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Divergence, exotic convergence and self-bumping in
quasi-Fuchsian spaces (∗)

Ken’ichi Ohshika (1)

ABSTRACT. — In this paper, we study the topology of the boundaries of quasi-
Fuchsian spaces. We first show for a given convergent sequence of quasi-Fuchsian
groups, how we can know the end invariant of the limit group from the information on
the behaviour of conformal structures at infinity of the groups. This result gives rise
to a sufficient condition for divergence of quasi-Fuchsian groups, which generalises
Ito’s result in the once-punctured torus case to higher genera. We further show that
quasi-Fuchsian groups can approach a b-group not along Bers slices only when the
limit has isolated parabolic loci. This makes it possible to give a necessary condition
for points on the boundaries of quasi-Fuchsian spaces to be self-bumping points.
We use model manifolds invented by Minsky and their geometric limits studied by
Ohshika–Soma to prove these results. This paper has been made as self-contained
as possible so that the reader does not need to consult the paper of Ohshika–Soma
directly.

RÉSUMÉ. — Dans cet article, on étudie la topologie des bords des espaces quasi-
fuchsiens. D’abord on montre comment on peut savoir les invariants des bouts du
groupe limite pour une suite convergente de groupes quasi-fuchsiens donnée, en uti-
lisant les informations sur le comportement asymptotique des structures conformes
à l’infini des groupes dans la suite. Ce résultat donne lieu à une condition suffisante
pour la divergence des groupes quasi-fuchsiens, laquelle est une généralisation du
résultat d’Ito qui n’a traité que le cas des groupes du tore une fois perforé. On dé-
montre de plus que des groupes quasi-fuchsiens ne peuvent approcher un b-groupe
hors de la tranche de Bers que si la limite admet un locus parabolique isolé. Ce
résultat-ci permet également de donner une condition nécessaire pour qu’un point
au bord de l’espace de déformations soit un point de « l’entrechoquement ». Pour dé-
montrer ces résultats, on utilise des variétés modèles construites par Minsky et leurs
limites géométriques étudiées par Ohshika–Soma. Pour que les lecteurs n’aient pas
besoin de se reporter à l’article d’Ohshika–Soma, le présent article aussi contient les
arguments simplifiés mais assez détaillés d’Ohshika–Soma qui sont nécessaires pour
les démonstrations des théorèmes principaux.
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Ken’ichi Ohshika

1. Introduction

In the theory of Kleinian groups, after the major problems like Marden’s
tameness conjecture and the ending lamination conjecture were solved, the
attention is now focused on studying the topological structure of deformation
spaces. Although we know, by the resolution of the Bers–Sullivan–Thurston
density conjecture ([10, 16, 32, 33, 41, 42, 46]), that every finitely generated
Kleinian group is an algebraic limit of quasi-conformal deformations of a
(minimally parabolic) geometrically finite group, the structure of deforma-
tion spaces as topological spaces is far from completely understood. For in-
stance, as was observed by work of Anderson–Canary [2] and McMullen [39],
even in the case of Kleinian groups isomorphic to closed surface groups, the
deformation spaces are fairly complicated, and in particular it is known that
they are not manifolds since they have singularities caused by a phenomenon
called “bumping”. Actually, this kind of phenomenon also makes the defor-
mation spaces not locally connected as was shown by Bromberg [17] and was
generalised by Magid [34].

The interior of a deformation space is known to be a disjoint union of
quasi-conformal deformation spaces of minimally parabolic Kleinian groups,
which is well understood by work of Ahlfors, Bers, Kra, Maskit, Marden,
and Sullivan. In particular, their theory gives rise to a parametrisation of the
quasi-conformal deformation space by the Teichmüller space of the boundary
at infinity of the corresponding quotient hyperbolic 3-manifold. Therefore,
to understand the global structure of a deformation space, what we need
to know is how the boundary is attached to the quasi-conformal deforma-
tion space. More concretely, we need to determine, for a sequence of quasi-
conformal deformations given as a sequence in the Teichmüller space using
this parametrisation, first whether it converges or not, and if it does, what
is the limit of the sequence. Also, we need to know in what cases sequences
of quasi-conformal deformations can approach the same group from different
directions as in the example of Anderson–Canary and McMullen. This paper
tries to answer such problems for the case of Kleinian surface groups using
the technique of model manifolds of geometric limits which we developed in
Ohshika–Soma [50].

The interior of a deformation space of Kleinian surface group AH(S) is
the quasi-Fuchsian space QF (S). The parametrisation in this case is the
Ahlfors–Bers map qf from T (S)× T (S) to QF (S). The celebrated work of
Bers on compactification of Teichmüller space ([4]) shows that in AH(S),
the subspace of QF (S) in the form T (S)×{pt.} or {pt.}×T (S) is relatively
compact. Considering a direction in QF (S) (with respect to the parametrisa-
tion of Ahlfors–Bers) quite different from that of Bers, Thurston proved that
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a sequence {(mi, ni)} ∈ T (S)× T (S) converges if {mi} converges to a pro-
jective lamination [λ] and {ni} converges to another projective lamination
[µ] both in the Thurston compactification of T (S) such that the supports of
λ and µ are distinct and every component of S \ (λ∪µ) is simply connected
([55]).

