
and [Y ].

Now let K ⊂ Pn(R) be the image of an embedding of S1 and L ⊂ Pn(R)
be a linear subspace of codimension 2. Let π : Sn → Pn(R) be an unramified
2 to 1 covering map. Notice that π−1(L) is a sphere of dimension n − 2
in Sn and π−1(K) is either an embedded circle or two embedded circles.
Define the linking number of K and L in Pn(R) to be the linking number of
π−1(K) and π−1(L) in Sn if π−1(K) is a single connected component and
define it to be the sum of the linking numbers of K1 with L and K2 with L
if K1∪K2 = π−1(K). Now we are able to give a topological characterization
of hyperbolic curves in terms of linking numbers.

Proposition 2.12. — Let X ⊂ Pn be a curve and E ⊂ Pn be a linear
subspace of dimension n−2 with X∩E = ∅. Then X is hyperbolic with respect
to E if and only if deg(X) =

∑r
i=1|lk(Xi, E(R))|. When X is hyperbolic with

respect to E, then the tuple
(|lk(X1, E(R))|, . . . , |lk(Xr, E(R))|)

is the element in Hyp(X) corresponding to the projection from E.
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Proof. — The curve X is hyperbolic with respect to E if and only if
every hyperplane H ⊂ Pn that contains E intersects X in deg(X) many
distinct real points. Let π : Sn → Pn(R) be an unramified 2 to 1 covering
map. For any choice of a hyperplane H ⊂ Pn that contains E, the preimage
X = π−1(E) is a sphere of dimension n− 2 inside π−1(H) which is a sphere
of dimension n − 1. Let W ⊂ π−1(H) be a hemisphere whose boundary is
π−1(E).

If X is hyperbolic with respect to E, then the absolute values of the
linking numbers lk(Xi, E(R)), which are the intersection numbers of the
π−1(Xi) with W , sum up to deg(X). Conversely, if the intersection number
of W with the preimage of X(R) is deg(X), then H has (at least) deg(X)
many real intersection points with X. The final statement about the element
of Hyp(X) arising from the projection from E is immediate. �

Example 2.13. — Let Q ⊂ P3 be the quadratic surface defined by the
equation x2 + y2 = z2 + w2. Its real part Q(R) is the hyperboloid. For a
curve X contained in Q, we can describe a topological condition for X to be
hyperbolic with respect to the line E given by x = y = 0.

The hyperboloid Q(R) is homeomorphic to the torus S1 × S1 and tak-
ing a real line from each of the two rulings of Q gives a pair of generators
of H1(Q(R)) ∼= Z ⊕ Z. We will assume that these lines are oriented in the
upwards z direction in the affine chart w = 1. For each hyperplane H con-
taining the line E we have [H ∩Q(R)] = (1, 1) ∈ H1(Q(R)), up to switching
the orientation of H ∩Q(R).

If X ⊂ Q, then a connected component of X(R) realizes either the triv-
ial class in H1(Q(R)) or the class (p, q) for p, q coprime integers. Otherwise,
the connected components of X(R) would have non-trivial intersections con-
tradicting the fact that X is non-singular. In order for X to be hyperbolic
with respect to E, no component of X(R) can realize the trivial class. This
is because if a connected component Xi is trivial in homology, it is the
boundary of a disc contained in Q which would not intersect E and so
di = |lk(Xi;E(R))| = 0. If furthermore deg(X) = r · (p + q), then X must
be hyperbolic with respect to E.

For example, we can construct a curve X of degree 2k in P3 which is
hyperbolic with respect to E in the following way. Let X be the complete
intersection of Q with a hypersurface S which is a small perturbation of the
union of hyperplanes Hi with equations of the form z+ aiw for i = 1, . . . , k.
Then X(R) consists of k connected components, and each one realizes the
class (1,−1) ∈ H1(Q(R)) up to changing the orientations of the connected
components of X(R). By the above remark, the curve X is hyperbolic with
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respect to E and thus (2, . . . , 2) ∈ Hyp(X). See the left hand side of Fig-
ure 2.2. Let E′ be any real line onQ. By our choice of generators ofH1(Q(R)),
we can suppose that [E′(R)] = (1, 0), up to a change in orientation. There-
fore, the set of real points E′(R) intersect X(R) in at least k points. The
projection of X from E′ is a separating map of degree k with degree partition
(1, . . . , 1) ∈ Nk. The curve X has genus (k − 1)2 and X(R) has k connected
components. In particular, if k > 3, then X is not anM -curve, see Section 4.

