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The lexicographic degree of the first two-bridge knots (∗)

Erwan Brugallé (1),
Pierre-Vincent Koseleff (2) and Daniel Pecker (3)

In memory of Daniel Pecker

ABSTRACT. — We study the degree of polynomial representations of knots. We
give the lexicographic degree of all two-bridge knots with 11 or fewer crossings. First,
we estimate the total degree of a lexicographic parametrisation of such a knot. This
allows us to transform this problem into a study of real algebraic trigonal plane
curves, and in particular to use the braid theoretical method developed by Orevkov.

RÉSUMÉ. — Nous étudions les degrés des représentations polynomiales des nœuds.
Nous donnons en particulier le degré lexicographique des nœuds à deux ponts à moins
de 11 croisements. Nous estimons d’abord le degré total d’une paramétrisation poly-
nomiale de degré lexicographique. Celà nous permet de nous ramener à un problème
d’étude de courbes algébriques planes trigonales, et en particulier d’utiliser la mé-
thode des tresses développée par Orevkov.

1. Introduction

A polynomial parametrisation of a knot K in S3 is a polynomial map
γ : R → R3 whose closure of the image in S3 is isotopic to K. Every
knot admits a polynomial parametrisation, see [11, 12]. In this paper we are
interested in determining the lexicographic degree of a knot K ⊂ S3, i.e. the
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minimal degree for the lexicographic order of a polynomial parametrisation
of K.

The unknot has lexicographic degree (−∞,−∞, 1), and it is easy to see
that the lexicographic degree of any other knot is (a, b, c) with 3 6 a < b <
c. Two-bridge knots are precisely those with lexicographic degree (3, b, c),
see [5]; they have an xy-projection which is a trigonal curve. See Figure 1.1
for two examples of trigonal polynomial parametrisations of a long knot.

deg 41 = (3, 5, 7) deg 51 = (3, 7, 8)

Figure 1: Trigonal polynomial diagrams of the figure-eight knot 41 and the torus knot 51

A 9-crossing diagram of degree ≥ (3, 13, 14) A 10-crossing diagram of degree (3, 11, 16)

Figure 2: Two diagrams of 915

of two-bridge knots. The enumeration of all possible diagrams of a given two-bridge knot
can be efficiently done using Conway’s notation.

In this paper, we show:

Theorem. The lexicographic degree of all 186 two-bridge knots with crossing number N ≤
11 is (3, b, 3N − b), where the values of b are listed in Table 5, p. 30.

We prove this result in two steps.

Proposition 2.9 The lexicographic degree (3, b, c) of a knot with crossing number N ≤ 11
satisfies b+ c = 3N .

Proposition 2.9 also holds for all N when b ≤ N + 3 or b = ⌊3N−1

2
⌋. We prove in Theorem

2.5 that b + c ≥ 3N for any polynomial parametrisation of degree (3, b, c) of a knot with
crossing number N . Furthermore, every two-bridge knot of crossing number N admits
a parametrisation of degree (3, b, c) with b + c = 3N , see [KP11]. We do not know if
Proposition 2.9 holds for all crossing numbers N ≥ 12.

Proposition 2.9 allows us to reduce the determination of the lexicographic degree of a
two-bridge knot to the study of plane curves. For knots with 11 crossings or fewer, it is
enough to determine the smallest integer b such that a plane projection admits a polynomial
parametrisation of degree (3, b). This reduction to plane curves enlarges the set of tools
at our disposal; in particular we make an important use of Orevkov’s braid theoretical
approach in the study of pseudoholomorphic curves.

Hence the second step in the proof of our theorem is to focus on parametrisations of plane
projections. We introduce the T-reduction in Section 3.3, that corresponds to the projection
of the Lagrange isotopy on trigonal diagrams. The T-reduction allows us to remove a triangle
of crossings from a diagram, and therefore to obtain an upper bound for degrees we are

3

deg 41 = (3, 5, 7) deg 51 = (3, 7, 8)

Figure 1: Trigonal polynomial diagrams of the figure-eight knot 41 and the torus knot 51
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of two-bridge knots. The enumeration of all possible diagrams of a given two-bridge knot
can be efficiently done using Conway’s notation.

In this paper, we show:

Theorem. The lexicographic degree of all 186 two-bridge knots with crossing number N ≤
11 is (3, b, 3N − b), where the values of b are listed in Table 5, p. 30.

We prove this result in two steps.

Proposition 2.9 The lexicographic degree (3, b, c) of a knot with crossing number N ≤ 11
satisfies b+ c = 3N .

Proposition 2.9 also holds for all N when b ≤ N + 3 or b = ⌊3N−1

2
⌋. We prove in Theorem

2.5 that b + c ≥ 3N for any polynomial parametrisation of degree (3, b, c) of a knot with
crossing number N . Furthermore, every two-bridge knot of crossing number N admits
a parametrisation of degree (3, b, c) with b + c = 3N , see [KP11]. We do not know if
Proposition 2.9 holds for all crossing numbers N ≥ 12.

Proposition 2.9 allows us to reduce the determination of the lexicographic degree of a
two-bridge knot to the study of plane curves. For knots with 11 crossings or fewer, it is
enough to determine the smallest integer b such that a plane projection admits a polynomial
parametrisation of degree (3, b). This reduction to plane curves enlarges the set of tools
at our disposal; in particular we make an important use of Orevkov’s braid theoretical
approach in the study of pseudoholomorphic curves.

Hence the second step in the proof of our theorem is to focus on parametrisations of plane
projections. We introduce the T-reduction in Section 3.3, that corresponds to the projection
of the Lagrange isotopy on trigonal diagrams. The T-reduction allows us to remove a triangle
of crossings from a diagram, and therefore to obtain an upper bound for degrees we are
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deg 41 = (3, 5, 7) deg 51 = (3, 7, 8)

Figure 1.1. Trigonal polynomial diagrams of the figure-eight knot 41
and the torus knot 51

Two-bridge knots are an important family of knots. The first 26 knots
(except 85) are two-bridge knots. Moreover these knots are classified by
their Schubert fractions, which can be easily computed from any trigonal
projection, see Section 2.1.

One might expect that the lexicographic degree of a knot K is the degree
of a minimal-crossing diagram of this knot. This is not true. The diagram
on the left of Figure 1.2 is a minimal crossing diagram of the knot 915. The
diagram on the right is a 10-crossing diagram of smaller degree of the same
knot.

deg 41 = (3, 5, 7) deg 51 = (3, 7, 8)

Figure 1: Trigonal polynomial diagrams of the figure-eight knot 41 and the torus knot 51

A 9-crossing diagram of degree ≥ (3, 13, 14) A 10-crossing diagram of degree (3, 11, 16)

Figure 2: Two diagrams of 915

of two-bridge knots. The enumeration of all possible diagrams of a given two-bridge knot
can be efficiently done using Conway’s notation.

In this paper, we show:

Theorem. The lexicographic degree of all 186 two-bridge knots with crossing number N ≤
11 is (3, b, 3N − b), where the values of b are listed in Table 5, p. 30.

We prove this result in two steps.

Proposition 2.9 The lexicographic degree (3, b, c) of a knot with crossing number N ≤ 11
satisfies b+ c = 3N .

Proposition 2.9 also holds for all N when b ≤ N + 3 or b = ⌊3N−1

2
⌋. We prove in Theorem

2.5 that b + c ≥ 3N for any polynomial parametrisation of degree (3, b, c) of a knot with
crossing number N . Furthermore, every two-bridge knot of crossing number N admits
a parametrisation of degree (3, b, c) with b + c = 3N , see [KP11]. We do not know if
Proposition 2.9 holds for all crossing numbers N ≥ 12.

Proposition 2.9 allows us to reduce the determination of the lexicographic degree of a
two-bridge knot to the study of plane curves. For knots with 11 crossings or fewer, it is
enough to determine the smallest integer b such that a plane projection admits a polynomial
parametrisation of degree (3, b). This reduction to plane curves enlarges the set of tools
at our disposal; in particular we make an important use of Orevkov’s braid theoretical
approach in the study of pseudoholomorphic curves.

Hence the second step in the proof of our theorem is to focus on parametrisations of plane
projections. We introduce the T-reduction in Section 3.3, that corresponds to the projection
of the Lagrange isotopy on trigonal diagrams. The T-reduction allows us to remove a triangle
of crossings from a diagram, and therefore to obtain an upper bound for degrees we are

3

A 9-crossing diagram of degree > (3, 13, 14)

deg 41 = (3, 5, 7) deg 51 = (3, 7, 8)

Figure 1: Trigonal polynomial diagrams of the figure-eight knot 41 and the torus knot 51

A 9-crossing diagram of degree ≥ (3, 13, 14) A 10-crossing diagram of degree (3, 11, 16)

Figure 2: Two diagrams of 915

of two-bridge knots. The enumeration of all possible diagrams of a given two-bridge knot
can be efficiently done using Conway’s notation.

In this paper, we show:

Theorem. The lexicographic degree of all 186 two-bridge knots with crossing number N ≤
11 is (3, b, 3N − b), where the values of b are listed in Table 5, p. 30.

We prove this result in two steps.

Proposition 2.9 The lexicographic degree (3, b, c) of a knot with crossing number N ≤ 11
satisfies b+ c = 3N .

Proposition 2.9 also holds for all N when b ≤ N + 3 or b = ⌊3N−1

2
⌋. We prove in Theorem

2.5 that b + c ≥ 3N for any polynomial parametrisation of degree (3, b, c) of a knot with
crossing number N . Furthermore, every two-bridge knot of crossing number N admits
a parametrisation of degree (3, b, c) with b + c = 3N , see [KP11]. We do not know if
Proposition 2.9 holds for all crossing numbers N ≥ 12.

Proposition 2.9 allows us to reduce the determination of the lexicographic degree of a
two-bridge knot to the study of plane curves. For knots with 11 crossings or fewer, it is
enough to determine the smallest integer b such that a plane projection admits a polynomial
parametrisation of degree (3, b). This reduction to plane curves enlarges the set of tools
at our disposal; in particular we make an important use of Orevkov’s braid theoretical
approach in the study of pseudoholomorphic curves.

Hence the second step in the proof of our theorem is to focus on parametrisations of plane
projections. We introduce the T-reduction in Section 3.3, that corresponds to the projection
of the Lagrange isotopy on trigonal diagrams. The T-reduction allows us to remove a triangle
of crossings from a diagram, and therefore to obtain an upper bound for degrees we are

3

A 10-crossing diagram of degree (3, 11, 16)

Figure 1.2. Two diagrams of 915

– 762 –



The lexicographic degree of the first two-bridge knots

This is why it is necessary to consider all the diagrams of two-bridge
knots. The enumeration of all possible diagrams of a given two-bridge knot
can be efficiently done using Conway’s notation.

In this paper, we show:

Theorem. — The lexicographic degree of all 186 two-bridge knots with
crossing number N 6 11 is (3, b, 3N − b), where the values of b are listed in
Table 5.1, p. 792.

We prove this result in two steps.

Proposition 2.9. — The lexicographic degree (3, b, c) of a knot with
crossing number N 6 11 satisfies b+ c = 3N .

Proposition 2.9 also holds for all N when b 6 N + 3 or b = b 3N−1
2 c. We

prove in Theorem 2.5 that b + c > 3N for any polynomial parametrisation
of degree (3, b, c) of a knot with crossing number N . Furthermore, every
two-bridge knot of crossing number N admits a parametrisation of degree
(3, b, c) with b+ c = 3N , see [5]. We do not know if Proposition 2.9 holds for
all crossing numbers N > 12.

Proposition 2.9 allows us to reduce the determination of the lexicographic
degree of a two-bridge knot to the study of plane curves. For knots with
11 crossings or fewer, it is enough to determine the smallest integer b such
that a plane projection admits a polynomial parametrisation of degree (3, b).
This reduction to plane curves enlarges the set of tools at our disposal; in
particular we make an important use of Orevkov’s braid theoretical approach
in the study of pseudoholomorphic curves.

Hence the second step in the proof of our theorem is to focus on parametri-
sations of plane projections. We introduce the T-reduction in Section 3.3,
that corresponds to the projection of the Lagrange isotopy on trigonal dia-
grams. The T-reduction allows us to remove a triangle of crossings from a
diagram, and therefore to obtain an upper bound for degrees we are look-
ing for. On the other hand, we introduce the T-augmentation in Section 3.4
that allows us to add a triangle of crossings to a given diagram D. From a
polynomial parametrisation corresponding to D we deduce a parametrisa-
tion for the new diagram. We propose an algorithm to find the lexicographic
degrees of the first 186 two-bridge knots, i.e., of all two-bridge knots with 11
crossings or fewer.

As a byproduct of our computations, we also exhibit in Table 5.2 the
16 two-bridge knots with 11 crossings or fewer for which the lexicographic
degree is smaller than the degree of their minimal-crossing diagrams.
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The paper is organised as follows. In Section 2.1 we recall Conway’s nota-
tion for trigonal diagrams of two-bridge knots. Then we prove the inequality
b + c > 3N in Section 2.2 and deduce Proposition 2.9. In Section 3, we
consider plane trigonal curves and we first obtain a lower bound for the
lexicographic degree of a trigonal polynomial embedding in Proposition 3.2.
We obtain another bound for pseudoholomorphic curves and therefore for
polynomial embeddings in Proposition 3.7. In Section 4, we obtain the lex-
icographic degrees of the first 186 two-bridge knots with 11 crossings or
fewer.

Acknowledgements

The authors are grateful to the referee and specially to S. Orevkov for
his very attentive reading and many useful comments and suggestions.

This paper is dedicated to the memory of our colleague and friend Daniel
Pecker, who passed away on September 2019, 14.

Daniel Pecker was an expert in real algebraic geometry, he defended his
PhD on Nash functions in 1983 at the Université de Rennes (France). He
served as Associate Professor at the Université of Niamey (Niger) and at
the Université Cheikh Anta Diop in Dakar (Sénégal), and from 1988 on as
Associate Professor at the Université Pierre-and-Marie Curie in Paris. In his
last years, he has been interested in polynomial representations of knots. We
quote in particular his proof of a conjecture of V. F. R. Jones: there exists a
convex body B such that any knot is isotopic to a billiard trajectory in B.

2. A lower bound for the total degree of trigonal diagrams

2.1. Trigonal diagrams of two-bridge knots

A two-bridge knot admits a diagram in Conway’s open form (or trigo-
nal form). This diagram, denoted by C(m1,m2, . . . ,mk) where mi ∈ Z, is
explained by Figure 2.1 (see [3], [6, p. 187]).

The number of twists is denoted by the integer |mi|, and the sign of mi

is defined as follows: if i is odd, then the right twist is positive, if i is even,
then the right twist is negative. In Figure 2.1 the integers mi are all positive.
Figure 2.2 shows the examples C(0, 1, 3), C(3, 0,−1,−2).

– 764 –



The lexicographic degree of the first two-bridge knots

looking for. On the other hand, we introduce the T-augmentation in Section 3.4 that allows
us to add a triangle of crossings to a given diagram D. From a polynomial parametrisation
corresponding to D we deduce a parametrisation for the new diagram.

We propose an algorithm to find the lexicographic degrees of the first 186 two-bridge knots,
i.e., of all two-bridge knots with 11 crossings or fewer.

As a byproduct of our computations, we also exhibit in Table 6 the 16 two-bridge knots
with 11 crossings or fewer for which the lexicographic degree is smaller than the degree of
their minimal-crossing diagrams.

The paper is organised as follows. In Section 2.1 we recall Conway’s notation for trigonal
diagrams of two-bridge knots. Then we prove the inequality b+ c ≥ 3N in Section 2.2 and
deduce Proposition 2.9. In Section 3, we consider plane trigonal curves and we first obtain a
lower bound for the lexicographic degree of a trigonal polynomial embedding in Proposition
3.2. We obtain another bound for pseudoholomorphic curves and therefore for polynomial
embeddings in Proposition 3.7. In Section 4, we obtain the lexicographic degrees of the first
186 two-bridge knots with 11 crossings or fewer.

Acknowledgements

The authors are grateful to the referee and specially to S. Orevkov for his very attentive
reading and many useful comments and suggestions.

2 A lower bound for the total degree of trigonal diagrams

2.1 Trigonal diagrams of two-bridge knots

A two-bridge knot admits a diagram in Conway’s open form (or trigonal form). This dia-
gram, denoted by C(m1,m2, . . . ,mk) where mi ∈ Z, is explained by Figure 3 (see [Con70],
[Mur08, p. 187]). The number of twists is denoted by the integer |mi|, and the sign of mi

m1

m2

mk−1

mk

m1

m2 mk−1

mk

Figure 3: Conway’s form for two-bridge knots (or links)

is defined as follows: if i is odd, then the right twist is positive, if i is even, then the right
twist is negative. In Figure 3 the integers mi are all positive. Figure 4 shows the examples
C(0, 1, 3), C(3, 0,−1,−2).