In contrast to these results on convergence, we showed in [45] that if {mi}
and {ni} converge to arational laminations with the same support, then
{qf(mi, ni)} always diverges. Since the Teichmüller space of S is properly
embedded in AH(S) as a diagonal set of T (S)×T (S), this may look very nat-
ural. However, there is an example by Anderson–Canary in [2] which shows
that for a given hyperbolic structure m0, if we consider (τ i(m0), τ2i(m0)) ∈
T (S)×T (S), where τ denotes the deformation of the metric induced by the
Dehn twist around a simple closed curve γ on S, then its image qf(τ i(m0),
τ2i(m0)) in AH(S) converges. These two results show that the situation is
quite different depending on the types of the limit projective laminations.

In the case when T (S) has dimension 2, i.e., if S is either a once-punctured
torus or a four-times punctured sphere, a measured lamination is either ara-
tional or a weighted simple closed curve, which means that there is nothing
between these two situations above. In this case, Ito has given a complete
criterion for convergence/divergence ([26]). In the general case when T (S)
has dimension more than 2 however, there is a big room between these two
extremes.

Therefore quite naturally, we should ask ourselves what would happen in
the cases in between. One of our main theorems in this paper (Theorem 3.3)
is an answer to this question. Consider sequences {mi} in T (S) and {ni}
in T (S) converging to [µ+] and [µ−] such that their supports |µ+| and |µ−|
share a component which is not a simple closed curve. We shall prove that
{qf(mi, ni)} diverges in AH(S) in this setting. More generally, we shall show
that if µ+ and µ− have components µ+

0 , µ
−
0 whose minimal supporting sur-

faces share a boundary component up to isotopy, then {qf(mi, ni)} diverges.

This theorem is derived from another of our main results, Theorem 3.2,
which asserts that if {qf(mi, ni)} converges, then we can determine the
ending laminations of the limit group by considering the shortest pants de-
compositions of (S,mi) and (S, ni) and their Hausdorff limits. It also implies
Theorem 3.1 stating that if we consider the limits of {mi} and {ni} in the
Thurston compactification of the Teichmüller space, then every non-simple-
closed-curve component of the limit of {mi} is an ending lamination of an
upper end of the limit, and every non-simple-closed-curve component of the
limit of {ni} is that of a lower end. These combined with Theorem 3.6 can
be regarded as a partial answer to the problem of determining limit groups
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of sequence of quasi-Fuchsian groups given in terms of the parametrisation
by the Teichmüller spaces.

In the case when the laminations |µ+| and |µ−| share only simple closed
curves, the convergence or divergence of the sequence depends on whether
there is a simple closed curve component of either |µ+| or |µ−| which is con-
tained in the boundary of the minimal supporting surface of a non-simple-
closed-curve component of the other of |µ−| or |µ+|. Theorem 3.5 asserts
that if there is such a simple closed curve component, then the sequence di-
verges. Even in the case when such a component does not exist, {qf(mi, ni)}
can converge only in a special situation which is analogous to an example
of Anderson–Canary [2]. Theorem 3.6 describes the situation where the se-
quence can converge. We should note that these are the best possible answers
for divergence and convergence for sequence of quasi-Fuchsian groups when
the asymptotic behaviour of the corresponding parameters are expressed in
terms of the Thurston compactification of Teichmüller space.

The same example of Anderson–Canary also shows that there is a point
in AH(S) where QF (S) bumps itself as explained above. In such a point, the
self-bumping is caused by what is called the “exotic convergence”. A sequence
of quasi-Fuchsian groups is said to converge to a b-group exotically when the
groups in the sequence are not contained in Bers slices approaching the one
containing the limit b-group. The construction of Anderson–Canary gives a
sequence converging exotically to a regular b-group. We shall prove such a
convergence can occur only for b-groups which have Z-cusps not touching
geometrically infinite ends.

As for self-bumping, we conjecture that such a phenomenon cannot occur
for geometrically infinite b-groups all of whose Z-cusps touch geometrically
infinite ends. What we shall prove in Theorem 3.8 is a weaker form of this
conjecture: if there are two sequences {qf(mi, ni)} and {qf(m′i, n′i)} both
converging to the same geometrically infinite group all of whose Z-cusps
touch geometrically infinite ends, then for any small neighbourhood U of
the quasi-conformal deformation space of the limit group, if we take large i,
then qf(mi, ni) and qf(m′i, n′i) are connected by an arc in U . In particular
this shows that under the same condition on Z-cusps, if the limit group is
either quasi-conformally rigid or a b-group whose upper conformal structure
at infinity is rigid, it cannot be a self-bumping point. More generally, even
when there is a cusp not touching a geometrically infinite end, the same ar-
gument shows that a Bers slice cannot bump itself at a b-group whose upper
conformal structure at infinity is rigid. This latter result has been obtained
independently by Brock–Bromberg–Canary–Minsky [12] by a different ap-
proach.
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In Theorems 3.11 and 3.12, we shall generalise the results for quasi-
Fuchsian groups in Theorems 3.2 and 3.3 to general Kleinian surface groups.

We also note that the results obtained in this paper has an application
which has appeared in [49] (see also Papadopoulos [52]). There, we have
considered a quotient space of a Bers boundary, which is called the reduced
Bers boundary, and have proved its automorphism group coincides with the
extended mapping class group.

