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Solvable groups of interval exchange transformations (∗)

François Dahmani (1),
Koji Fujiwara (2) and Vincent Guirardel (3)

ABSTRACT. — We prove that any finitely generated torsion free solvable subgroup
of the group IET of all Interval Exchange Transformations is virtually abelian. In
contrast, the lamplighter groups A o Zk embed in IET for every finite abelian group
A, and we construct uncountably many non pairwise isomorphic 3-step solvable
subgroups of IET as semi-direct products of a lamplighter group with an abelian
group.

We also prove that for every non-abelian finite group F , the group F o Z does
not embed in IET.

RÉSUMÉ. — Nous démontrons que tout sous-groupe de type fini résoluble sans
torsion du groupe IET des échanges d’intervalles est virtuellement abélien. A l’op-
posé, les groupes d’allumeurs de réverbères A o Zk se plongent dans IET pour tout
groupe abélien fini A, et nous construisons un nombre non dénombrable de sous-
groupes résolubles de classe 3 dans IET non isomorphes entre eux comme produits
semi-directs d’un groupe d’allumeurs de réverbères avec des groupes abéliens.

Nous démontrons aussi que pour tout groupe fini non-abélien F , le produit en
couronne F o Z ne se plonge pas dans IET.

The group IET and its subgroups

The group IET of interval exchange transformations is the group of all
bijections of the interval [0, 1) that are piecewise translations with finitely
many discontinuity points.
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Rather unexpectedly, the recent study of this group has given evidences
that it is not as big as one could have thought, in several commonly accepted
features. For instance, in [3] we established that IET does not have many
free subgroups (if any at all), and that the connected Lie groups that can
embed in it are only abelian. Another fact in this direction is that given
any finitely generated subgroup of IET, and any point x ∈ [0, 1) the orbit
of x grows (in cardinality) at most polynomially in the word length of the
elements of the subgroup [3, Lem. 6.2].

Yet another instance of these evidences is given by the main result of [7]
of Juschenko and Monod which implies that certain natural subgroups of
this group are amenable. More precisely, given α ∈ R \ Q, the subgroup
IETα of transformations whose translation lengths are all multiples of α
modulo 1 is amenable. Indeed, given any finitely generated subgroup G of
IETα, G can be viewed as a group of homeomorphisms of the Cantor set
K obtained by blowing up the Rα-orbit of the discontinuity points of the
generators of G, where Rα is the rotation x 7→ x + α mod 1 [1]. Denoting
by R̂α the homeomorphism of K induced by Rα, this embeds G in the full
topological group of R̂α, which is amenable by [7]. This has been extended
in [6] to subgroups of rational rank 6 2, i.e. such that the subgroup of Q/Z
generated by the translation lengths of its elements does not contain Z3.

Given these evidences, we chose to investigate the possible solvable sub-
groups of IET.

Results

In order to describe elementary examples of subgroups of IET, let us
enlarge a bit the context, and instead of interval exchange transformations
on the interval [0, 1) we consider the group IET(D) of interval exchange
transformations on a domain D consisting of a disjoint union of finitely
many oriented circles, and oriented half-open intervals, closed on the left
(see Section 1.1). This does not make change the isomorphism classes of
subgroups encountered as IET ' IET(D).

For all n ∈ N, Zn embeds in IET(R/Z) as a group of rotations. The fol-
lowing general simple fact then implies that every finitely generated virtually
abelian group embeds in IET.

Proposition 1 (Proposition 1.2). — Let G be a group, and assume that
some finite index subgroup of G embeds in IET. Then so does G.
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It is then natural to ask which virtually polycyclic groups embed in IET.
Our first result shows that only virtually abelian ones do. By a different
method, Cornulier [2] also shows that a virtually polycyclic group in IET
must be virtually abelian.

Theorem 2 (See Corollary 3.2). — Let H be a virtually polycyclic group.
Then H embeds into IET if and only if it is virtually abelian.

Since a polycyclic group is virtually torsion-free, this result is in fact a
corollary of the following theorem which applies to all torsion-free solvable
subgroups of IET.

Theorem 3 (Theorem 3.1). — Every finitely generated torsion-free solv-
able subgroup of IET is virtually abelian.

If we allow torsion, a much greater variety of subgroups exists. The first
interesting example is an embedding of the lamplighter group L = (Z/nZ) o
Zk in IET. Note that this group L is solvable (in fact metabelian), has
exponential growth, and is not virtually torsion-free.

To describe this embedding, consider the domain D = (Z/nZ) × (R/Z),
a disjoint union of n circles. Choose Λ ⊂ R/Z a subgroup isomorphic to Zk,
and view Λ as a group of synchronized rotations in IET(D), i.e. by making
θ ∈ Λ act on D = (Z/nZ) × (R/Z) by (i, x) 7→ (i, x + θ). Consider the
interval I = [0, 1/2) ⊂ R/Z, and let τ be the transformation that is the
identity outside (Z/nZ) × I, and sends (i, x) to (i + 1, x) for x ∈ I. Then
the subgroup of IET(D) generated by τ and Λ is isomorphic to L. This is
illustrated in Figure 4.1. More generally, taking D = A × (R/Z) for some
finite abelian group A, this construction yields the following result:

Proposition 4 (see Propositions 4.1 and 4.2). — For any finite abelian
group A and any k > 1, the wreath product L = A o Zk embeds in IET.

One could try a similar construction, replacing the abelian finite group
A by a non-abelian one. But the group obtained would not be the wreath
product. In fact, such a wreath product cannot embed in IET as the following
result shows.

Theorem 5 (Theorem 4.4). — If F is a finite group and if F oZ embeds
as a subgroup in IET, then F is abelian.

It would be interesting to know which finitely generated wreath products
embed in IET.
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Starting from a subgroup G < IET(D) and a finite abelian group A, the
construction above allows to construct subgroups of IET(D×A) isomorphic
to GnFA where FA is a subgroup of the abelian group AD. We then prove
that, in contrast with the torsion-free case, this construction yields a huge
variety of isomorphism classes of solvable subgroups in IET.

Theorem 6 (Theorem 4.9). — There exist uncountably many isomor-
phism classes of subgroups of IET that are generated by 3 elements, and that
are solvable of derived length 3.

The method we use consists of embedding many semidirect products in
a way that is related to the twisted embeddings used in [6].

About proofs

The proof of Theorem 4.4 saying that F oZ does not embed into IET uses
the fact that orbits in [0, 1) by a finitely generated subgroup of IET have
polynomial growth. On the other hand, if F o Z = (

⊕
n∈Z F ) o Z embeds

in IET, F and its conjugate have to commute with each other. This gives
strong algebraic restrictions on the action on F . Using Birkhoff theorem, we
show that if F itself is non-commutative, then the orbit growth of F oZ has
to be exponential, a contradiction.