4

Figure 2.1. Conway’s form for two-bridge knots (or links)

C(0, 1, 3) C(3, 0,−1,−2)

Figure 4: Examples of trigonal diagrams

The two-bridge knots (or links) are classified by their Schubert fractions

α

β
= m1 +

1

m2 +
1

· · ·+
1

mk

= [m1, . . . ,mk], α ≥ 0, (α,β) = 1.

Given [m1, . . . ,mk] =
α

β
and [m′

1, . . . ,m
′

l] =
α′

β′
, the diagrams C(m1,m2, . . . ,mk) and

C(m′

1,m
′

2, . . . ,m
′

l) correspond to isotopic knots (or links) if and only if α = α′ and either
β′ ≡ β (modα) or β′β ≡ 1 (modα), see [Mur08, Theorem 9.3.3].

Every positive fraction α/β admits a continued fraction expansion [m1, . . . ,mk] where all
the mi are positive. Therefore every two-bridge knot K admits a diagram in Conway’s
normal form, that is an alternating diagram of the form C(m1,m2, . . . ,mk), where the mi

are all positive or all negative. In this case the crossing number of K is N =
�

�

�

�k
i=1

mi

�

�

�
.

Definition 2.1 Let C(u,m,−n,−v) be a trigonal diagram, where m,n are integers, and
u, v are (possibly empty) sequences of integers, see Figure 5. The Lagrange isotopy on D is

C(u,m,−n,−v) → C(u,m− ε, ε, n − ε, v), ε = ±1, (1)

m− 1

1− n

m− 1 n− 1

Figure 5: Lagrange isotopy: C(u,m,−n,−v) → C(u,m− 1, 1, n− 1, v)

It is classical that one can transform any trigonal diagram of a two-bridge knot into Conway’s
normal form using the Lagrange isotopies, see [Cro04, p. 204].

If D = C(m1, . . . ,mk) is not in Conway’s normal form, then it may happen that m1 = 0 or
mk = 0. In this case, the diagram D′ = C(m3, . . . ,mk) or D′ = C(m1, . . . ,mk−2) respec-
tively, is the reduced diagram ofD. Since the diagram C(m1, . . . ,mi, 0, 0,mi+1,mi+2, . . . ,mk)
is identical to C(m1, . . . ,mk), we can assume that if mi = 0 then mi−1mi+1 6= 0.

Given such a finite integer sequence (m1, . . . ,mk), we say that there is a sign change between
mi and mi+1 if mimi+1 < 0 or if mi = 0 and mi−1mi+1 < 0. We say that there is a double

5
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�

�
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Definition 2.1 Let C(u,m,−n,−v) be a trigonal diagram, where m,n are integers, and
u, v are (possibly empty) sequences of integers, see Figure 5. The Lagrange isotopy on D is

C(u,m,−n,−v) → C(u,m− ε, ε, n − ε, v), ε = ±1, (1)

m− 1

1− n

m− 1 n− 1

Figure 5: Lagrange isotopy: C(u,m,−n,−v) → C(u,m− 1, 1, n− 1, v)

It is classical that one can transform any trigonal diagram of a two-bridge knot into Conway’s
normal form using the Lagrange isotopies, see [Cro04, p. 204].

If D = C(m1, . . . ,mk) is not in Conway’s normal form, then it may happen that m1 = 0 or
mk = 0. In this case, the diagram D′ = C(m3, . . . ,mk) or D′ = C(m1, . . . ,mk−2) respec-
tively, is the reduced diagram ofD. Since the diagram C(m1, . . . ,mi, 0, 0,mi+1,mi+2, . . . ,mk)
is identical to C(m1, . . . ,mk), we can assume that if mi = 0 then mi−1mi+1 6= 0.

Given such a finite integer sequence (m1, . . . ,mk), we say that there is a sign change between
mi and mi+1 if mimi+1 < 0 or if mi = 0 and mi−1mi+1 < 0. We say that there is a double
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C(0, 1, 3) C(3, 0,−1,−2)

Figure 2.2. Examples of trigonal diagrams

The two-bridge knots (or links) are classified by their Schubert fractions
α

β
= m1 + 1

m2 + 1
···+ 1

mk

= [m1, . . . ,mk], α > 0, (α, β) = 1.

Given [m1, . . . ,mk] = α
β and [m′1, . . . ,m′l] = α′

β′ , the diagrams C(m1,m2, . . . ,

mk) and C(m′1,m′2, . . . ,m′l) correspond to isotopic knots (or links) if and
only if α = α′ and either β′ ≡ β (modα) or β′β ≡ 1 (modα), see [6, Theo-
rem 9.3.3]. Every positive fraction α/β admits a continued fraction expansion
[m1, . . . ,mk] where all the mi are positive. Therefore every two-bridge knot
K admits a diagram in Conway’s normal form, that is an alternating di-
agram of the form C(m1,m2, . . . ,mk), where the mi are all positive or all
negative. In this case the crossing number of K is N = |

∑k
i=1 mi|.

Definition 2.1. — Let C(u,m,−n,−v) be a trigonal diagram, where
m,n are integers, and u, v are (possibly empty) sequences of integers, see
Figure 2.3. The Lagrange isotopy on D is

C(u,m,−n,−v)→ C(u,m− ε, ε, n− ε, v), ε = ±1, (2.1)
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Figure 4: Examples of trigonal diagrams
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· · ·+
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= [m1, . . . ,mk], α ≥ 0, (α,β) = 1.

Given [m1, . . . ,mk] =
α

β
and [m′

1, . . . ,m
′

l] =
α′

β′
, the diagrams C(m1,m2, . . . ,mk) and

C(m′

1,m
′

2, . . . ,m
′

l) correspond to isotopic knots (or links) if and only if α = α′ and either
β′ ≡ β (modα) or β′β ≡ 1 (modα), see [Mur08, Theorem 9.3.3].

Every positive fraction α/β admits a continued fraction expansion [m1, . . . ,mk] where all
the mi are positive. Therefore every two-bridge knot K admits a diagram in Conway’s
normal form, that is an alternating diagram of the form C(m1,m2, . . . ,mk), where the mi

are all positive or all negative. In this case the crossing number of K is N =
�
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.

Definition 2.1 Let C(u,m,−n,−v) be a trigonal diagram, where m,n are integers, and
u, v are (possibly empty) sequences of integers, see Figure 5. The Lagrange isotopy on D is

C(u,m,−n,−v) → C(u,m− ε, ε, n − ε, v), ε = ±1, (1)

m− 1

1− n

m− 1 n− 1

Figure 5: Lagrange isotopy: C(u,m,−n,−v) → C(u,m− 1, 1, n− 1, v)

It is classical that one can transform any trigonal diagram of a two-bridge knot into Conway’s
normal form using the Lagrange isotopies, see [Cro04, p. 204].

If D = C(m1, . . . ,mk) is not in Conway’s normal form, then it may happen that m1 = 0 or
mk = 0. In this case, the diagram D′ = C(m3, . . . ,mk) or D′ = C(m1, . . . ,mk−2) respec-
tively, is the reduced diagram ofD. Since the diagram C(m1, . . . ,mi, 0, 0,mi+1,mi+2, . . . ,mk)
is identical to C(m1, . . . ,mk), we can assume that if mi = 0 then mi−1mi+1 6= 0.

Given such a finite integer sequence (m1, . . . ,mk), we say that there is a sign change between
mi and mi+1 if mimi+1 < 0 or if mi = 0 and mi−1mi+1 < 0. We say that there is a double

5

C(0, 1, 3) C(3, 0,−1,−2)

Figure 4: Examples of trigonal diagrams

The two-bridge knots (or links) are classified by their Schubert fractions

α

β
= m1 +

1

m2 +
1

· · ·+
1

mk

= [m1, . . . ,mk], α ≥ 0, (α,β) = 1.

Given [m1, . . . ,mk] =
α

β
and [m′

1, . . . ,m
′

l] =
α′

β′
, the diagrams C(m1,m2, . . . ,mk) and

C(m′

1,m
′

2, . . . ,m
′

l) correspond to isotopic knots (or links) if and only if α = α′ and either
β′ ≡ β (modα) or β′β ≡ 1 (modα), see [Mur08, Theorem 9.3.3].

Every positive fraction α/β admits a continued fraction expansion [m1, . . . ,mk] where all
the mi are positive. Therefore every two-bridge knot K admits a diagram in Conway’s
normal form, that is an alternating diagram of the form C(m1,m2, . . . ,mk), where the mi

are all positive or all negative. In this case the crossing number of K is N =
�

�

�

�k
i=1

mi

�

�

�
.

Definition 2.1 Let C(u,m,−n,−v) be a trigonal diagram, where m,n are integers, and
u, v are (possibly empty) sequences of integers, see Figure 5. The Lagrange isotopy on D is

C(u,m,−n,−v) → C(u,m− ε, ε, n − ε, v), ε = ±1, (1)

m− 1

1− n

m− 1 n− 1

Figure 5: Lagrange isotopy: C(u,m,−n,−v) → C(u,m− 1, 1, n− 1, v)

It is classical that one can transform any trigonal diagram of a two-bridge knot into Conway’s
normal form using the Lagrange isotopies, see [Cro04, p. 204].

If D = C(m1, . . . ,mk) is not in Conway’s normal form, then it may happen that m1 = 0 or
mk = 0. In this case, the diagram D′ = C(m3, . . . ,mk) or D′ = C(m1, . . . ,mk−2) respec-
tively, is the reduced diagram ofD. Since the diagram C(m1, . . . ,mi, 0, 0,mi+1,mi+2, . . . ,mk)
is identical to C(m1, . . . ,mk), we can assume that if mi = 0 then mi−1mi+1 6= 0.

Given such a finite integer sequence (m1, . . . ,mk), we say that there is a sign change between
mi and mi+1 if mimi+1 < 0 or if mi = 0 and mi−1mi+1 < 0. We say that there is a double

5

Figure 2.3. Lagrange isotopy: C(u,m,−n,−v)→ C(u,m− 1, 1, n− 1, v)
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It is classical that one can transform any trigonal diagram of a two-bridge
knot into Conway’s normal form using the Lagrange isotopies, see [4, p. 204].

If D = C(m1, . . . ,mk) is not in Conway’s normal form, then it may hap-
pen thatm1 = 0 ormk = 0. In this case, the diagramD′ = C(m3, . . . ,mk) or
D′ = C(m1, . . . ,mk−2) respectively, is the reduced diagram of D. Since the
diagram C(m1, . . . ,mi, 0, 0,mi+1,mi+2, . . . ,mk) is identical to C(m1, . . . ,
mk), we can assume that if mi = 0 then mi−1mi+1 6= 0.

Given such a finite integer sequence (m1, . . . ,mk), we say that there
is a sign change between mi and mi+1 if mimi+1 < 0 or if mi = 0 and
mi−1mi+1 < 0. We say that there is a double sign change between mi and
mi+2 if there are two sign changes between mi and mi+1 and between mi+1
and mi+2.

Proposition 2.2. — Let C(m1, . . . ,mk) be a diagram of a knot with
crossing number N . Let N0 =

∑k
i=1|mi| be the number of crossings, and σ

be the number of sign changes in the sequence (m1, . . . ,mk). Then we have
N 6 N0 − σ.

Proof. — If σ = 0, then the inequality means that the crossing number of
a knot is not greater than the number of crossings of a diagram of this knot.
Consequently, we can suppose σ > 1. Let us prove the result by induction
on N0 =

∑k
i=1|mi|. We have to consider two cases.

First, let us suppose that the diagram is of the form C(u,m,−n,−v),
m,n > 0. Then by a Lagrange isotopy we see that C(u,m − 1, 1, n − 1, v)
is another diagram of K. In this new diagram, the number of crossings and
the number of sign changes are both diminished by 1. Therefore we obtain
by induction:

N 6 (N0 − 1)− (σ − 1) = N0 − σ.
Next, let us consider a diagram of the form C(u,m, 0,−n, v), mn > 0. In
this case we consider the new diagram C(u,m− n, v). If σ′ is the number of
sign changes of this new diagram, then a case by case inspection shows that
σ′ > σ−2. As the number of crossings is diminished by at least 2, we obtain
by induction:

N 6 (N0 − 2)− (σ − 2) = N0 − σ,
which concludes the proof. �

The proof of Proposition 2.2 also implies the following lemma.

Lemma 2.3. — In the notation of Proposition 2.2, we have:

(1) If σ = 0, then N < N0 if and only if m1 ·mk = 0.
(2) If σ = 1 and N < N0−1, then one of the following situations occurs:

– m1 = 0 or mk = 0,
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– there exists i such that mi = 0 and mi−1mi+1 < 0,
– |m1| = 1 and m1m2 < 0 or |mk| = 1 and mk−1mk < 0.

Let D be a long knot diagram, and γ : R → R3 be a parametrisation of
D whose crossing points correspond to the parameters t1 < · · · < t2m. Recall
that the Gauss sequence of D is the sequence g1, . . . , g2m where gi = 1 if ti
corresponds to an overpass, and gi = −1 otherwise.

Proposition 2.4. — Let C(m1, . . . ,mk), mi 6= 0, be a trigonal diagram
of a knot K, and N0 =

∑
|mi|. Let s be the number of sign changes in

the Gauss sequence of the diagram, σ be the number of sign changes in the
sequence (m1, . . . ,mk), and σ2 be the number of double sign changes in the
sequence (m1, . . . ,mk). Then, we have

s = 2N0 − 3σ + 2σ2 − 1.

Proof. — We proceed by induction on (σ2, σ). If σ = 0 then σ2 = 0 and
the diagram of K is alternating. In this case we have s = 2

∑
|mi| − 1 =

2N0 − 1.

If σ2 = 0, we may assume that m1 > 0. Let j be the first index just that
mi < 0. Then j = k or mj+1 < 0, because σ2 = 0. Let us consider the knot
K ′ defined by K ′ = C(m1, . . . ,mj−1,−mj ,−mj+1, . . . ,−mk). We see that
the number of sign changes in the Conway sequence of K ′ is σ′ = σ− 1, and
that we still have σ′2 = 0. By induction we get s′ + 3σ′ = 2

∑
|mi| − 1. Since

we have s′ = s+ 3, this completes the proof when σ2 = 0.

Now, let us suppose that σ2 > 0 and consider the first index j such
that mj−1 mj < 0 and mj mj+1 < 0. Consider K ′ defined by K ′ =
C(m1, . . . ,mj−1,−mj ,−mj+1, . . . ,−mk). We see that the number of sign
changes in the Conway sequence of K ′ is σ′ = σ − 1 and also σ′2 = σ2 − 1.
By induction we get s′ + 3σ′ − 2σ′2 = 2

∑
|mi| − 1. Since we have s′ = s+ 1,

this concludes the proof. �

2.2. Total degree of trigonal diagrams

The next theorem provides a lower bound on the total degree of every
trigonal knot diagram.

Theorem 2.5. — Let γ : R → R3 be a polynomial parametrisation of
degree (3, b, c) of a knot of crossing number N . Then we have

b+ c > 3N.
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Proof. — We shall denote our polynomial knot γ(t) = (x(t), y(t), z(t)).
Without loss of generality, we may assume that b is not divisible by 3. Let
C(m1,m2, . . . ,mk) be the corresponding xy-diagram. To simplify the expo-
sition, we shall first suppose that mi 6= 0 for i = 2, . . . , k − 1.

By the genus formula, the plane curve C parametrised by C(t) =
(x(t), y(t)) has exactly b−1 nodes in C2. Let N0 =

∑k
i=1 |mi| be the number

of real crossings of C (i.e. real nodes of C which are the intersection of two
real branches of C), and let δ = b − 1 − N0 be the number of other nodes
of C.

The real crossings are ordered by increasing abscissae. A real crossing is
called special if its Conway sign (for the trigonal diagram) is different from
the Conway sign of the preceding crossing.

Figure 6: Special crossings of C(3,−1, 1,−1, 1,−2) and C(2,−1,−1, 2)

polynomial of degree σ+ δ, whose roots are the abscissae of the σ special crossings and the
abscissae of the δ nodes that are not crossings. The polynomial D(x) is real.

Let V be the vector space of polynomials V (x, y) ∈ C[x, y] generated by the b − 1
monomials xαyβ such that 3α + bβ ≤ 2b − 4. If V (x, y) ∈ V, is a non constant polynomial
then V (x(t), y(t)) is a non constant polynomial of degree ≤ 2b − 4, since the integers
deg

�

xα(t)yβ(t)
�

are distinct for 3α + bβ ≤ 2b− 4.
Let F be the vector space of complex functions defined on the set of nodes of C. The

restriction induces a linear mapping ι : V → F between spaces of the same dimension. If
U(x, y) is in the kernel of ι, then we have U(x(t), y(t)) = 0 for 2b − 2 values of t. Since
degU(x(t), y(t)) ≤ 2b − 4, we see that U(x(t), y(t)) = 0 for all t and then U(x, y) = 0.
Hence ι is an injective mapping and then it is an isomorphism.

