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Non-explosion criteria for rough differential equations
driven by unbounded vector fields (∗)

Ismael Bailleul (1) and Remi Catellier (2)

ABSTRACT. — We give in this note a simple treatment of the non-explosion prob-
lem for rough differential equations driven by unbounded vector fields and weak
geometric rough paths of arbitrary roughness.

RÉSUMÉ. — On traite de façon simple dans cette note du problème de la non ex-
plosion des solutions d’équations différentielles rugueuses conduites par des champs
de vecteurs non bornés et un p-rough path faiblement géométrique, pour p quel-
conque.

1. Introduction

Although rough paths theory has now been explored for twenty years,
a few elementary questions are still begging for a definite answer. We rec-
ommend [1, 18, 24] for gentle introductions to rough differential equations,
from different points of view. We consider the existence problem for the local
time and occupation time of solutions to rough differential equations as the
main open problem, in relation with reflection problems. At a more funda-
mental level, the question of global in time existence of solutions of a rough
differential equation

dzt = F(zt) dXt, (1.1)
under relaxed boundedness assumptions on the vector fields F = (V1, . . . , V`)
has not been clarified so far. We recall in Appendix A what needs to be known

(*) Reçu le 14 février 2018, accepté le 12 novembre 2018.
(1) Institut de Recherche Mathematiques de Rennes, 263 Avenue du General Leclerc,

35042 Rennes (France) — ismael.bailleul@univ-rennes1.fr
I. Bailleul thanks the U.B.O. for their hospitality, part of this work was written there.
(2) Université Côtes d’Azur, LJAD, Nice (France) — remi.catellier@unice.fr
Most of this work was done while R. Catellier was working at University of Rennes 1

(IRMAR – UMR 6625), with the support of the Labex Centre Henri Lebesgue.
Article proposé par Laure Coutin.

– 721 –

mailto:ismael.bailleul@univ-rennes1.fr
mailto:remi.catellier@unice.fr


Ismael Bailleul and Remi Catellier

about weakly geometric rough paths. Given a weak geometric p-rough path
X defined on some time interval [0, T ], the preceding equation is known to
have a solution defined on the whole of [0, T ] if the driving vector fields
Vi are Cγb , for some regularity exponent γ > p; see for instance T. Lyons’
seminal paper [23] or the lecture notes [24]. One would ideally like to relax
these boundedness assumptions to some linear growth assumption, but the
following elementary counter-examples of Gubinelli and Lejay [22] shows that
this is not sufficient. Consider the dynamics (1.1) on R2, with F = (V1, V2),
and vector fields V1(x, y) = (x sin(y), x) and V2(x, y) = 0, driven by the
non-geometric pure area rough path Xt = 1 + t(1⊗ 1). Writing zt = (xt, yt),
one sees that z is actually the solution of the ordinatry differential equation

żt = (ẋt, ẏt) =
(
xt sin(yt)2 + x2

t cos(yt), xt sin(yt)
)
.

The solution started from an initial condition of the form (a, 0), with a
positive, has constant null y-component and has an exploding x-component
since ẋt = x2

t .

The non-explosion problem was explored in a number of works for dif-
ferential equations driven by p-rough paths, for 2 6 p < 3, especially in
the works of Davie [14] and Lejay [21, 22]. Davie provides essentially the
sharpest result in the regime 2 6 p < 3.

• To make it simple, assume F is C3 and has linear growth:
∣∣F(x)

∣∣ .
|x|. Theorem 6.1(a) in [14] provides a non-explosion criterion in
terms of the growth rate of D2F∣∣D2F(x)

∣∣ 6 h(|x|).

There is no explosion if h(r) . 1
r , and∫ ∞(rγ−2

h(r)

) p−1
γ−1 dr

rp
=∞.

Davie’s criterion is shown to be sharp in the class of all p-rough
paths, 2 6 p < 3, with an example of a rough differential equa-
tion where explosion can happen for some appropriate choice of
a non-weak geometric rough path in case the criterion is not sat-
isfied (see [14, Section 6]). The limit case for Davie’s criterion is
h(r) = O(1)

r . We essentially recover that bound.
• Lejay [21] works with Banach space valued weak geometric p-rough
paths, with 2 6 p < 3. In the setting where the vector fields Vi
are C3 with bounded derivates and are required to have growth
rate

∣∣Vi(x)
∣∣ . g(|x|), he shows non-explosion of solutions to equa-

tion (1.1) under the condition that
∑
k

1
g(k)p diverges. The limit case

is g(r) ' r
1
p .
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• The analysis of Friz and Victoir [20, Exercice 10.56], gives a criterion
comparable to ours, with an erronous proof. They use a pattern of
proof that is implemented in a linear setting and cannot work in a
nonlinear framework as it bears heavily on a scaling argument (see
the proof of Theorem 10.53). One can see part of the present work
as a correct or alternative proof of their statement.

We identify in the sequel a vector field V on Rd with the first order
differential operator f 7→ (Df)(V ). For a tuple I = (i1, . . . , ik) ∈ {1, . . . , `}k,
and vector fields V1, . . . , V`, we define the differential operators

VI := Vi1 · · ·Vik , and V[I] :=
[
Vi1 , . . . , [Vik−1 , Vik ]

]
,

under proper regularity assumptions on the Vi. (Note that the operator V[I]
is actually of order one, so V[I] is a vector field.) The local increment zt− zs
of a solution z to the rough differential equation (1.1) is known to be well-
approximated by the time 1 value of the ordinary differential equation

y′r =
[p]∑
k=1

∑
I∈{1,...,`}k

Λk,Its V[I]
(
s, yr(x)

)
, (1.2)

where Λts := log Xts, and 0 6 r 6 1 (see [3] or [6] for instance). The
following simplified version of our main result, Theorem 2.3, actually gives
a non-explosion result in terms of growth assumptions on the vector fields
V[I] that appear in the approximate dynamics (1.2). Pick an arbitrary p > 1
and a weak geometric p-rough path X.

Theorem 1.1. — Take F = (V1, . . . , V`). There is no explosion for the
solutions of the rough differential equation (1.1) if the functions Vi1 · · ·Vin Id
have linear growth and are C2 with bounded derivatives, for any 1 6 n 6 [p]
and any tuple (i1, . . . , in) ∈ [[1, `]]n.

In the case where 2 6 p < 3, the assumption of the previous theorem is
implied be the weaker but more understandable criterion∣∣D2

xF
∣∣ ∨ ∣∣D3

xF
∣∣ . 1

1 + |x| ,

for a multiplicative implicit constant independent of x ∈ Rd. Note that The-
orem 2.3 is sharper than that statement as it involves the vector fields V[I]
(recall [22, Example 3]). We mention here that we have been careful on the
growth rate of the different quantities but that one can optimize the regular-
ity assumptions that are made on the vector fields Vi to get slightly sharper
results. This explains the discrepancy between Davie’s optimal criterion in
the case 2 6 p < 3 and our result. We leave the proof of these refinements to
the reader. Note also here that one can replace Rd by a Banach space and
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give versions of the statements involving infinite dimensional rough paths,
to the price of using slightly different notations, such as in [2]. There is no
difference between the finite and the infinite dimensional settings for the
explosion problem.

Our main result, Theorem 2.3, holds for dynamics (1.1) with a drift and
time-dependent vector fields. It is proved in Section 2 on the basis of some
intermediate technical estimates whose proof is given in Section 3. Theo-
rem 2.3 holds for Hölder p-rough paths. A similar statement holds for more
general continuous rough paths, with finite p-variation, such as proved in
Section 4 with other corollaries and extensions. We note that B. Driver has
proven similar results to what is proved here in his very recent works [16, 17],
independently of the present work.

Notation. — We gather here a number of notations that are used through-
out the paper.

• Given a positive finite time horizon T , we denote by ∆T the simplex
{(t, s) ∈ [0, T ]2 : 0 6 s 6 t 6 T}.

• We give in the Appendix A a quick introduction to the notion of
weak geometric rough paths. We refer to the reader to Lyons’ seminal
article [23] or any textbook or lectures notes on rough paths [1, 5,
20, 24, 25] for more than the basics on rough paths theory and
mention here that we work throughout with finite dimensional weak
geometric Hölder p-rough paths X = 1⊕X1⊕· · ·⊕X [p], with values
in
⊕[p]

i=0(R`)⊗i say, and norm

‖X‖ := max
16i6[p]

sup
06s<t6T

∣∣Xi
ts

∣∣ 1
i

|t− s|
1
p

.

Note that if Λ =
(
0⊕ Λ1 ⊕ · · · ⊕ Λ[p]) is the logarithm of the rough

path X, we have for all 0 6 s 6 t 6 T , all i ∈ {1, . . . , [p]},∣∣Λits∣∣ .i ‖X‖i|t− s| ip
• Last, we use the notation a . b to mean that a is smaller than a
constant times b, for some universal numerical constant.

2. Solution flows to rough differential equations

Pick α ∈ [0, 1]. A finite dimensional-valued function f defined on Rd is
said to have α-growth if

sup
x∈Rd

∣∣f(x)
∣∣(

1 + |x|
)α < +∞.
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Furthermore for α ∈ [0, 1] and i > 1 we write
f ∈ Ciα,b(Rd;Rd)

if f has α-growth and f is Ci with bounded derivatives. Note that
Ci0,b(Rd;Rd) = Cib.

Let V0 and V1, . . . , Vd : [0, T ]×Rd → Rd be time-dependent vector fields
on Rd.

Assumption 1 (Space regularity and growth). — For any 1 6 n 6 [p]
and for any tuple I ∈ {1, . . . , `}n,

• the vector fields V0(s, · ) and V[I](s, · ) lie in C2
α,b, uniformly in time,

• for all indices 1 6 k1, . . . , kn 6 [p] with
∑
ki 6 [p], and all tuples

Iki ∈ {1, . . . , `}ki , the functions
V0(s, · )V[In−1](s, · ) · · ·V[I1](s, · ) Id and V[In](s, · ) · · ·V[I1](s, · ) Id

are C2
α,b, uniformly in time.

One can trade in the above assumption some growth condition on the
Vi against some growth condition on its derivatives; this is the rationale for
introducing the notion of α-growth.

Assumption 2 (Time regularity and growth). — There exists some reg-
ularity exponents κ1 >

1+[p]−p
p and κ2 >

[p]
p with the following properties.

• One has

sup
x∈B(0,R)

sup
06s<t6T

∣∣V0(t, x)− V0(s, x)
∣∣

|t− s|κ1
. (1 +R)α,

• For all 1 6 n 6 [p] and 1 6 k1, . . . , kn 6 [p], with
∑n
i=1 ki 6 [p], for

all tuples Ii ∈ {1, . . . , d}ki , we have

sup
x∈B(0,R)

sup
06s<t6T

∣∣V[In](t, · ) · · ·V[I1](t, · )(x)− V[In](s, · ) · · ·V[I1](s, · )(x)
∣∣

|t− s|κ2

. (1 +R)α.