Our tools for proving all these theorems are model manifolds invented by
Minsky [40] and their geometric limits studied in Ohshika–Soma [50]. The
technique which we develop in this paper shows that model manifolds are
quite useful for studying the asymptotic behaviour of sequence in deforma-
tion spaces. We have tried to make this paper readable independently of [50]:
each time we need arguments in [50], we provide their sketches or summaries
so that the reader does not need to look into details of [50].

Recently, after the first version of the present paper had been put on the
arXiv, there appeared two papers which made a further progress along the
line of our results, using different techniques. The first is Brock–Bromberg–
Canary–Minsky [12] and the other is Brock–Bromberg–Canary–Lecuire [11].

The author would like to express his gratitude to the anonymous referee,
whose comments and suggestions are very helpful to revise the text. In par-
ticular, the referee’s comments have made it possible to substantially shorten
the argument in Section 4.

2. Preliminaries

2.1. Generalities

Kleinian groups are discrete subgroups of PSL2C. In this paper we always
assume Kleinian groups to be torsion free. When we talk about deformation
spaces, we only consider finitely generated Kleinian groups. However, we
also need to consider infinitely generated Kleinian groups which will appear
as geometric limits. We refer the reader to Marden [35, 36] for a general
reference for the theory of Kleinian groups.

Let S be an oriented hyperbolic surface of finite area. In this paper, we
focus on Kleinian groups which are isomorphic to π1(S) in such a way that
punctures of S correspond to parabolic elements. We define the deformation

– 809 –



Ken’ichi Ohshika

space AH(S) to be the quotient space of

R(S) =

(G,φ)

∣∣∣∣∣∣
φ : π1(S)→ PSL2C is a faithful discrete
representation taking punctures to parabolic
elements with φ(π1(S)) = G


by conjugacy in PSL2C. The space R(S) has a topology coming from the
representation space and we endow AH(S) with its quotient topology. We
denote an element of AH(S) also by (G,φ) for some representative of the
equivalence class. We call φ a marking of the Kleinian group G.

The set of faithful discrete representations of π1(S) into PSL2R, which
induce the same orientation as the one given on S, modulo conjugacy consti-
tutes the Teichmüller space of S, which we denote by T (S). Therefore, T (S)
is naturally contained in AH(S). More generally, the space of quasi-Fuchsian
groups QF (S) lies in AH(S). A quasi-Fuchsian group is a Kleinian group
whose domain of discontinuity is a disjoint union of two simply connected
components. By the theory of Ahlfors–Bers, QF (S) is parametrised by a
homeomorphism qf : T (S)×T (S)→ QF (S). Here both T (S) and T (S) are
the Teichmüller space of S, but the latter one is identified with T (S) by an
orientation reversing automorphism of S. For (m,n) ∈ T (S)×T (S), its im-
age qf(m,n) is obtained by starting from a Fuchsian group and solving a Bel-
trami equation so that the conformal structure on the quotient of the lower
Jordan domain is m and that on the quotient of the upper Jordan domain
is n. We call m and n the lower and upper conformal structures at infinity
of qf(m,n) respectively. The set of Fuchsian groups corresponds to a slice
of the form {qf(m,m)}. By the theory of Ahlfors–Bers combined with Sulli-
van’s stability theorem [53], we know that QF (S) is the interior of the entire
deformation space AH(S). On the other hand, the Bers–Sullivan–Thurston
density conjecture, which was solved by Bromberg [9], Brock–Bromberg [10]
in this setting, or is obtained as a corollary of the ending lamination conjec-
ture [13] combined with [43], AH(S) is the closure of QF (S).

By Margulis’ lemma, there is a positive constant ε0 such that for any
hyperbolic 3-manifold, its ε0-thin part is a disjoint union of cusp neigh-
bourhoods and tubular neighbourhoods of short closed geodesics, which are
called Margulis tubes. For a hyperbolic 3-manifold M , we denote by M0 the
complement of its cusp neighbourhoods.

Bonahon showed in [5] that for any (G,φ) ∈ AH(S), the hyperbolic
3-manifold H3/G is homeomorphic to S × (0, 1). We denote by Φ a home-
omorphism from S × (0, 1) to H3/G inducing φ between the fundamental
groups. In general, for an element in AH(S), we denote a homeomorphism
from S× (0, 1) to the quotient hyperbolic 3-manifold by the letter in the up-
per case corresponding to a Greek letter denoting the marking. Bonahon also
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proved the every end of (H3/G)0 is either geometrically finite or simply de-
generate. Here an end is called geometrically finite if it has a neighbourhood
which is disjoint from any closed geodesic, and simply degenerate if it has
a neighbourhood of the form Σ× (0,∞) for an incompressible subsurface Σ
of S (i.e. a subsurface each of whose frontier components is non-contractible
in S) and there are simple closed curves cn on Σ which are homotopic to
closed geodesics c∗n going to the end. For a simply degenerate end, the ending
lamination is defined to be the support of the projective lamination to which
[cn] converges in the projective lamination space PML(Σ). We shall explain
what are laminations and the projective lamination space below.