For each non-special crossing with parameters (ti, si), let hi be a real number in the open
interval (z(ti), z(si)). Since ι is an isomorphism, there exists a unique polynomial V (x, y)
such that V (xi, yi) = hiD(xi) for each non-special crossing (xi, yi), and V (x, y) = 0 for all
other nodes of C. By uniqueness, we see that V (x, y) is a real polynomial. Let us consider
the rational function h(t) defined by

h(t) =
V (x(t), y(t))

D(x(t))
.

Each parameter t of a special crossing (or special parameter) is a zero of the numerator
and a simple zero of the denominator. Consequently, the function h(t) is defined for all
crossing parameters. Up to perturbing z(t) by a constant if necessary, we can assume that
z(ti) 6= h(ti) for all crossing parameters ti.

Now, we shall prove that the polynomial equation

z(t)D(x(t)) − V (x(t), y(t)) = 0 (2)

has at least 2b− 3 distinct roots.
First, the two parameters t, s of a node such that V (x, y) = D(x) = 0 are roots of

this equation. The number of such roots is 2(σ + δ). The other roots are the zeroes of the
rational function Δ(t) = z(t)− h(t).

An interval [r, s] ⊂ R is called minimal if r, s are two non-special node parameters, and if
s > r is minimal for this property. In other words, there is no non-special node parameter
τ in (r, s). The number of minimal intervals is exactly 2(N0 − σ)− 1.

We claim that every minimal interval contains a zero of Δ(t) that is not a node param-
eter. Then the number of distinct roots of Equation (2) must be at least

2(N0 − σ)− 1 + 2(σ + δ) = 2(N0 + δ)− 1 = 2b− 3,

8

Figure 6: Special crossings of C(3,−1, 1,−1, 1,−2) and C(2,−1,−1, 2)

polynomial of degree σ+ δ, whose roots are the abscissae of the σ special crossings and the
abscissae of the δ nodes that are not crossings. The polynomial D(x) is real.

Let V be the vector space of polynomials V (x, y) ∈ C[x, y] generated by the b − 1
monomials xαyβ such that 3α + bβ ≤ 2b − 4. If V (x, y) ∈ V, is a non constant polynomial
then V (x(t), y(t)) is a non constant polynomial of degree ≤ 2b − 4, since the integers
deg

�

xα(t)yβ(t)
�

are distinct for 3α + bβ ≤ 2b− 4.
Let F be the vector space of complex functions defined on the set of nodes of C. The

restriction induces a linear mapping ι : V → F between spaces of the same dimension. If
U(x, y) is in the kernel of ι, then we have U(x(t), y(t)) = 0 for 2b − 2 values of t. Since
degU(x(t), y(t)) ≤ 2b − 4, we see that U(x(t), y(t)) = 0 for all t and then U(x, y) = 0.
Hence ι is an injective mapping and then it is an isomorphism.

For each non-special crossing with parameters (ti, si), let hi be a real number in the open
interval (z(ti), z(si)). Since ι is an isomorphism, there exists a unique polynomial V (x, y)
such that V (xi, yi) = hiD(xi) for each non-special crossing (xi, yi), and V (x, y) = 0 for all
other nodes of C. By uniqueness, we see that V (x, y) is a real polynomial. Let us consider
the rational function h(t) defined by

h(t) =
V (x(t), y(t))

D(x(t))
.

Each parameter t of a special crossing (or special parameter) is a zero of the numerator
and a simple zero of the denominator. Consequently, the function h(t) is defined for all
crossing parameters. Up to perturbing z(t) by a constant if necessary, we can assume that
z(ti) 6= h(ti) for all crossing parameters ti.

Now, we shall prove that the polynomial equation

z(t)D(x(t)) − V (x(t), y(t)) = 0 (2)

has at least 2b− 3 distinct roots.
First, the two parameters t, s of a node such that V (x, y) = D(x) = 0 are roots of

this equation. The number of such roots is 2(σ + δ). The other roots are the zeroes of the
rational function Δ(t) = z(t)− h(t).

An interval [r, s] ⊂ R is called minimal if r, s are two non-special node parameters, and if
s > r is minimal for this property. In other words, there is no non-special node parameter
τ in (r, s). The number of minimal intervals is exactly 2(N0 − σ)− 1.

We claim that every minimal interval contains a zero of Δ(t) that is not a node param-
eter. Then the number of distinct roots of Equation (2) must be at least

2(N0 − σ)− 1 + 2(σ + δ) = 2(N0 + δ)− 1 = 2b− 3,

8

Figure 2.4. Special crossings of C(3,−1, 1,−1, 1,−2) and C(2,−1,−1, 2)

The number of special crossings, denoted by σ, is the number of sign
changes in the Conway sequence (m1,m2, . . . ,mk). By Proposition 2.2, we
have N 6 N0−σ. Let D(x) be the monic polynomial of degree σ+ δ, whose
roots are the abscissae of the σ special crossings and the abscissae of the δ
nodes that are not crossings. The polynomial D(x) is real.

Let V be the vector space of polynomials V (x, y) ∈ C[x, y] generated by
the b − 1 monomials xαyβ such that 3α + bβ 6 2b − 4. If V (x, y) ∈ V, is a
non constant polynomial then V (x(t), y(t)) is a non constant polynomial of
degree 6 2b−4, since the integers deg

(
xα(t)yβ(t)

)
are distinct for 3α+bβ 6

2b− 4.

Let F be the vector space of complex functions defined on the set of
nodes of C. The restriction induces a linear mapping ι : V → F between
spaces of the same dimension. If U(x, y) is in the kernel of ι, then we have
U(x(t), y(t)) = 0 for 2b−2 values of t. Since degU(x(t), y(t)) 6 2b−4, we see
that U(x(t), y(t)) = 0 for all t and then U(x, y) = 0. Hence ι is an injective
mapping and then it is an isomorphism.

For each non-special crossing with parameters (ti, si), let hi be a real
number in the open interval (z(ti), z(si)). Since ι is an isomorphism, there
exists a unique polynomial V (x, y) such that V (xi, yi) = hiD(xi) for each
non-special crossing (xi, yi), and V (x, y) = 0 for all other nodes of C. By
uniqueness, we see that V (x, y) is a real polynomial. Let us consider the
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rational function h(t) defined by

h(t) = V (x(t), y(t))
D(x(t)) .

Each parameter t of a special crossing (or special parameter) is a zero of the
numerator and a simple zero of the denominator. Consequently, the function
h(t) is defined for all crossing parameters. Up to perturbing z(t) by a constant
if necessary, we can assume that z(ti) 6= h(ti) for all crossing parameters ti.

Now, we shall prove that the polynomial equation

z(t)D(x(t))− V (x(t), y(t)) = 0 (2.2)

has at least 2b− 3 distinct roots.

First, the two parameters t, s of a node such that V (x, y) = D(x) = 0
are roots of this equation. The number of such roots is 2(σ + δ). The other
roots are the zeroes of the rational function ∆(t) = z(t)− h(t).

An interval [r, s] ⊂ R is called minimal if r, s are two non-special node
parameters, and if s > r is minimal for this property. In other words, there is
no non-special node parameter τ in (r, s). The number of minimal intervals
is exactly 2(N0 − σ)− 1.

We claim that every minimal interval contains a zero of ∆(t) that is not
a node parameter. Then the number of distinct roots of Equation (2.2) must
be at least

2(N0 − σ)− 1 + 2(σ + δ) = 2(N0 + δ)− 1 = 2b− 3,

and the degree of the equation must be at least 2b− 3.

Since deg V (x(t), y(t)) 6 2b− 4, we deduce that

deg(z(t)D(x(t)) = c+ 3(δ + σ) > 2b− 3,

and then b + c > 3(b − 1 − δ − σ) = 3(N0 − σ) > 3N, which conclude the
proof in this case.

Let us prove our claim. To do so, we study the sign of the rational function
∆(t) on the minimal interval [r, s]. Let j be the number of special parameters
contained in [r, s], and let t0 = r, tj+1 = s. If j 6= 0, then let t1 < t2 < · · · <
tj be the special parameters contained in [r, s]. The function ∆(t) is defined
for each ti, and we have ∆(ti) 6= 0. The poles occur for the parameters
τ ∈ [r, s] such that D(x(τ)) = 0 and (x(τ), y(τ)) is not a crossing, they are
simple poles. Let [th, th+1] be the interval where the function x(t), t ∈ [r, s]
has a maximum. On this interval there is either one pole and no alternation
in the Gauss sequence of the knot, or no pole and one alternation.
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and the degree of the equation must be at least 2b− 3.

Since degV (x(t), y(t)) ≤ 2b− 4, we deduce that

deg(z(t)D(x(t)) = c+ 3(δ + σ) ≥ 2b− 3,

and then b+ c ≥ 3(b− 1− δ−σ) = 3(N0 −σ) ≥ 3N, which conclude the proof in this case.

Let us prove our claim. To do so, we study the sign of the rational function Δ(t) on the
minimal interval [r, s]. Let j be the number of special parameters contained in [r, s], and let
t0 = r, tj+1 = s. If j 6= 0, then let t1 < t2 < . . . < tj be the special parameters contained in
[r, s]. The function Δ(t) is defined for each ti, and we have Δ(ti) 6= 0. The poles occur for
the parameters τ ∈ [r, s] such that D(x(τ)) = 0 and (x(τ), y(τ)) is not a crossing, they are
simple poles. Let [th, th+1] be the interval where the function x(t), t ∈ [r, s] has a maximum.
On this interval there is either one pole and no alternation in the Gauss sequence of the
knot, or no pole and one alternation.

A

B

C A

B

C A C

A

C

Figure 7: The rightmost sub-arc AC (ordinary cases)

Figures 7 and 8 shows the main cases, the interval [th, th+1] corresponds to the rightmost
sub-arc AC of the arc parametrised by [r, s]. Note that the orientations of the considered
sub-arcs are not relevant.

A

B C

mk

A

B C

mk

Figure 8: The rightmost sub-arc AC (exceptional case)

On the other intervals [ti, ti+1], i 6= h there is either one pole and one alternation, or no
pole and no alternation, see Figure 9. Consequently, we see that Δ(r)Δ(s) < 0 if and only
if the number of poles contained in [r, s] is even. On the other hand, the number of sign
changes in [r, s] of the function Δ(t) is odd if and only if Δ(r)Δ(s) < 0. Consequently,
whatever the sign of Δ(r)Δ(s) may be, there must be at least one u ∈ [r, s] which is not a
pole, and where sign

�

Δ(t)
�

changes. Hence, u is a root of Equation (2), which proves the
claim.

9

Figure 2.5. The rightmost sub-arc AC (ordinary cases)

Figures 2.5 and 2.6 shows the main cases, the interval [th, th+1] corre-
sponds to the rightmost sub-arc AC of the arc parametrised by [r, s]. Note
that the orientations of the considered sub-arcs are not relevant.

and the degree of the equation must be at least 2b− 3.

Since degV (x(t), y(t)) ≤ 2b− 4, we deduce that

deg(z(t)D(x(t)) = c+ 3(δ + σ) ≥ 2b− 3,

and then b+ c ≥ 3(b− 1− δ−σ) = 3(N0 −σ) ≥ 3N, which conclude the proof in this case.

Let us prove our claim. To do so, we study the sign of the rational function Δ(t) on the
minimal interval [r, s]. Let j be the number of special parameters contained in [r, s], and let
t0 = r, tj+1 = s. If j 6= 0, then let t1 < t2 < . . . < tj be the special parameters contained in
[r, s]. The function Δ(t) is defined for each ti, and we have Δ(ti) 6= 0. The poles occur for
the parameters τ ∈ [r, s] such that D(x(τ)) = 0 and (x(τ), y(τ)) is not a crossing, they are
simple poles. Let [th, th+1] be the interval where the function x(t), t ∈ [r, s] has a maximum.
On this interval there is either one pole and no alternation in the Gauss sequence of the
knot, or no pole and one alternation.
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Figure 7: The rightmost sub-arc AC (ordinary cases)

Figures 7 and 8 shows the main cases, the interval [th, th+1] corresponds to the rightmost
sub-arc AC of the arc parametrised by [r, s]. Note that the orientations of the considered
sub-arcs are not relevant.
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Figure 8: The rightmost sub-arc AC (exceptional case)

On the other intervals [ti, ti+1], i 6= h there is either one pole and one alternation, or no
pole and no alternation, see Figure 9. Consequently, we see that Δ(r)Δ(s) < 0 if and only
if the number of poles contained in [r, s] is even. On the other hand, the number of sign
changes in [r, s] of the function Δ(t) is odd if and only if Δ(r)Δ(s) < 0. Consequently,
whatever the sign of Δ(r)Δ(s) may be, there must be at least one u ∈ [r, s] which is not a
pole, and where sign

�

Δ(t)
�

changes. Hence, u is a root of Equation (2), which proves the
claim.

9

Figure 2.6. The rightmost sub-arc AC (exceptional case)

On the other intervals [ti, ti+1], i 6= h there is either one pole and one
alternation, or no pole and no alternation, see Figure 2.7. Consequently, we
see that ∆(r)∆(s) < 0 if and only if the number of poles contained in [r, s] is
even. On the other hand, the number of sign changes in [r, s] of the function
∆(t) is odd if and only if ∆(r)∆(s) < 0. Consequently, whatever the sign of
∆(r)∆(s) may be, there must be at least one u ∈ [r, s] which is not a pole,
and where sign

(
∆(t)

)
changes. Hence, u is a root of Equation (2.2), which

proves the claim.
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Figure 9: The other sub-arcs AC

In the general case, there may be some mi = 0 in the diagram C(m1,m2, . . . ,mk), where
2 ≤ i ≤ k − 1. We shall inductively select some relevant crossings, and ignore the others.

If there is a subsequence of the form (m, 0,−n),m ≥ n > 0, then we declare the last 2n
crossings irrelevant, and we consider the new Conway sequence where (m, 0,−n) has been
changed to m − n. We iterate this selection (by elimination) until we obtain a diagram
C(m1, . . . ,mk) such that mi 6= 0, for i = 2, . . . , k − 1. Then, considering only the relevant
crossings, we choose the special crossings. We also define D(x) = V (x, y) = 0 for the special
crossings, the irrelevant crossings and the nodes that are not crossings. The rest of the proof
is similar to the preceding one, except that the number of poles on each minimal interval
[r, s] may be increased by an even number, which does not change the sign of Δ(r)Δ(s). ✷

In [KP11], it is proved that every two-bridge knot of crossing number N admits an explicit
parametrisation of the form (T3, Tb, C) where Tn is the Chebyshev polynomial of degree n
defined by Tn(cos t) = cosnt, and b+degC = 3N . Moreover, the harmonic knot H(3, b, c) :
(T3, Tb, Tc), where b < c < 2b, b + c ≡ 0 (mod 3) has crossing number N = 1

3
(b + c), see

[KP11, Corollary 6.6].

Combining these properties with Theorem 2.5, we deduce the following results which gen-
eralize [BKP16a, Theorem 4.3].

Corollary 2.6 The lexicographic degree (3, b, c) of a two-bridge knot of crossing number N
satisfies b+ c ≥ 3N and

N < b < c < 2b, b 6≡ 0 (mod 3), c ≡ 2b (mod 3),

(3, N + 1, 2N − 1) ≤ (3, b, c) ≤ (3, ⌊3N−1

2
⌋, ⌊3N

2
⌋+ 1).

(3)

Proof. The transformation (x, y, z) 7→ (x, y−λxu, z−µxvyw), where u, v, w are nonnegative
integers and λ, µ ∈ R, does not change the nature of the knot. This ensures that c < 2b
and b 6≡ 0 (mod 3) and b+c ≡ 0 (mod 3). Next, it is proved in [KP11], that every two-bridge
knot admits a polynomial parametrisation of degree (3, b′, c′), with b′ + c′ = 3N . This
implies that b ≤ ⌊3N−1

2
⌋. Furthermore if b = ⌊3N−1

2
⌋, then c ≤ 3N −⌊3N−1

2
⌋ = ⌊3N

2
⌋+1. If

γ : R → R3 is a polynomial parametrisation of degree (3, b, c) of a knot, then by forgetting
the last coordinate we obtain a polynomial map R → R2 of degree (3, b) with at least N

10

Figure 2.7. The other sub-arcs AC

In the general case, there may be some mi = 0 in the diagram C(m1,m2,
. . . ,mk), where 2 6 i 6 k − 1. We shall inductively select some relevant
crossings, and ignore the others.