Example 2.14. — We can carry out the construction from the previous
example with Q now being the quadratic surface defined by x2+y2+z2 = w2.
Then Q(R) is the sphere. Again let S be the hypersurface which is a small
perturbation of the union of hyperplanes Hi with equations of the form
z + aiw with −1 < ai < 1 for i = 1, . . . , k.

Let X be the complete intersection of S and Q. Then the resulting curve
X is again hyperbolic with respect to the line E defined by x = y = 0 and
we have (2, . . . , 2) ∈ Hyp(X). See the right hand side of Figure 2.2. As in
Example 2.13, the curve X has genus (k − 1)2 and X(R) has k connected
components. But we will show that unlike in the preceding example, we have
(1, . . . , 1) 6∈ Sep(X) if k > 2. In fact, there is no real morphism X → P1 of
degree k. Any complex line on Q intersects X in k points and the projection
from this line gives a map to P1 of degree k. The gonality of the complexified
curve is k and every morphismX → P1 of degree k comes from the projection
from a line by [3] and [6]. However, since the surface Q does not contain any
real lines, there are no real lines intersecting X(R) in more than two points
proving the claim that there are no real morphisms of degree k to P1.

Figure 2.2. The two canonical curves of genus four from Examples 2.13
(left) and 2.14 (right) with real part having three connected compo-
nents that are hyperbolic with respect to the red line. The curve on
the left has (1, 1, 1) in its separating semigroup whereas the one on
the right does not.
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Example 2.15. — Let X be a curve of genus g with X(R) having r con-
nected components. Assume that there is a separating morphism f : X → P1

with the property that f∗OP1(1) is the canonical line bundle. The degree of
a divisor of a non-zero real holomorphic differential form on X restricted
to any connected component of X(R) must be even, see for example [12,
Proposition 4.2]. Therefore, we have that d(f) = 2d′ for some d′ ∈ Nr. This
implies that r 6 g − 1. Examples 2.5, 2.8, and 2.13 show that for g = 2, 3, 4
such a morphism exists for a curve with r = g−1. For planar curves X ⊂ P2

of degree d > 4 the canonical bundle is given by OX(d− 3). Furthermore, it
was shown in [33] that for some planar sextic curves with 9 ovals there exists
a pencil of cubics without base points on X that gives rise to a separating
morphism. Thus for g = 10 and r = 9 we can also find such a morphism.
For curves of genus different from 2, 3, 4 and 10 we do not know if this is the
case.

The next two lemmas exclude specific elements from the hyperbolic semi-
group.

Lemma 2.16. — Let X be a curve of dividing type. If d = (1, . . . , 1) ∈
Hyp(X), then X is a rational curve, and hence d = (1).

Proof. — Assume that there is a hyperbolic embedding of X to P3 with
each component having degree 1. The linear projection of X to the plane
from any point not on X will send each Xi to a pseudoline. In P2 each
two pseudolines intersect, which implies that the image of X will have at
least 1

2r(r − 1) simple nodes given that the center of projection was chosen
generally enough. On the other hand, the degree is r. By the genus–degree
formula this implies that

g 6
1
2(r − 1)(r − 2)− 1

2r(r − 1) = 1− r.

Therefore, if r = 1 then X is a rational curve and if r > 1 then X cannot be
irreducible. This proves the lemma. �

Lemma 2.17. — Let X be a curve of dividing type such that r > 2. Then
no permutation of (2, 1, . . . , 1) is in Hyp(X).