For (G,φ) ∈ AH(S), we choose an embedding f : S → H3/G inducing φ
between the fundamental groups. Such an embedding is unique up to ambient
isotopy in H3/G. An end of H3/G is called upper when it lies above f(S) and
lower when it lies below f(S) with respect to the orientations of H3/G and
f(S). Let C be a compact core of (H3/G)0 intersecting each component of
Fr(H3/G)0 by a core annulus. Let P denote C∩Fr(H3/G)0. Each component
of P is called a parabolic locus of H3/G or C, and its core curve is called
a parabolic curve. Parabolic loci corresponding to punctures of S are called
peripheral parabolic loci. For non-peripheral parabolic loci, those contained
in S × {1} are called upper and those contained in S × {0} lower. The ends
of (H3/G)0 correspond one-to-one to the components of FrC. Since C is
homeomorphic to S × [0, 1], each upper end faces a subsurface of S × {1},
which is a component of S × {1} \ P . A non-peripheral parabolic locus p
in P is called isolated when the components of S × {0, 1} \ P adjacent to
p (there are one or two such components) face geometrically finite ends, in
other words, no component of S ×{0, 1} \P facing a simply degenerate end
touches p at its frontier.

2.2. Laminations

A geodesic lamination on a hyperbolic surface S is a closed subset of S
consisting of disjoint simple geodesics, which are called leaves. For a geodesic
lamination λ, each component of S \λ is called a complementary region of λ.
We say that a geodesic lamination is arational when every complementary
region is either simply connected or in the case when S is not closed, a
topologically open annulus whose core curve is homotopic to a puncture or
a boundary component of S. A subset l of a geodesic lamination consisting
of leaves is called a minimal component when for each leaf ` of l, its closure
` coincides with l. Any geodesic lamination is decomposed into finitely many
minimal components and finitely many non-compact isolated leaves.
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A measured lamination is a (possibly empty) geodesic lamination en-
dowed with a transverse measure which is invariant with respect to homo-
topies along leaves. The support of the transverse measure of a measured
lamination µ, which is a geodesic lamination, is called the support of µ
and is denoted by |µ|. When we consider a measured lamination, we always
assume that its support is the entire lamination. The measured lamination
spaceML(S) is the set of measured laminations on S endowed with the weak
topology. Thurston proved thatML(S) is homeomorphic to R6g−6+2p, where
g is the genus and p is the number of punctures. A weighted disjoint union
of closed geodesics can be regarded as a measured lamination. It was shown
by Thurston that the set of weighted disjoint unions of closed geodesics is
dense inML(S).

The projective lamination space PML(S) is the space obtained by tak-
ing a quotient of ML(S) \ {∅} identifying scalar multiples. Thurston con-
structed a natural compactification of the Teichmüller space whose boundary
is PML(S) in such a way that the mapping class group acts continuously
on the compactification.

We need to consider one more space, the unmeasured lamination space.
This space, denoted by UML(S), is defined to be the quotient space of
ML(S), where two laminations with the same support are identified. An
element in UML(S) is called an unmeasured lamination.

For a minimal geodesic lamination λ on S, its minimal supporting surface
is defined to be an incompressible subsurface of S containing λ which is
minimal up to isotopy among all such surfaces. When λ is a closed geodesic,
we define its minimal supporting surface to be an annulus whose core curve
is λ. It is obvious the minimal supporting surface of λ is uniquely determined
up to isotopy.

2.3. Algebraic convergence and geometric convergence

When {(Gi, φi)} converges to (Γ, ψ) ∈ AH(S), we say that the sequence
converges algebraically to (Γ, ψ). We can choose representatives (Gi, φi) so
that φi converges to ψ as representations. As a convention, when we say that
{(Gi, φi)} converges to (Γ, ψ), we always take representatives so that {φi}
converges to ψ.

We need to consider another kind of convergence: the geometric conver-
gence. A sequence of Kleinian groups {Gi} is said to converge to a Kleinian
group G∞ geometrically if (1) for any convergent sequence {γij ∈ Gij}, its
limit lies in G∞, and (2) any element γ ∈ G∞ is a limit of some {gi ∈ Gi}.

– 812 –



quasi-Fuchsian spaces

When (Gi, φi) converges to (Γ, ψ) algebraically, the geometric limit G∞ con-
tains Γ as a subgroup.

When {Gi} converges to G∞ geometrically, if we take a basepoint x in
H3 and its projections xi ∈ H3/Gi and x∞ ∈ H3/G∞, then (H3/Gi, xi) con-
verges to (H3/G∞, x∞) with respect to the pointed Gromov–Hausdorff topol-
ogy: that is, there exists a (Ki, ri)-approximate isometry Bri

(H3/Gi, xi)→
BKiri

(H3/G∞, x∞) with Ki → 1 and ri → ∞, where Bri
(H3/Gi, xi) de-

notes the ri-metric ball centred at xi. Here a (Ki, ri)-approximate isome-
try ρi is a diffeomorphism from Bri(H3/Gi, xi) to BKiri(H3/G∞, x∞) sat-
isfying K−1

i dH3/Gi
(y, z) 6 dH3/G∞(ρi(y), ρi(z)) 6 KidH3/G∞(y, z) for every

y, z ∈ Bri(H3/Gi, xi).

2.4. Bers slices and b-groups

We fix a point m0 ∈ T (S) and consider a subspace qf({m0} × T (S)) in
QF (S). This space is called the Bers slice over m0. Kleinian groups lying on
its frontier are called b-groups with lower conformal structure m0.

Anderson–Canary [2] constructed a sequence of quasi-Fuchsian groups
converging to a b-group whereas its coordinates in QF (S) do not approach
a Bers slice.