If there is a subsequence of the form (m, 0,−n),m > n > 0, then we
declare the last 2n crossings irrelevant, and we consider the new Conway
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sequence where (m, 0,−n) has been changed to m − n. We iterate this se-
lection (by elimination) until we obtain a diagram C(m1, . . . ,mk) such that
mi 6= 0, for i = 2, . . . , k − 1. Then, considering only the relevant crossings,
we choose the special crossings. We also define D(x) = V (x, y) = 0 for the
special crossings, the irrelevant crossings and the nodes that are not cross-
ings. The rest of the proof is similar to the preceding one, except that the
number of poles on each minimal interval [r, s] may be increased by an even
number, which does not change the sign of ∆(r)∆(s). �

In [5], it is proved that every two-bridge knot of crossing numberN admits
an explicit parametrisation of the form (T3, Tb, C) where Tn is the Chebyshev
polynomial of degree n defined by Tn(cos t) = cosnt, and b + degC = 3N .
Moreover, the harmonic knot H(3, b, c) : (T3, Tb, Tc), where b < c < 2b,
b+ c ≡ 0 (mod 3) has crossing number N = 1

3 (b+ c), see [5, Corollary 6.6].

Combining these properties with Theorem 2.5, we deduce the following
results which generalize [1, Theorem 4.3].

Corollary 2.6. — The lexicographic degree (3, b, c) of a two-bridge knot
of crossing number N satisfies b+ c > 3N and

N < b < c < 2b, b 6≡ 0 (mod 3), c ≡ 2b (mod 3),

(3, N + 1, 2N − 1) 6 (3, b, c) 6
(

3,
⌊

3N − 1
2

⌋
,

⌊
3N
2

⌋
+ 1
)
.

(2.3)

Proof. — The transformation (x, y, z) 7→ (x, y − λxu, z − µxvyw), where
u, v, w are nonnegative integers and λ, µ ∈ R, does not change the nature of
the knot. This ensures that c < 2b and b 6≡ 0 (mod 3) and b+ c ≡ 0 (mod 3).
Next, it is proved in [5], that every two-bridge knot admits a polynomial
parametrisation of degree (3, b′, c′), with b′ + c′ = 3N . This implies that
b 6 b 3N−1

2 c. Furthermore if b = b 3N−1
2 c, then c 6 3N −b 3N−1

2 c = b 3N
2 c+ 1.

If γ : R → R3 is a polynomial parametrisation of degree (3, b, c) of a knot,
then by forgetting the last coordinate we obtain a polynomial map R → R2

of degree (3, b) with at least N crossings. The genus formula implies that
b > N + 1. In the case b = N + 1, Theorem 2.5 implies that c > 2N − 1. �

Remark 2.7. — Let us show that these bounds are best possible. If N 6≡
−1 (mod 3), then the harmonic knot H(3, N + 1, 2N − 1) is of degree (3, N +
1, 2N − 1). If N ≡ −1 (mod 3), then b > N + 2 and if b = N + 2 then
c > 2N − 2. The harmonic knot H(3, N + 2, 2N − 2) is of degree (3, N +
2, 2N − 2). The twist knots of crossing number N are of maximal degree
(3, b 3N−1

2 c, b 3N
2 c+ 1), see [1].

We also remark that the degree of a harmonic knot may be smaller than
the degree of its harmonic diagram. For example the knot H(3, 11, 16) = 917
is of degree (3, 10, 17), see Table 4.4.
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Proposition 2.8. — Let (3, b, c) be the lexicographic degree of a two-
bridge knot of crossing number N . If b 6 N + 3 or b = b 3N−1

2 c then we have
b+ c = 3N .

Proof. — By Theorem 2.5, we have b + c > 3N , and b + c = 3N if
b = b 3N−1

2 c by Corollary 2.6. Hence we assume now that b 6 N + 3. Let
γ(t) = (x(t), y(t), z(t)) be a polynomial representation of our knot K of
degree (3, b, c), and denote by D = C(m1, . . . ,mk) the trigonal diagram of
γ. If s denote the number of sign changes in the Gauss sequence of the
parametrisation γ, we clearly have c 6 s. Hence it remains us to obtain an
upper bound for s, using Propositions 2.2 and 2.4.

Let N0 =
∑
|mi|, and σ be the number of sign changes in the sequence

(m1, . . . ,mk). Combining Propositions 2.2 and the genus formula for plane
curves, we obtain

N + σ 6 N0 6 b− 1. (2.4)
First, suppose that b = N + 3. Then, by Corollary 2.6, N 6≡ 0 (mod 3) and
c ≡ 2N (mod 3). Consequently c 6= 2N − 1 and c 6= 2N − 2. Hence we only
have to prove that c 6 2N − 1.

(1) First, suppose that D = C(x,m, 0,−n,−y) with mn > 0, see Fig-
ure 2.8. Since N0 6 N + 2, we necessarily have |m| = 1 or |n| = 1.
Without loss of generality, we can assume that n = 1 and m > 0.
Consider the diagram D′ = C(x,m − 1,−y) obtained by a type-II
Reidemeister move on D. The diagram D′ has N0−2 = N crossings,
and then is an alternating diagram of K. Consequently the number
s′ of sign changes in the Gauss sequence of D′ is s′ = 2N − 1.

If (x,m) 6= (1) and (n, y) 6= (1), then we have s = s′ = 2N − 1
and consequently c 6 2N − 1, see Figure 2.8.

m− 1 m− 1

Figure 10: C(x,m, 0,−1,−y) 7→ C(x,m − 1,−y)

2. Then, suppose that D = C(x, n,−1) (the case D = C(1,−m, y) is similar). By
changing the nature of the last two crossings of D, we obtain another diagram D̃ =
C(x, n− 1, 0,−1, 1) of the same knot, see Figure 11. By case 1 above, we see that the
number of sign changes in the Gauss sequence of D̃ is s̃ = 2N − 1 and we deduce that
D̃ is of degree (3, N + 3, 2N − 3).

n− 1 n− 1

Figure 11: C(x, n,−1) = C(x, n − 1, 0, 1,−1) 7→ D̃ = C(x, n− 1, 0,−1, 1)

3. Now, suppose that D is not in the cases 1 and 2 above. If σ = 2, then N0 = N + 2
and σ2 ≤ 1. By Proposition 2.4, we obtain s = (2N0 − 1)− 3σ + 2σ2 ≤ 2N − 1.

If σ < 2 then either σ = 1 and N = N0 − 1 and the Gauss sequence of D has
s = 2N0 − 3σ − 1 = 2N − 2 sign changes by Proposition 2.4, or N < N0 − σ and we
have m1 · mk = 0 by Lemma 2.3. Consider the reduced diagram D′. If σ = 0, then
D′ is alternating and has N ′

0 = N crossings. Its Gauss sequence is alternating and
has s′ = 2N − 1 sign changes. If σ = 1, then D′ may have N ′

0 = N or N ′

0 = N + 1
crossings. If N ′

0 = N then D′ is alternating and there are s′ = 2N − 1 sign changes in
its Gauss sequence. If N ′

0 = N + 1, then D′ is not alternating and σ′ = 1. We thus
have s′ = 2N + 1− 3 = 2N − 2 by Proposition 2.4.

We then choose a polynomial of degree c ≤ s′ ≤ 2N − 1 as a height function for the
reduced diagram D′. If m1 = 0 (resp. mk = 0), the signs of the |m2| (resp. |mk−1|)
crossings do not affect the nature of the knot.

At the end we find a polynomial height function z(t) of degree c ≤ 2N − 1.

If b = N + 2, then N 6≡ 1 (mod 3) and c ≡ 2b ≡ 2N − 2 (mod 3), which implies that
c 6= 2N − 1. Hence again, we only have to prove s ≤ 2N − 1. By Inequality (4), we may
have N0 = N or N0 = N + 1.

1. If N0 = N , then the diagram is alternating and s ≤ 2N − 1.

2. If N0 = N + 1, then σ ≤ 1. If σ = 1, then s ≤ 2N − 1 by Proposition 2.4. If σ = 0,
then m1 · mk = 0 by Lemma 2.3. The reduced diagram is alternating and its Gauss
sequence has s′ ≤ 2N − 1 sign changes and so c ≤ 2N − 1.

12

m− 1 m− 1

Figure 10: C(x,m, 0,−1,−y) 7→ C(x,m − 1,−y)

2. Then, suppose that D = C(x, n,−1) (the case D = C(1,−m, y) is similar). By
changing the nature of the last two crossings of D, we obtain another diagram D̃ =
C(x, n− 1, 0,−1, 1) of the same knot, see Figure 11. By case 1 above, we see that the
number of sign changes in the Gauss sequence of D̃ is s̃ = 2N − 1 and we deduce that
D̃ is of degree (3, N + 3, 2N − 3).

n− 1 n− 1

Figure 11: C(x, n,−1) = C(x, n − 1, 0, 1,−1) 7→ D̃ = C(x, n− 1, 0,−1, 1)

3. Now, suppose that D is not in the cases 1 and 2 above. If σ = 2, then N0 = N + 2
and σ2 ≤ 1. By Proposition 2.4, we obtain s = (2N0 − 1)− 3σ + 2σ2 ≤ 2N − 1.

If σ < 2 then either σ = 1 and N = N0 − 1 and the Gauss sequence of D has
s = 2N0 − 3σ − 1 = 2N − 2 sign changes by Proposition 2.4, or N < N0 − σ and we
have m1 · mk = 0 by Lemma 2.3. Consider the reduced diagram D′. If σ = 0, then
D′ is alternating and has N ′

0 = N crossings. Its Gauss sequence is alternating and
has s′ = 2N − 1 sign changes. If σ = 1, then D′ may have N ′

0 = N or N ′

0 = N + 1
crossings. If N ′

0 = N then D′ is alternating and there are s′ = 2N − 1 sign changes in
its Gauss sequence. If N ′

0 = N + 1, then D′ is not alternating and σ′ = 1. We thus
have s′ = 2N + 1− 3 = 2N − 2 by Proposition 2.4.

We then choose a polynomial of degree c ≤ s′ ≤ 2N − 1 as a height function for the
reduced diagram D′. If m1 = 0 (resp. mk = 0), the signs of the |m2| (resp. |mk−1|)
crossings do not affect the nature of the knot.

At the end we find a polynomial height function z(t) of degree c ≤ 2N − 1.

If b = N + 2, then N 6≡ 1 (mod 3) and c ≡ 2b ≡ 2N − 2 (mod 3), which implies that
c 6= 2N − 1. Hence again, we only have to prove s ≤ 2N − 1. By Inequality (4), we may
have N0 = N or N0 = N + 1.

1. If N0 = N , then the diagram is alternating and s ≤ 2N − 1.

2. If N0 = N + 1, then σ ≤ 1. If σ = 1, then s ≤ 2N − 1 by Proposition 2.4. If σ = 0,
then m1 · mk = 0 by Lemma 2.3. The reduced diagram is alternating and its Gauss
sequence has s′ ≤ 2N − 1 sign changes and so c ≤ 2N − 1.

12

Figure 2.8. C(x,m, 0,−1,−y) 7→ C(x,m− 1,−y)

If we have (x,m) = (1) or (n, y) = 1, then we can suppose
(n, y) = (1) and D = C(x,m, 0,−1). If we change the nature of the
last two crossings, then we obtain another diagram D̃ = C(u,m −
1, 0,−1, 0, 1) of K with the same xy-projection. By the previous
case, we see that the number of sign changes in the Gauss sequence
of D̃ is s̃ = 2N − 1. Consequently D̃ is of degree at most (3, N +
3, 2N − 3).
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(2) Then, suppose that D = C(x, n,−1) (the case D = C(1,−m, y) is
similar). By changing the nature of the last two crossings of D, we
obtain another diagram D̃ = C(x, n− 1, 0,−1, 1) of the same knot,
see Figure 2.9. By case 1 above, we see that the number of sign
changes in the Gauss sequence of D̃ is s̃ = 2N − 1 and we deduce
that D̃ is of degree (3, N + 3, 2N − 3).

m− 1 m− 1

Figure 10: C(x,m, 0,−1,−y) 7→ C(x,m − 1,−y)

2. Then, suppose that D = C(x, n,−1) (the case D = C(1,−m, y) is similar). By
changing the nature of the last two crossings of D, we obtain another diagram D̃ =
C(x, n− 1, 0,−1, 1) of the same knot, see Figure 11. By case 1 above, we see that the
number of sign changes in the Gauss sequence of D̃ is s̃ = 2N − 1 and we deduce that
D̃ is of degree (3, N + 3, 2N − 3).

n− 1 n− 1

Figure 11: C(x, n,−1) = C(x, n − 1, 0, 1,−1) 7→ D̃ = C(x, n− 1, 0,−1, 1)

3. Now, suppose that D is not in the cases 1 and 2 above. If σ = 2, then N0 = N + 2
and σ2 ≤ 1. By Proposition 2.4, we obtain s = (2N0 − 1)− 3σ + 2σ2 ≤ 2N − 1.

If σ < 2 then either σ = 1 and N = N0 − 1 and the Gauss sequence of D has
s = 2N0 − 3σ − 1 = 2N − 2 sign changes by Proposition 2.4, or N < N0 − σ and we
have m1 · mk = 0 by Lemma 2.3. Consider the reduced diagram D′. If σ = 0, then
D′ is alternating and has N ′

0 = N crossings. Its Gauss sequence is alternating and
has s′ = 2N − 1 sign changes. If σ = 1, then D′ may have N ′

0 = N or N ′

0 = N + 1
crossings. If N ′

0 = N then D′ is alternating and there are s′ = 2N − 1 sign changes in
its Gauss sequence. If N ′

0 = N + 1, then D′ is not alternating and σ′ = 1. We thus
have s′ = 2N + 1− 3 = 2N − 2 by Proposition 2.4.

We then choose a polynomial of degree c ≤ s′ ≤ 2N − 1 as a height function for the
reduced diagram D′. If m1 = 0 (resp. mk = 0), the signs of the |m2| (resp. |mk−1|)
crossings do not affect the nature of the knot.

At the end we find a polynomial height function z(t) of degree c ≤ 2N − 1.

If b = N + 2, then N 6≡ 1 (mod 3) and c ≡ 2b ≡ 2N − 2 (mod 3), which implies that
c 6= 2N − 1. Hence again, we only have to prove s ≤ 2N − 1. By Inequality (4), we may
have N0 = N or N0 = N + 1.

1. If N0 = N , then the diagram is alternating and s ≤ 2N − 1.

2. If N0 = N + 1, then σ ≤ 1. If σ = 1, then s ≤ 2N − 1 by Proposition 2.4. If σ = 0,
then m1 · mk = 0 by Lemma 2.3. The reduced diagram is alternating and its Gauss
sequence has s′ ≤ 2N − 1 sign changes and so c ≤ 2N − 1.

12

Figure 2.9. C(x, n,−1) = C(x, n− 1, 0, 1,−1) 7→ D̃ = C(x, n− 1, 0,−1, 1)

(3) Now, suppose that D is not in the cases 1 and 2 above. If σ = 2,
then N0 = N + 2 and σ2 6 1. By Proposition 2.4, we obtain s =
(2N0 − 1)− 3σ + 2σ2 6 2N − 1.

If σ < 2 then either σ = 1 and N = N0 − 1 and the Gauss
sequence of D has s = 2N0 − 3σ − 1 = 2N − 2 sign changes by
Proposition 2.4, or N < N0 − σ and we have m1 · mk = 0 by
Lemma 2.3. Consider the reduced diagram D′. If σ = 0, then D′

is alternating and has N ′0 = N crossings. Its Gauss sequence is
alternating and has s′ = 2N − 1 sign changes. If σ = 1, then D′

may have N ′0 = N or N ′0 = N + 1 crossings. If N ′0 = N then D′

is alternating and there are s′ = 2N − 1 sign changes in its Gauss
sequence. If N ′0 = N + 1, then D′ is not alternating and σ′ = 1. We
thus have s′ = 2N + 1− 3 = 2N − 2 by Proposition 2.4.

We then choose a polynomial of degree c 6 s′ 6 2N − 1 as
a height function for the reduced diagram D′. If m1 = 0 (resp.
mk = 0), the signs of the |m2| (resp. |mk−1|) crossings do not affect
the nature of the knot.

At the end we find a polynomial height function z(t) of degree c 6 2N − 1.

If b = N + 2, then N 6≡ 1 (mod 3) and c ≡ 2b ≡ 2N − 2 (mod 3), which
implies that c 6= 2N − 1. Hence again, we only have to prove s 6 2N − 1.
By Inequality (2.4), we may have N0 = N or N0 = N + 1.

(1) If N0 = N , then the diagram is alternating and s 6 2N − 1.
(2) If N0 = N + 1, then σ 6 1. If σ = 1, then s 6 2N − 1 by Propo-

sition 2.4. If σ = 0, then m1 ·mk = 0 by Lemma 2.3. The reduced
diagram is alternating and its Gauss sequence has s′ 6 2N − 1 sign
changes and so c 6 2N − 1.