Proof. — Assume that (2, 1, . . . , 1) ∈ Hyp(X) and let X ⊂ P3 be a realiz-
ing embedding. Let X be hyperbolic with respect to a line L and let H ⊂ P3

be any hyperplane containing L. Let H ∩X1 = {P1, P2} and H ∩Xi = {Qi}
for all i = 2, . . . , r. Note that X is not contained in any plane since r > 2.
Thus, we can assume that there is a Qi0 that is not on the line spanned by
P1 and P2. The set A of all real lines in H that contain neither P1 nor P2
has two connected components. Let L′ ⊂ H be a line through Qi0 that is
in the same connected component of A as L. Every hyperplane containing
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L′ intersects X1 in at least two real points because of Proposition 2.12 and
|lk(X1, L(R))| = |lk(X1, L

′(R)|. Also it intersects every Xi with i > 2 in
at least one real point. Now any hyperplane H ′ spanned by L′ and a point
Q′ 6= Qi0 on Xi0 would intersect X in more than degree many points. �

3. Some results for the general case

In general it is not easy to determine the separating and the hyperbolic
semigroup for a given curve. In this section we provide a method that allows
us under some reasonable assumptions to construct from a separating mor-
phism another separating morphism of one degree higher. The main result
of this section is that any embedding of a separating curve of high enough
degree is hyperbolic. Therefore, hyperbolic embeddings are the rule rather
than the exception.

Lemma 3.1. — Let L be a line bundle on X. Let s1, s2 ∈ Γ(X,L ) be two
global sections. Let (s1)0 = P0 + . . . + Pn with pairwise distinct Pj ∈ X(R)
and s2(P0) 6= 0. Let Uj ⊂ X(R) be an open neighbourhood of Pj for all
j = 1, . . . , n. There is an open neighbourhood U0 ⊂ X(R) of P0 such that for
every Q0 ∈ U0 there are Qj ∈ Uj for j = 1, . . . , n and s3 ∈ Γ(X,L ) with
(s3)0 = Q0 + . . .+Qn.

Proof. — It suffices to show the claim in the case where the Uj are pair-
wise disjoint and do not contain P0 for j = 1, . . . , n. Let f be a rational
function on X with the property that (f) = (s1)0 − (s2)0. Since f has only
simple and real zeros, there is a c > 0 such that for all ε ∈ ]−c, c[ the rational
function f + ε has a zero in each Uj for all j with Pj a zero of f . Now let
U0 ⊂ X(R) be an open neighbourhood of P0 which is disjoint from each of
the Uj and is contained in f−1(]−c, c[). Then for every Q0 ∈ U0 there is an
ε ∈ ]−c, c[ such that Q0 is a zero of f + ε. Note that f + ε has the same poles
of the same orders as f . Thus, the effective divisor (f + ε) + (s2)0 is of the
form Q0 + . . .+Qn where Qj ∈ Uj . �

Proposition 3.2. — Let L be a line bundle on X. Let s0, s1 ∈ Γ(X,L )
be two global sections that interlace. Let D = (s0)0 and let P ∈ X(R) with
s0(P ) 6= 0 such that `(D + P ) > `(D). Then there are interlacing sections
s′0, s

′
1 ∈ Γ(X,L ′) such that (s′0)0 = D + P where L ′ is the line bundle

corresponding to D + P .

Proof. — Without loss of generality, we can assume that s1(P ) 6= 0. Let
(s1)0 = D′ = P1 + · · · + Pn. Since `(D + P ) > `(D), there is a rational
function g ∈ L (D+ P ) that has a pole at P . Then D′′ = D+ P + (g) is an
effective divisor with P 6∈ SuppD′′. The effective divisors D + P , D′ + P ,
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and D′′ correspond to global sections s′0, f1, and f2 of L ′, respectively. Let
Uj be the connected component of X(R) r Supp(D + P ) that contains Pj

for all j = 1, . . . , n. Applying Lemma 3.1 to f1 and f2 shows that there is a
global section s′1 of L ′ such that s′0 and s′1 interlace. �

Remark 3.3. — The condition `(D + P ) > `(D) is for example satisfied
when D is non-special.

Corollary 3.4. — Let X be a curve of dividing type. Let d ∈ Sep(X)
and l be the number of indices where di is odd. If |d| + l > 2g − 1, then
d+ Zr

>0 ⊂ Sep(X).