We assume that the derivative in x of the V[In](t, · ) · · ·V[I1](t, · ) also satisfies
the previous estimate.

Let X be an R`-valued weak geometric Hölder p-rough path. Set Λts :=
log Xts, for all 0 6 s 6 t 6 T , and denote by µts the time 1 map of the
ordinary differential equation

y′r = (t− s)V0
(
s, yr(x)

)
+

[p]∑
k=1

∑
I∈{1,...,`}k

Λk,It,s V[I]
(
s, yr(x)

)
(2.1)
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that associates to x the value at time 1 of the solution path to that equation
with initial condition x. Note that Assumption 1 ensures that (2.1) is well-
defined up to time 1. Following [3], we define a solution flow to the rough
differential equation

dϕt = V0(t, ϕt)dt+ F(t, ϕt)dXt, (2.2)
where F := (V1, . . . , V`), as a flow locally well-approximated by µ. Here,
we take advantage in this definition of some variant of the definition of [3]
introduced by Cass and Weidner in [9]. For a parameter a, the notation Ca
stands for a constant depending only on a.

Definition 2.1. — A flow ϕ : ∆T × Rd 7→ Rd is said to be a solution
flow to the rough differential equation (2.2) if there exists an exponent η > 1
independent of X, such that one can associate to any positive radius R two
positive constants CR,X and εX such that one has

sup
x∈B(0,R)

∣∣ϕts(x)− µts(x)
∣∣ 6 CR,X |t− s|η, (2.3)

whenever |t− s| 6 εX.

Note that we require the flow to be globally defined in time and space,
unlike local flows of possibly exploding ordinary, or rough, differential equa-
tions. The latter are only defined on an open set of R+ × Rd depending on
X. This definition differs from the corresponding definition in [3] in the fact
that εR is required to be independent of X. We first state a local in time
existence result for the flow, in the spirit of [3].

Theorem 2.2. — Let the vector fields V0 and (V1, . . . , V`) satisfy As-
sumption 1 and Assumption 2.

• There exists a positive constant a1 such that for all R > 0, and all
(t, s) ∈ ∆T with

|t− s|
1
p (1 +R)

α
[p]+1

(
1 + ‖X‖

)
< a1, (2.4)

there is a unique flow ϕ : [s, t]2 × B(0, R) → Rd satisfying the esti-
mate (2.3) with

η = [p] + 1
p

, and CR,X = a2(1 +R)α
(
1 + ‖X‖

)[p]+1
,

for some universal positive constant a2. One writes ϕ(X) to empha-
size the dependence of ϕ on X.

• Given a weak geometric rough path X and (s, t) ∈ ∆T and R
such that condition (2.4) holds, then ϕ(X′) is well-defined on [s, t]×
B(0, R) for X′ sufficiently close to X, and ϕ(X′) converges to ϕ(X)
in L∞

(
[s, t]×B(0, R)

)
as X′ tends to X.
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One says that ϕ depends continuously on X in the topology of uniform
convergence on bounded sets. As you can see from the statement of Theo-
rem 2.2, the quantity |t− s| is only required in that case to be smaller than
a constant depending on X and R, unlike what is required from a solution
defined globally in time. The proof of Theorem 2.2 mimics the proof of the
analogue local in time result proved in [3]. As the proof of latter contains
typos that makes reading it hard, we give in Section 3 a self-contained proof
of this result.

Theorem 2.3. — Let V0 and (V1, . . . , V`) satisfy Assumption 1 and As-
sumption 2. There exists a unique global in time solution flow ϕ to the rough
differential equation (2.2).

• One can choose in the defining relation (2.3) for a solution flow

η = 1 + [p]
p

, εX = c1
(
1 + ‖X‖

)−p
, CR,X = c2(1 +R)α

(
1 + ‖X‖

)[p]+1
,

for some universal positive constants c1, c2.
• One has for all f ∈ C [p]+1

b and all |t− s| 6 εX the estimate

sup
x∈B(0,R)

∣∣∣∣∣f ◦ϕt,s(x)−
{
f(x)+(t−s)V0(s,·)f+

[p]∑
k=1

∑
I∈{0,...,`}k

Xk,I
t,s VI(s,·)f

}
(x)

∣∣∣∣∣
. ‖f‖

C
[p]+1
b

(1 +R)α([p]+1)(1 + ‖X‖
)[p]+1|t− s|

[p]+1
p .

When f = Id, one can replace (1+R)α([p]+1) by (1+R)α and ‖f‖Cn
b

by 1 in the previous bound.
• The map that associates ϕ to X is continuous from the set of weak
geometric Hölder p-rough paths into the set of continuous flows en-
dowed with the topology of uniform convergence on bounded sets.

• Finally, there exists two positive universal constants c3, c4 such that
setting

N :=
[
c3
(
1 + ‖X‖

)p]
,

one has for all (t, s) ∈ ∆T ,

sup
x∈B(0,R)

∣∣ϕs,t(x)− x
∣∣ .

(1 +R)
((

1 + c4
|t−s|

1
pN

(1+R)1−α

) 1
1−α

− 1
)
, if α < 1

(1 +R)|t− s|
1
p ec4N |t−s|

1
p
, if α = 1.

The non-trivial part of the proof consists in proving that one can patch
together the local flows contructed in Theorem 2.2 and define a globally
well-defined flow. As this requires a careful track of a number of quantities,
we provide a proof of the technical results in Section 3. Since it is the main
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contribution of this work, we also give a proof of this theorem using some
results of lemmas and propositions of Section 3.

Note that in a probabilistic context, the bound of Theorem 2.3 is not
optimal. Indeed, in a Gaussian-process framework, the homogeneous Hölder-
norm of the rough path enjoys Gaussian tails. Hence, when p > 2 one can not
integrate the bound of Theorem 2.3. Following Cass, Litterer and Lyons [7],
one could instead work with p-variation norms and local accumulated vari-
ation. This is what we are doing in Subsection 4.3 and Theorem 4.4. Never-
theless, the main difficulty of the problem of non-explosion comes from the
growth of the vector fields, regardless of which norm is used to measure the
size of the rough path. If one seeks for a almost sure bound, Hölder-rough
path bounds are good enough. We present here a full proof in this setting
and refer to Section 4.3 for the general case using p-variation bounds.

Proof of Theorem 2.3. — Fix (s, t) ∈ ∆T . For n > 0 and 0 6 k 6 2n
set tnk := k2−n(t − s) + s and µnt,s := µtn2n ,t

n
2n−1

◦ · · · ◦ µtn1 ,tn0 . Here is the
major input for the proof of the statement. Proposition 3.8 below states the
existence of universal positive constants c1 < 1 and c2 such that for

|t− s|
1
p
(
1 + ‖X‖

)
6 cp1

we have for all n > 0 the estimate

sup
x∈B(0,R)

∣∣µnts(x)− µts(x)
∣∣ 6 c2 |t− s| 1+[p]

p
(
1 + ‖X‖

)[p]+1 (1 +R)α. (2.5)

An elementary Gronwall type bound proved in Lemma 3.1 also gives the
estimate

|µt,s| 6 R+ c2(1 +R)α.

Putting those two bounds together, one gets the existence of a positive con-
stant c such that one has∥∥µtn

k
tn
k−1
◦ · · · ◦ µtn1 tn0

∥∥
L∞(B(0,R)) 6 R+ c (1 +R)α,

for all 0 6 k 6 2n − 1. Let n = n(R) be the least integer such that

2−n
1
p (1 +R)

α
[p]+1 |t− s|

1
p
(
1 + ‖X‖

)
6

a1

(1 + 2c)
α

[p]+1
.

This is the smallest integer such that for all the intervals (tnk , tnk+1) satisfy
the assumption of Theorem 2.2, with starting point µtn

k
tn
k−1
◦ · · · ◦ µtn1 tn0 (x)

and x ∈ B(0, R). Then, we have for all m0, . . . ,m2n−1 ∈ N,∥∥∥µm2n−1
tn2n t

n
2n−1
◦· · ·◦µm0

tn1 t
n
0
−µts

∥∥∥
L∞(B(0,R))

6 c1
∣∣t−s∣∣ 1+[p]

p (1+R)α
(
1+‖X‖

)[p]+1
.
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Sending successively m2n−1, . . . ,m0 to∞ and using the continuity of ϕ with
respect to its Rd-valued argument gives∥∥ϕtn2n tn2n−1

◦ · · · ◦ϕtn1 tn0 −µts
∥∥ 6 c2 |t− s| 1+[p]

p (1 +R)α
(
1 + ‖X‖

)[p]+1
. (2.6)

Set, for x ∈ B(0, R),

ϕts(x) := ϕtn2n t
n
2n−1

◦ · · · ◦ ϕtn1 tn0 (x).

Splitting the intervals (tnk , tnk+1) into dyadic sub-intervals, one shows that for
all u ∈ [s, t] of the form u = k2−N (t− s) + s, one has

ϕt,u ◦ ϕu,s(x) = ϕt,s(x).

Finally, since the map
(x, s, t)→ ϕtn

k+1,t
n
k
(x)

is a continuous for all 0 6 k 6 2n − 1, so is ϕ. This proves the first item of
Theorem 2.3.

The second item is a byproduct of the bound of Equation (2.3) and
Corollary 3.5 below. The third item of the statement is straightforward given
that ϕ is constructed from patching together local solution flows.

Choose finally a positive constant c3 big enough such that setting

N :=
[
c3
(
1 + ‖X‖

)p]
,

one has t−s
N 6 εX and

(
1 + ‖X‖

)
N−

1
p 6 1. Define also

ti := i

N
(t− s) + s,

and R0 := 0 and
Ri := sup

x∈B(0,R)

∣∣ϕtis(x)− x
∣∣,

for 1 6 i 6 N . Note that

C|ti+1−ti|,‖X‖ =
[p]∑
i=1

(
1 + ‖X‖
N

1
p

)i
|t− s|

i
p . |t− s|

1
p ,

for a universal positive multiplicative factor. We thus have
ϕtis(x)− x = ϕtiti−1

(
ϕti−1s(x)

)
− µtiti−1

(
ϕti−1s(x)

)
+ µtiti−1

(
ϕti−1s(x)

)
− ϕti−1s(x)

+ ϕti−1s(x)− x,

and there is an absolute positive constant K such that

Ri 6 Ri−1 +K(1 +R+Ri−1)α|t− s|
1
p ;
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the bounds on ϕts(x) − x given in the statement follows from that
relation. �

As a corollary of Theorem 2.3, one proves in Theorem 4.5 the differen-
tiability of the solution flow with respect to some parameters. This theorem
will be of crucial importance in the forthcoming work [4]; we state it here in
a readily usable form.