At the end we find a polynomial function z(t) of degree c 6 2N − 1.
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If b = N + 1 then N0 = N and the diagram is alternating. We thus have
c 6 s = 2N − 1. This concludes the proof, since b 6 N is impossible by
Formula (2.3). �

We deduce

Proposition 2.9. — The lexicographic degree (3, b, c) of a knot with
crossing number N 6 11 satisfies b+ c = 3N .

Proof. — By Corollary 2.6, we have (3, b, c) 6 (3, b 3N−1
2 c, b 3N

2 c + 1). If
b 6 N + 3 or b = b 3N−1

2 c, we conclude using Proposition 2.8. If b > N + 4
and b < b 3N−1

2 c, then N = 11, and b = 15 which is impossible since b is not
divisible by 3. �

3. Degrees of trigonal plane diagrams

Thanks to the relation b+ c = 3N established in Proposition 2.9, we are
now reduced to study plane trigonal curves. It is enough to determine the
smallest integer b such that the xy-projection of some diagram of K admits
a polynomial parametrisation of degree (3, b).

Given a long knot diagram D in R3, we denote by |D| its projection to
R2 (i.e. we forget about the sign of the crossings). If D = C(m1, . . . ,mk),
we use the notation |D| = D(|m1|, . . . , |mk|). An isotopy of R2 is called an
L-isotopy if it commutes with the projection R2 → R forgetting the second
coordinate.

Definition 3.1. — The algebraic degree of |D| is the minimal integer
b such that there exists a real algebraic curve γ : C → C2 of bidegree (3, b)
such that γ(R) is L-isotopic to |D|.

We first establish a lower bound for polynomial curves in Proposition 3.2.

3.1. Lower bounds on degrees of plane trigonal diagrams

Proposition 3.2. — Let |D| be the plane diagram D(m1,m2, . . . ,mk),
with mi > 2 for i = 1, . . . , k. Then the algebraic degree of |D| is at least
3k − 1. If in addition we have mi > 3 for some i, then the algebraic degree
of |D| is at least 3k + 1.

Proof. — Let γ(t) = (x(t), y(t)) be a polynomial parametrisation of |D|
with x(t) of degree 3, and let C be the image of γ. The complement of C
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Figure 12: The plane diagram D(2, 2, 3, 2)

least 2(k + 1) + (k − 1) = 3k + 1 > 3k, we deduce that deg(y(t)) ≥ 3k+ 1 (see Figure 12 in
the case of D(2, 2, 3, 2)). ✷

3.2 Application of Orevkov’s braid theoretical method

To obtain lower bounds on the algebraic degree b, it is convenient to enlarge the category
of objects under interest, and to consider real pseudoholomorphic curves rather than real
algebraic curves. Doing so, we can use the full power of the braid theoretical approach
developed by Orevkov to study real curves in C2. Using this strategy, we determined
in [BKP16a] the lexicographic degree of all torus knots C(m) and generalised twist-knots
C(m,n). We refer to [BKP16a, Section 3.2] for the definition of a real pseudoholomorphic
curve γ : C → C2 of bidegree (3, b) where b is a positive integer. Recall that a real algebraic
map γ : C → C2 of degree (3, b) is an example of a real pseudoholomorphic curve of bidegree
(3, b). Without loss of generality, we only consider in this text nodal pseudoholomorphic
curves.

Definition 3.3 The pseudoholomorphic degree of |D| is the minimal integer b such that
there exists a real pseudoholomorphic curve γ : C → C2 of bidegree (3, b) such that γ(R) is
L-isotopic to |D|. It is not greater than the algebraic degree of |D|.

Recall that the group of braids with 3-strings is defined as

B3 = hσ1,σ2 | σ1σ2σ1 = σ2σ1σ2i.

We refer to [BKP16a, Sections 2 and 3] for the definition of L-scheme and an algorithm
that associates an L-scheme and a braid bC ∈ B3 to any real pseudoholomorphic curve
C = γ(C), with γ : C → C2 a real pseudoholomorphic curve of bidegree (3, b). A braid
b ∈ B3 is said to be quasipositive if it can be written in the form

b =
ℓ
�

i=1

wiσ1w
−1

i with w1, . . . , wℓ ∈ B3. (5)

Note that a braid with algebraic length 0 is quasipositive if and only if it is the trivial braid.
The quasipositivity problem in B3 has been solved by Orevkov [Ore04, Ore15]. We will use
the following proposition in order to obtain lower bounds in lexicographic degree of knots.

14

Figure 3.1. The plane diagram D(2, 2, 3, 2)

contains mj−1 disks corresponding to the jth group of crossings of |D|. Let
us choose a point Pj in one of these disks. There is a polynomial curve of
equation y = P (x) with degP = k − 1 containing the k points Pj .

Since the number of intersections of this curve and C is at least 2k +
(k − 1) = 3k − 1 > 3(k − 1), we deduce that deg(y(t)) > 3k − 1.

If in addition some mi > 3, we choose one more point Pk+1 in another
disk of the ith group of two-sided domains. Then we count the intersections
of C with a curve y = P (x) deg(P (x)) = k containing the k + 1 points
Pj , j = 1, . . . , k + 1. Since this number is at least 2(k + 1) + (k − 1) =
3k + 1 > 3k, we deduce that deg(y(t)) > 3k + 1 (see Figure 3.1 in the case
of D(2, 2, 3, 2)). �

3.2. Application of Orevkov’s braid theoretical method

To obtain lower bounds on the algebraic degree b, it is convenient to
enlarge the category of objects under interest, and to consider real pseudo-
holomorphic curves rather than real algebraic curves. Doing so, we can use
the full power of the braid theoretical approach developed by Orevkov to
study real curves in C2. Using this strategy, we determined in [1] the lexico-
graphic degree of all torus knots C(m) and generalised twist-knots C(m,n).
We refer to [1, Section 3.2] for the definition of a real pseudoholomorphic
curve γ : C→ C2 of bidegree (3, b) where b is a positive integer. Recall that
a real algebraic map γ : C → C2 of degree (3, b) is an example of a real
pseudoholomorphic curve of bidegree (3, b). Without loss of generality, we
only consider in this text nodal pseudoholomorphic curves.

Definition 3.3. — The pseudoholomorphic degree of |D| is the minimal
integer b such that there exists a real pseudoholomorphic curve γ : C→ C2

of bidegree (3, b) such that γ(R) is L-isotopic to |D|. It is not greater than
the algebraic degree of |D|.

Recall that the group of braids with 3-strings is defined as

B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉.
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We refer to [1, Sections 2 and 3] for the definition of L-scheme and an
algorithm that associates an L-scheme and a braid bC ∈ B3 to any real
pseudoholomorphic curve C = γ(C), with γ : C → C2 a real pseudoholo-
morphic curve of bidegree (3, b). A braid b ∈ B3 is said to be quasipositive
if it can be written in the form

b =
∏̀
i=1

wiσ1w
−1
i with w1, . . . , w` ∈ B3. (3.1)

Note that a braid with algebraic length 0 is quasipositive if and only if it
is the trivial braid. The quasipositivity problem in B3 has been solved by
Orevkov [9, 10]. We will use the following proposition in order to obtain
lower bounds in lexicographic degree of knots.

Proposition 3.4. — Let γ : C→ C2 be a real pseudoholomorphic curve
of bidegree (3, b), and let C = γ(C). We denote by π : C2 → C the projection
to the first coordinate, and we assume that the two critical points of the map
π ◦ γ are real. Then the braid bC satisfies the three following properties:

(i) bC is quasipositive;
(ii) the closure of bC is a link with three components;
(iii) the linking number of any two strings of bC is non-negative.

Proof. — Property (i) is a consequence of [7, Proposition 7.1]. Proper-
ties (ii) and (iii) are easy consequences of the Riemann–Hurwitz formula
applied to the map π ◦ γ, see [1, second paragraph of the proof of Proposi-
tion 3.1]. �

Remark 3.5. — Proposition 3.4(i) can be strengthened in order to get an
equivalence. One can associate a braid bC , depending on b, to any trigonal
L-scheme LS using the algorithm given in [1, Section 2.2]. Following [7,
Proposition 7.1], we have that LS is realised by a real pseudoholomorphic
curve of bidegree (3, b) in C2 if and only if the braid bC can be written in
the form

bC =
∏̀
i=1

wiσ
2
1w
−1
i with w1, . . . , w` ∈ B3, (3.2)

and conditions (ii) and (iii) occur. In this case, the algebraic length of bC is
necessarily 2` = b− 1− r, where r is the number of real nodes of LS .

Remark 3.6. — Proposition 3.2 also holds for the pseudoholomorphic de-
gree of a plane trigonal diagram, and the proof is essentially the same. Nev-
ertheless we will not need this more general version here.

We end this section by proving a generalization of [1, Proposition 3.1].
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Proposition 3.7. — Let D = C(m1, . . . ,mk) be a trigonal diagram
of a knot K, with m1, . . . ,mk−1 even integers. As usual, we define N0 =
|m1|+ · · ·+ |mk|. If γ : C→ C2 is a real rational pseudoholomorphic curve
of bidegree (3, b) such that γ(R) is L-isotopic to |D|, then 2b > 3N0 − 2.

Proof. — Let us write b = 3` − 1 or b = 3` − 2, let α be the number
of solitary nodes of C = γ(C), and β be the number of pairs of complex
conjugated nodes. By the genus formula, we have

N0 + α+ 2β = b− 1.

The L-scheme realised by C has the form
•i1 · · · •iα1

⊂3−j1 (×j1)m1 . . . (×jk)mk ⊃3−jk •iα1+1 · · · •iα ?, (3.3)
where ? =↓, ↑,∨ or ∧. The last symbol in (3.3) describes the behavior of C
for large |x| (see [1, Definition 2.7]) whereas the rest of (3.3) encodes the
L-isotopy class of C in the same way as in [7] except that the •i’s stand for
the solitary double points.

The braid bC has 3 components L1, L2 and L3, and lk(Li, Lj) > 0 by
Proposition 3.4. Furthermore, as in [1, proof of Proposition 3.1], we have
0 6 lk(Li, Lj) 6 β.

By the assumptions made on D, there are two strings of bC , say L1
and L3, that do not cross at the crossing points of RC. As in [1, Proof of
Proposition 3.1], we obtain

2β > 2 lk(L1, L3) > `− α− 2,
and thus

b− 1 = N0 + α+ 2β > N0 + `− 2.
We then deduce 3b− 3N0 > 3`− 3 > b− 2, and 2b > 3N0 − 2. �

3.3. The T-reduction

Definition 3.8. — Let x, y be (possibly empty) sequences of nonnegative
integers and m,n be nonnegative integers. The plane diagram D(x,m, n, y)
is called a T-reduction of the diagram D(x,m+1, 1, n+1, y) (see Figure 3.2).

Propositions 3.9 and 3.11 below relate the pseudoholomorphic and alge-
braic degrees of two plane trigonal diagrams differing by a T-reduction.

Proposition 3.9. — Let |D1| and |D2| be two plane trigonal diagrams
such that |D2| is obtained from |D1| by a T-reduction. If |D1| has pseudo-
holomorphic degree b, then |D2| has pseudoholomorphic degree b− 3.
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where ⋆ =↓, ↑,∨ or ∧. The last symbol in (7) describes the behavior of C for large |x| (see
[BKP16a, Def. 2.7]) whereas the rest of (7) encodes the L-isotopy class of C in the same
way as in [Ore99] except that the •i’s stand for the solitary double points.

The braid bC has 3 components L1, L2 and L3, and lk (Li, Lj) ≥ 0 by Proposition 3.4.
Furthermore, as in [BKP16a, proof of Proposition 3.1], we have 0 ≤ lk (Li, Lj) ≤ β.

By the assumptions made on D, there are two strings of bC , say L1 and L3, that do not
cross at the crossing points of RC. As in [BKP16a, Proof of Proposition 3.1], we obtain

2β ≥ 2lk (L1, L3) ≥ ℓ− α− 2,

and thus

b− 1 = N0 + α+ 2β ≥ N0 + ℓ− 2.

We then deduce 3b− 3N0 ≥ 3ℓ− 3 ≥ b− 2, and 2b ≥ 3N0 − 2. ✷

3.3 The T-reduction

Definition 3.8 Let x, y be (possibly empty) sequences of nonnegative integers and m,n
be nonnegative integers. The plane diagram D(x,m, n, y) is called a T-reduction of the
diagram D(x,m+ 1, 1, n + 1, y) (see Figure 13).

m n m

n

Figure 13: T-reduction

Propositions 3.9 and 3.11 below relate the pseudoholomorphic and algebraic degrees of two
plane trigonal diagrams differing by a T-reduction.

Proposition 3.9 Let |D1| and |D2| be two plane trigonal diagrams such that |D2| is ob-
tained from |D1| by a T-reduction. If |D1| has pseudoholomorphic degree b, then |D2| has
pseudoholomorphic degree b− 3.

Proof. Let |D1| = D(m1, . . . ,mk) and |D2| = D(n1, . . . , nl). Suppose that there exists a
real pseudoholomorphic curve γ1 : C → C2 of bidegree (3, b) such that γ1(R) is L-isotopic
to |D1|, and suppose that its associated L-scheme is given by Formula (7) :

•i1 · · · •iα1
⊂3−j1 (×j1)

m1 · · · (×jk)
mk ⊃3−jk •iα1+1

· · · •iα ⋆.

In |D1|, there is some ×i ×3−i ×i that we will remove with the T-reduction. The braid
associated to γ1 contains (σ1σ2σ1)

−1 in association with ×i ×3−i ×i and some (σ1σ2σ1)
ℓ

16

Figure 3.2. T-reduction

Proof. — Let |D1| = D(m1, . . . ,mk) and |D2| = D(n1, . . . , nl). Suppose
that there exists a real pseudoholomorphic curve γ1 : C → C2 of bidegree
(3, b) such that γ1(R) is L-isotopic to |D1|, and suppose that its associated
L-scheme is given by Formula (3.3) :

•i1 · · · •iα1
⊂3−j1 (×j1)m1 · · · (×jk)mk ⊃3−jk •iα1+1 · · · •iα ?.

In |D1|, there is some ×i ×3−i ×i that we will remove with the T-reduction.
The braid associated to γ1 contains (σ1σ2σ1)−1 in association with×i×3−i×i
and some (σ1σ2σ1)` where ` = b 3b+2

3 c in assocation with ?. The new L-
scheme associated to the T-reduced diagram is obtained by removing ×i×3−i
×i and flipping the right side. We obtain

•i1 · · · •iα1
⊂3−j1 (×j1)n1 · · · (×jl)nl ⊃3−jl •3−iα1+1 · · · •3−iα ?.

Note that (σ1σ2σ1)−1σi(σ1σ2σ1) = σ3−i. That explains that the braid asso-
ciated to the this last L-scheme is the same and corresponds to a curve of
degree b− 3.

Hence according to Remark 3.5, there exists a real pseudoholomorphic
curve γ2 : C → C2 of bidegree (3, b − 3) such that γ2(R) is L-isotopic to
|D2|. �

Corollary 3.10. — The pseudoholomorphic degree of the plane dia-
gram D(0, n) is b 3n

2 c+ 1.

Proof. — The plane diagram D(0, n) is obtained by a T-reduction from
D(1, 1, n+ 1). Since D(1, 1, n+ 1) and D(2, n+ 1) may be reduced to each
other by slide isotopies (see Def. 4.1), they have the same pseudoholomorphic
degree by Proposition 4.3. By [1, Proposition 3.8 & Theorem 3.9], the degree
of D(2, n+ 1) is b 3n

2 c+ 4, which completes the proof. �

3.4. The T-augmentation

Proposition 3.9 admits a weaker version for the algebraic degree of a
plane diagram. We make use the T-augmentation that consists in adding a
triangle of crossing points in a given plane diagram.
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Proposition 3.11. — Let |D1| and |D2| be two plane trigonal diagrams
such that |D2| is obtained from |D1| by a T-reduction. If |D2| has algebraic
degree b − 3, then |D1| has algebraic degree at most b. Furthermore, if the
pseudoholomorphic degree of |D2| is also b−3, then |D1| has algebraic degree
exactly b.