To prove that there are uncountably many groups as in Theorem 4.9,
we start with a lamplighter group G = (Z/3Z) o Z constructed above on
D = (Z/3Z)×(R/Z), where Z acts on the three circles by setting a generator
to act as a synchronized rotation on them with irrational angle α. Then,
we consider D′ = (Z/2Z) × D, on which we make G act diagonally. Then
we choose an interval J in {0} × (R/Z) ⊂ D and define τJ on D′ by the
identity outside (Z/2Z)× J , and by (i, x) 7→ (i+ 1, x) on (Z/3Z)× J ⊂ D′.
This is illustrated in Figure 4.2. The group H generated by G and τJ is a
homomorphic image of the wreath product (Z/2Z) o G, but this is not an
embedding. Still, the group H generated by G and τJ has the structure of a
semidirect product GnF where F is an infinite abelian group of exponent 2.
Using Birkhoff ergodic theorem, we prove that from the isomorphism class
of H, one can read off the length of J modulo a countable additive group.
This proves that by varying length of J , we get uncountably many distinct
isomorphism classes of groups H.

The classification of torsion-free solvable subgroups of IET in Theorem 3.1
is based on the fact that centralizers of a minimal interval exchange trans-
formation T is small. Indeed, if T is an irrational rotation on a circle, then
its centralizer consists of the whole group of rotations on this circle; and if
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T is not conjugate to such a rotation, a theorem by Novak [10] shows that
its centralizer is virtually cyclic. If T is not minimal, its centralizer can be
much larger: it will for instance contain a group isomorphic to IET if T fixes
a non-empty subinterval.

Thus, we need to understand the orbit closures of a finitely generated
group, and we also need to understand how it varies when we pass to a
subgroup of finite index.

A result by Imanishi [5] about the holonomy of codimension 1 foliations
shows that for each finitely generated group G < IET(D), there is a partition
of D into finitely many G-invariant subdomains(1), such that in restriction
to each subdomain, either every orbit is dense (such a subdomain is called
an irreducible component), or every orbit is finite of the same cardinal (and
one can say more, see Proposition 2.2). In particular, for each x ∈ D, G.x is
either finite, or is the closure of a subdomain (not a Cantor set).

When passing to a finite index subgroup G0 of G, it could happen that
an irreducible component for G splits into several irreducible components
for G0.

For example, consider D = (Z/2Z) × (R/Z), and consider the subgroup
G of IET(D) generated by the three following tranformations τ,R0, R1. Let
τ be the involution (i, x) 7→ (i + 1, x); let α ∈ R \ Q and let R0 be the
rotation of angle α on the circle {0}×(R/Z) and as the identity on the circle
{1}× (R/Z); and let R1 = τR0τ

−1. Then 〈R0, R1〉 ' Z2, and G = 〈τ,R0〉 '
(Z⊕ Z)o (Z/2Z), and any orbit of G is dense.

However, G0 = 〈R0, R1〉 is a finite index subgroup which preserves each
circle. The two circles are the irreducible components of G0. But this phe-
nomenon cannot occur any more when passing to a further finite index G1
of G0 because G1 has to contain an irrationnal rotation on each circle, thus
ensuring that the two circles are still irreducible components of G1. This
group G0 is what we call unfragmentable. The following technical result of
independent interest shows that this is a general fact.

Theorem 7 (see Theorem 2.11). — Given a finitely generated group
G < IET, there exists a finite index subgroup G0 which is unfragmentable
in the following sense:

(1) G0 acts by the identity outside its irreducible components
(2) If G1 is a finite index of G0, any irreducible component of G0 is

also an irreducible component of G1.

(1) A subdomain of D is a subset that consists of finitely many semi-open intervals,
closed on the left
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1. Generalities

1.1. Definitions

Definition 1.1. — In all the following, a domain will be a non-empty
disjoint union of finitely many oriented circles, and oriented half-open,
bounded intervals (closed on the left).

Given a domain D, the group IET(D) of interval exchange transforma-
tions of D is the group of bijections of D that are orientation preserving
piecewise isometries, left continuous with finitely many discontinuity points.

By convention, we define IET = IET([0, 1)).

Given two disjoint domains D1,D2 having the same total length, there is
an element of IET(D1 t D2) that sends D1 on D2. We call such an element
an interval exchange bijection from D1 to D2. This element then conjugates
IET(D2) to IET(D1). Observe also that rescaling a domain doesn’t change
its group of interval exchange transformations. In particular, for any domains
D1,D2, IET(D1) and IET(D2) are always isomorphic.

A subdomain D0 ⊂ D is a subset of D which has finitely many connected
components, and which is closed on the left. If D0 is a subdomain of D
that is invariant by the action of G, then G naturally maps to IET(D0) by
restriction. We denote by G|D0 its image in IET(D0). Moreover, if D = D0 t
D1 where both subdomains are invariant by G, then the induced morphism
from G to IET(D0)× IET(D1) is injective.

1.2. Finite extensions

Proposition 1.2. — Let G be a group, and assume that some finite
index subgroup of G embeds in IET. Then so does G.

Proof. — Without loss of generality, consider H < G a normal subgroup
of finite index that embeds in IET(D) for some domain D. Let Q be the finite
quotient Q = G/H. It is a classical algebraic fact (see [9]) that G embeds in
the wreath product H o Q = HQ o Q (where Q acts on HQ by permuting
coordinates). Thus, it suffices to show that HQ oQ embeds in IET.

Consider the domain D′ = Q×D, and embed HQ in IET(D′) by making
(hq)q∈Q act on D′ = Q×D by (q, x) 7→ (q, hq.x). Then Q acts on D′ by left
multiplication on the left coordinate. This naturally extends to a morphism
HQ oQ→ IET(D′) which is clearly one-to-one. �
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2. Irreducibility and unfragmentability for finitely generated
subgroups of IET

2.1. IET and irreducibility

Let D be a domain. Let G = 〈S〉 be a finitely generated subgroup of the
group IET(D) of interval exchange transformations on D, with S symmetric.

Definition 2.1 (Irreducibility). — We say that G is irreducible (on D)
if no subdomain of D is invariant under G.

We say that a subdomain J of D is an irreducible component for G if it
is G-invariant, and if G restricted to J is irreducible.

We will see that a finitely generated group G is irreducible if and only if
every G-orbit is dense in D (see Corollary 2.6).

If s ∈ IET(D), we denote by Disc(s) ⊂
◦

D the set of discontinuity points of
s. If S is a set of elements of IET(D), we denote by Disc(S) =

⋃
s∈S Disc(s)

the set of discontinuity points of elements of S.

We say that x, y ∈
◦

D are in the same regular orbit if there exist g ∈ G
continuous at x with g(x) = y. We say that x, y ∈

◦

D are in the same S-
regular orbit if there exists g1, . . . , gn ∈ S such that y = gn . . . g1(x), and
for all i 6 n, gi−1 . . . g1(x) ∈

◦

D \ Disc(gi). We denote by Reg(x,G) ⊂
◦

D
the regular orbit of x, and by Reg(x, S) ⊂ Reg(x,G) its S-regular orbit.
Although arguably less natural, the notion of S-regular orbit is the one that
is needed to apply Imanishi Theorem below. On the other hand, Lemma 2.12
below will show that one can choose S so that Reg(x, S) = Reg(x,G) for all
x ∈

◦

D.