Assumption 3. — Let A be a Banach, parameter space and let U be a
bounded open subset of A. Let (Vi)06i6` be time and parameter-dependent
vector fields on Rd with the following regularity properties.

• There exists some exponents κ1 >
1+[p]−p

p and κ2 >
[p]
p , such that

we have for all integers β1, β2 with 0 6 β1 + β2 6 [p] + 1,

sup
06s6t6T

∥∥Dβ1
a D

β2
x V0(t, · , · )−Dβ1

a D
β2
x V0(s, · , · )

∥∥
L∞(Rd×U)

|t− s|κ1
< +∞,

• For all 1 6 i 6 `, and all integers β1, β2 with 0 6 β1 + β2 6 [p] + 2,
we have

sup
06s6t6T

∥∥Dβ1
a D

β2
x Vi(t, · , · )−Dβ1

a D
β2
x Vi(s, · , · )

∥∥
L∞(Rd×U)

|t− s|κ2
< +∞

Refer to Definition 4.3 in Section 4.3 for the definition of the local accu-
mulation Nβ of X (which is a quantity linked to the p-variation norm of X,
defined in the same section).

Theorem 2.4. — Let X be a R` valued weak geometric Hölder p-rough
path and suppose that V0, V1, . . . , V` satisfy Assumptions 3. Let ϕ(a, · ) stand
for all a ∈ U for the solution flow to the equation

dϕ(a, · ) = V0
(
t, a, ϕ(a, · )

)
dt+ σ

(
t, a, ϕ(a, · )

)
dXt. (2.7)

Then for all 1 6 s 6 t 6 T , the function (a, x) 7→ ϕts(a, x) is differentiable
and

• for |t− s|
1
p
(
1 + ‖X‖

)
. 1, and a ∈ U ,

sup
x∈Rd

∣∣Daϕts(a, x)
∣∣ . |t− s| 1p (1 + ‖X‖

)[p]
• there exists positive constants β and c such that one has

sup
x∈Rd

∣∣Daϕts(a, x)
∣∣ . |t− s| 1p (1 + ‖X‖

)
ecNβ

for all 0 6 s 6 t 6 T .
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3. Complete proof of Theorem 2.2

The structure of the proof is simple. One first proves C2 estimates on the
time r map of the ordinary differential equation (2.1), this is the content of
Lemma 3.1. Building on a Taylor formula given in Lemma 3.3, and quan-
tified in Lemma 3.4 and Corollary 3.5, one shows in Proposition 3.7 that
the µ’s defined what could be called a “local approximate flow”, after [3].
We then follow the construction recipe of a flow from an approximate flow
given in [3], by patching together the local flows. The crucial global in time
existence result is obtained as a consequence of a Grönwall type argument,
as can be expected from the fact that, in their simplest form, the growth
assumptions of Theorem 2.3 mean that all the vector fields appearing in
the approximate dynamics have α-growth. Readers familiar with [3] can go
directly to Section 4.

Recall the definition of yr as the solution of the ordinary differential
equation (2.1) defining µts. The first step in the analysis consists in getting
some local in space C2 estimate on yr( · )− Id, with yr( · ) seen as a function
of the initial condition x in (2.1). Set

C|t−s|,‖X‖ := |t− s|+
[p]∑
i=1
|t− s|

i
p ‖X‖i.

Lemma 3.1. — Assume V0 and (V1, . . . , V`) satisfy the space regularity
Assumption 1, and pick (s, t) ∈ ∆T with |t− s|

1
p
(
1 + ‖X‖

)
6 1. Then

•
∣∣yr(x)− x

∣∣ . (1 + |x|
)α
C|t−s|,‖X‖,

•
∣∣Dyr(x)− Id

∣∣ . C|t−s|,‖X‖,
•
∣∣D2yr(x)

∣∣ . C|t−s|,‖X‖.
The maps yr( · ) are thus C1

b , uniformly in r ∈ [0, 1].

Proof. — Apply repeatedly Grönwall lemma. We only prove the estimate
for yr(x)−x and leave the remaining details to the reader. It suffices to write

|yr(x)− x| 6 (t− s)
∣∣V0
(
s, x
)∣∣+

[p]∑
k=1

∑
I∈{1,...,`}k

∣∣Λk,It,s ∣∣ ∣∣V[I](s, x)
∣∣

+ (t− s)
∫ r

0

∣∣∣V0
(
s, yu(x)

)
− V0(s, x)

∣∣∣du
+

[p]∑
k=1

∑
I∈{1,...,`}k

∣∣Λk,It,s ∣∣ ∫ r

0

∣∣∣V[I]
(
s, yu(x)

)
− V[I](s, x)

∣∣∣du
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. C
(
|t− s|, ‖X‖

)((
1 + |x|

)α +
∫ r

0
|yu(x)− x|du

)
to get the conclusion from Grönwall lemma, using the fact that C|t−s|,‖X‖ .
1, for |t− s|

1
p
(
1 + ‖X‖

)
6 1. The derivative equations satisfied by Dyr and

D2yr are used to get the estimates of the statement on these quantities,
using once again that the condition of the statement imposes to C to be of
order 1. �

Remark 3.2. — Would Assumption 1 require in addition that the vector
fields V0(s, · ) and V[I](s, · ) were Cn+2

α,b , uniformly in 0 6 s 6 T , we would
then have the estimate

sup
26k6n+2

∣∣Dkyr(x)
∣∣ . C|t−s|,‖X‖,

under the assumption that |t− s|
1
p
(
1 + ‖X‖

)
6 1.

The second step of the analysis is an elementary explicit Taylor expansion;
see [3] for the model situation. Given 1 6 n 6 [p], set

∆n
1 :=

{(
rn, . . . , r1

)
∈ [0, 1]n : rn 6 rn−1 6 · · · 6 r1

}
and

In,[p] :=
{

(I1, . . . , In) ∈ {1, . . . , d}k1 × · · · × {1, . . . , d}kn ;
n∑

m=1
km 6 [p]

}
;

indices km above are non-null.

Lemma 3.3. — Assume V0 and (V1, . . . , V`) satisfy the space regularity
Assumption 1. For any 1 6 n 6 [p] and any vector space valued function f
on Rd of class Cn we have the Taylor formula

f
(
µts(x)

)
= f(x) + (t− s)

(
V0(s, · )f

)
(x)

+
n∑
i=1

1
i!
∑
Ii,[p]

i∏
m=1

Λkm,Imts

(
V[Ii](s, · ) · · ·V[I1](s, · )f

)
(x)

+
∑
In,[p]

n∏
m=1

Λkm,Imts

∫
∆n

1

{(
V[In](s, · ) · · ·V[I1](s, · )f

)(
yrn(x)

)
−
(
V[In](s, · ) · · ·V[I1](s, · )f

)
(x)
}

dr

+ εn,fts (x)
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where

εn,fts (x) := (t− s)
∫ 1

0

{(
V0(s, · )f

)(
yr(x)

)
−
(
V0(s, · )f

)
(x)
}

dr

+
n−1∑
i=1

1
i!
∑
Ii,[p]

(t− s)
i∏

m=1
Λkm,Imts

×
∫

∆i+1
1

(
V0(s, · )V[Ii](s, · ) · · ·V[I1](s, · )f

)(
yri+1(x)

)
dr

+
n∑
i=2

∑
Ii−1,[p]

k1+···+ki>[p]+1

i∏
m=1

Λkm,Imts

∫
∆i

1

(
V[Ii](s,·) · · ·V[I1](s,·)f

)(
yri(x)

)
dr.

Proof. — The proof is done by induction, and relies on the following fact.
For all u ∈ [0, 1] and all g ∈ C1(Rd;Rd), we have

g(yr)− g(x) = (t− s)
∫ r

0

(
V0(s, · )g

)
(yu) du

+
∑

16k6[p]
I∈{1,...,`}k

Λk,It,s
∫ r

0

(
V[I](s, · )g

)
(yu) du;

this is step 1 of the induction. For step 2, apply step 1 successively to g = f
and u = 1, then g = (V[I](s, · )f

)
and u = r. This gives

f
(
µts(x)

)
− f(x)

= (t− s)
(
V0(s, ·)f

)
(x) + (t− s)

∫ 1

0

{(
V0(s, ·)f

)
(yr)−

(
V0(s, ·)f

)
(x)
}

dr

+
∑

16k6[p]
I∈{1,...,`}k

Λk,Its
(
V[I](s, · )f

)
(x)

+
∑

16k6[p]
I∈{1,...,`}k

(t− s)Λk,Its
∫ 1

0

∫ r1

0

(
V0(s, · )V[I](s, · )f

)
(yr2) dr2dr1

+
∑

16k1,k26[p]
I1∈{1,...,`}k1

I2∈{1,...,`}k2

2∏
m=1

Λkm,Imts

∫ 1

0

∫ r1

0

(
V[I2](s, · )V[I1](s, · )f

)
(yr2) dr2dr1.
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The last term of the right hand side can be decomposed into

1
2
∑
I2,[p]

2∏
m=1

Λkm,Imts

(
V[I2](s, · )V[I1](s, · )f

)
(x)

+
∑
I2,[p]

2∏
m=1

Λkm,Imts

∫
∆2

1

{(
V[I2](s, · )V[I1](s, · )f

)
(yr2)

−
(
V[I2](s, · )V[I1](s, · )f

)
(x)
}

dr2dr1

+
∑

k1+k2>[p]+1
I1,[p]

2∏
m=1

Λkm,Imts

∫
∆2

1

(
V[I2](s, · )V[I1](s, · )f

)
(yr2) dr2dr1;

this proves step 2 of the induction. The n to (n+ 1) induction step is done
similarly, and left to the reader. �

Given f ∈ Cnb
(
Rd,Rd

)
, set

‖f‖n :=
∣∣f(0)

∣∣+ sup
k∈{1,...,n}

∥∥Dkf
∥∥
∞.

Assumption H. — A function g ∈ Cn
(
Rd,Rd

)
is said to satisfy this

assumption if for all 1 6 k1, . . . , kn 6 [p] with
∑p
i=1 ki 6 [p], and all tuples

Iki ∈ {1, . . . , `}ki , the functions

V0(s, · )V[In−1](s, · ) · V[I1](s, · )g and V[In](s, · ) · V[I1](s, · )g

are C2
α,b, uniformly in s ∈ [0, T ].

Lemma 3.4. — Assume Assumption 1 holds, and pick a function f ∈
Cnb
(
Rd,Rd

)
, for some 2 6 n 6 [p]. Given (s, t) ∈ ∆T with |t−s|

1
p
(
1+‖X‖

)
6

1, we have

sup
x∈B(0,R)

∣∣εn,fts (x)
∣∣ . ‖f‖n(1 +R)nα

(
1 + ‖X‖

)[p]+1(t− s)
1+[p]
p ,

for all positive radius R.