Proof. — The last assertion follows from Proposition 3.9 combined with
the fact that a real rational algebraic curve in C2 is a pseudoholomorphic
curve. Let

γ : C −→ C2

t 7−→ (P (t), Q(t))
be a real algebraic map with P (t) of degree 3 and Q(t) of degree b− 3, and
such that γ(R) is L-isotopic to the plane diagram D(x,m, n, y), where x, y
are (possibly empty) sequences of nonnegative integers and m,n are nonneg-
ative integers. Without loss of generality, we can suppose that the line x = 0
separates the m crossings from the n crossings. The curve parametrised
by t 7→ (P (t), P (t) · Q(t)) has the same double points as γ(R) and an
additional ordinary triple point at (0, 0). For ε small enough the curve
(P (t + ε), P (t) · Q(t)) is L-isotopic to either D(u,m + 1, 1, n + 1, v) or
D(u,m, 1, 1, 1, n, v), depending on the sign of ε (see Figure 3.12). �

ε = 0 ε > 0 ε < 0

Figure 14: Perturbation of a triple point in R2

Example 3.12 Let us consider the polynomial parametrisation (T3(t), T4(t)) of the diagram
D(1, 1, 1), where Tn denotes the Chebyshev polynomial of degree n. We choose to add a triple
point in (−3/4, 0), by considering the curve t 7→ (T3(t), Q(t)), where Q(t) = (T3(t) + 3/4) ·
(T4(t) + 1). Then the curve t 7→ (P3(t), Q(t + ε)) is L-isotopic to D(2, 1, 2, 1) for ε > 0

(T3, T4) (T3, Q) (T3, Q(t+ ε)) (T3, Q(t− ε))
D(1, 1, 1) D(2, 1, 2, 1) D(1, 1, 1, 1, 1, 1)

Figure 15: Adding three crossings to the trefoil

small enough and is L-isotopic to D(1, 1, 1, 1, 1, 1) for ε < 0, see Figure 15.

Example 3.13 Figure 16 shows that the algebraic degree of D(2, 2, 2, 1, 3) is at most 11,
starting from a parametrisation of the plane diagram D(1, 0) of degree (3, 2).

degree (3, 2) degree (3, 5) degree (3, 8) degree (3, 11)

Figure 16: From D(1, 0) to D(2, 2, 2, 1, 3)

Proposition 3.11 can be extended to spatial trigonal curves. The next result provides
constructions of polynomial knot diagrams.

Proposition 3.14 Let e = ±1. If the diagram C(u,m, n, v) has lexicographic degree (3, b−
3, c− 6), then the diagram C(u,m+ e, e, e+ n, v) has lexicographic degree at most (3, b, c).

18

Figure 3.3. Perturbation of a triple point in R2

Example 3.12. — Let us consider the polynomial parametrisation (T3(t),
T4(t)) of the diagram D(1, 1, 1), where Tn denotes the Chebyshev polynomial
of degree n. We choose to add a triple point in (−3/4, 0), by considering the
curve t 7→ (T3(t), Q(t)), where Q(t) = (T3(t) + 3/4) · (T4(t) + 1). Then the
curve t 7→ (P3(t), Q(t+ε)) is L-isotopic to D(2, 1, 2, 1) for ε > 0 small enough
and is L-isotopic to D(1, 1, 1, 1, 1, 1) for ε < 0, see Figure 3.4.

Example 3.13. — Figure 3.5 shows that the algebraic degree of D(2, 2, 2,
1, 3) is at most 11, starting from a parametrisation of the plane diagram
D(1, 0) of degree (3, 2).

Proposition 3.11 can be extended to spatial trigonal curves. The next
result provides constructions of polynomial knot diagrams.

Proposition 3.14. — Let e = ±1. If the diagram C(u,m, n, v) has lex-
icographic degree (3, b−3, c−6), then the diagram C(u,m+e, e, e+n, v) has
lexicographic degree at most (3, b, c).
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ε = 0 ε > 0 ε < 0

Figure 14: Perturbation of a triple point in R2

Example 3.12 Let us consider the polynomial parametrisation (T3(t), T4(t)) of the diagram
D(1, 1, 1), where Tn denotes the Chebyshev polynomial of degree n. We choose to add a triple
point in (−3/4, 0), by considering the curve t 7→ (T3(t), Q(t)), where Q(t) = (T3(t) + 3/4) ·
(T4(t) + 1). Then the curve t 7→ (P3(t), Q(t + ε)) is L-isotopic to D(2, 1, 2, 1) for ε > 0

(T3, T4) (T3, Q) (T3, Q(t+ ε)) (T3, Q(t− ε))
D(1, 1, 1) D(2, 1, 2, 1) D(1, 1, 1, 1, 1, 1)

Figure 15: Adding three crossings to the trefoil

small enough and is L-isotopic to D(1, 1, 1, 1, 1, 1) for ε < 0, see Figure 15.

Example 3.13 Figure 16 shows that the algebraic degree of D(2, 2, 2, 1, 3) is at most 11,
starting from a parametrisation of the plane diagram D(1, 0) of degree (3, 2).
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degree (3, 8) degree (3, 11)

Figure 3.5. From D(1, 0) to D(2, 2, 2, 1, 3)

Proof. — Let t 7→(P (t), Q(t), R(t)) be a parametrisation of degree (3, b, c)
of the diagram C(u,m, n, v). Up to a change of coordinates, we may assume
that the part (u,m) (resp. (n, v)) of the diagram is contained in the half-
space x < 0 (resp. x > 0), and that the three points of the diagram in
the plane x = 0 have z-coordinates of the same sign. We consider the map
ϕ(t) = (P (t), P (t)Q(t), P 2(t)R(t)). The image of ϕ is a singular diagram
with the three branches tangent to the plane z = 0 at the point (0, 0, 0).
Extending the notations of diagram in the obvious way to this particular
case, we see that the image of ϕ realises the singular diagram C(u,m, ∗, n, v),
where ∗ stands for the triple point. By slightly perturbing the roots of the
factor P (t) of the polynomial P (t)Q(t), we obtain a polynomial Q1(t) of
degree b + 3 such that the triple point of the curve (P (t), P (t)Q(t)) will be
perturbed as depicted in Figure 3.6(a) or (b), depending on the perturbation
Q1(t). Perturbing the roots of the factor P 2(t) of the polynomial P 2(t)R(t)
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as depicted by the blue dots on Figure 3.6, we obtain a parametrisation of
the diagram whose existence is claimed in the theorem. �

Proof. Let t 7→ (P (t), Q(t), R(t)) be a parametrisation of degree (3, b, c) of the diagram
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degree b + 3 such that the triple point of the curve (P (t), P (t)Q(t)) will be perturbed as
depicted in Figure 17a or b, depending on the perturbation Q1(t). Perturbing the roots of
the factor P 2(t) of the polynomial P 2(t)R(t) as depicted by the blue dots on Figure 17, we
obtain a parametrisation of the diagram whose existence is claimed in the theorem. ✷

a) b)

d) e) f) g)

Figure 17: Perturbation of a triple point in R3

Example 3.15 The trigonal diagram C(1, 1, 1), corresponding to the mirror image of the
trefoil, admits the parametrisation (T3, T4, T5) of degree (3, 4, 5). We thus deduce that both
C(2, 1, 2, 1) and C(1, 1, 1, 1, 1, 1) admit parametrisations of degree (3, 7, 11). By Corollary
2.6, these are the lexicographic degrees of 62 = C(2, 1, 3) – which is isotopic to C(2, 1, 2, 1)
– and 63 = C(2, 1, 1, 2) – which is isotopic to C(1, 1, 1, 1, 1, 1).

Thanks to Proposition 2.9, we will not need Proposition 3.14 to determine the lexicographic
degrees of the first knots, but it may be useful for further results.

4 Two-bridge knots with 11 crossings or fewer

Simple diagrams of two-bridge knot have been introduced in [BKP16b]. The complexity
c(D) of a trigonal diagram D = C(m1, . . . ,mk) is defined as

c(D) = k +

k
�

i=1

|mi| .
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(d) (e) (f) (g)

Figure 3.6. Perturbation of a triple point in R3

Example 3.15. — The trigonal diagram C(1, 1, 1), corresponding to the
mirror image of the trefoil, admits the parametrisation (T3, T4, T5) of degree
(3, 4, 5). We thus deduce that both C(2, 1, 2, 1) and C(1, 1, 1, 1, 1, 1) admit
parametrisations of degree (3, 7, 11). By Corollary 2.6, these are the lexi-
cographic degrees of 62 = C(2, 1, 3) (which is isotopic to C(2, 1, 2, 1)) and
63 = C(2, 1, 1, 2) (which is isotopic to C(1, 1, 1, 1, 1, 1)).

Thanks to Proposition 2.9, we will not need Proposition 3.14 to determine
the lexicographic degrees of the first knots, but it may be useful for further
results.

4. Two-bridge knots with 11 crossings or fewer

Simple diagrams of two-bridge knot have been introduced in [2]. The
complexity c(D) of a trigonal diagram D = C(m1, . . . ,mk) is defined as

c(D) = k +
k∑
i=1
|mi|.

Definition 4.1. — We shall say that an isotopy of trigonal diagrams is
a slide isotopy if the number of crossings never increases during the isotopy,
and if all the intermediate diagrams remain trigonal. A trigonal diagram is
called a simple diagram if it cannot be simplified into a diagram of lower
complexity by using slide isotopies only.

The next two propositions motivate the consideration of simple diagrams.
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Proposition 4.2 ([2, Corollary 3.9]). — Let D be a trigonal diagram of
a two-bridge knot. Then by slide isotopies, it is possible to transform D into
a simple diagram C(m1, . . . ,mk) such that for i = 2, . . . , k, either |mi| 6= 1,
or mi−1 mi > 0.

Proposition 4.3 ([1, Corollary 3.7]). — Let D1 and D2 be two trigonal
long knot diagrams such that D2 is obtained from D1 by a slide isotopy.
Then the pseudoholomorphic degree of |D1| is greater than or equal to the
pseudoholomorphic degree of |D2|.

In [1] we proved that the lexicographic degree of the torus knot C(n) or
the twist knot C(n,m) is precisely (3, b 3N−1

2 c, b 3N
2 c + 1) by showing first

that the only simple diagrams of these knots are the alternating diagrams
and showing that the algebraic degrees of the corresponding plane diagrams
are b 3N−1

2 c.

4.1. The general strategy

Given a two-bridge knot with crossing number N 6 11, the lexicographic
degree (3, b, c) satisfies b + c = 3N by Proposition 2.9. Our strategy to
determine b consists in:

(1) Finding a first upper bound b0 on b using constructions from [5]
based on Chebyshev plane diagrams parametrised by (T3, Tb), where
Tn is the Chebyshev polynomial Tn(cos t)=cosnt. We have 2b0<3N.

(2) Computing all the simple diagrams of K with b0 − 1 crossings or
fewer (recall that the number of crossings of a trigonal curve of
degree (3, b) is at most b − 1 by the genus formula). This is done
by computing all continued fractions corresponding to the Schu-
bert fractions of K. Note that there is a finite number of sequences
(m1, . . . ,mk), mi 6= 0, i = 1, . . . , k, such that

∑k
i=1|mi| < b0 and

[m1, . . . ,mk] is a Schubert fraction of K.
(3) For all these simple diagrams:

(a) Computing a lower bound of their algebraic degree using Propo-
sitions 3.2 and 3.7.

(b) Using T-reductions, trying to obtain explicit constructions of
these diagrams out of known constructions for diagrams with
a lower number of crossings. This provides an upper bound on
the lexicographic degree of the knot.

(c) If necessary, computing all possible braids associated to hypo-
thetical plane curves of degree b < b0 that are L-isotopic to the
diagram, and check if these braids satisfy Proposition 3.4. This
may improve the lower bound obtained in step (a) above.
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(d) If the lower bound and the upper bound coincide, then we have
determined the lexicographic degree of the knot.

(4) If the lower bound and the upper bound do not coincide, improving
the upper bound by looking at non-simple diagrams on which one
can perform T-reductions to reduce to knots with lower crossing
number. There is still a finite number of such diagrams.

In Table 5.1, p. 792, we list the lexicographic degree of all two-bridge knots
with 11 crossings or fewer. In Tables 4.1, 4.2, 4.3, and 4.4 below, we give
refinements of Table 5.1 for two-bridge knots with crossing number at most
9. The columns 1, 2 and 3 identify the knot. The column 4 gives the lexi-
cographic degree. The fifth column gives the upper bound b0 on b obtained
by considering Chebyshev diagrams of degree (3, b0, c), see [5]; the sixth col-
umn gives a diagram that can be realised in the corresponding lexicographic
degree; the last column gives the construction of the corresponding plane
diagram, when one needs to improve the bound given by Chebyshev knots.

4.2. Some initial diagrams

Here we compute the algebraic degrees of a few trigonal plane diagrams.
These computation will be used in the next sections to determine the alge-
braic degree of trigonal plane diagrams that reduce to the diagrams consid-
ered in this section by T-reduction. The next proposition is proved in [5].

Proposition 4.4. — The plane diagram D(4n − 1) has algebraic de-
gree 6n− 2.

This gives an explicit parametrisation for the plane diagrams D(3) and
D(7).

Lemma 4.5. — We give below the algebraic degree of a few plane dia-
grams (see Figure 4.1 for the image of a polynomial parametrisation of the
given degree).

• b = 1: D(0, 0)
• b = 2: D(1), D(0, 1)
• b = 4: D(0, 2), D(2, 1)
• b = 5: D(0, 1, 1, 0), D(2, 2), D(1, 1, 1, 1), D(0, 3), D(1, 2, 0)
• b = 7: D(5), D(1, 4), D(0, 4)

Proof. — These plane diagrams are obtained with the following param-
etrisations. Here we use the monic Chebyshev polynomials (also called
Dickson polynomials) defined by Tn(2 cosx) = 2 cosnx:
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D(0, 0) D(1) D(0, 1) D(0, 1, 1, 0) D(0, 2)

D(2, 1) D(1, 2, 0) D(0, 3) D(2, 2) D(0, 4)

Figure 18: Algebraic degree of a few plane diagrams

• D(0, 1) : (T3, T2 −
3

2
T1)

• D(0, 1, 1, 0): (T3, t
5 − 4t3 + 4t)

• D(0, 2): (T3, T4 + 3T2 − 4T1)

• D(2, 1): (T3, T4 − T2 +
1

4
T1)

• D(0, 3): (T3, t
5 − 9

4
t4 − t3 + 13

4
t2 + 1

8
t)

• D(1, 2, 0): (T3, T5(6t/5 + 1/2))

• D(2, 2): (T3, T5 −
13

12
T1)

• D(1, 1, 1, 1): (T3, T5), see Fig. 1

• D(0, 4): (T3, T7(−
3

2
t+ 1))

• D(5): (T3, P7) where P7 = t7 − 93659

10000
t5 − 13549

5000
t4 + 16453

1000
t2 + 57281

1000
t

• D(1, 4): (T3, Q7) where Q7 = t7− 84497

10359
t5− 47123

18875
t4+ 54585

2759
t3+ 85741

7122
t2− 208133

17097
t− 242151

26615

It is shown in [BKP16a] that the degree is minimal for D(n) or D(n,m), n,m ≥ 0. It
is shown in Cor. 3.10 that the pseudoholomorphic degree of D(0, n) is ⌊3n

2
⌋ + 1. In the

case of D(1, 2, 0), we obtain D(1, 3, 1, 1) by T-augmentation. This diagram is a projection
of C(1, 3, 1, 1) which is isotopic to the twist-knot C(4, 2) of lexicographic degree 8 (see
[BKP16a]). In the case of D(0, 1, 1, 0), every line passing through the two crossing points
meets the curve at 5 points at least, and therefore the degree is at least 5, which is the
degree of our parametrisation. ✷

Remark 4.6 One can prove using dessins d’enfants (see for example [Ore03]) that the al-
gebraic degree of the plane diagram D(0, n) is precisely ⌊3n

2
⌋+1. We deduce a parametriza-

tion of the plane diagram D(1, 1, n + 1), which is an alternating diagram of the twist-knot
C(2, n+ 1), of minimal degree.