Let
Sing(G) =

{
x ∈

◦

D
∣∣ ∃ g ∈ G, x ∈ Disc(g)

}
.

By definition, Sing(G) does not depend on any generating set, but one easily
checks that for x ∈

◦

D, x ∈ Sing(G) if and only if its G-orbit contains a point
in Disc(S), if and only if Reg(x, S) contains a point in Disc(S). Thus, Sing(G)
is a union of at most # Disc(S) S-regular orbits. We also note that for all
x ∈

◦

D \ Sing(G), Reg(x, S) = Reg(x,G) = G.x ∩
◦

D.

We denote by E(G) ⊂ Sing(G) the set of points x ∈ Sing(G) whose
regular orbit is finite, and by E(S) the set of points x ∈ Sing(G) whose

– 601 –



François Dahmani, Koji Fujiwara and Vincent Guirardel

S-regular orbit is finite. We note that E(G) ⊂ E(S) and that these sets are
finite since

E(S) =
⋃

x∈Disc(S),# Reg(x,S)<∞

Reg(x, S)

is a finite union of finite sets.

We will need to apply a decomposition theorem that applies for finite
systems of isometries, so let us introduce the corresponding terminology
(see [4]). Let D be the obvious compactification of D as a union of compact
intervals and circles. A partial isometry on D is an isometry ϕ : I → J
between two closed subintervals I, J ⊂ D. Given a finite set S of interval
exchanges on D, one can construct a system of isometries on D as follows: for
each s ∈ S, let I1, . . . , Ins

be the maximal connected subdomains on which
s is continuous. These intervals define a partition of D. For each i 6 ns,
we let ϕi be the partial isometry defined on Ii that extends s|Ii

. Thus, for
each element of s, we have a finite collection of partial isometries, and we
denote by X the collection of all partial isometries of D obtained from all the
elements of S in this way. Orbits of X are defined in the natural way. Clearly,
each G-orbit is contained in an X-orbit. One defines

◦

X-orbits similarly using
the restriction of all the partial isometries to the interior of their domains.
Then for all x ∈

◦

D, its
◦

X-orbit coincides exactly with its S-regular orbit
Reg(x, S).

Specifying [4, Thm. 3.1] to our setting, we get:

Proposition 2.2 (Imanishi theorem [5], see [4, Thm. 3.1]). — Let S be
a finite symmetric set of interval exchanges on D, and G = 〈S〉 < IET(D).

Then
◦

D \ E(S) =
◦

D1 t · · · t
◦

Dp where each
◦

Di is an open subset of
D \E(S) invariant under S-regular orbits and such that for each i 6 p, one
of the following holds:

(1) every S-regular orbit in
◦

Di is dense in
◦

Di
(2) every S-regular orbit in

◦

Di is finite, of the same cardinality, and
◦

Di ∩ Sing(G) = ∅.

Remark 2.3. — Theorem 3.1 of [4] is stated for systems of isometries on
a finite union of intervals, but generalizes immediately to the case where we
allow circles in the domain (alternatively, we could restrict to this case by
cutting D along a point in each circle of D). Our assertion 2 thus includes the
possibility that

◦

Di is a disjoint union of circles, and that all elements of G act
continuously on Di. Since all elements of IET preserve the orientation, there
cannot be any twisted family of finite orbits in the sense of [4, Thm. 3.1].
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Corollary 2.4. — Let G < IET(D) be a finitely generated group.

Then D decomposes into G-invariant subdomains D = D∞ t Dfin with
D∞ = I1 t · · · t Ir and Dfin = J1 t · · · t Jt where each Ii and Jj is a G-
invariant subdomain whose boundary is contained in E(S) ∪ ∂D, and such
that

(1) for all i 6 r, every G-orbit in Ii is dense in Ii
(2) for all j 6 r, G acts on Jj with finite orbits, all of the same car-

dinality; the restriction to Jj of any g ∈ G is continuous, and in
particular, G permutes the connected components of Jj.

Moreover, the collection of irreducible components of G, Irred(G) =
{I1, . . . , Ir}, is unique.

Remark 2.5. — Note that whereas Irred(G) = {I1, . . . , Ir} is uniquely
defined, we don’t claim that the decomposition of the complement D\(

⋃
i Ii)

into G-invariant subdomains upon which G acts as a finite group is unique
(although one could easily construct such a canonical decomposition).

Proof. — Take S a finite symmetric generating set of G. Write
◦

D\E(S) =
◦

D1 t · · · t
◦

Dp as in Proposition 2.2. Let Di ⊂ D be the smallest subdomain
of D containing

◦

Di (i.e. the set of points to which are limits of points in
◦

Di from the right), so that D = D1 t · · · t Dp. Then Di is G-invariant
because if gDi ∩ Dj 6= ∅, then Di ∩ g−1Dj contains an interval and for any
point x ∈

◦

D \ Sing(G) in this interval, we have that g(x) ∈ Reg(x, S) ∩
Dj contradicting that

◦

Di is invariant under S-regular orbits. We denote by
I1, . . . , Ir, J1, . . . , Jt the subdomains of D1, . . . ,Dp (with r+t = p) according
to whether they satisfy the first or the second assertion of Proposition 2.2

Then for all i 6 r and every x ∈
◦

Ii, its G-orbit is dense in Ii because
it contains Reg(x, S). If x ∈ Ii \

◦

Ii, then its G-orbit has to contain a point
in
◦

Ii. Indeed, otherwise, the G-orbit of x would be finite, and so would be
the G-orbits of points x′ in a right neighbourhood of x, contradicting that
regular orbits are dense in

◦

Ii.

For j 6 t, then since
◦

Jj ∩ Sing(G) = ∅, G acts continously on
◦

Jj , so g|Jj

is continuous for every g ∈ G.

The uniqueness of {I1, . . . , Ir} is immediate from the fact that Ii is G-
invariant and that every G-orbit is dense in Ii. �

The following corollary is clear.
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Corollary 2.6. — A subgroup G < IET(D) is irreducible if and only
if every G-orbit is dense in D. �

Remark 2.7. — In the case where E(S) = ∅, each subdomain Ii, Jj ap-
pearing in Corollary 2.4 is a union of connected components of D. We can
always cut the domain D to reduce to this situation as follows.

We say that we cut a domain D1 along a finite set of points if we map it
to some domain D2 by an interval exchange bijection τ : D1 → D2 that is
discontinuous exactly on this set of points, and such that τ−1 is continuous.
For instance, if D1 = [a, b), cutting along c ∈ [a, b) yields a domain D2 =
[a, c) t [c, b), and if D1 is a circle, cutting along one point yields a domain
that is a half-open interval. If G1 ⊂ IET(D1), we then get by conjugation a
group G2 ⊂ IET(D2) (in particular, G2 is isomorphic to G1).