• If furthermore Dn+1f exists and is a bounded function, then

sup
x∈B(0,R)

∣∣Dxε
n,f
ts

∣∣ . ‖f‖n+1(1 +R)nα
(
1 + ‖X‖

)[p]+1(t− s)
1+[p]
p .

• If finally f satisfies Assumption H, then the previous bound on
Dxε

n,f
ts holds with (1 +R)α in place of (1 +R)nα.
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Proof. — Write dr for dri . . . dr1 on ∆i
1, and recall that

εn,fts (x) = (t− s)
∫ 1

0

{(
V0(s, · )f

)
(yr)−

(
V0(s, · )f

)
(x)
}

dr

+
n−1∑
i=1

1
i!
∑
Ii,[p]

(t− s)
i∏

m=1
Λkm,Imts

×
∫

∆i+1
1

{
V0(s, · )V[Ii](s, · ) · · ·V[I1](s, · )f

}
(yri+1) dr

+
n∑
i=2

∑
Ii−1,[p]

k1+···+ki>[p]+1

i∏
m=1

Λkm,Imts

∫
δi1

{
V[Ii](s, · ) · · ·V[I1](s, · )f

}
(yri) dr.

(3.1)

Recall also that C|t−s|,‖X‖ . 1 under the assumption of the statement.

As we have for all positive radius R, and all points x, y ∈ B(0, R), the
estimate ∣∣V0(s, · )f(x)− V0(s, · )f(y)

∣∣ 6 ‖f‖n(1 +R
)α|x− y|

uniformly in 0 6 s 6 T , it follows from Lemma 3.1 that∣∣∣∣(t− s)∫ 1

0

{(
V0(s, · )f

)
(yr)−

(
V0(s, · )f

)
(x)
}

dr
∣∣∣∣

. ‖f‖n(t− s)C|t−s|,‖X‖ (1 +R)2α.

Note that if V0(s, · )f is globally Lipschitz continuous one can replace (1 +
R)2α above by (1 +R)α.

We estimate the size of the spatial derivative of the first term in the above
decomposition of εn,fts writing∣∣∣∣(t− s)∫ 1

0

(
D
(
V0(s, · )f

)(
yr(x)

)
Dyr(x)−D

(
V0(s, · )f

)(
x
))∣∣∣∣dr

.

∣∣∣∣(t− s)∫ 1

0
dr
(
D
(
V0(s, · )f

)(
x
))(

Dyr(x)− Id
)∣∣∣∣

+
∣∣∣∣(t− s)∫ 1

0
dr
(
D
(
V0(s, · )f

)(
yr(x)

)
−D

(
V0(s, · )f

)(
x
))
Dyr(x)

∣∣∣∣
. ‖f‖n |t− s|1+ 1

p (1 +R)2α (1 + ‖X‖
)[p]

.

Once again, one can replace (1 +R)2α by (1 +R)α if f satisfies Assump-
tion H.
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The two other terms in the decomposition (3.1) of εn,fts are estimated in
the same way. Remark that

sup
x∈B(0,R)

∣∣∣(V0(s, · )V[Ii](s, · ) · · ·V[I1](s, · )f
)
(x)
∣∣∣ . ‖f‖n(1 +R)(i+1)α

and that

sup
x∈B(0,R)

∣∣∣D(V0(s, · )V[Ii](s, · ) · · ·V[I1](s, · )f
)
(x)
∣∣∣ . ‖f‖n+1(1 +R)(i+1)α.

One can replace in the previous bounds the first term (1 + R)(i+1)α by
(1+R)α and the second term (1+R)(i+1)α by 1 if f satisfies Assumption H.
So∣∣∣∣∣∣
n−1∑
i=1

1
i!
∑
Ii,[p]

(t−s)
i∏

m=1
Λkm,Imts

∫
∆i+1

1

(
V0(s, ·)V[Ii](s, ·) · · ·V[I1](s, ·)f

)
(yri+1) dr

∣∣∣∣∣
. ‖f‖n (t− s)1+ 1

p (1 +R)nα
(
1 + ‖X‖

)[p]
and∣∣∣∣∣∣

n−1∑
i=1

1
i!
∑
Ii,[p]

(t− s)
i∏

m=1
Λkm,Imts

×
∫

∆i+1
1

D
{
V0(s, · )V[Ii](s, · ) · · ·V[I1](s, · )f

)(
yri+1(x)

}
Dyri+1(x) dr

∣∣∣∣∣
. ‖f‖n+1 (t− s)1+ 1

p (1 +R)nα
(
1 + ‖X‖

)[p]
.

Once again, if the function f satisfies Assumption H, one can replace (1 +
R)nα by (1+R)α in the first bound and (1+R)nα by 1 in the second bound.

The analysis of the last term in the right hand side of the decomposi-
tion (3.1) for εn,fts is a bit trickier since greater powers of ‖X‖ can pop out.
Indeed, one has∣∣∣∣∣∣∣∣

n∑
i=2

∑
Ii−1,[p]

k1+···+ki>[p]+1

i∏
m=1

Λkm,Imts

∫
∆i

1

{
V[Ii](s, · ) · · ·V[I1](s, · )f

}
(yri) dr

∣∣∣∣∣∣∣∣
. ‖f‖n

[p]∑
l=1

(
1 + ‖X‖

)[p]+i |t− s| [p]+i
p (1 +R)nα.

But recall that |t− s|
1
p
(
1 + ‖X‖

)
6 1, so we have

(
1 + ‖X‖

)i−1|t− s|
i−1
p . 1.

Hence for all i ∈ {1, . . . , [p]}; this gives the expected upper bound. The same
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idea is used for the spatial derivatives. Once again, one can replace (1+R)nα
by (1 +R)α if the function f satisfies Assumption H. �

Corollary 3.5. — We have

sup
x∈B(0,R)

∣∣∣∣∣f ◦ µts(x)−
{
f(x) + (t− s)V0(s, · )f(x)

+
[p]∑
k=1

∑
I∈{0,...,`}k

Xk,I
ts VI(s, · )f

}
(x)

∣∣∣∣∣
. ‖f‖[p]+1 (1 +R)α([p]+1) (1 + ‖X‖

)[p]+1 |t− s|
[p]+1
p .

for all f ∈ C [p]+1
α,b , and 1 6 k 6 [p]. We also have

sup
x∈B(0,R)

∣∣∣∣∣µts(x)−
(
x+ (t− s)V0(s, x) +

[p]∑
k=1

∑
I∈{0,...,`}k

Xk,I
ts VI(s, x)

)∣∣∣∣∣
. (1 +R)α

(
1 + ‖X‖

)[p]+1|t− s|
[p]+1
p .

and

sup
x∈B(0,R)

∣∣∣∣∣Dµts(x)−
(

Id + (t− s)DV0(s, x)

+
[p]∑
k=1

∑
I∈{0,...,`}k

Xk,I
ts DVI(s, x)

)∣∣∣∣∣
. (1 +R)α

(
1 + ‖X‖

)[p]+1|t− s|
[p]+1
p .

Proof. — We only have to bound the sum over In,[p] of the terms

n∏
m=1

Λkm,Imts

∫
∆n

dr
((
V[In](s, · ) · · ·V[I1](s, · )f

)
(yrn)

−
(
V[In](s, · ) · · ·V[I1](s, · )f

)
(x)
)

for n = [p], thanks to Lemmas 3.3 and 3.4. We have k1 = · · · = k[p] = 1, on
I[p],[p]. As we know that we have∣∣∣(VI(s, · )f)(x)−

(
VI(s, · )f

)
(y)
∣∣∣ . (1 +R)α[p]‖f‖[p]+1|x− y|,
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for all I ∈ {1, . . . , d}[p], and all x, y ∈ B(0, R), it follows that∣∣∣∣∣ ∑
I1,...,I[p]∈{1,...,`}

(
Λ1
ts

)[p] ∫
∆n

1

{(
VI[p](s, · ) · · ·VI1(s, · )f

)
(yrn)

−
(
VI[p](s, · ) · · ·VI1(s, · )f

)
(x)
}

dr

∣∣∣∣∣
. (1 +R)α([p]+1)

[p]∑
k=1
|t− s|

i+[p]
p ‖X‖[p]+i

. (1 +R)α([p]+1) (t− s)
1+[p]
p
(
1 + ‖X‖

)[p]+1
.

The first estimate of the corollary follows then from the fact that exp(Λts) =
Xts. The two other estimates are consequences of the fact that the identity
map satisfies Assumption 1 and Assumption H. �

Remark 3.6. — As in Remark 3.2, one can require that V0 and V[I] are
more regular, and ask

• For all 1 6 k1, . . . , kn 6 [p], with
∑n
i=1 ki 6 [p], and all Iki ∈

{1, . . . , `}ki , the functions

V0(s, · )V[In−1](s, · ) · · ·V[I1](s, · ) and V[In](s, · ) · · ·V[I1](s, · )

are C2+n
b with α-growth, uniformly in time.

Under that stronger regularity assumption, we have for all 2 6 k 6 n+ 1,

sup
x∈B(0,R)

∣∣∣∣∣Dkµts(x)−
{

(t− s)DkV0(s, x) +
[p]∑
j=1

∑
I∈{0,...,`}j

Xj,I
ts D

kVI(s, x)
}∣∣∣∣∣

. (1 +R)α
(
1 + ‖X‖

)[p]+1 |t− s|
[p]+1
p .

The next proposition shows that µ satisfies a localized version of an ap-
proximate flow; see [3].

Proposition 3.7. — Given 0 6 s 6 u 6 t 6 T , with (t − s)
1
p
(
1 +

‖X‖
)[p]
6 1, we have

sup
x∈B(0,R)

∣∣µtu ◦ µus(x)− µts(x)
∣∣ ∨ ∣∣D(µtu ◦ µus)(x)−D

(
µts
)
(x)
∣∣

. (1 +R)α
(
1 + ‖X‖

)[p]+1 |t− s|
1+[p]
p .
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Proof. — First, remark that

µtu ◦ µus(x) = µus(x) + (t− u)V0
(
u, µus(x)

)
+

[p]∑
i=1

1
i!
∑
Ii,[p]

i∏
m=1

Λkm,Imtu

{
V[Ii](u, · ) · · ·V[I1](u, · )

}(
µus(x)

)
+ ε̃tu

(
µus(x)

)
,

where ε̃ts(x) := ε
[p],Id
ts (x) + ε′ts(x) and

ε′ts(x) :=
∑

I∈{1,...,d}[p]

[p]∏
m=1

Λ1,ik
t,s

∫
∆[p]

{
(VI Id)(s, yrn)− (VI Id)(s, x)

}
dr,

for any 0 6 a 6 b 6 T . As we also have

µus(x)− µts(x)
= −(t− u)V0(s, x)

+
[p]∑
i=1

1
i!
∑
Ii,[p]

{ i∏
m=1

Λkm,Imus −
i∏

m=1
Λkm,Imts

}(
V[Ii](s, · ) · · ·V[I1](s, · )

)(
x
)

+ ε̃us(x) + ε̃ts(x),

this gives

µtu ◦ µus(x)− µts(x)

= (t− u)
(
V0
(
u, µus(x)

)
− V0

(
s, µus(x)

))
+ (t− u)

(
V0
(
s, µus(x)

)
− V0

(
s, x
))

+
[p]∑
i=1

1
i!
∑
Ii,[p]

{
i∏

m=1
Λkm,Imtu +

i∏
m=1

Λkm,Imus −
i∏

m=1
Λkm,Imts

}
(
V[Ii](s, · ) · · ·V[I1](s, · ) Id

)
(x)

+
[p]∑
i=1

1
i!
∑
Ii,[p]

i∏
m=1

Λkm,Imtu

{(
V[Ii](u, · ) · · ·V[I1](u, · ) Id

)(
µus(x)

)
−
(
V[Ii](s, · ) · · ·V[I1](s, · ) Id

)(
µus(x)

)}
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+
[p]∑
i=1

1
i!
∑
Ii,[p]

i∏
m=1

Λkm,Imtu

{(
V[Ii](s, · ) · · ·V[I1](s, · ) Id

)(
µu,s(x)

)
−
(
V[Ii](s, · ) · · ·V[I1](s, · ) Id

)
(x)
}

+ ε̃tu
(
µus(x)

)
+ ε̃us

(
x
)

+ ε̃ts(x)
=: (1) + · · ·+ (6).