Definition 2.1. — We say a sequence of quasi-Fuchsian groups
{(Gi, φi) = qf(mi, ni)} converges exotically to a b-group (Γ, ψ) if {(Gi, φi)}
converges to (Γ, ψ) algebraically and both {mi} and {ni} go out from any
compact set in the Teichmüller space.

The existence of exotic convergence is related to singularities of AH(S) at
its boundary (as a subspace of the representation space modulo conjugacy).
In fact, McMullen showed in [39] that AH(S) has a singular point at the
boundary where QF (S) bumps itself. For a Kleinian surface group (Γ, ψ) ∈
AH(S) \QF (S), we say that QF (S) bumps itself at (Γ, ψ), when there is a
neighbourhood V of (Γ, ψ) such that for any smaller neighbourhood U ⊂ V ,
its intersection with the quasi-Fuchsian space, U ∩ QF (S) is disconnected.
McMullen showed the existence of points where QF (S) bumps itself, making
use of the construction of Anderson–Canary.

We say that a Bers slice B(m0) = qf({m0} × T (S)) bumps itself at
(Γ, ψ) when there is a neighbourhood V of (Γ, ψ) such that for any smaller
neighbourhood U ⊂ V , its intersection with the Bers slice, U ∩ B(m0) is
disconnected. Up to today, it is not known whether a Bers slice can bump
itself or not.
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2.5. Curve complexes and hierarchies

In this subsection, we shall give an explanation of the work of Masur–
Minsky on what they called hierarchies of tight geodesics. Throughout this
subsection, we fix an orientable hyperbolic surface S of finite type, and con-
sider its subsurfaces. We say that a subsurface is essential when it is a
proper subsurface and each of its frontier component is a non-contractible,
non-peripheral curve on S. When we talk about curve complexes, we usually
regard essential subsurfaces as open subsurfaces without boundary, and call
them domains of S following Masur–Minsky. For a surface S of genus g with
p punctures, we define ξ(S) to be 3g+p. We shall define curve complexes for
orientable surfaces S with ξ(S) > 4 or ξ(S) = 2. The curve complex CC(S)
of S with ξ(S) > 5 is defined as follows. (This notion was first introduced
by Harvey [25].) The vertices of CC(S), whose set we denote by CC0(S), are
the homotopy classes of essential simple closed curves on S. A collection of
n + 1 vertices {v0, . . . , vn} spans an n-simplex if and only if they can be
represented as pairwise disjoint simple closed curves on S.

In the case when ξ(S) = 4, the curve complex is a 1-dimensional simplicial
complex. The vertices are the homotopy classes of essential simple closed
curves as in the case when ξ(S) > 5. Two vertices v0, v1 are connected by
an edge if their intersection number is 1 when S is a once-punctured torus,
and 2 when S is a four-times-punctured sphere.

In the case when ξ(S) = 2, we consider a compactification of S to an annu-
lus. The curve complex is a 1-dimensional and the vertices are the homotopy
classes (relative to the endpoints) of essential arcs with both endpoints on
the boundary. Two curves are connected by an edge if they can be made
disjoint in their interiors.

A tight sequence in CC(S) with ξ(S) > 5 is a sequence of simplices
{s0, . . . , sn} with the first one and the last one being vertices such that
for any vertices vi ∈ si and vj ∈ sj , we have dCC(S)(vi, vj) = |j − i|, and
sj+1 is homotopic to the union of essential boundary components of a regu-
lar neighbourhood of sj ∪ sj+2. We also consider an infinite tight sequence
such as {s0, . . .} or {. . . , s0} or {. . . , s0, . . .}. In the case of the surface with
ξ(S) = 2 or 4, we consider a sequence of vertices and ignore the second
condition.

For an essential simple closed curve c of S, we consider the covering Ac
of S associated to the image of π1(c), which is an open annulus. If we fix a
hyperbolic metric on S, we can compactify the hyperbolic annulus Ac to an
annulus Ac by regarding π1(c) as acting on H2 and considering the quotient
of H2 ∪ Ωπ1(c) by π1(c), where Ωπ1(c) denotes the region of discontinuity
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of the action of π1(c) on the circle at infinity of H2. We call an essential
simple arc with endpoints on ∂Ac a transversal of c. A simple closed curve
d intersecting c essentially induces i(c, d)-many transversals of c. Any two
transversals induced from d are within the distance 1 in CC(Ac).

For a non-annular domain Σ in S, we define πΣ : CC0(S)→ P(CC(Σ)) ∪
{∅} to be a map sending c ∈ CC0(S) to the set of essential simple closed
curves obtained by connecting the endpoints of each component of c ∩Σ by
arcs on FrΣ in a consistent way if c intersects Σ essentially. We define πΣ(c)
to be ∅ when no essential simple closed curves are obtained from c∩Σ. When
Σ is an annulus we define πΣ(c) to be a transversal of the core curve of Σ
induced from c if c intersects Σ essentially. (See Masur–Minsky [38, §2.3] for
details.)

Amarking µ on a surface S consists of a simplex in CC(S) and transversals
on some of its vertices (at most one for each). The vertices of the simplex are
called the base curves of µ, and their union is denoted by base(µ). A marking
µ is said to be clean if every component c of base(µ) has a transversal and
it is induced by a simple closed curve with intersection number 1 when c
is non-separating and with intersection number 2 if c is separating, which
is disjoint from the other components of base(µ). A clean marking µ′ is
said to be compatible with a marking µ when base(µ) = base(µ′), and every
transversal of a component c in µ is within the distance 2 from the transversal
of c in µ′ as vertices in the curve complex of Ac defined above. A marking is
called complete if its base curves constitute a pants decomposition of S and
every base curve has a transversal.