Now consider G < IET(D), and S is a symmetric generating set of G.
Then cutting D along the (finitely many) points in E(S) yields a domain D′
and a group G′ < IET(D′) conjugate to G by an interval exchange bijection
from D to D′ such that E(S′) = ∅ (where S′ is the conjugate of S).

2.2. Virtual unfragmentability for finitely generated groups of IET

Let G be a finitely generated subgroup of IET(D).

Definition 2.8 (Unfragmentability). — We say that G is unfragment-
able if for any subdomain J ⊂ D which is invariant by a finite index subgroup
of G, J is G-invariant.

We say that an element a ∈ IET(D) is unfragmentable if the cyclic group
〈a〉 is unfragmentable.

Here is an equivalent definition.

Lemma 2.9. — The subgroup G is unfragmentable if each of its finite
orbits is trivial, and if, for every irreducible component J of G, and every
finite index subgroup H of G, the restriction of H on J is irreducible.

Proof. — Let I1, . . . , Ir ⊂ D be the irreducible components of G, and
I ′ = D \ (I1 ∪ · · · ∪ Ir).

Assume that G is unfragmentable. If G has a non-trivial finite orbit (nec-
essarily in I ′), then there exists a subdomain J ⊂ I ′ and g ∈ G such that
gJ 6= J . Then J is a subdomain that is invariant under the finite index
subgroup of G acting trivially on I ′, but not G-invariant, a contradiction. If
some finite index subgroup G0 < G does not act irreducibly on some Ii, then
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there is a G0-invariant subdomain J  Ii and J is not G-invariant because
Ii is an irreducible component of G, a contradiction.

Conversely, assume that the statement in the lemma holds and let J ⊂ D
be a subdomain invariant under a finite index subgroup G0 < G. Since G
acts trivially on I ′, J ∩ I ′ is G-invariant. For each i, J ∩ Ii is G0-invariant,
and since by assumption G0 acts irreducibly on Ii, we either get that J ∩ Ii
is empty or J = Ii, in particular, J ∩ Ii is G-invariant. Since this holds for
each i, J is G-invariant. �

Remark 2.10. — If D and D′ are two domains with an interval exchange
bijection τ from D to D′, then a group G < IET(D) is unfragmentable (resp.
irreducible) if and only if its conjugate by τ in IET(D′) is unfragmentable
(resp. irreducible).

The main theorem of this section is the following. We will use it only in
the case of a cyclic group, but the general statement seems to be of interest.

Theorem 2.11. — If G < IET(D) is a finitely generated subgroup of
IET(D), it admits a finite index subgroup that is unfragmentable.

Before proving the theorem, we prove that one can find a finite symmetric
generating set S of G such that for every x ∈

◦

D, Reg(x, S) = Reg(x,G), and
E(S) = E(G).

Lemma 2.12. — Let G be a finitely generated subgroup of IET(D).

Then there exists a finite symmetric generating set S such that for all
x ∈

◦

D, Reg(x, S) = Reg(x,G).

Proof. — If x ∈
◦

D \ Sing(G), then for all generating S of G, Reg(x, S) =
Gx = Reg(x,G). Let S be a finite symmetric generating set of G. We are
going to increase S so that the Lemma holds. Fix a point x ∈ Sing(G). Let
R1, . . . , Rn be the partition of Reg(x,G) into S-regular orbits, and choose
xi ∈ Ri for each i 6 n. By definition of Reg(x,G), there exists gi ∈ G
such that gi.x1 = xi and gi is continuous at x1. Adding {g±1

2 , . . . , g±1
n } to

S yields a symmetric generating set S′ such that Reg(x, S′) = Reg(x,G).
Since Sing(G) is a union of finitely many G-regular orbits, one can repeat
this operation finitely many times and get a generating set satisfying the
lemma. �

Recall that E(S) (resp. E(G)) is the set of points x ∈ Sing(G) whose
S-regular orbit Reg(x, S) (resp. whose G-regular orbit Reg(x,G)) is finite.
The previous Lemma gives the following.

Corollary 2.13. — There exists a finite generating set S of G such
that E(G) = E(S).
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Proof of Theorem 2.11. — After cutting D as in Remark 2.7, one can
assume that ES(G) = ∅. Apply Imanishi theorem, and write D = Dfin∪D∞,
with D∞ = I1 ∪ · · · ∪ Ir as in Corollary 2.4.

Let G1 be a finite index subgroup of G such that (G1)|Dfin is trivial,
and therefore the map G → (G1)|D∞ is an isomorphism. Without loss of
generality, and to keep readable notations, we assume that D = D∞, i.e.
that every G1-orbit is infinite.

Let G0 be an arbitrary finite index subgroup of G1. The fact that
ES(G) = ∅ means that for every x ∈

◦

D∞, Reg(x,G) is infinite. We claim
that Reg(x,G0) is also infinite. Indeed, let gi be a sequence of elements of G
that are continuous at x and such that the points gi.x are all distinct. Since
[G : G0] < ∞, up to extracting a subsequence, we may assume that there
exists an element a ∈ G such that agi ∈ G0 for all i. Since Disc(a) is finite,
a is continuous at gi.x for i large enough, so agi.x ∈ Reg(x,G0). This proves
our claim and shows that E(G0) = ∅.

By Corollary 2.13, there exists a finite generating set S0 of G0 such that
E(S0) = ∅. Then Corollary 2.4 yields a decomposition of D into finitely many
G0-invariant subdomains I1, . . . , Ir on which the action of G0 is irreducible,
and since E(S0) = ∅, each Ii is a union of connected components of D.
The number r depends on G0 but is bounded by the number of connected
components of D.

Among all possible choices of finite index subgroups G0 < G1, we choose
G0 so that r is maximal. Then for any G′0 < G0 of finite index, the de-
composition of D into G′0-irreducible components is its decomposition into
G0-irreducible components. This shows that G0 is unfragmentable. �

3. Commutation and solvable subgroups

Let D be a domain. The main result of this section is the following.

Theorem 3.1. — Let G < IET(D) be a finitely generated torsion free
solvable group. Then G is virtually abelian.

Since virtually polycyclic groups are virtually torsion-free, we get

Corollary 3.2. — Any virtually polycyclic subgroup of IET is virtually
abelian. �

The theorem will be proved in several steps. We start with the following
property of unfragmentable elements.
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Lemma 3.3. — Let a ∈ IET(D) be unfragmentable with irreducible com-
ponents Irred(a) = {I1, . . . , Ir}. If g ∈ IET(D) is such that gag−1 commutes
with a, then for all i, either g(Ii) is disjoint from I1, . . . , Ir, or g(Ii) is equal
to some Ij.