The bounds of the statement can be read on that decomposition; we give the
details for (µtu ◦µus)(x) and live the details of the estimate for its derivative
to the reader.

It follows from Assumption 2 on the time regularity of V0 and
V[Ii] . . . V[I1] Id that∣∣(1)

∣∣+
∣∣(4)

∣∣ . (1 +R)α
(

(t− u)(u− s)κ1 +
(
1 + ‖X‖

)[p](t− u)
1
p (u− s)κ2

)
. (1 +R)α(t− s)

1+[p]
p
(
1 + ‖X‖

)[p]
.

Lemma 3.4 takes care of the remainder terms (6). By using Lemma 3.1 and
the fact that V0 is Lipschitz continuous in space, uniformly in time, one gets∣∣(2)

∣∣ . (t−u)(u−s)
1
p
(
1+‖X‖

)[p](1+R)α . (t−s)
1+[p]
p
(
1+‖X‖

)[p](1+R)α.

To estimate the terms (3) and (5), set

g(s, · ) := V[Ii](s, · ) · · ·V[I1](s, · ) Id .

We start by doing a Taylor expansion of g
(
s, µts(x)

)
using Lemma 3.3,

to the order n = [p] −
∑i
j=1 kj . As g(s, · ) satisfies Assumption H as a

consequence of Assumption 1, one can use Lemma 3.4 to get the expected
bounds, using the fact that Xu,sXt,u = Xt,s and exp(Λ) = X. Details of
these algebraic computations can be found in the proof of the corresponding
statement in [3]. �

Remark. — One has similar local bounds for higher derivatives of µtu ◦
µus − µts in the setting of Remark 3.6.

Write here part of the conclusion of Proposition 3.7 under the form

sup
x∈B(0,R)

∣∣µt,u ◦ µu,s(x)− µt,s(x)
∣∣ 6 C0 (1 +R)α

(
1 + ‖X‖

)[p]+1 |t− s|
1+[p]
p ,

for some positive constant C0. Given n > 1, and 0 6 s 6 t 6 T , set
tnk := k2−n(t− s) + s. Pick ε0 such that

2−
1+[p]−p

p (1 + 2ε0) < 1
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and

L >
C0

1− 2−
1+[p]−p

p (1 + 2ε0)
.

Proposition 3.8. — For all 0 6 s < t 6 T with

L |t− s|
1
p
(
1 + ‖X‖

)
6 ε0,

and all positive radius R, we have

sup
|x|6R

∣∣∣µtn2n tn2n−1
◦· · ·◦µtn1 tn0 (x)−µts(x)

∣∣∣ 6 L |t−s| 1+[p]
p (1+R)α

(
1+‖X‖

)[p]+1
.

Proof. — The proof is done by induction on n. Note first that we can
take L enough to have ε0

L 6 1 and C|t−s|,‖X‖ . ε0. Proposition 3.7 provides
the initialisation of the induction. Assume step n of the induction has been
proved and set

u := t+ s

2 = tn+1
2n ,

so the statement of the proposition holds on the intervals (s, u) and (u, t).
We have∣∣∣(µtn+1

2n tn+1
2n−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)
∣∣∣

6
∣∣∣(µtn+1

2n tn+1
2n−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)− µus(x)

∣∣∣+
∣∣µus(x)

∣∣
6 L 2−

1+[p]
p |t− s|

1+[p]
p (1 +R)α

(
1 + ‖X‖

)[p]+1 +R

+ C|t−s|,‖X‖ (1 +R)α

6 R+ 2(1 +R)α ε0.

and

sup
x∈B(0,R)

∣∣Dµtu(x)
∣∣ 6 1 + 2ε0,

by Lemma 3.1. Furthermore we have

µtn+1
2n+1 t

n+1
2n+1−1

◦ · · · ◦ µtn+1
1 tn+1

0
(x)− µts(x)

=
(
µtn+1

2n+1 t
n+1
2n+1−1

◦ · · · ◦ µtn+1
2n+1t

n+1
2n
− µtu

)
◦
(
µtn+1

2n tn+1
2n−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)

+ µtu ◦
(
µtn+1

2n tn+1
2n−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)− µtu ◦ µus(x)

+ µtu ◦ µus(x)− µts(x).
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We thus have for all x ∈ B(0, R), the estimate∣∣∣µtn+1
2n+1 t

n+1
2n+1−1

◦ · · · ◦ µtn+1
1 tn+1

0
(x)− µts(x)

∣∣∣
6 L

∣∣∣∣ t− s2

∣∣∣∣
1+[p]
p (

1 +R+ 2ε0(1 +R)α
)α(

1 + ‖X‖
)[p]+1

+ (1 + 2ε0)L (1 +R)α
∣∣∣∣ t− s2

∣∣∣∣
1+[p]
p (

1 + ‖X‖
)[p]+1

+ C0 |t− s|
1+[p]
p (1 +R)α

(
1 + ‖X‖

)[p]+1
,

from which the induction step follows given our choice of ε0 and L. �

The same bound for the derivative of the approximate flow requires a
bound on |t− s| that depends on (1 +R)α, such as described here.

Proposition 3.9. — One can find a positive constant ε1 < 1 such that
for 0 6 s 6 t 6 T with

C0|t− s|
1
p (1 +R)

α
1+[p]

(
1 + ‖X‖

)
6 ε1,

we have, for all positive radius R,

sup
|x|6R

∣∣∣D(µtn2n tn2n−1
◦ · · · ◦ µtn1 tn0

)
(x)−D

(
µts
)
(x)
∣∣∣

6 L|t− s|
1+[p]
p (1 +R)α

(
1 + ‖X‖

)[p]+1
.

Proof. — The proof is a variation on the theme of the proof of Proposi-
tion 3.8. We provide the details for the reader’s convenience, and keep the
notation u for s+t

2 . We proceed here as well by induction and loot at the “n
to n+ 1” induction step of the proof.

D
(
µtn+1

2n+1 t
n+1
2n+1−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)−Dµts(x)

=
{
D
(
µtn+1

2n+1 t
n+1
2n+1−1

◦ ··· ◦ µtn+1
2n+1t

n+1
2n

)
−Dµtu

}(
µtn+1

2n tn+1
2n−1
◦ ··· ◦ µtn+1

1 tn+1
0

)
(x)

×D
(
µtn+1

2n tn+1
2n−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)

+
{(
Dµtu

)((
µtn+1

2n tn+1
2n−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)
)
−Dµtu

(
µus(x)

)}
×D

(
µtn+1

2n ,tn+1
2n−1

◦ · · · ◦ µtn+1
1 ,tn+1

0

)
(x)

+Dµtu
(
µus(x)

)(
D
(
µtn+1

2n tn+1
2n−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)−Dµus(x)

)
+D

(
µtu ◦ µus

)
(x)−Dµts(x).
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We know from the induction step and the R-dependent assumption on u− s
that ∣∣∣D(µtn+1

2n tn+1
2n−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)−Dµus(x)

∣∣∣ 6 ε1 2−
1+[p]
p ,

and ∣∣∣D(µtn+1
2n tn+1

2n−1
◦ · · · ◦ µtn+1

1 tn+1
0

)
(x)
∣∣∣ 6 1 + 2ε1.

We also have from Proposition 3.8∣∣∣(µtn+1
2n tn+1

2n−1
◦ · · · ◦ µtn+1

1 tn+1
0

)
(x)
∣∣ 6 (1 + 2ε1

)
(1 +R)− 1,

and Lemma 3.1 gives us a uniform control on the Lipschitz size of the µba.
We thus have∣∣∣D(µtn+1

2n+1 t
n+1
2n+1−1

◦ · · · ◦ µtn+1
1 tn+1

0

)
(x)−Dµts(x)

∣∣∣
6 L (1 + 2ε1)1+α 2−

1+[p]
p |t− s|

1+[p]
p
(
1 + ‖X‖

)[p]+1 (1 +R)α

+ L 2−
1+[p]
p ε1 (1 + 2ε1) |t− s|

1+[p]
p
(
1 + ‖X‖

)[p]+1 (1 +R)α

+ L (1 + ε1) 2−
1+[p]
p |t− s|

1+[p]
p
(
1 + ‖X‖

)[p]+1 (1 +R)α

+ C0 |t− s|
1+[p]
p
(
1 + ‖X‖

)[p]+1 (1 +R)α

6
(
C0 + b2−

1+[p]
p
(
(1 + 2ε)α + ε1(1 + 2ε1) + (1 + ε1)

))
× |t− s|

1+[p]
p (1 +R)α

(
1 + ‖X‖

)[p]+1
.

An adequate choice of ε1 closes the induction step, given the definition
of L. �

Remark 3.10. — In the improved regularity conditions on the vector
fields stated in Remark 3.6, we have for all 2 6 k 6 n+ 1 and for all

C0 |t− s|
1
p (1 +R)

kα
1+[p]

(
1 + ‖X‖

)
6 ε1,

one have

sup
|x|6R

∣∣∣Dk
(
µtn2n t

n
2n−1

◦ · · · ◦ µtn1 tn0
)
(x)−Dkµts(x)

∣∣∣
6 L |t− s|

1+[p]
p (1 +R)α

(
1 + ‖X‖

)[p]+1
.

With all these preliminary results at hand, we are now in a position to
give a proof of our local well-posedness result, Theorem 2.2.