For a marking µ and a non-annular domain Σ of S whose frontier does not
intersect base(µ) transversely, we define µ|Σ to be a marking on Σ whose base
curves are those in base(µ)∩Σ and whose transversals are those induced from
the transversals of base(µ). If there is a component c of base(µ) intersecting
FrΣ essentially, we let πΣ(c) be included in µ|Σ, forgetting the transversal
of c. When Σ is an annulus, there are two cases where µ|Σ is defined. One is
when µ intersects the core curve of Σ transversely, in which case we define
µ|Σ to be πΣ(µ). The other is when there is a component b of base(µ) which
is a core curve of Σ, in which case we define µ|Σ to be the transversal of b.

To deal with the case of geometrically infinite groups, we need a notion
of generalised markings. A generalised marking consists of an unmeasured
lamination on S and transversals on some of its components which are simple
closed curves. Also for a generalised marking µ, we denote the unmeasured
lamination by base(µ) and call it the base lamination. We say that a gener-
alised marking µ is complete, if its base lamination is maximal, i.e. it is not a
proper sublamination of another unmeasured lamination, and every simple
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closed curve in base(µ) has a transversal. From now on, we always assume
markings and generalised markings to be complete.

A finite tight geodesic on a surface Σ is a triple (g, I(g), T (g)), where g
is a tight sequence, and I(g) and T (g) are generalised markings on Σ whose
base laminations have at least one simple closed curve component, such that
the first vertex is a simple closed curve component of the base(I(g)) and the
last vertex is that of base(T (g)). The surface Σ is called the support of g and
we write Σ = D(g). An infinite tight geodesic is defined similarly just letting
T (g) be an arational unmeasured lamination to which si converges as i→∞
(in the quotient topology of the unmeasured lamination space induced from
the measured lamination space) when g is in the form of {s0, . . .}. Similarly,
by letting I(g) be an arational unmeasured lamination to which si converges
as i → −∞ when g is in the form of {. . . , s0}, and by letting both I(g)
and T (g) be arational unmeasured laminations which are limits of {si} as
i → −∞ and as i → ∞ respectively when g is in the form of {. . . , s0, . . .}.
Refer to Section 2.7 for more explanations on the boundary of CC(Σ).

Let Σ be a domain of S. For a simplex s in CC(Σ), a component domain
of s is defined to be either a component of Σ \ s or an annulus whose core
curve is a component of s. We consider only one annulus for each component
of s. Let g be a tight geodesic in CC(Σ), and suppose that s is a simplex on
g. Let Σ′ be a component domain of s. (Such a domain is also said to be
a component domain of g.) Then, following Masur–Minsky [38], we define
T (Σ′, g) to be succ(s)|Σ′ if s is not the last vertex of g, and to be T (g)|Σ′
if s is, where succ(s) denotes the simplex of g following s. Similarly, we
define I(Σ′, g) to be prec(s)|Σ′ if s is not the first vertex of g, and to be
I(g)|Σ′ if s is, where prec(s) denotes the simplex of g preceding s. We write
Σ′ ↘d g or Σ′ ↘d (g, s), if T (Σ′, g) is non-empty, and g d↙ Σ′ or (g, s) d↙ Σ′
if I(Σ′, g) is non-empty. If a geodesic k is a tight geodesic supported on Σ′
with (g, s) d↙ Σ′ and I(k) = I(Σ′, g), then we write g d↙ k or (g, s) d↙ k, and
say that k is directly backward subordinate to g at s. Similarly, if Σ′ ↘d (g, s)
and T (k) = T (Σ′, g), we write k ↘d g or k ↘d (g, s), and say that k is directly
forward subordinate to g at s.

A hierarchy h on S, which was introduced by Masur–Minsky [38], is a
family of tight geodesics supported on domains in S having the following
properties.

(1) There is a unique geodesic gh supported on S.
(2) For any g∈h other than gh, there are geodesics b,f∈h with b d↙g↘d f.
(3) For any b, f ∈ h and a component domain Σ of b, f with b d↙ Σ↘d f

(b and f may coincide), there is a unique geodesic k supported on
Σ with b d↙ k ↘d f .
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A hierarchy h is said to be complete if every component domain of geodesics
in h supports a geodesic in h, and 4-complete if every non-annular component
domain of geodesics in h supports a geodesic in h.

We write g ↘ (f, v) if there is a sequence of geodesics in h such that g =
f0 ↘d f1 ↘d . . . ↘d (fn, v) = (f, v), and say that g is forward subordinate to
f . Similarly, we write (b, u)↙ g if there is a sequence in h such that (b, u) =
(bm, u) d↙ . . . d↙ b1

d↙ b0 = g, and say that g is backward subordinate to b.
We use symbol =↘ to mean either ↘ or = and ↙= to mean either ↙ or =.

In Section 9, we shall use the notions of slices and resolutions of hierar-
chies invented by Masur–Minsky [38]. We shall review them briefly here. Let
h be a complete or 4-complete hierarchy. A slice σ of h is a set of pairs (g, v),
where g is a geodesic in h and v is a simplex on g satisfying the following
conditions. (Masur and Minsky call σ satisfying the first three conditions a
slice, and call it a complete slice if it also satisfies the fourth condition.)