Proof. — Observe that Irred(gag−1) = {g(I1), . . . , g(Ir)}. For readability
we will write ag = gag−1. Since a commutes with ag, it permutes the collec-
tion {g(I1), . . . , g(Ir)}, and therefore some power ar! preserves each g(Ij).
By unfragmentability, any subdomain preserved by ar! is preserved by a,
and therefore a itself preserves each g(Ij). Similarily, ag preserves each Ij .

The intersection g(Ij)∩ Ii is ag-invariant, and also a invariant. If g(Ij)∩
Ii 6= ∅, then g(Ij)∩ Ii = Ii by irreducibility of a on Ii. Similarly, g(Ij)∩ Ii =
g(Ij) by irreducibility of ag on g(Ij). It follows that if g(Ij) ∩ Ii 6= ∅ then
g(Ij) = Ii. The lemma follows. �

Corollary 3.4. — Let a ∈ G < IET(D) be a unfragmentable element
with irreducible components I1, . . . , In. Assume that for all g ∈ G, gag−1

commutes with a.

Then for each i 6 n, {g(Ii), g ∈ G} is a finite collection of disjoint
subdomains.

Proof. — Let g, h ∈ G. Assume that g(Ii) ∩ h(Ii) 6= ∅. Then, h−1g(Ii) ∩
Ii 6= ∅, and by Lemma 3.3, this implies that h−1g(Ii) = Ii, hence g(Ii) =
h(Ii). Thus {g(Ii), g ∈ G} is a collection of disjoint subdomains. It is finite
because the measure of D is finite. �

Proposition 3.5. — Let G be a subgroup of IET(D). If there exists
a normal abelian subgroup of G, containing some irreducible and unfrag-
mentable element, then G is either abelian or virtually cyclic. In particular,
G is virtually abelian.

Before starting the proof, let us recall the following, from [3]. Let g ∈
IET(D) and d(g) be the number of discontinuity points of g on D. Let ‖g‖ =
lim 1

nd(gn). In [3, Cor. 2.5], we proved that ‖g‖ = 0 if and only if g is
conjugate to a continuous transformation of some domain D′ consisting only
of circles, and one of its powers is a rotation on each circle.

Proof. — Let a be such an element in A C G (with A abelian). If ‖a‖ = 0,
then as we mentionned in the preceeding discussion, a is conjugate to a
continuous transformation on some D′, and because it is irreducible and
unfragmentable, D′ has to be a circle and a is an irrational rotation. Then,
by [3, Lem. 1.1], its centralizer is conjugate to the rotation group on D′, and
since G normalises A, [3, Lem. 1.1] says that G must also be conjugate to a
group of rotations on D′, hence abelian.
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Assume now that ‖a‖ > 0. Since a is irreducible, [10, Prop. 1.5] implies
that its centraliser is virtually cyclic, hence so is A. Therefore A has a finite
automorphism group. The group G acts by conjugation on A, and since the
automorphism group of A is finite, the kernel of this action has finite index
in G. This kernel is contained in the centralizer of a though, so G is virtually
cyclic. �

Proposition 3.6. — If G < IET(D) is irreducible, and contains a nor-
mal abelian subgroup A C G, with an element a ∈ A of infinite order, then
G is virtually abelian.

In particular, if G is finitely generated, then so is A.
Proof. — Up to replacing a by a power, Theorem 2.11 allows us to assume

that a is unfragmentable. Let I1, . . . Ik be its irreducible components.

By Corollary 3.4, {g(I1), g ∈ G} is a finite collection of disjoint sub-
domains. By irreducibility of G, it is a partition of D, and we thus write
D = M1 t · · · tMl with M1 = I1, and Mi = giI1. There is a finite index
subgroup G0 of G that preserves each Mi. Let k be such that ak ∈ G0.
Then, ak is irreducible and unfragmentable on I1 so Proposition 3.5 ensures
that the image G0|I1 ⊂ IET(I1) of G0 under the restriction map is virtually
abelian. Similarly, (ak)gi is irreducible on Mi, so G0 has virtually abelian
image in restriction to each Mi.

Since D = M1 t · · · t Ml, the product of restriction maps yields an
injection of G0 into

∏
j IET(Mj). Thus, the image of G0 is contained in a

finite product of virtually abelian groups, so G0 is virtually abelian and so
is G. �

We finish with this lemma before proving Theorem 3.1.
Lemma 3.7. — Let G < IET(D) be a finitely generated group, and as-

sume that it contains a torsion-free abelian normal subgroup A. Then A is
finitely generated, and there is a finite index subgroup H in G, such that
A ∩ [H,H] = {1}.

Proof. — Let Irred(G) = {I1, . . . , Ik, Ik+1 . . . , Ir} where one has ordered
the components so that the image A|Ii

of A in IET(Ii) under the restriction
map is a torsion group for all i > k and contains an infinite order element
for i 6 k. Let Dfin = D \ (

⋃r
i=1 Ii).

For every i 6 k, by Proposition 3.6 we get that the image G|Ii
of G in

IET(Ii) under the restriction map is a virtually abelian group.

In other components, the image of A is a torsion group. Let us de-
note by G1 the image of G in IET(

⋃k
i=1 Ii) and by G2 the image of G

in IET((
⋃r
j=k+1 Ij) ∪ Dfin) under the restriction maps.
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This gives an embedding ι : G ↪→ G1×G2, where G1 is virtually abelian,
and p2 ◦ ι(A) is torsion. In particular, because A is torsion-free, p1 ◦ ι is
injective in restriction to A.

It already follows that A is finitely generated, since it embeds as a sub-
group of a finitely generated virtually abelian group.

Consider H1 an abelian finite index subgroup in G1, and H the preimage
of H1 in G, which is a finite index subgroup.

We saw that the map p1 ◦ ι is injective on A, but it vanishes on [H,H] be-
cause p1◦ι(H) = H1 is abelian. Therefore A∩[H,H] = {1}, thus establishing
the lemma. �

Proof of Theorem 3.1. — Consider G < IET(D) a finitely generated
torsion free solvable group. Then its derived series has a largest index n for
which G(n) 6= {1} (where G(n) = [G(n−1), G(n−1)] and G(0) = G). If n = 1,
G is abelian, we thus proceed by induction on n.

Since G is torsion free, G(n) is torsion free, infinite, and it is also abelian
and normal in G. We may then apply Lemma 3.7 to A = G(n), to find that
there is a finite index subgroup H of G such that [H,H] ∩ G(n) = {1}.
However, H(n) ⊂ G(n), and it follows that H(n) is trivial. The induction
hypothesis implies that H is virtually abelian, hence so is G. �

4. Lamps and lighters

4.1. A lamplighter group in IET

Proposition 4.1. — For all finite abelian group A, the group A o Z
embeds in IET.