Proof of Theorem 2.2. — We treat existence and uniqueness one after
the other. We keep the above notations, and set, in addition,

µnts = µtn2n t
n
2n−1

◦ · · · ◦ µtn1 tn0 .
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Local in time existence. — For all x ∈ B(0, R),

µn+1
ts (x)− µnts(x)

=
2n∑
k=1

(
µtn+1

2n+1 t
n+1
2n+1−1

◦ · · · ◦ µtn+1
2k+3t

n+1
2k+2
◦
(
µtn+1

2k+2t
n+1
2k+1
◦ µtn+1

2k+1t
n+1
2k

)
− µtn+1

2n+1 t
n+1
2n+1−1

◦ · · · ◦ µtn+1
2k+3t

n+1
2k+2
◦
(
µtn+1
k+1 t

n+1
2k

))
◦ µtn

k
tn
k−1
◦ · · · ◦ µtn1 tn0 (x). (3.2)

It follows from Proposition 3.9 that the maps

µtn+1
2n+1 t

n+1
2n+1−1

◦ · · · ◦ µtn+1
2k+3t

n+1
2k+2

are Lipschitz continuous, uniformly in n, with a Lipschitz constant that
depends neither on X nor on R. Furthermore, thanks to Proposition 3.8,∣∣∣µtn

k
tn
k−1
◦ · · · ◦ µtn1 tn0 (x)

∣∣∣ 6 R+ 2ε1 (1 +R)α.

Finally, Proposition 3.7 tells us that∣∣µn+1
ts (x)− µnts(x)

∣∣ . 2−n
[p]+1−p

p |t− s|
1+[p]
p (1 +R)α

(
1 + ‖X‖

)[p]+1
. (3.3)

The sequence µnts is thus uniformly convergent on the ball B(0, R) to a limit,
continuous, function denoted by ϕts; it satisfies the estimate

sup
x∈B(0,R)

∣∣ϕts(x)− µts(x)
∣∣ . |t− s| 1+[p]

p (1 +R)α
(
1 + ‖X‖

)[p]+1
.

Finally, for all dyadic points a ∈ [s, t] and all x ∈ B(0, R), we have by
construction

ϕta(x) ◦ ϕas(x) = ϕts(x).

As X is an Hölder continuous rough path, the function (x; s, t) 7→ µts(x),
from B(0, R) × {0 6 s < t 6 T} to Rd, is continuous. The continuity of
ϕ as a function of (x; s, t) follows in a straightforward way; its continuous
dependence on X is a consequence of the continuous dependence of µ with
respect to X. Note however that ϕts is only defined at that stage for s and
t close enough.

Uniqueness. — Let ψ stand for another solution flow, with associated
constants εX and CR,X, and exponent η > 1. Take R and (s, t) satisfying the
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conditions of Proposition 3.9, with |t− s| 6 CR,X. Then∣∣ϕts(x)− ψts(x)
∣∣ 6 ∣∣∣µnts(x)− ϕts(x)

∣∣∣+
∣∣∣µnts(x)− ψts(x)

∣∣∣
6
∣∣∣µnts(x)− ϕts(x)

∣∣∣
+

2n−1∑
k=0

∣∣∣∣((µtn2n tn2n−1
◦ µtn

k+2t
n
k+1

)
◦ µtn

k+1t
n
k

−
(
µtn2n t

n
2n−1

◦ µtn
k+2t

n
k+1

)
◦ ψtn

k+1t
n
k

)
◦ ψtn

k
tn
k−1
◦ · · · ◦ ψtn1 tn0 (x)

∣∣∣∣
.
∣∣µnts(x)− ϕts(x)

∣∣∣+ 2−n(η−1).

(3.4)

Local uniqueness follows from that estimate. We have used here the fact that
the µnts are Lipschitz continuous, uniformly in n, and that

sup
x∈B(0,R)

∣∣ψt,s − µt,s(x)
∣∣ . CR,X |t− s|η. �

4. Corollaries and extensions

We emphasize in the Section 4.1 and Section 4.2 two consequences on
solutions to rough differential equations of the above results/computations.
Young and mixed rough/Young equations are considered in Section 4.1, and
differentiability of the solution flow with respect to parameters is considered
in Section 4.2. The estimates on the derivative flow we get there will be used
in the forthcoming work [4] on limit theorems for systems of mean field rough
differential equations. We worked so far in with weak geometric Hölder p-
rough paths; one can actually work with general rough paths, controlled by
arbitrary controls [23]. A non-explosion criterion with quantitative estimates
is provided in Section 4.3 in this more general setting.

4.1. Young and mixed rough-Young differential equations

The proofs of Theorems 2.2 and 2.3 do not use the fact the drift term
is driven only by time. Instead we treat the signal t → t as a Lipschitz
path, and deal with it using Young differential calculus techniques. A direct
counterpart of this approach is a loss of regularity in the coefficients, either
in time and space. A real reward of this approach, which does not modify
the proof but requires only more notations, is an extension of the results to
a mixed rough-Young differential equation.
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Let V0 and F=(V1, . . . , V`) be given; let another family G:=(W1, . . . ,Wm)
of vector fields on B be given. A solution flow to the mixed rough-Young
differential equation is defined as in Definition 2.1, with the ’approximate
flow’ µts defined as the time 1 map of the ordinary differential equation

y′r = V0
(
s, yr

)
(t− s) +

m∑
j=1

Y jtsWj

(
s, yr

)
+

[p]∑
k=

∑
I∈{1,...,`}k

Λk,Its V X[I]
(
s, yr

)
.

The constants ε and C that appear in the defining estimate (2.3) are now
allowed to depend on R,X and Y .

Corollary 4.1. — Let X be an R`-valued weak geometric Hölder p-
rough path and Y be an Rm-valued 1

q -Hölder path, with
1
p + 1

q > 1 and p > 2.
Assume (V0,F) and (Wi,F) satisfy Assumption 1 and Assumption 2 for all
1 6 i 6 m. Assume furthermore that there exists a positive exponent κ such
that κ+ 1

q > 1, and

sup
x∈B(0,R)

sup
06s<t6T

∣∣Wi(t, x)−Wi(s, x)
∣∣

|t− s|κ
. (1 +R)α.

Then the rough differential equation

dϕt = V0(t, ϕt)dt+ G(t, ϕt) dYt + F(t, ϕ) dXt,

has a unique global in time solution flow.

On can choose the constants εX,Y and CR,X,Y such that

(t− s)
1
q
(
1 + ‖Y ‖

)
+ (t− s)

1
p
(
1 + ‖X‖

)
. 1,

and
CR,X,Y ' (1 +R)α

(
1 + ‖Y ‖+ ‖X‖

) (
1 + ‖X‖

)[p]
and

N ' max
{[

(1 + ‖Y ‖)q
]
,
[
(1 + ‖X‖)p

]}
.

The proof is left to the reader since it is a direct modification of Section 3,
with more notations.

4.2. Derivative flow

Rough differential equations

dϕt = V0(t, ϕt)dt+ F(t, ϕt) dXt (4.1)
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generate flows of diffeomorphisms under appropriate regularity conditions on
the driving vector fields. The pair (ϕ,Dϕ), made up of ϕ and its differential,
also satisfies an equation, with ’triangular’ structure

d(Dϕ) = DV0(t, ϕt)Dϕt dt+DF(t, ϕt)Dϕt dXt.

One can find results on derivative flows in the book [20] of Friz and Victoir,
Chapter 11; see also the interesting works [12] and [11] of Coutin and Lejay.
One gets another proof of the differentiability of the flow with respect to the
initial point as a direct byproduct of the results of Section 2. Pick p > 2.

Assumption 4. — Let V0 and V1, . . . , V` be a set of time dependent vec-
tor fields on B such that there exists two exponents with κ1 >

1+[p]−p
p , and

κ2 + 1
p > 1, such that

sup
06s<t6T

∥∥V0(t, · )− V0(s, · )
∥∥
C2+n
b

|t− s|κ1
< +∞

and each Vi satisfies the estimate

sup
06s<t6T

∥∥Vi(t, · )− Vi(s, · )∥∥C3+n
b

|t− s|κ2
< +∞.

Theorem 4.2. — Let X be a weak geometric Hölder p-rough path and
(V0, V1, . . . , V`) which satisfy Assumption 4. Let ϕ stand for the solution flow
to the rough differential equation (4.1). Then each ϕts is of class Cn, has
linear growth and bounded derivatives, namely ϕts ∈ Cn1,b. Furthermore for a
suitable positive constant ε3, independent of X, and |t− s|

1
p
(
1 + ‖X‖

)
6 ε3,

we have ∥∥Dkϕts −Dkµts
∥∥
∞ . |t− s|

1+[p]
p
(
1 + ‖X‖

)[p]+1
,

for all 0 6 k 6 n. Finally there exists some positive constants c1, . . . , cn,
independent of X, such that for all 0 6 s 6 t 6 T , and every 1 6 k 6 n, we
have

sup
x∈Rd

∣∣ϕts(x)− x
∣∣ . |t− s| 1p (1 + ‖X‖

)
and

sup
x∈Rd

∣∣Dkϕts(x)−Dkϕs,s(x)
∣∣ . |t− s| 1p eck|t−s| 1pN ,

where N =
[
c
(
1 + ‖X‖

)−p].
Proof. — We work here with α = 0, so we know from the above com-

putations that for |t − s|
1
p
(
1 + ‖X‖

)
. 1, and all 0 6 k 6 (n + 1), we

have ∥∥Dk
(
µnts − µts

)
(x)
∥∥
∞ . |t− s|

1+[p]
p
(
1 + ‖X‖

)[p]+1
. (4.2)
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This implies that for all 0 6 k 6 n the function Dk
t,s is Lipschitz continuous,

with Lipschitz constant not greater than a constant multiple of |t−s|
1+[p]
p
(
1+

‖X‖
)[p]+1. It follows from this fact and the proof of Theorems 2.2 and 2.3

that there exists some maps Akt,s, such that Dkµnts converges uniformly to
Akt,s as n goes to ∞. One then needs to prove that the Ak are indeed the
k-th derivative of ϕ and get the bounds of the statement. Note that the small
time bounds are direct consequences of equation (4.2) and Remark 3.2 once
we know that the Dkµnts converge.

We have

µnts(x+h)−
∑

06j6k

1
j!D

kµt,s(x) ·hj = 1
k!

∫ 1

0
dλDk+1µnts(λh+x) ·((1−λ)h)kh,

where hj = (h, . . . , h)︸ ︷︷ ︸
j times

. Hence, thanks to Remark 3.10, for all |t − s|
1
p
(
1 +

‖X‖
)
. 1, the maps Dk+1µnts are bounded, uniformly in n, and

∣∣∣∣∣∣µnt,s(x+ h)−
∑

06j6k

1
j!D

kµnt,s(x) · hj
∣∣∣∣∣∣ . |t− s| 1+[p]

p
(
1 + ‖X‖

)[p]+1|h|k+1.