(1) A geodesic can appear at most in one pair of σ.
(2) There is a pair whose first entry is the main geodesic of h.
(3) For each pair (g, v) in σ such that g is not the main geodesic, D(g)

is a component domain of a simplex v′ for some (g′, v′) ∈ σ.
(4) For each component domain D of v for (g, v) ∈ σ with ξ(D) 6= 3

if h is complete and ξ(D) > 3 if h is 4-complete, there is a pair
(g′, v′) ∈ σ with D(g′) = D.

Masur and Minsky introduced two kinds of order, ≺p between pairs of
geodesics and simplices in h and ≺s between slices. For two pairs (g, v) and
(g′, v′) of a 4-complete hierarchy, we write (g, v) ≺p (g′, v′) if either g = g′

and v′ comes after v, or there is a geodesic g′′ with (g, v) =↘ (g′′, w) and
(g′′, w′)↙= (g′, v′) such that w′ is a simplex coming after w. For two distinct
slices σ and τ , we write σ ≺s τ if for any (g, v) ∈ σ, either (g, v) ∈ τ or there
is (g′, v′) ∈ τ with (g, v) ≺p (g′, v′).

A resolution τ = {σi} of a 4-complete hierarchy h is an ordered sequence
of slices of h such that σi+1 is obtained from σi by an elementary forward
move. Here an elementary forward move is a change of pairs in σi as follows:
We advance (g, v) ∈ σi to (g, succ(v)) under the condition that for every
pair (g′, v′) supported on a component domain of v into which succ(v) is
projected to an essential curve, the simplex v′ is the last vertex, and after
removing all such (g′, v′) we add pairs (g′′, v′′) such that g′′ is supported
on a component domain of succ(v) into which v is projected to an essential
curve and v′′ is the first vertex of g′′.
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2.6. Model manifolds

A model manifold for a Kleinian surface group was constructed in Min-
sky [40] as follows. Let G be a Kleinian surface group with M = H3/G.
From an end invariant of G, we shall construct a hierarchy of tight geodesics,
which we denote by hG. In the case when G is quasi-Fuchsian, we construct
a hierarchy by defining the initial and terminal markings to be the shortest
clean markings with respect to the upper and lower conformal structures at
infinity. When M has a totally degenerate end without accidental parabol-
ics, we define the initial or terminal generalised marking to be its ending
lamination. In general, we consider the union of ending laminations of M0,
parabolic curves for upper or lower ends, and shortest clean markings on the
remaining geometrically finite upper or lower ends, and let them be terminal
or initial generalised markings. Here, we say that a clean marking µ on a
hyperbolic surface S is shortest if the base curves of µ form a shortest pants
decomposition of S, and transversals are chosen so that their total length
is the smallest among the transversals obtained from them by performing
Dehn twists around the base curves. Note that we are not assuming the
transversals of µ are really shortest among all transversals.

Having defined the hierarchy hG, we construct a resolution {τi(G)} of hG.
In the resolution, we look at each step τi(G)→ τi+1(G) that advances a ver-
tex on a 4-geodesic, from wi to wi+1. For such a step, we provide an internal
block, which is topologically homeomorphic to Σ× [0, 1], where Σ is either a
sphere with four holes or a torus with one hole. The block has two ditches,
one on the top and the other on the bottom, corresponding to the two vertices
wi and wi+1. To be more precise, we take annular neighbourhoods Ni, Ni+1
of wi, wi+1 on Σ, and set B = Σ× [0, 1]\ (Ni× [0, 1/4]∪Ni+1× [3/4, 1]). The
top and bottom boundary of a block consists of pairs of sphere with three
holes. We fix some constant ε1 less then the Bers constant for S throughout
the construction. We put a hyperbolic metric on Σ so that the lengths of the
boundary components, wi and wi+1 are all equal to ε1. We also assume that
Ni and Ni+1 are regular neighbourhoods whose boundaries have length ε2
and deform their metrics to flat ones keeping their boundaries fixed. (Here
ε2 is chosen so that for pants decomposition of S by simple closed geodesics
with length less than ε1, their annular neighbourhoods whose boundaries
have length ε2 are pairwise disjoint.) We define the metric on B to be the
one induced by the product of the hyperbolic metric on Σ as above and the
ordinary metric on [0, 1]. We note that the isometry type of B depends only
on whether Σ is a sphere with four holes or a torus with one hole.

The model manifold for G is constructed by piling up such blocks by past-
ing a top component of one block to a bottom component of another, accord-
ing to the information given by the resolution {τi(G)}, attaching boundary
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blocks to the top and the bottom of the piled up blocks if there are geo-
metrically finite ends of M0, which have special forms and are constructed
according to conformal structures at infinity of G, and then finally filling in
“Margulis tubes”. (Here we abuse the term “Margulis tube”, which was de-
fined before using the Margulis constant ε0. Our tubes here may have larger
injectivity radii, but still are isometric to tubular neighbourhoods of closed
geodesics.) In this paper, we define a boundary block to have topologically
a form Σ× [s, t) or Σ× (t, s] for some incompressible subsurface Σ of S (i.e.
a subsurface Σ such that every component of FrΣ is non-contractible in S),
and do not put extra-annuli as in Minsky’s definition.