Recall that in general, the group A oG is the group (
⊕

i∈GA)oG, where
G acts by shifting coordinates: if g ∈ G, and (ai)i∈G ∈ (

⊕
i∈GA) is an

almost null sequence, g.(ai)i∈G = (ag−1i)i∈G.

We will actually describe an embedding in IET(D) for a certain domain
D. However, IET and IET(D) are isomorphic, and the choice of D is only
for convenience.

The construction is illustrated in Figure 4.1.
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Figure 4.1. A Lamplighter group (Z/3Z) oZ in IET. The three circles
{i} × C for i ∈ Z/3Z are visible. The transformation R rotates each
circle by the irrational angle θ. The support of the transformation
σ = σ1,J0 is the union of the bold arcs.

Proof. — Consider the domain D = A× C where C = R/Z. Given a ∈ A
and J ⊂ C a subinterval, let σa,J be the element of IET(D) defined for all
(a′, x) ∈ A× C by

σa,J .(a′, x) =
{

(aa′, x) if x ∈ J
(a′, x) if x /∈ J.

Note that the support of σa,J is A × J when a 6= 1. We define AJ as the
subgroup of IET(D) consisting of the elements σa,J for a ∈ A (note that AJ
is isomorphic to A as long as J is non-empty).

Fix J0 = [0, 1/2[⊂ C, and let A = AJ0 . Let θ ∈ R\Q, and let R ∈ IET(D)
be the rotation by θ on each circle: R(a, x) = (a, x + θ). We claim that the
group generated by R and AJ is isomorphic to A o Z.

First, one easily checks that for all J, J ′ ⊂ C, any element of AJ com-
mutes with any element of AJ′ (this is because A is abelian). Denote by
t a generator of the factor Z in A o Z. Since RkAR−k = ARkJ0 , there is a
homomorphism ϕ : A o Z → 〈R,A〉 sending t to R and sending the almost
null sequence (ai)i∈Z to

∏
i∈Z σai,RiJ0 .

To prove that ϕ is injective, consider an element g = ((ai)i∈Z, tk) of
its kernel. Since ϕ(g) sends (a, x) to some (a′, x + kθ), we get that k = 0.
This means that ϕ(g) is a commuting product ϕ(g) = σa1,J1 . . . σan,Jn

where
J1, . . . Jn are distinct translates of J0 by a multiple of θ. We can assume
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that n > 0 and that no ai is trivial. For all x ∈ C, consider Jx ⊂ {1, . . . , n}
the set of indices j ∈ {1, . . . , n} such that x ∈ Jj . Note that when x varies,
Jx changes only when x crosses an endpoint of some Ji, and that Jx then
changes by exactly one element (this is because the 2n endpoints of the Ji’s
are distinct since θ is irrational). Thus, there exist x, x′ ∈ C and i0 ∈ {1, . . . n}
such that Jx′ = Jx ∪{Ji0}. Now, for all a ∈ A, ϕ(g)(a, x) = (a

∏
j∈Jx

aj , x),
and since ϕ(g) is the identity,

∏
j∈Jx

aj = 1. Similarly,
∏
j∈Jx′

aj = 1, so
ai0 = 1, a contradiction. �

The argument above immediately generalizes to A o Zd, by replacing the
rotation of angle θ by d rotations of rationally independant angles. We thus
get:

Proposition 4.2. — For all d > 1, and all finite abelian group A, A oZd
embeds in IET.

Remark 4.3. — Given G < IET, and A a finite abelian group, we don’t
know when the group A oG embeds in IET.

4.2. Lamps must commute

We now put restrictions on which wreath products may embed in IET.
Note that if a group A contains an infinite order element, then A o Z con-
tains the torsion-free solvable group Z o Z which does not embed in IET by
Theorem 3.1.

Theorem 4.4. — Let L = F oZ with F finite non-abelian. Then L does
not embed in IET.

We will use several times the observation (see [3, Lem. 6.2]) that for any
finitely generated subgroupG of IET(D), the orbit of any point of the domain
D has polynomial growth in the following sense: given a finite generating set
and the corresponding word metric on G, denoting by BR the ball of radius
R in G, there exists a polynomial P such that for all x ∈ D and all R > 0,
#(BR.x) 6 P (R).

The theorem will be proved by showing that if L did embed in IET, there
would exist an orbit with exponential growth.

If E ⊂ [0, 1) has positive measure and if T is any element of IET, then by
Poincaré recurrence Theorem, the orbit of almost every x ∈ E comes back to
E. We will need a more precise estimate, that comes from Birkhoff theorem.
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Lemma 4.5. — Let E ⊂ [0, 1) have positive measure, and let T be any
element in IET.

Then there exists x0 ∈ [0, 1), and constants α > 0, β > 0, such that for
all n,

#{i | 0 6 i < n, T i(x) ∈ E} > αn− β.

Proof. — Assume first that the Lebesgue measure µ is ergodic, and apply
Birkhoff theorem to the characteristic function f of E. Then for almost every
x, 1

n

∑n−1
i=0 f(T i(x)) → µ(E), so for n large enough, 1

n

∑n−1
i=0 f(T i(x)) >

1
2µ(E), so #{i|0 6 i 6 n, T i(x) ∈ E} > 1

2µ(E)n for n large enough, and the
result holds.

If the Lebesgue measure is not ergodic, Birkhoff theorem still says that
the limit exists almost everywhere, and the limit is a T -invariant function
l(x) having the same average as f , that is

∫
l(x)dx = µ(E) (see [8] for

instance). It follows that there exist points where l(x) > µ(E)/2, and the
proof works the same. �

We prove an abstract algebraic lemma that relates the stabilizer of a
point in a product of groups to coordinate-wise stabilizers.

Lemma 4.6. — Consider some groups Fi, and an action of F = F1×· · ·×
Fn on a set X. Let x ∈ X, Stab(x) its stabilizer in F , and Si = Fi∩Stab(x).
Let Ni the normalizer of Si in Fi.

Then Stab(x) ⊂ N1 × · · · ×Nn.

In particular, if no Si is normal in Fi, then #F.x > 2n.

Proof. — Note that N1× · · ·×Nn = ∩iNF (Si), so we have to prove that
for each i, any g ∈ Stab(x) normalizes Si. If g ∈ Stab(x), then g normalizes
both Stab(x) and Fi (because Fi C F ), hence normalizes their intersection,
namely Si.

Let us prove the last comment. The given assumption says that for all i,
[Fi : Ni] > 2 so #F.x = [F : Stab(x)] > 2n. �

To prove the theorem, consider L = F0 o Z for some finite non-abelian
group F0. We assume that L embeds in IET and argue towards a contra-
diction. Let t be a generator of Z viewed as a subgroup of L, and write
Fi = F t

i

0 . We equip the group G with the word metric corresponding to the
generating set {t} ∪ F0. The subgroup F0 × F1 × · · · × Fn−1 is contained in
the ball of radius 3n. We identify L with the corresponding subgroup of IET.
Since orbits grow polynomially [3, Lem. 6.2], for any x ∈ [0, 1), the orbit of
x under F0 × · · · × Fn−1 has to be bounded by a polynomial in n.