The previous bound allows us to send n to ∞, and to get, as a consequence,
that Akts = Dkϕts. The construction of the global in time flow and its deriva-
tives is done by gluing all these local flows, as above.

We now turn to the global bounds. As previously letN be the least integer
such that T

1
pN−

1
p
(
1+‖X‖

)
. 1, where the implicit multiplicative constant is

chosen such that all the previous bounds hold. Setting ti := i
N (t−s)+s, one

can use the local in time bounds on some time interval of length (ti+1 − ti).
We have

ϕtis(x)− x = ϕtiti−1

(
ϕti−1s(x)

)
− µtiti−1

(
ϕti−1s(x)

)
+ µtiti−1

(
ϕti−1s(x)

)
− ϕti−1s(x)

+ ϕti−1s(x)− x.

Hence, if one sets R0
i := supx

∣∣ϕti,s(x)− x
∣∣, one has

R0
i 6 R

0
i−1 + C|t− s|

1
p . i|t− s|

1
p .
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Similarly, we have

Dϕtis(x)− Id =
(
Dϕtiti−1

(
ϕti−1s(x)

)
− µtiti−1

(
ϕti−1s(x)

))
Dϕti−1s(x)

+
(
Dµtiti−1

(
ϕti−1s(x)

)
− Id

)
Dϕti−1s(x)

+Dϕti−1s(x)− Id .
Again,given the choice of N , one have can use all the local bounds on ϕ,
Dϕ, and µ and Dµ, and setting R1

i := supx
∣∣Dϕti,s(x)− Id

∣∣, one has

R1
i 6 C|t− s|

1
p +R1

i−1
(
1 + |t− s|

) 1
p ,

and
sup
x

∣∣Dϕs,t(x)− Id
∣∣ . |t− s| 1p ec1|t−s|

1
pN .

One obtains the bounds for the higher order derivatives using Faà di Bruno
formula. �

4.3. Finite p-variation rough paths

It is well-known the global bound for the differential of the flow, or the
global bound for the flow for vector field with linear-growth, is not good [7],
[19], [18]. Indeed, in the setting of weak geometric Hölder p-rough paths,
N ∼

(
1 + ‖X‖

)p, and for a Gaussian rough path X, the quantity ‖X‖ only
has Gaussian tail and E

[
ec‖X‖

p] = +∞ for any p > 2 and any positive
constant c. To derive some moment bounds of solutions of rough differential
equations, one need more advanced tools; we recall them here for the reader’s
convenience.

Definition. — A weak geometric continuous rough path with finite p-
variation is a continuous [p]-level weak geometric rough path such that

‖X‖[0,T ],p−var :=
[p]∑
i=1

sup
π partition of [0,T ]

 ∑
(tk,tk+1)∈π

|Xi
t,s|

p
i

 1
p

< +∞

Set
w(t, s) := ‖X‖p[s,t],p−var.

If X is a weak geometric continuous rough path with finite p-variation
then w is a control; it is in particular increasing in its two variables, super-
additive and continuous on the diagonal. Note also that a weak geometric
Hölder p-rough path is always of finite p-variation since

w(t, s) 6 |t− s|
(
1 + ‖X‖

)p
.
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The advantage of using the p-variation norm instead of the Hölder norm is
related to integrability properties for random rough paths.

Definition 4.3. — Given β > 0 define τβ0 = 0 and

τβi+1 = inf{t ∈ [τβi , T ] : w(τβi , t) > β} ∧ T.

The quantity Nβ := sup{i > 0 : τβi < T} is called the local accumulated
variation of X.

The following result combines results from Friz and Victoir [20] and Cass,
Litterer and Lyons [7]

Theorem. — Let β > 0, p > 2 and let X be a centered Gaussian process
defined over some finite interval [0, T ]. Suppose that the covariance function
is of finite ρ-two dimensional variation for some ρ ∈ (1, 2). Then for any
p ∈ (2ρ, 4), X can be lifted as a level-[p] weakly geometric continuous finite
p-variation rough path, and for β > 0, the process N

1
ρ

β has a Gaussian tails,
namely there exists a constant µ > 0 such that

E
[
exp

(
µN

2
ρ

β

)]
< +∞.

In particular, for p ∈ (2ρ, 4), and for any constant C > 0,

E [exp (CNβ)] . 1.

Friz and Riedel gave in [19] what is now the classical proof of this re-
sult, based on Borell’s isoperimetric inequality in Gaussian spaces. Cass and
Ogrodnik [8] use heat kernel estimates as a substitute to isoperimetry to
prove a similar result for Markovian rough paths. Compare the following
definition to definition 2.1.

Definition. — A flow ϕ : ∆T ×Rd 7→ Rd is said to be a solution flow to
the rough differential equation (2.2) if there exists an exponent η > 1 such
that one can associate to any positive radius R two positive constants CR
and ε, independent of X, such that one has

sup
x∈B(0,R)

∣∣ϕts(x)− µts(x)
∣∣ 6 CR w(t, s)η, (4.3)

whenever w(t, s) 6 ε.

Theorem 4.4. — Let X be a weak geometric continuous rough path with
finite p-variation. Let V0 and (V1, . . . , V`) satisfy Assumption 1 and Assump-
tion 2. There exists a unique global in time solution flow ϕ to the rough
differential equation (2.2).
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• One can choose η = 1+[p]
p , ε = c1 and CR = c2(1 + R)α, for some

positive universal constants c1, c2, in the defining identity (4.3).
• One has for all f ∈ C [p]+1

b and all w(t, s) 6 ε the estimate

sup
x∈B(0,R)

∣∣∣∣∣f ◦ ϕt,s(x)−
{
f(x) + (t− s)V0(s, · )f

+
[p]∑
k=1

∑
I∈{0,...,`}k

Xk,I
t,s VI(s, · )f

}
(x)

∣∣∣∣∣
. ‖f‖

C
[p]+1
b

(1 +R)α([p]+1)w(t, s)
[p]+1
p .

When f = Id, one can replace (1+R)α([p]+1) by (1+R)α and ‖f‖Cn
b

by 1 in the previous bound.
• The map that associates ϕ to X is continuous from the set of weak
geometric continuous rough paths with finite p-variation into the set
of continuous flows endowed with the topology of uniform conver-
gence on bounded sets.

• Finally, there exists β > 0 and c3 > 0 such that one has for all
(t, s) ∈ ∆T ,

sup
x∈B(0,R)

∣∣ϕts(x)− x
∣∣

.


((

(1 +R)1−α + c4w(t, s)
1
pN

1− 1
p

β

) 1
1−α

− (1 +R)
)
, if α < 1

(1 +R)w(t, s)
1
p ec3Nβ , if α = 1.

One gets back Theorem 2.3 when X is an Hölder p-rough path, with N
replaced by Nβ .

Proof. — The proof follows exactly the same steps as the proofs of The-
orems 2.2 and Theorem 2.3. We give here the main changes and leave the
computations to the reader.

First, there is no loss of generality in assuming that |t − s| 6 w(t, s);
replace if necessary w(t, s) by |t− s|+ w(t, s). Set

C(t, s,X) :=
[p]∑
k=1

w(t, s)
k
p .

One can replace the constant C|t−s|,‖X‖ by C(t, s,X) in Lemma 3.1 and
Remark 3.2 as soon as w(t, s) 6 1; this ensures that C(t, s,X) . 1. Lem-
ma 3.3 remains the same as it relies only on algebraic manipulations. In
Lemma 3.4, one has to assume that w(t, s,X) 6 1, and one can replace
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(
1 + ‖X‖

)[p]+1|t − s|
1+[p]
p in the estimates by w(t, s)

1+[p]
p (recall |t − s| 6

w(t, s)). The same replacement is done in Corollary 3.5 and Remark 3.6.
Finally, using the inequality |t − s| 6 w(t, s) and the fact that the real-
valued functions u → w(t, u) and u → w(u, s) are increasing, one can also
replace

(
1 + ‖X‖

)[p]+1|t− s|
1+[p]
p by w(t, s)

1+[p]
p in Proposition 3.7.

The proofs of Proposition 3.8 and Proposition 3.9 are a bit different, but
the spirit is the same. The main difference is that one cannot say immediately
that w

(
t, t+s2

)
6 1

2w(t, s). But given (t, s) ∈ ∆T , there exists ũ ∈ (s, t)
such that w(t, u) = w(u, s) 6 1

2w(t, s). Consider any sequence of embedded
partitions (πn)n∈N =

(
(tni )i∈{0,...,n}

)
n∈N with mesh going to 0. One proves

by induction the existence of constants 0 < β 6 1 and L > 0 such that for
w(t, s) 6 β, one has for all k 6 n,

sup
x∈B(0,R)

∣∣∣µtk
k
,tk
k−1
◦ · · · ◦ µtk1 ,tk0 (x)− µt,s(x)

∣∣∣ 6 L (1 +R)α w(t, s)
[p]+1
p

Let the integer 0 6 i0 6 n be such that tn+1
i0
6 ũ < tn+1

i0+1. One closes the
induction and proves the following bound for all n ∈ N by taking u = tn+1

i0+1,
using the fact that

w(tn+1
i0+1, ũ) + w(ũ, tn+1

i0
) −→
n→∞

0.

The same trick holds for the proof of Proposition 3.9, assuming that

w(t, s)(1 +R)
α

1+[p] 6 β.

One can again replace in Proposition 3.8, Propositino 3.9 and Remark 3.10(
1 + ‖X‖

)[p]+1|t− s|
1+[p]
p by w(t, s)

1+[p]
p .

For the proof of the local existence, one can proceed as in Lemma 2.1
of [15], and as in the proof of Theorem 2.2. Let

(
(tni )i∈{0,...,n}

)
n∈N be the

sequence of dyadic partitions. Remark that since w is superadditive, there
exists i such that w(tni+1, t

n
i−1) 6 (2n − 1)−1w(t, s). Define the partition

π̂ =
{
s = t0, < · · · < tni−1 < tni+1 < · · · < tn2n = t

}
and set Mn

t,s := µnt,s − µt,s,
and

M̂n
t,s := µtn2n ,t

n
2n−1

◦ · · · ◦ µtn
i+2,t

n
i+1
◦ µtn

i+1,t
n
i−1
◦ µtn

i−1,t
n
i−2
◦ µtn1 ,tn0 − µt,s.

We have

M̂s,t −Mn
t,s =

{
µtn2n ,t

n
2n−1

◦ · · · ◦ µtn
i+2,t

n
i+1
◦ (µtn

i+1,t
n
i
◦ µtn

i
,tn
i−1

)

− µtn2n ,tn2n−1
◦ · · · ◦ µtn

i+2,t
n
i+1
◦ (µtn

i+1,t
n
i−1

)
}

◦ µtn
i−1,t

n
i−2
◦ µtn1 ,tn0 (x).
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The induction hypothesis and the bound w(t, s)(1 +R)
α

1+[p] 6 β, then give∣∣M̂n
s,t −Mn

t,s

∣∣ . (2n − 1)−
[p]+1
p (1 +R)αw(s, t)

[p]+1
p .