Proof. — By [18, Theorem 2.5] the divisor corresponding to a separat-
ing morphism realizing d is non-special. By Remark 3.3 the statement then
follows from Proposition 3.2. �

Proof of Theorem 1.3. — By Ahlfors’ theorem [1, §4.2] there is a sep-
arating morphism f : X → P1. By Proposition 2.1 we can furthermore as-
sume that the degree of f is more than 2g − 2. Let L = f∗OP1(1) and
s0, s1 ∈ Γ(X,L ) be two global sections that interlace. Then D0 = (s0)0 is
non-special. By [31, Corollary 2.10, Remark 2.14], there is an integer n > 0
such that every real divisor on X of degree at least n is linearly equivalent
to a sum of distinct points from X(R) r SuppD0. We will show that the
claim holds for k = max(2g+ 1, n+ degD0). Indeed, let D be a divisor with
degD > k. Then D − D0 is linearly equivalent to a sum of distinct points
from X(R) r SuppD0 since deg(D − D0) > n. An iterated application of
the previous proposition shows that the corresponding embedding of X to
P(L (D)∨) is hyperbolic. �

Proof of Theorem 1.6. — The existence of a totally real pencil of curves
of degree k satisfying our assumptions follows immediately by applying The-
orem 1.3 to the line bundle OX(k). �

Remark 3.5. — If we allow base points on the curve, then the existence of
a totally real pencil simply follows from Ahlfors’ theorem [1, §4.2]. Indeed,
let X ⊂ P2 be a curve of dividing type and f : X → P1 be a separating
morphism defined by two sections s0, s1 of a suitable line bundle. The rational
function s0

s1
can be expressed in the coordinates x, y, z of P2 as the fraction

of two homogeneous forms f, g in x, y, z of the same degree. Then V(λf+µg)
intersects X only in real points for every λ, µ ∈ R not both zero. However,
the intersection V(f, g) ∩ X is in general not empty, so the statement of
Theorem 1.6 does not follow from this argument.

Question 3.6. — What are the smallest possible values for k in Theo-
rem 1.3 and Theorem 1.6?
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Remark 3.7. — Since our proof of Theorem 1.6 is not constructive, it
further motivates the desire for a bound on k in Question 3.6. In [33], it was
shown that for plane sextic curves of type 〈2q 1〈6〉〉 and 〈6q 1〈2〉〉 one can
choose k = 3 in Theorem 1.6.

Example 3.8. — We consider a planar hyperbolic quartic, for example
the Vinnikov quartic X ⊂ P2 from [27, Example 4.1] which is the planar
curve defined by

2x4 + y4 + z4 − 3x2y2 − 3x2z2 + y2z2 = 0.
We have g = 3 and r = 2. Moreover, the curve X is of dividing type since
it is hyperbolic with respect to (0 : 0 : 1). Let X1 be the inner oval and
X2 be the outer oval. We have (1, 2), (2, 2) ∈ Sep(X), but Example 2.8
shows that (1, 1), (2, 1) 6∈ Sep(X). We can also realize (3, 2) and (1, 3) with
pencils of conics having 3 and 4 base points on X(R) respectively, see Fig-
ure 3.1. In coordinates, the separating morphisms are given by the rational
functions (2z+

√
2x−2y)(−2z+

√
2x−4y)

xy and (2z+
√

2x−2y)(z+x+y)
xy , respectively. By

Corollary 3.4, we have that (1, 2) +Z>0 ⊂ Sep(X). This determines the sep-
arating semigroup of the Vinnikov curve except for some cases when d2 = 1.
In fact, we do not know whether or not (n, 1) is in Sep(X) for n ∈ Nr{1, 2}.

Figure 3.1. Realizing (3, 2) and (1, 3) with pencils of conics having 3
and 4 base points on X(R).