Proposition 4.7. — For all x ∈ [0, 1), StabF0(x) C F0.
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Proof. — Otherwise, let E ⊂ [0, 1) be the set of points where StabF0(x) 6C
F0. Since F0 is a finite group, this is a subdomain of [0, 1), and it has positive
measure. We apply Birkhoff theorem (in the form of Lemma 4.5), and get
that there exists x ∈ [0, 1), α, β > 0, such that, for all n, there exists kn >
αn − β, and some indices 0 6 i1 < · · · < ikn

6 n such that tij (x) ∈ E.
Applying the algebraic Lemma 4.6 to F = Fi1 × · · · × Fikn

we get that
#(F.x) > 2kn > 2αn−β . Since F is contained in a ball of linear radius in L,
this contradicts polynomial growth of orbits. �

We now prove another algebraic lemma.

Lemma 4.8. — Consider an action of F = F1×· · ·×Fn on a set X. Let
x ∈ X, Stab(x) its stabilizer in x, and Si = Stab(x)∩Fi its stabilizer in Fi.

Assume that Stab(x) C F (in particular Si C Fi). Consider Z(Fi/Si) the
center of the quotient group Fi/Si, and Qi = (Fi/Si)/Z(Fi/Si).

Then the natural epimorphism F1 × · · · × Fn → Q1 × · · · × Qn factors
through an epimorphism F/ Stab(x)� Q1 × · · · ×Qn.

In particular, if all groups Fi/Si are non-abelian, each Qi is non-trivial,
and #F.x = #F/ Stab(x) > 2n.

Proof. — Consider g = (g1, . . . , gn) ∈ Stab(x), and denote by ḡi the
image of gi ∈ Fi/Si. We have to prove that ḡi is central in Fi/Si, in other
words that for all a ∈ Fi, [gi, a] ∈ Si. Since Si = Stab(x) ∩ Fi is normal in
F , [gi, a] = gi(ag−1

i a−1) ∈ Si. The lemma follows. �

Proof of Theorem 4.4. — Fix k > 1 and consider the subgroup L′ ⊂ L
generated by tk, and F0 × · · · × Fk−1. Clearly, L′ ' F ′0 o Z where F ′0 =
F0 × · · · × Fk−1. Applying Proposition 4.7 to L′, we get that for all x, and
all k, the stabilizer of x in F0 × · · · × Fk−1 is normal in F0 × · · · × Fk−1.

Let E ⊂ [0, 1) be the set of points x where F0/ Stab(x) is non-abelian. If
E is empty, any commutator of F0 acts trivially in [0, 1), so F0 does not act
faithfully, a contradiction. So E is a non-empty subdomain and has positive
measure. By Lemma 4.5, there exists x ∈ [0, 1), α, β > 0, such that, for all
n, there exists kn > αn − β, and some indices 0 6 i1 < · · · < ikn 6 n such
that tij (x) ∈ E.

Applying the second algebraic Lemma 4.8 to F = Fi1 × · · · × Fikn
we

get that #F.x > 2αn−β . This contradicts polynomial growth of orbits as
above. �
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4.3. Uncountably many solvable groups, via lamplighter-lighters

We finish by an abundance result among solvable subgroups of IET (nec-
essarily with a lot of torsion in view of Theorem 3.1).

Theorem 4.9. — There exist uncountably many isomorphism classes of
3-generated solvable subgroups of derived length 3 in IET.

These will be obtained as iterated lamplighter-like constructions. Again
we will be free to choose the domain D for convenience.

For the time being, take D an arbitrary domain. Let G < IET (D) and
(A,+) a finite abelian group. The following construction generalizes the con-
struction showing that lamplighter groups embed. In this case, G would be
the cyclic group generated by an irrational rotation on a circle D.

Let F = AD be the additive group of all functions on D with values in
A. Given a ∈ A and J ⊂ D, we denote by a1J ∈ F the function defined by
a1J(x) = a if x ∈ J , and a1J(x) = 0 otherwise. The group G acts on F
by precomposition. Given a subdomain J ⊂ D, let FJ ⊂ F be the smallest
G-invariant additive subgroup containing the functions a1J for a ∈ A.

Proposition 4.10 (Lamplighter-like construction). — Let G be a sub-
group of IET(D), A a finite abelian group, and J ⊂ D. Then FJ oG embeds
in IET.

Remark 4.11. — In the particular case of Proposition 4.1, we proved that
FJ is isomorphic to

⊕
g∈GA. In general, there is a natural morphism from⊕

g∈GA to FJ , but it might be non-injective. One easily constructs examples
using a group G that does not act freely on D.

Proof. — Take D′ = A×D. Embed G in IET(D′) by setting for all g ∈ G,
g(a, x) = (a, g(x)).

For all b ∈ A, consider σb ∈ IET (D′) defined by σb(a, x) = (b + a, x) if
x ∈ J , and by σb(a, x) = (a, x) if x /∈ J .

We claim that the subgroup G′ generated by G and {σb|b ∈ A} is iso-
morphic to FJ oG.

Consider the subset H ⊂ IET (D′) of all T ∈ IET (D′) such that there
exists some transformation g ∈ G and some f ∈ FJ such that T (a, x) =
(a+f(x), g(x)). It is clear that H is a subgroup of IET(D′), that H contains
G′, and that G′ = H. Finally, the fact that H ' FJ oG is also clear. �

Let D0 = R/Z, and I = [0, 1/2[⊂ D0. Fix once and for all α /∈ Q, ρα the
rotation of D0 of angle α. Let G be the lamplighter group (Z/3Z) oZ realised
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Figure 4.2. A Lamplighter-like construction in IET producing the ex-
amples of Theorem 4.9: on the left, the domain D = Z/3Z×D0, and
the Lamplighter group G = Z/3Z oZ generated by a cyclic swap on the
three intervals Z/3Z×I (in bold red) and by the simultaneous rotation
R. On the right, {b} × D is the duplicated copy of D, with the swap
τJ on J and its copy. The group G acts diagonally on D′ = Z/2Z×D.
The group (

⊕
G Z/2Z) o G acts on D′ but its image HJ in IET(D′)

depends on J .

as a subgroup of IET(D) for D = (Z/3Z) × D0 as in Proposition 4.1. We
denote by R the rotation (a, x) 7→ (a, ρα(x)) on D.

We now perform this lamplighter-like construction a second time, starting
with G acting on D, with A = Z/2Z and with some J ⊂ {0} × D0 ⊂ D. We
recall that FJ is the subgroup of the group of functions from D to A = Z/2Z
as above. Define HJ = FJ oG the lamplighter-like group thus obtained, on
D′ = (Z/2Z)×D. See Figure 4.2.