22

Figure 4.1. Algebraic degree of a few plane diagrams

• D(0, 0): (T3, T1)
• D(1) : (T3, T2)
• D(0, 1) : (T3, T2 − 3

2T1)
• D(0, 1, 1, 0): (T3, t

5 − 4t3 + 4t)
• D(0, 2): (T3, T4 + 3T2 − 4T1)
• D(2, 1): (T3, T4 − T2 + 1

4T1)
• D(0, 3): (T3, t

5 − 9
4 t

4 − t3 + 13
4 t

2 + 1
8 t)

• D(1, 2, 0): (T3, T5(6t/5 + 1/2))
• D(2, 2): (T3, T5 − 13

12T1)
• D(1, 1, 1, 1): (T3, T5), see Figure 1.1
• D(0, 4): (T3, T7(− 3

2 t+ 1))
• D(5): (T3, P7) where P7 = t7− 93659

10000 t
5− 13549

5000 t4 + 16453
1000 t2 + 57281

1000 t

• D(1, 4): (T3, Q7) where Q7 = t7 − 84497
10359 t

5 − 47123
18875 t

4 + 54585
2759 t3 +

85741
7122 t2 − 208133

17097 t− 242151
26615

It is shown in [1] that the degree is minimal for D(n) or D(n,m), n,m > 0.
It is shown in Corollary 3.10 that the pseudoholomorphic degree of D(0, n) is
b 3n

2 c+1. In the case of D(1, 2, 0), we obtain D(1, 3, 1, 1) by T-augmentation.
This diagram is a projection of C(1, 3, 1, 1) which is isotopic to the twist-knot
C(4, 2) of lexicographic degree 8 (see [1]). In the case of D(0, 1, 1, 0), every
line passing through the two crossing points meets the curve at 5 points
at least, and therefore the degree is at least 5, which is the degree of our
parametrisation. �

Remark 4.6. — One can prove using dessins d’enfants (see for exam-
ple [8]) that the algebraic degree of the plane diagram D(0, n) is precisely
b 3n

2 c+ 1. We deduce a parametrization of the plane diagram D(1, 1, n+ 1),
which is an alternating diagram of the twist-knot C(2, n + 1), of minimal
degree.
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4.3. Knots with crossing number at most 6

Proposition 4.7. — The lexicographic degrees of all two-bridge knots
with crossing number at most 6 are given in Table 4.1.

Table 4.1. Lexicographic degree of two-bridge knots with crossing
number at most 6

Name Fraction Conway Not. Lex. deg. Cheb. deg. diagram Constr.
31 3 C(3) (3, 4, 5) 4 C(3) D(3)
41 5/2 C(2, 2) (3, 5, 7) 5 C(2, 2) D(2, 2)
51 5 C(5) (3, 7, 8) 7 C(5) D(5)
52 7/2 C(3, 2) (3, 7, 8) 7 C(3, 1, 1) D(2, 0)+T
61 9/2 C(4, 2) (3, 8, 10) 8 C(4, 2) D(3, 0)+T
62 11/3 C(3, 1, 2) (3, 7, 11) 8 C(3, 1, 2) D(2, 1)+T
63 13/5 C(2, 1, 1, 2) (3, 7, 11) 7 C(2, 1, 1, 2) D(3)+T

Proof. — The knots 31, and 51 are torus knots, and the knots 41, 52, and
61 are twist knots. Hence their lexicographic degrees are computed in [2].
The knots 62 and 63 admit parametrisations with b = N + 1, hence their
lexicographic degree is (3, 7, 11). �

4.4. Knots with crossing number 7

Proposition 4.8. — The lexicographic degrees of all two-bridge knots
with crossing number 7 are given in Table 4.2.

Table 4.2. Lexicographic degrees of two-bridge knots with crossing
number 7

Name Fraction Conway Not. Lex. deg. Cheb. deg. diagram Constr.
71 7 C(7) (3, 10, 11) 10 C(7) D(7)
72 11/2 C(5, 2) (3, 10, 11) 10 Cheb.
73 13/3 C(4, 3) (3, 10, 11) 10 Cheb.
74 15/4 C(3, 1, 3) (3, 8, 13) 10 C(3, 1, 3) D(2, 2)+T
75 17/5 C(3, 2, 2) (3, 10, 11) 10 C(2, 1, 1,−4) D(5)+T
76 19/7 C(2, 1, 2, 2) (3, 8, 13) 10 D(0, 1)+2T
77 21/8 C(2, 1, 1, 1, 2) (3, 8, 13) 8 Cheb.

Proof. — The lexicographic degree of such a knot is (3, 8, 13) or (3, 10, 11),
by Corollary 2.6 and Proposition 2.9. The torus knot 71 and the twist knots
72 and 73 have lexicographic degree (3, 10, 11), see [1]. The Fibonacci knot
77 has degree (3, 8, 13), see [5, p. 591]. The knots 74 and 76 are obtained
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from C(1) by T-augmentations. There degrees are (3, 8, 13). The alternating
diagram of the knot 75 is C(3, 2, 2). By Proposition 3.2 the degree of this
diagram is at least (3, 10, 11). Since a non-alternating diagrams of 75 has
at least 8 crossings, we see that its degree is at least (3, 10, 11). Hence the
lexicographic degree of 75 is (3, 10, 11). �

4.5. Two-bridge knots with crossing number 8

Proposition 4.9. — The lexicographic degrees of all two-bridge knots
with crossing number 8 are given in Table 4.3.

Table 4.3. Lexicographic degrees of two-bridge knots with crossing
number 8

Name Fraction Conway Not. Lex. deg. Cheb. deg. diagram Constr.
81 13/2 C(6, 2) (3, 11, 13) 11 Cheb.
82 17/3 C(5, 1, 2) (3, 10, 14) 11 D(4, 1)+T
83 17/4 C(4, 4) (3, 11, 13) 11 Cheb.
84 19/4 C(4, 1, 3) (3, 10, 14) 11 C(4, 1, 2, 1) D(2, 0)+2T
86 23/7 C(3, 3, 2) (3, 10, 14) 11 C(2, 2, 1,−4) D(1, 2)+2T
87 23/5 C(4, 1, 1, 2) (3, 10, 14) 10 Cheb.
88 25/9 C(2, 1, 3, 2) (3, 10, 14) 10 Cheb.
89 25/7 C(3, 1, 1, 3) (3, 10, 14) 11 D(5)+T
811 27/8 C(3, 2, 1, 2) (3, 10, 14) 11 D(2, 0)+2T
812 29/12 C(2, 2, 2, 2) (3, 11, 13) 11 Cheb.
813 29/8 C(3, 1, 1, 1, 2) (3, 10, 14) 10 Cheb.
814 31/12 C(2, 1, 1, 2, 2) (3, 10, 14) 11 D(2, 0)+2T

Proof. — The lexicographic degree of such a knot is (3, 10, 14) or (3, 11,
13). The lexicographic degree (3, 11, 13) of the twist knots 81 and 83 has
been obtained in [1]. Combining Propositions 3.2 with Chebyshev knots we
obtain the following.

• The knots 87, 88, and 813 have minimal lexicographic degree (3, 10,
14), obtained as Chebyshev knots.
• The plane projection of 82 = C(5, 1, 2) reduces to D(4, 1) by a

T-reduction. Since D(4, 1) has algebraic degree 7, the diagram
D(5, 1, 2) has algebraic degree 10. Consequently, 82 has lexicographic
degree (3, 10, 14).

• The plane projection of 89 = C(3, 1, 1, 3) reduces to D(5) by a T-
reduction. Hence the algebraic degree of D(3, 1, 1, 3) is 10, and 89
has lexicographic degree (3, 10, 14).
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• D(2, 0) is obtained by two successive T-reductions from the plane
projections of diagrams of 84, 811 and 814. Consequently, 84, 811 and
814 have lexicographic degree (3, 10, 14).
• Using two T-reductions, the plane diagram D(2, 2, 1, 4) reduces to
D(1, 2), which has algebraic degree 4. By Proposition 3.11, the plane
diagram D(2, 2, 1, 4) has algebraic degree 10, and the knot 86 has
lexicographic degree (3, 10, 14).
• The knot 812 admits only three simple diagrams with 9 crossings or
fewer: C(2, 2, 2, 2), C(2, 1, 1,−3,−2) and C(2, 2, 1, 1,−3). By Propo-
sition 3.2, the plane diagram D(2, 2, 2, 2) has degree at least 11.
The plane diagrams D(2, 1, 1, 3, 2) and D(2, 2, 1, 1, 3) reduce, with
two T-reductions, to D(3, 0) or D(0, 3) that have pseudoholomor-
phic degree 5. By Proposition 3.11, the lexicographic degree of 812
is then (3, 11, 13). �

The next result shows that the knot 86 is the first example of a knot for
which the lexicographic degree is not the degree of its alternating diagram.
This phenomenon will appear with other knots (see Table 5.2).

Proposition 4.10. — Let t 7→ (P (t), Q(t)), be a parametrisation of the
diagram D(2, 3, 3), where degP = 3. Then degQ > 11.

Proof. — Without loss of generality, we may assume that P (t) is positive
for t large enough, and degQ 6≡ 0 (mod 3). Let us denote by C the complex
algebraic curve image of the map t ∈ C 7→ (P (t), Q(t)) ∈ C2. The curve
C has exactly degQ − 1 nodes in C2 and then degQ > 10. Let us suppose
that degQ = 10. Since C has 8 real crossings, it also has a ninth solitary
real point. We see that there are exactly eight possibilities for the L-scheme

• Using two T-reductions, the plane diagram D(2, 2, 1, 4) reduces to D(1, 2), which has
algebraic degree 4. By Proposition 3.11, the plane diagram D(2, 2, 1, 4) has algebraic
degree 10, and the knot 86 has lexicographic degree (3, 10, 14).

• The knot 812 admits only three simple diagrams with 9 crossings or fewer: C(2, 2, 2, 2),
C(2, 1, 1,−3,−2) and C(2, 2, 1, 1,−3). By Proposition 3.2, the plane diagramD(2, 2, 2, 2)
has degree at least 11. The plane diagrams D(2, 1, 1, 3, 2) and D(2, 2, 1, 1, 3) reduce,
with two T-reductions, to D(3, 0) or D(0, 3) that have pseudoholomorphic degree 5.
By Proposition 3.11, the lexicographic degree of 812 is then (3, 11, 13). ✷

The next result shows that the knot 86 is the first example of a knot for which the
lexicographic degree is not the degree of its alternating diagram. This phenomenon will
appear with other knots (see Table 6).

Proposition 4.10 Let t 7→ (P (t), Q(t)), be a parametrisation of the diagram D(2, 3, 3),
where degP = 3. Then degQ ≥ 11.

Proof. Without loss of generality, we may assume that P (t) is positive for t large enough,
and degQ 6≡ 0 (mod 3). Let us denote by C the complex algebraic curve image of the map
t ∈ C 7→ (P (t), Q(t)) ∈ C2. The curve C has exactly degQ − 1 nodes in C2 and then
degQ ≥ 10. Let us suppose that degQ = 10. Since C has 8 real crossings, it also has a
ninth solitary real point. We see that there are exactly eight possibilities for the L-scheme

Figure 19: C(2, 3, 3)

realised by C (here we use the notations of [BKP16a, Section 2.2]):

⊃2 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 •1 ⊂1⊃1⊂1

⊃1 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 •1 ⊂2⊃2⊂2

⊃2 •1 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 ⊂1⊃1⊂1

⊃1 •1 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 ⊂2⊃2⊂2

⊃2 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 •2 ⊂1⊃1⊂1

⊃1 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 •2 ⊂2⊃2⊂2

⊃2 •2 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 ⊂1⊃1⊂1

⊃1 •2 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 ⊂2⊃2⊂2

25

Figure 4.2. C(2, 3, 3)
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realised by C (here we use the notations of [1, Section 2.2]):
⊃2⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 •1 ⊂1⊃1⊂1

⊃1⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 •1 ⊂2⊃2⊂2

⊃2 •1 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1⊂1⊃1⊂1

⊃1 •1 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1⊂2⊃2⊂2

⊃2⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 •2 ⊂1⊃1⊂1

⊃1⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1 •2 ⊂2⊃2⊂2

⊃2 •2 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1⊂1⊃1⊂1

⊃1 •2 ⊂1 ×2 ×2 ×1 ×1 ×1 ×2 ×2×2 ⊃1⊂2⊃2⊂2

We compute all corresponding braids and obtain
b1 = σ−1

2 σ−1
1 σ−1

2 σ−3
1 σ−3

2 σ−3
1 (σ1σ2σ1)4,

b2 = σ−1
1 σ−2

2 σ−3
1 σ−3

2 σ−2
1 σ−1

2 σ1σ
−1
2 (σ1σ2σ1)4,

b3 = σ−1
2 σ−1

1 σ2σ
−1
1 σ−2

2 σ−3
1 σ−3

2 σ−2
1 (σ1σ2σ1)4,

b4 = σ−2
1 σ−2

2 σ−3
1 σ−3

2 σ−1
1 σ−1

2 σ1σ
−1
2 (σ1σ2σ1)4,

b5 = σ−1
2 σ−1

1 σ−1
2 σ−3

1 σ−3
2 σ−1

1 σ−1
2 σ1σ

−1
2 σ−1

1 σ2σ
−1
1 (σ1σ2σ1)4,

b6 = σ−1
1 σ−2

2 σ−3
1 σ−3

2 σ−1
1 σ−1

2 σ1σ
−2
2 (σ1σ2σ1)4,

b7 = σ−2
2 σ−1

1 σ−1
2 σ−3

1 σ−3
2 σ−2

1 (σ1σ2σ1)4,

b8 = σ−1
1 σ−1

2 σ1σ
−1
2 σ−1

1 σ−1
2 σ−3

1 σ−3
2 σ−1

1 σ−1
2 σ1σ

−1
2 (σ1σ2σ1)4.

These 8 braids have integer length 0, and none of them is the trivial braid.
Hence the result follows from Proposition 3.4. �

4.6. Two-bridge knots with crossing number 9

Proposition 4.11. — The lexicographic degrees of all two-bridge knots
with crossing number 9 are given in Table 4.4.

Proof. — The lexicographic degree of such a knot is (3, 10, 17), (3, 11, 16),
or (3, 13, 14). Furthermore, any diagram with at least 11 crossings has degree
(3, 13, 14) at least. It is proved in [5] that 931 is the harmonic Fibonacci
knot (T3, T10, T17). The torus knot 91 and the twist knots 92, 93, 94, have
lexicographic degree (3, 13, 14), see [1]. For the remaining knots, we proceed
as follows.

• The alternating diagrams of 911, 913, 917, 920, 923, 926 and 927 can
be reduced to D(3) by two T-reductions. Their lexicographic degree
is then (3, 10, 17).

– 788 –



The lexicographic degree of the first two-bridge knots

Table 4.4. Lexicographic degree of two-bridge knots with crossing
number 9

Name Fraction Conway Not. Lex. deg. Cheb. deg. diagram Constr.
91 9 C(9) (3, 13, 14) 13 Cheb.
92 15/2 C(7, 2) (3, 13, 14) 13 Cheb.
93 19/3 C(6, 3) (3, 13, 14) 13 Cheb.
94 21/4 C(5, 4) (3, 13, 14) 13 Cheb.
95 23/4 C(5, 1, 3) (3, 11, 16) 13 C(5, 1, 2, 1) D(3, 0)+2T
96 27/5 C(5, 2, 2) (3, 13, 14) 13 Cheb.
97 29/9 C(3, 4, 2) (3, 13, 14) 13 Cheb.
98 31/11 C(2, 1, 4, 2) (3, 11, 16) 13 C(2, 1, 4, 1, 1) D(1, 2, 0)+2T
99 31/7 C(4, 2, 3) (3, 13, 14) 13 Cheb.
910 33/10 C(3, 3, 3) (3, 11, 16) 13 C(3, 2, 1,−4) D(0, 1)+3T
911 33/7 C(4, 1, 2, 2) (3, 10, 17) 13 D(3)+2T
912 35/8 C(4, 2, 1, 2) (3, 11, 16) 13 D(3, 0)+2T
913 37/10 C(3, 1, 2, 3) (3, 10, 17) 13 D(1, 2)+2T
914 37/8 C(4, 1, 1, 1, 2) (3, 11, 16) 11 D(3, 0)+2T
915 39/16 C(2, 2, 3, 2) (3, 11, 16) 13 C(2, 2, 2, 1,−3) D(1, 0)+3T
917 39/14 C(2, 1, 3, 1, 2) (3, 10, 17) 11 D(3)+2T
918 41/12 C(3, 2, 2, 2) (3, 13, 14) 13 Cheb.
919 41/16 C(2, 1, 1, 3, 2) (3, 11, 16) 11 D(3, 0)+2T
920 41/11 C(3, 1, 2, 1, 2) (3, 10, 17) 13 D(3)+2T
921 43/12 C(3, 1, 1, 2, 2) (3, 11, 16) 13 D(3, 0)+2T
923 45/19 C(2, 2, 1, 2, 2) (3, 10, 17) 13 D(3)+T
926 47/13 C(3, 1, 1, 1, 1, 2) (3, 10, 17) 11 D(3)+2T
927 49/18 C(2, 1, 2, 1, 1, 2) (3, 10, 17) 13 D(3)+2T
931 55/21 C(2, 1, 1, 1, 1, 1, 2) (3, 10, 17) 10 Cheb.