4. M-curves

Recall that an M -curve X has exactly g + 1 connected components in
X(R) and that everyM -curve is of dividing type. Here we prove Theorem 1.7,
which completely determines the separating and hyperbolic semigroups of
M -curves.
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Proof of Theorem 1.7. — Part (a) is just Corollary 2.2. By [10, Proposi-
tion 4.1] or [1, §4.2] the all ones vector is in Sep(X) for any genus. Moreover,
any choice of divisor D = P1 + . . .+Pg+1 where Pi ∈ Xi for i = 1, . . . , g+ 1
is non-special by [17, Theorem 2.4]. Thus `(D) = 2 and any non-constant
rational function f ∈ L (D) gives rise to a separating morphism realizing
(1, . . . , 1) ∈ Sep(X). By iterated application of Proposition 3.2 and Re-
mark 3.3 we find that Sep(X) = Nr. This proves the claim on Sep(X) for X
of any genus.

By Halphen’s theorem [14, Proof of Proposition 6.1] the space of divisors
which are not very ample is of codimension at least one in the space of
all divisors of degree at least g + 3. Therefore given an effective divisor D
realizing d = (d1, . . . , dr) ∈ Sep(X) with |d| > g+3 obtained from the above
construction, we can assume that it is very ample. Thus d = (d1, . . . , dr) ∈
Hyp(X) whenever |d| > g+ 3. For the hyperbolic semigroup in part (b) note
that (1, 1) 6∈ Hyp(X) by Lemma 2.16 and that (1, 2), (2, 1) ∈ Hyp(X) by
Example 2.7. Part (c) follows from the above and Lemmas 2.16 and 2.17. �

5. Domain of hyperbolicity

Given a curve X ⊂ Pn not contained in a hyperplane, we study the
hyperbolicity locus H(X) of X. Define

H(X) := {L | X is hyperbolic with respect to L} ⊂ Gr(n− 1, n+ 1),

where Gr(n− 1, n+ 1) is the space of codimension 2 subspaces of Pn. In [32,
Question 3.13] the authors asked whether H(X) is connected. This question
is motivated by the case of planar curves where the answer is yes [15, Theo-
rem 5.2]. Further evidence towards a positive answer was given by [32, Theo-
rem 7.2] which states that H(X) is the intersection of Gr(n−1, n+1) with a
convex cone in PN−1(R) where N =

(
n

n−2
)
. Here we consider Gr(n−1, n+1)

as a subset of PN−1 via the Plücker embedding. However, the next example
shows that the hyperbolicity locus is in general not connected.

Example 5.1. — Let X ⊂ P2 be a planar elliptic curve with X(R) having
two connected components X1 and X2. We can find quadrics q1, q

′
1, q2, q

′
2 ∈

OX(2) such that qi and q′i interlace. Furthermore, we can assume that qi

intersects Xi in exactly 4 points.

Consider the image of X in P5 under the second Veronese embedding.
The quadrics qi and q′i determine hyperplanes Hi and H ′i in P5. Because qi

and q′i interlace, the image of X is hyperbolic with respect to the 3-planes
Li = Hi ∩H ′i. The projection maps produce the elements (2, 4) and (4, 2) of
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the semigroup Hyp(X). Therefore, the 3-planes L1 and L2 can not lie in the
same connected component of H(X).

Figure 5.1. The link diagram of the curve from Example 5.2 together
with two lines of hyperbolicity giving rise to different degree partitions.

Example 5.2. — One can even obtain an example of a hyperbolic curve
X ⊂ P3 with H(X) not connected. For this we proceed as is Example 5.1 to
construct two totally real pencils of conics, λq0 + µq1 and λp0 + µp1, that
give rise to different degree partitions on a plane elliptic curve. Then X is
obtained as the image the plane elliptic curve under the map

x 7→ (q0(x) : q1(x) : p0(x) : p1(x)).
For a precise example, take the image of the plane curve defined by −z3 +
2xz2 − x3 + y2z = 0 under the above map with q0 = xy, q1 = x2 − y2,
p0 = y(x− 4z) and p1 = (3x− 4z − y)(2x+ y).

Figure 5.1 shows the link diagram, up to isotopy, following a linear pro-
jection of this embedding back to P2. The two components of the links are
depicted in red and blue, and the image of the two lines of hyperbolicity are
shown in black. The real projective plane is depicted as a disk with antipodal
boundary points identified.

Question 5.3. — Is there an example of a non-singular curve X ⊂ Pn

where two connected components of H(X) give rise to the same element in
Hyp(X)?
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