Proposition 4.12. — Assume that J1, J2 ⊂ {0} × D0 ⊂ D, and that
|J1|, |J2| < 1

2 .

If HJ1 ' HJ2 then |J1| ∈ VectQ(1, α, a2, b2), where a2, b2 ∈ R/Z are the
endpoints of J2.

Denote by EI and EJi
⊂ R/Z the orbit under the rotation ρα of the

endpoints of I and Ji respectively (i.e. EI = {0, 1
2}+αZ, EJi

= {ai, bi}+αZ).
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Lemma 4.13. — If HJ1 ' HJ2 , then there exist two subdomains K,K ′ ⊂
R/Z with endpoints in EJ2 and EI respectively and ε ∈ {±1} such that

∀ n ∈ Z, ρnα(I) ∩ J1 6= ∅ ⇐⇒ ρεnα (K) ∩K ′ 6= ∅.

Proof of Proposition 4.12 from Lemma 4.13. — We have that ρnα(I) ∩
J1 6= ∅ if and only if nα ∈ J1 − I, and that ρεnα (K) ∩K ′ 6= ∅ if and only if
nα ∈ ε(K ′ −K).

By Birkhoff theorem, we get that |J1−I| = |K ′−K|. Since |J1| < 1
2 = |I|,

|J1 − I| = 1
2 + |J1|.

On the other hand, since K ′ −K is a union of intervals whose endpoints
are in EI − EJ2 ⊂ VectQ(1, α, a2, b2), the proposition follows. �

We view HJ as the semidirect product FJoG. Thus each element h ∈ HJ

can be written (uniquely) under the form h = gτ with τ ∈ FJ , g ∈ G.
Now we view G as a group of interval exchange transformations on D =
(Z/3Z)× (R/Z). It is generated by the rotation R : (a, x) 7→ (a, x+ α), and
by the lamp element σ ∈ S (of order 3) that sends (a, x) ∈ (Z/3Z)×(R/Z) to
(a+ 1, x) for x ∈ I, and is the identity otherwise (see left part of figure 4.2).
Since G is a lamplighter group, any g ∈ G can be written uniquely as RnSf
where Sf is an IET of the form (a, x) → (f(x) + a, x) for some function
f : R/Z → Z/3Z. We denote by S = {Sf} the 3-torsion abelian group
of lamps of G. It is freely generated by the 〈R〉-conjugates of σ. Thus any
h ∈ HJ is written in a unique way as h = RnSfτ as above.

The kernel of the natural map HJ → Z is the torsion group N = FJS.
It is exactly the set of elements of finite order.

Denote by b be the generator of Z/2Z. Given K ⊂ D denote by τK =
b1K ∈ F . For certain K (for instance K = J), τK ∈ FJ and thus is in HJ .

Fact 4.14. — If K ⊂ {0}×D0, then [σ, τK ] = 1 if and only if K∩I = ∅.

Proof. — From the definition of the semidirect product, στKσ−1 =
b1σ(K). Hence [σ, τK ] = 1 if and only if σ(K) = K. If K ∩ I 6= ∅, then
σ(K) contains a point outside {0} × D0, so σ(K) 6= K. �

Fact 4.15. — For any τ, τ ′ ∈ FJ and any h ∈ HJ , [hτ, τ ′] = [h, τ ′].

Proof. — This is is an immediate consequence of the commutation of τ
with τ ′. �

Proof of Lemma 4.13. — Let ϕ : HJ1 → HJ2 be an isomorphism. We
first note that FJ C HJ is precisely the set of elements g ∈ HJ such that
g2 = 1. Moreover, the set of elements of finite order in HJ is the subgroup
N = FJS (but there are exotic elements of order 3).
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Thus ϕ(τJ1) ∈ FJ2 can be viewed as a function τ : D → Z/2Z, and ϕ(σ)
as an element S′τ ′ for some S′ ∈ S, and τ ′ ∈ FJ . Now ϕ(R) generates GJ2

modulo the torsion subgroup, so FJ2 , so ϕ(R) = RεS′′τ ′′ for some function
τ ′′ ∈ FJ2 , S′′ ∈ S, and ε = ±1.

In what follows, we use the notation gh for hgh−1. Fix n ∈ Z and consider
the commutator C = [σ, τRn

J1
] = [σ, τRn(J1)]. By Fact 4.14, C is trivial if and

only if Rn(J1) ∩ I = ∅. On the other hand, by Fact 4.15,

ϕ(C) = [S′τ ′, τ (RεS′′τ ′′)n

] = [S′, τ (RεS′′τ ′′)n

].

There exists τ ′′′ ∈ FJ2 such that (RεS′′τ ′′)n = (RεS′′)nτ ′′′, and since
FJ2 is abelian, τ (RεS′′τ ′′)n = τ (RεS′′)n . Hence, ϕ(C) = 1 if and only if
[S′(RεS′′)−n

, τ ] = 1. A similar calculation in G shows that S′(RεS′′)−n =
S′R

−εnS′′′ = S′R
−εn , so ϕ(C) = 1 if and only if [S′, τRεn ] = 1.

Given x ∈ R/Z, we call the fiber of x the 3 point set Fx = {(a, x)|a ∈
Z/3Z} ⊂ D. Let K ⊂ R/Z be the set of points x such that τ is non constant
on the fiber of x. Since τ ∈ FJ2 , K is a union of intervals with endpoints in
EJ2 . Write the transformation S′ as (a, x) 7→ (a+ f(x), x) for some function
f : R/Z → Z/3Z, and let K ′ be the support of f . It is a union of intervals
with endpoints in EI .

We claim that [S′, τRεn ] = 1 if and only if Rεn(K) ∩K ′ = ∅. Note that
S′ preserves each fiber. We view τ as an element in the additive group F of
functions on D with values in Z/2Z, and S′, R as transformations of D, so
that [S′, τRεn ] = 1 if and only if τ ◦Rεn◦S′ = τ ◦Rεn. So fix x ∈ R/Z, and Fx
its fiber. If x /∈ K ′, then S′ acts as the identity on Fx, so τ ◦Rεn◦S′ = τ ◦Rεn
in retriction to Fx. If x /∈ Rεn(K), then τRεn is a constant function on Fx,
and the same conclusion holds. If on the contrary x ∈ Rεn(K) ∩ K, then
τR

εn is not constant on Fx and since S′ acts transitively on Fx, τR
εn ◦ S′

does not coincide with τRεn on Fx. This proves the claim and concludes the
proof. �

We can finally prove Theorem 4.9.

Proof of Theorem 4.9. — Let Jx = [0, x[ for x < 1
2 . Proposition 4.12

shows that given x, there are at most countably many y < 1
2 such that

HJx
' HJy

. This gives uncountably many isomorphism classes of groups.

Since G is metabelian, HJx
is solvable of derived length at most 3. Since

there are only countably many isomorphism classes of finitely generated
metabelian groups, HJx has derived length exactly 3 for uncountably many
values of x. �
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