Repeating this operation until we get the trivial partition of [s, t] we see that

Mn
t,s =

2n∑
k=0

ρkt,s,

with ∣∣ρkt,s(x)
∣∣ . (1 +R)α w(t, s)

[p]+1
p (2n − k)−

[p]+1
p .

Here we crucially use the fact that the composition of the flows are globally
Lipschitz continuous, uniformly in n. Hence Mn converges uniformly to a
limit ϕt,s − µt,s and

sup
x∈B(0,R)

|ϕt,s(x)− µt,s(x)|

. (1 +R)α
∑
i>0

i−
[p]+1
p w(t, s)

[p]+1
p . (1 +R)αw(t, s)

[p]+1
p .

The remainder of the proof follows easily from the proof of Theorem 2.2
and Theorem 2.3. Indeed, by construction, ϕ is a flow for all dyadic points,
and then by continuity for all points, and thanks to the continuity of µ with
respect to X, ϕ is continuous with respect to X.

Note also that thanks to the superadditivity property of the control, one
has

2n−1∑
k=0

w(tni+1, t
n
i )

[p]+1
p . max

i∈{0,...,2n−1}
w(tni+1, t

n
i )

[p]+1−p
p w(t, s),

and since w is continuous on the diagonal, the above sum goes to 0 as n goes
to infinity. Local uniqueness of the flow follows (see Equation (3.4)).

The proof of global existence is similar to the proof of Theorem (2.3).
Use the sequence of times (τβi )i∈N from definition 4.3. We have

ϕτβ
i
,s(x)− x = ϕτβ

i
τβ
i−1

(
ϕτβ

i−1s
(x)
)
− µτβ

i
τβ
i−1

(
ϕτβ

i−1s
(x)
)

+ µτβ
i
τβ
i−1

(
ϕτβ

i−1s
(x)
)
− ϕτβ

i−1s
(x)

+ ϕτβ
i−1s

(x)− x.

Define Ri := supx∈B(0,R)
∣∣ϕτβ

i
s(x) − x

∣∣ and R0 = 0. The fourth item of the
statement follows then from the induction relation

Ri 6 Ri−1 +w(τβi , τ
β
i−1)

[p]+1
p (1 +R+Ri)α +C(τβi , τ

β
i−1,X)(1 +R+Ri−1)α.
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Since w(τβi , τ
β
i−1) 6 β, one has C(τβi , τ

β
i−1,X) . w(τβi , τ

β
i−1)

1
p , hence

Ri −Ri−1 . (1 +R+Ri−1)α
(
w(τβi , τ

β
i−1)

[p]+1
p + w(τβi , τ

β
i−1)

1
p
)
.

When α = 1 one end up with the following bound:

Ri . Ri−1 + (1 +R)w(t, s)
1
p .

When α < 1, one ends up with

RN .

((
(1+R)1−α+ 1

1−α

N∑
i=1

(
w(τi, τi−1)

[p]+1
p +w(τi, τi−1)

1
p
)) 1

1−α−(1+R)
)
.

By using Jensen formula, one finally has the bound

N∑
i=1

(
w(τi, τi−1)

[p]+1
p + w(τi, τi−1)

1
p
)
. N1− 1

pw(t, s)
1
p ,

which ends the proof. �

Theorem 4.5. — Let p > 2 and X be a weak geometric continuous
finite p-variation rough path and let (V0, . . . , V`) which satisfies Assumption
4. Let ϕ stands for the solution flow to the rough differential equation (4.1).
Then each ϕts is of class Cn, has linear growth and bounded derivatives,
ϕts ∈ Cn1,b. Furthermore for a suitable positive constant ε3, independent of
X, and w(t, s) 6 ε3, we have∥∥Dkϕts −Dkµts

∥∥
∞ . w(t, s)

1+[p]
p ,

for all 0 6 k 6 n. Finally there exists β > 0 and some positive constants
c1, . . . , cn, independent of X, such that for all 0 6 s 6 t 6 T , and every
1 6 k 6 n, we have

sup
x∈Rd

∣∣ϕts(x)− x
∣∣ . w(t, s)

1
pNβ

and
sup
x∈Rd

∣∣Dkϕts(x)−Dkϕs,s(x)
∣∣ . w(t, s)

1
p eckNβ .

Proof. — We refer to the proof of Theorem 4.2. The first bound of the
theorem is a direct application of Theorem 4.4 with α = 0. For the existence
of derivatives and the associated bounds, one can mimic the proof of Theo-
rem 4.2 by replacing |t − s|

1
p
(
1 + ‖X‖

)p by w(t, s). The proof of the global
bound is done in the same way as the proof of Theorem 4.4. �
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Appendix A. Weakly geometric rough paths in a Nutshell

As first proved by T. Lyons in [23], in order to solve stochastic differen-
tial equation in a pathwise way, the knowledge of the path of a Brownian
motion is not enough (see [24, Section 1.5] for a more precise statement).
The solution proposed by Lyons to deal with this problem, which is at the
heart of the rough path theory, is to consider the path together with its
iterated integrals as a priori data. A weakly geometric rough path is then
an idealization of a truncated sequence of iterated integrals for paths which
are not differentiable.

To give a hint of the algebraic and analytical properties of iterated inte-
grals, focus first on a smooth path x and its first iterated integral. Namely
let x : [0, T ]→ R`, be a smooth path, and define for (t, s) ∈ ∆T ,

X1
ts =

∫ t

s

ẋr dr = xt−xs and X2
ts =

∫ t

s

X1
r,s⊗ ẋr dr =

∫ t

s

(xr −xs)⊗ ẋr dr.

From this definition, one can extract three interesting properties.

(a) Regularity:

sup
k∈{1,2}

sup
06s<t6T

|Xk
t,s|

1
k

|t− s|
< +∞,

(b) Chen’s relation (see [10]): for all 0 6 s 6 u 6 t 6 T
X2
ts = X2

us +X1
us ⊗X1

tu +X2
tu,

(c) Geometric property:

Sym(X2
ts) = 1

2X
1
ts ⊗X1

ts.

The first property comes from the fact that the path x is Lipchitz continuous
on [0, T ]. The second property comes from the construction of X2 as the
iterated integral of x. The last property comes from the chain rule. It clarifies
the matter to set the scene in a precise algebrai setting in order to generalized
these properties to higher iterated integrals.

A.1. Truncated tensor algebra and free nilpotent groups

Let N > 2 to be fixed from now. Let us define T (N) the truncated tensor
algebra as

T (N) =
N⊕
k=0

(R`)⊗k.

– 755 –



Ismael Bailleul and Remi Catellier

The space T (N) is an algebra when defining

a + b = (a0 + b0, . . . , aN + bN )

and

ab = (c0, c1, . . . , cN ) with ck =
k∑
i=0

ai ⊗ bk−i.

One can also define the Lie bracket between a and b by

[a,b] = ab− ba.

Having this Lie bracket, it is straightforward to define the N -step free nilpo-
tent algebra as

gN =
N⊕
k=0

F k,

where F 0 = {0}, F 1 = R` and Fn+1 = [R`, Fn]. Finally, one can define

exp(a) =
N∑
j=0

ak
k! and log(b) =

N∑
j=1

(−1)j+1

j
(1− b)j ,

such that

GN = exp(gN )

is a Lie group, called the N -step free nilpotent group. Note also that for all
a ∈ GN , log(a) ∈ gN is well defined. Let e = (e1, . . . , e`) be the canonical
basis of R`. For all k ∈ {0, . . . , N} and for all I = (i1, . . . , ik) ∈ {1, . . . , `}k
let us define

eI = ei1 ⊗ · · · ⊗ eik and e[I] =
[
ei1 ,

[
ei2 , · · · [eik−1 , eik ] · · ·

]]
.

Then (eI)I∈{1,...,`}k is a basis of (R`)⊗k, and for all a = (a0, . . . , aN ) ∈ T (N),

ak =
∑

I∈{1,...,`}k
ak,IeI ,

where ak,I ∈R. Furthemore, in the same manner if b∈ gN , b = (0, b1, . . . , bN ),
then for all k ∈ {1, . . . , N},

bk =
∑

I∈{1,...,`}k
bk,[I]e[I]
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A.2. Weakly geometric rough paths

One has now all the tools to define properly weakly geometric rough
paths. It is possible to transcript properties (a), (b) and (c) into the setting
of truncated tensor algebra, when considering X = (1, X1, X2) as a path
from ∆T to T (2). Property (b) can be written as Xts = XusXtu, whereas
property (c) translates itself into X ∈ G2 (which is precisely the reason
GN of the introduction of the N step free-nilpotent group). However, the
paths we have in mind are only Hölder continuous with Hölder exponent
1
p <

1
2 (think to the Brownian motion). Even by using the theory of Young

integrals (see [26]), it is not possible to define a generalization of the previous
construction for non smooth paths. Furthermore, property (a) is less obvious
is such a context. The solution proposed by Lyons is to reverse the problem
and consider that the iterated integrals are given. Furthermore as seen in
Section 3, it is crucial to have the first [p] iterated integrals to solve rough
differential equations. This leads to the following definition:

Definition A.1. — Let p > 2. A weak geometric Hölder p-rough path
X is a path from ∆T to the [p]-step free nilpotent group G[p] which enjoys
several propeties:

(a) Regularity:

‖X‖ := sup
k∈{1,...,[p]}

sup
(t,s)∈∆T

|Xk
ts|

1
k

|t− s|
1
p

< +∞.

(b) Chen’s relation: for all 0 6 s 6 u 6 t 6 T

Xts = XusXtu.

Note that since X ∈ G[p], there exists a unique Λ = (0,Λ1, . . . ,Λ[p]) such
that exp(Λ) = X, called the logarithm of X. Since Λ = log(X) and the
logarithm in T ([p]) is polynomial, one has furthermore for all (t, s) ∈ ∆T ,

|Λkt,s| 6 ‖X‖k|t− s|
k
p .

The fact that X lies in G[p] is the generalization of the chain rule, whereas
Chen’s relation is the generalization of the definition of iterated integrals.
Finally, we complete this section by giving the following example of weakly
geometric rough paths, proved first by Coutin and Qian in [13].

Theorem. — Let 1
2 > H > 1

4 and ` > 2 and let p > 1
H . Let BH be a

R`-fractional Brownian motion of Hurst parameter H. Then there exists a
weak geometric Hölder p-rough path BH ∈ G[p] such that BH,1ts = BHt −BHs .
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Furthermore when H = 1
2 , B = B

1
2 is a standard `-dimensional Brownian

motion and B2
ts =

∫ t
s
(Br − Bs) ⊗ ◦ dBr, where the stochastic integral is in

the Stratonovitch sense.
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