• The plane alternating diagram of 98 is reduced to D(1, 3, 2) by T-
reduction. The algebraic degree of D(1, 3, 2) is at most the degree
of D(4, 2), that is 8. On the other hand, the plane projection of the
diagram C(2, 1, 4, 1, 1) can be reduced toD(1, 2, 0) that has degree 8.
• The plane alternating diagrams of the knots 95, 912, 914, 919 and

921 can be reduced by two T-reductions to D(3, 0). Hence these
diagrams have algebraic degree 11. On the other hand, any other
diagram of these knots will be non-alternating with at least 10 cross-
ing points. Hence the lexicographic degree of these knots is then
(3, 11, 16).
• The alternating diagram of 915 is C(2, 2, 3, 2). From Proposition 3.2,
its lexicographic degree is at least (3, 13, 14). Any other non alter-
nating diagram of 915 will have 10 or more crossings. Consider the
diagram C(2, 2, 2, 1,−3) of 915. Its projection D(2, 2, 2, 1, 3) can be
reduced to D(1, 0) by three T-reductions. Consequently 915 has de-
gree (3, 11, 16).

• The alternating diagram of 96 is C(5, 2, 2). From Proposition 3.7, its
lexicographic degree is at least (3, 13, 14). The only diagrams of 96
having 10 crossings are C(2, 1, 1,−6) and C(5, 1, 1,−3), whose plane
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diagrams reduce to D(7) by T-reductions. Hence the lexicographic
degree of 96 is (3, 11, 16).
• The alternating diagram of 97 is C(3, 4, 2). From Proposition 3.7,
its lexicographic degree is at least (3, 13, 14). The only diagrams
of 97 having 10 crossings are C(2, 3, 1,−4), and C(3, 3, 1,−3). The
plane diagrams D(2, 3, 1, 4) reduces to D(2, 2, 3) and D(3, 3, 1, 3) to
D(3, 2, 2) by a T-reduction. Their degrees are at least 14 by Propo-
sition 3.9.
• The alternating diagram of 99 is C(4, 2, 3). From Proposition 3.7,
its lexicographic degree is at least (3, 13, 14). The only diagrams
of 99 having 10 crossings are C(3, 1, 1,−5) and C(4, 1, 1,−4), whose
plane diagrams reduce to D(7) by T-reductions. Their lexicographic
degrees are then (3, 13, 14).

• The alternating diagram of 918 is C(3, 2, 2, 2). From Proposition 3.2
(or Proposition 3.7, its lexicographic degree is at least (3, 13, 14).
The only diagrams of 918 having 10 crossings are C(3, 1, 1,−3,−2)
whose plane projection reduces to D(5, 2), C(2, 2, 1, 1,−4) whose
plane projection reduces to D(2, 5), C(2, 1, 1,−3,−3) whose plane
projection reduces to D(4, 3), and C(3, 2, 1, 1,−3), whose plane pro-
jection reduces to D(3, 4). By Proposition 3.7, the degree of these
four plane diagrams with seven crossings is at least 10, so the de-
gree of the four plane diagrams with 10 crossings is at least 13 by
Proposition 3.9.

• The alternating diagram of 910 is C(3, 3, 3). Suppose that there ex-
ists a polynomial parametrisation γ : t 7→ (P (t), Q(t)) of the plane
diagram D(3, 3, 3) with deg(P ) = 3 and deg(Q) = 10. We denote
by C = γ(C). Since the curve C has 9 real crossings, it has no
additional nodes. The braid associated to C is

bC = σ−1
1 σ−1

2 σ−2
1 σ−3

2 σ−3
1 σ−2

2 (σ1σ2σ1)4.

Since this braid is not the trivial braid, we obtain a contradic-
tion. Hence the alternating diagram C(3, 3, 3) has degree at least
(3, 11, 16). On the other hand, the projection of the diagram C(3, 2,
1,−4) of 910 reduces to D(2, 2). Since this latter has algebraic de-
gree 5, we deduce that 910 has lexicographic degree (3, 11, 16). �

tion 3.7, its lexicographic degree is at least (3, 13, 14). The only diagrams of 918
having 10 crossings are C(3, 1, 1,−3,−2) whose plane projection reduces to D(5, 2),
C(2, 2, 1, 1,−4) whose plane projection reduces to D(2, 5), C(2, 1, 1,−3,−3) whose
plane projection reduces to D(4, 3), and C(3, 2, 1, 1,−3), whose plane projection re-
duces to D(3, 4). By Proposition 3.7, the degree of these four plane diagrams with
seven crossings is at least 10, so the degree of the four plane diagrams with 10 crossings
is at least 13 by Proposition 3.9.

• The alternating diagram of 910 is C(3, 3, 3). Suppose that there exists a polynomial
parametrisation γ : t 7→ (P (t), Q(t)) of the plane diagram D(3, 3, 3) with deg(P ) = 3
and deg(Q) = 10. We denote by C = γ(C). Since the curve C has 9 real crossings, it
has no additional nodes. The braid associated to C is

bC = σ−1
1

σ−1
2

σ−2
1

σ−3
2

σ−3
1

σ−2
2

(σ1σ2σ1)
4.

Since this braid is not the trivial braid, we obtain a contradiction. Hence the al-
ternating diagram C(3, 3, 3) has degree at least (3, 11, 16). On the other hand, the
projection of the diagram C(3, 2, 1,−4) of 910 reduces to D(2, 2). Since this latter has
algebraic degree 5, we deduce that 910 has lexicographic degree (3, 11, 16). ✷

C(3, 3, 3) C(3, 2, 1,−4).
Figure 20: Two diagrams of 910

4.7 Two-bridge knots with crossing number 10 or 11

The lexicographic degrees of the torus knot C(11) and the twist knots C(8, 2), C(9, 2),
C(8, 3), C(6, 4), C(7, 4) and C(6, 5) have been established in [BKP16a]. For the 129 re-
maining knots with 10 or 11 crossings, we simply sketch all computations. For only 11
knots among the 186 knots with 11 crossings or fewer — 1011, 1013, 11a98, 11a166, 11a230,
11a235, 11a238, 11a311, 11a335, 11a359 and 11a365 — the lower bounds differ from the upper
bounds in the strategy described in Section 4.1, i.e. one has to go through step 4. The
projections of all the corresponding diagrams reduce by T-reduction to a finite list of eleven
plane diagrams:

• D(3, 3, 3) and D(3, 3, 4), that have degree 13 at least,

• D(3, 3, 5) and (3, 5, 3), that have degree 14 at least,

• D(3, 3, 6), D(3, 5, 4), D(3, 2, 3, 4), D(3, 2, 3, 5), D(3, 2, 5, 3), that have degree 16 at
least,

• D(3, 3, 2, 5) and D(4, 2, 3, 4) that have degree (3, 17) at least.

28

tion 3.7, its lexicographic degree is at least (3, 13, 14). The only diagrams of 918
having 10 crossings are C(3, 1, 1,−3,−2) whose plane projection reduces to D(5, 2),
C(2, 2, 1, 1,−4) whose plane projection reduces to D(2, 5), C(2, 1, 1,−3,−3) whose
plane projection reduces to D(4, 3), and C(3, 2, 1, 1,−3), whose plane projection re-
duces to D(3, 4). By Proposition 3.7, the degree of these four plane diagrams with
seven crossings is at least 10, so the degree of the four plane diagrams with 10 crossings
is at least 13 by Proposition 3.9.

• The alternating diagram of 910 is C(3, 3, 3). Suppose that there exists a polynomial
parametrisation γ : t 7→ (P (t), Q(t)) of the plane diagram D(3, 3, 3) with deg(P ) = 3
and deg(Q) = 10. We denote by C = γ(C). Since the curve C has 9 real crossings, it
has no additional nodes. The braid associated to C is

bC = σ−1
1

σ−1
2

σ−2
1

σ−3
2

σ−3
1

σ−2
2

(σ1σ2σ1)
4.

Since this braid is not the trivial braid, we obtain a contradiction. Hence the al-
ternating diagram C(3, 3, 3) has degree at least (3, 11, 16). On the other hand, the
projection of the diagram C(3, 2, 1,−4) of 910 reduces to D(2, 2). Since this latter has
algebraic degree 5, we deduce that 910 has lexicographic degree (3, 11, 16). ✷

C(3, 3, 3) C(3, 2, 1,−4).
Figure 20: Two diagrams of 910

4.7 Two-bridge knots with crossing number 10 or 11

The lexicographic degrees of the torus knot C(11) and the twist knots C(8, 2), C(9, 2),
C(8, 3), C(6, 4), C(7, 4) and C(6, 5) have been established in [BKP16a]. For the 129 re-
maining knots with 10 or 11 crossings, we simply sketch all computations. For only 11
knots among the 186 knots with 11 crossings or fewer — 1011, 1013, 11a98, 11a166, 11a230,
11a235, 11a238, 11a311, 11a335, 11a359 and 11a365 — the lower bounds differ from the upper
bounds in the strategy described in Section 4.1, i.e. one has to go through step 4. The
projections of all the corresponding diagrams reduce by T-reduction to a finite list of eleven
plane diagrams:

• D(3, 3, 3) and D(3, 3, 4), that have degree 13 at least,

• D(3, 3, 5) and (3, 5, 3), that have degree 14 at least,

• D(3, 3, 6), D(3, 5, 4), D(3, 2, 3, 4), D(3, 2, 3, 5), D(3, 2, 5, 3), that have degree 16 at
least,

• D(3, 3, 2, 5) and D(4, 2, 3, 4) that have degree (3, 17) at least.

28

C(3, 3, 3) C(3, 2, 1,−4).

Figure 4.3. Two diagrams of 910
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4.7. Two-bridge knots with crossing number 10 or 11

The lexicographic degrees of the torus knot C(11) and the twist knots
C(8, 2), C(9, 2), C(8, 3), C(6, 4), C(7, 4) and C(6, 5) have been established
in [1]. For the 129 remaining knots with 10 or 11 crossings, we simply sketch
all computations. For only 11 knots among the 186 knots with 11 crossings
or fewer (1011, 1013, 11a98, 11a166, 11a230, 11a235, 11a238, 11a311, 11a335,
11a359 and 11a365) the lower bounds differ from the upper bounds in the
strategy described in Section 4.1, i.e. one has to go through step (4). The
projections of all the corresponding diagrams reduce by T-reduction to a
finite list of eleven plane diagrams:

• D(3, 3, 3) and D(3, 3, 4), that have degree 13 at least,
• D(3, 3, 5) and (3, 5, 3), that have degree 14 at least,
• D(3,3,6), D(3,5,4), D(3,2,3,4), D(3,2,3,5), D(3,2,5,3), that have
degree 16 at least,

• D(3, 3, 2, 5) and D(4, 2, 3, 4) that have degree (3, 17) at least.

These results have been obtained by computing all possible braids associ-
ated to hypothetical plane curves of degree b < b0 that are L-isotopic to
the diagram, and checking, like in Proposition 4.10, if these braids satisfy
Proposition 3.4.

5. Conclusion

We list in Table 5.1 the lexicographic degrees of the first 186 two-bridge
knots. We only write b, bearing in mind that the corresponding lexicographic
degree is (3, b, 3N − b).

Details of our results are available on https://webusers.imj-prg.fr/
~pierre-vincent.koseleff/knots/2bk-lexdeg.html

In Table 5.2, we list all knots for which the degrees of their alternating
diagrams are not their lexicographic degrees. The third column of Table 5.2
gives a diagram obtained by a polynomial parametrisation of lexicographic
degree, the fourth column indicates a construction of the corresponding xy-
plane diagram (the notation is explained in Section 3), the fifth column
gives the alternating trigonal diagram of the knot, and the last column gives
a lower bound on its y-degree.

– 791 –

https://webusers.imj-prg.fr/~pierre-vincent.koseleff/knots/2bk-lexdeg.html
https://webusers.imj-prg.fr/~pierre-vincent.koseleff/knots/2bk-lexdeg.html


Erwan Brugallé, Pierre-Vincent Koseleff and Daniel Pecker

Table 5.1. Two-bridge knots with crossing number at most 11 and
their y-lexicographic degree

Name Deg. Name Deg. Name Deg. Name Deg. Name Deg. Name Deg.
31 4 41 5 51 7 52 7 61 8 62 7
63 7 71 10 72 10 73 10 74 8 75 10
76 8 77 8 81 11 82 10 83 11 84 10
86 10 87 10 88 10 89 10 811 10 812 11

813 10 814 10 91 13 92 13 93 13 94 13
95 11 96 13 97 13 98 11 99 13 910 11

911 10 912 11 913 10 914 11 915 11 917 10
918 13 919 11 920 10 921 11 923 10 926 10
927 10 931 10 101 14 102 13 103 14 104 13
105 13 106 13 107 13 108 13 109 13 1010 13

1011 13 1012 13 1013 14 1014 13 1015 13 1016 11
1017 13 1018 13 1019 13 1020 13 1021 13 1022 13
1023 13 1024 13 1025 13 1026 13 1027 13 1028 11
1029 11 1030 11 1031 13 1032 13 1033 11 1034 13
1035 14 1036 13 1037 13 1038 11 1039 13 1040 13
1041 11 1042 11 1043 11 1044 11 1045 11 11a13 14

11a59 14 11a65 14 11a75 13 11a77 13 11a84 13 11a85 13
11a89 13 11a90 13 11a91 13 11a93 13 11a95 13 11a96 14
11a98 14 11a110 13 11a111 13 11a117 13 11a119 14 11a120 13

11a121 14 11a140 13 11a144 13 11a145 14 11a154 14 11a159 14
11a166 14 11a174 13 11a175 13 11a176 13 11a177 13 11a178 13
11a179 13 11a180 13 11a182 13 11a183 13 11a184 13 11a185 13
11a186 13 11a188 13 11a190 13 11a191 13 11a192 13 11a193 13
11a195 14 11a203 13 11a204 13 11a205 13 11a206 13 11a207 13
11a208 13 11a210 14 11a211 14 11a220 13 11a224 13 11a225 13
11a226 14 11a229 14 11a230 14 11a234 16 11a235 16 11a236 16
11a238 16 11a242 16 11a243 16 11a246 16 11a247 16 11a306 13
11a307 13 11a308 13 11a309 13 11a310 13 11a311 14 11a333 14
11a334 16 11a335 16 11a336 13 11a337 13 11a339 16 11a341 13
11a342 16 11a343 14 11a355 16 11a356 13 11a357 13 11a358 16
11a359 14 11a360 13 11a363 14 11a364 16 11a365 14 11a367 16

Note added in Proof

We also have determined the lexicographic degrees of all 176 two-bridge
knots with crossing number N = 12 and all 352 two-bridge knots with cross-
ing number N = 13. They all satisfy b+c = 3N . We made use of our strategy,
except for C(5, 5, 3) and C(5, 3, 5), for which we had to use some additional
property to prove that there is no plane curve of bi-degree (3, 16) corre-
sponding to their alternating diagrams. See https://webusers.imj-prg.
fr/~pierre-vincent.koseleff/knots/2bk12-lexdeg.html
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Table 5.2. Knots for which the alternating diagram is not of minimal
degree

Name y-lex. Lex. deg. Constr. Alt. diagram y-lex.
degree diagram degree >

86 10 C(2, 2, 1,−4) D(1, 2) + 2T C(3, 3, 2) 11
910 11 C(3, 2, 1,−4) D(2, 2) + 2T C(3, 3, 3) 13
915 11 C(2, 2, 1,−3,−2) D(0, 1) + 3T C(2, 2, 3, 2) 13

1024 13 C(2, 2, 1,−3,−3) D(0, 2) + 3T C(3, 2, 3, 2) 14
11a75 13 C(2, 1, 3, 2, 1,−3) D(1, 1, 1) + 3T C(2, 1, 3, 3, 2) 14
11a84 13 C(2, 2, 1,−3,−1,−1,−2) D(1, 2) + 3T C(2, 1, 1, 2, 3, 2) 14

11a144 13 C(2, 2, 2, 1,−5) D(1, 2) + 3T C(4, 3, 2, 2) 14
11a186 13 C(2, 2, 2, 1,−3,−2) D(3) + 3T C(2, 2, 3, 2, 2) 16
11a193 13 C(2, 1, 1, 1, 2, 1,−4) D(1, 2) + 3T C(3, 3, 1, 1, 1, 2) 14
11a205 13 C(2, 2, 1,−2,−1,−1,−3) D(1, 2) + 3T C(3, 1, 1, 1, 3, 2) 14
11a208 13 C(2, 1, 1,−2,−1,−2,−3) D(1, 2) + 3T C(3, 2, 1, 1, 2, 2) 14
11a224 13 C(3, 2, 1,−3,−1,−2) D(3) + 3T C(3, 3, 2, 1, 2) 14
11a225 13 C(2, 3, 1,−2,−4) D(1, 2) + 3T C(4, 1, 4, 2) 14
11a229 14 C(2, 2, 1,−3,−4) D(0, 3) + 3T C(4, 2, 3, 2) 16
11a341 13 C(3, 1, 3, 1,−4) D(1, 2) + 3T C(3, 1, 4, 3) 14
11a356 13 C(3, 2, 1,−3,−3) D(1, 2) + 3T C(3, 2, 3, 3) 16
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