To be more precise, a boundary block has the following form. We describe
it here only when the block corresponds to an upper end. We can deal with
the case when the end is lower just by turning everything upside down. Let
n0 be a point in T (Σ), where each component of FrΣ is assumed to be a
puncture, and regard it as a hyperbolic metric on IntΣ with each component
of FrΣ assumed to be the boundary of an ε0-cusp neighbourhood. Take
a shortest pants decomposition of (Σ, n0) and denote its components by
c1, . . . , cp. A boundary block B is constructed by defining B = Σ× [−1,∞)\
(
⋃p
k=1A(ck) × [−1, 0)), where A(ck) is an open annular neighbourhood of

ck whose boundaries have length ε1. We now put a Riemannian metric on
B as follows. Since each component of Σ × {0} \ (

⋃p
k=1A(ck) × {0}) is a

pair of pants, we put a standard hyperbolic metric n0 so that each boundary
component becomes a closed geodesic of length ε0. Now, as was shown in
Section 3.4 of Minsky [40], there is a metric n′0 on Σ conformal to n0 in
which the A(ck) are flat annuli and whose restriction to each component of
Σ\(

⋃p
k=1A(ci)) coincides with the hyperbolic metric n0. We put this metric

n′0 on Σ×{0}, and n0|(Σ\(
⋃p
k=1A(ci))) on Σ×{−1}\(

⋃p
k=1A(ck)×{−1}).

On Σ× [−1, 0) \ (
⋃p
k=1A(ck)× [−1, 0)), we put the product of the metric of

dn0 and dt. Now, on Σ× [0,∞), we put a metric defined by e2td(n′0)2 + dt2.

We do not put extra-annuli which appeared in Minsky’s construction
because we are constructing a model manifold of the non-cuspidal part, not
of the entire manifold. By the same reason, in contrast to Minsky’s original
construction, we do not fill in cusp neighbourhoods. Each slice in {τi(G)}
corresponds to a split level surface in the model manifold which is a disjoint
union of horizontal surfaces in blocks which are spheres with three holes.
Taking split level surfaces into pleated surfaces and extending them over
Margulis tubes, a homotopy equivalent map from the model manifold to M0
is constructed. This can be modified to a uniform bi-Lipschitz map which is
called a model map to M0. See Minsky [40] and Brock–Canary–Minsky [13]
for more details. There is an alternative approach to constructing model
manifolds by Bowditch [6, 7, 8].
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2.7. The boundaries at infinity of curve complexes

It was proved by Masur–Minsky [37] that CC(S) is a Gromov hyperbolic
space with respect to the path metric defined by setting every edge to have
the unit length. For a Gromov hyperbolic space, its boundary at infinity can
be defined as a topological space. (Refer for instance to Coornaert–Delzant–
Papadopoulos [21].) Klarreich in [31] showed that the boundary at infinity
of CC(S) is the space of ending laminations: that is, the space of arational
unmeasured laminations with topology induced from UML(S). This space
is denoted by EL(S).

We shall show the following lemma, which is an easy consequence of the
definition of the topology of CC(Σ) ∪ EL(Σ).

Lemma 2.2. — Let {gi} be a sequence of geodesics in CC(Σ) converging
to a geodesic ray g∞ uniformly on every compact set. Then the last vertex
of gi converges to the endpoint at infinity of g∞ with respect to the topology
of CC(Σ) ∪ EL(Σ).

Proof. — Let λ be a measured lamination whose support is the endpoint
at infinity of g∞. We can assume that all the gi have the same initial vertex,
which we denote by v. Let wi be the last vertex of gi. Since the length of gi
goes to infinity, the distance between v and wi goes to infinity. On the other
hand, since {gi} converges to g∞ on every compact set, there is a number ni,j
going to ∞ such that the first ni,j simplices of gi and gj are the same. Since
(wi|wj)v > ni,j , we see that (wi|wj)v goes to∞ as i, j →∞. Therefore, {wi}
converges to some ending lamination after passing to a subsequence. By the
definition of the topology on CC(Σ)∪EL(Σ), there is a measured lamination
µ and positive real numbers ri such that {riwi} converges to µ.

We need to show that |µ| = |λ|. Suppose not. Since {gi} converges to g∞
uniformly on every compact set, we can take a simplex vi ∈ g∞ which is also
contained in gi tending to |λ| in CC(Σ)∪EL(Σ). Since |λ| and |µ| are distinct
points on the boundary at infinity, we have lim supi→∞(vi|wi)v < ∞. This
contradicts the facts that both vi and wi lie on the same geodesic gi and
that both d(v, vi) and d(v, wi) go to ∞. �

3. The main results

In this section, we shall state our main theorems.
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3.1. End invariants of limit groups

We shall first state a theorem showing that for a limit of quasi-Fuchsian
groups, the limit laminations of upper conformal structures at infinity appear
as ending laminations of upper ends whereas the limit of lower ones appear
as ending laminations of lower ends.

Theorem 3.1. — Let {(mi, ni)} be a sequence in T (S)×T (S) such that
{qf(mi, ni)} converges to (Γ, ψ) in AH(S). Let [µ+] and [µ−] be projective
laminations which are limits of {mi} and {ni} in the Thurston compactifica-
tion of the Teichmüller space passing to subsequences. Then every component
of |µ+| that is not a simple closed curve is the ending lamination of an upper
end of (H3/Γ)0 whereas every component of |µ−| that is not a simple closed
curve is the ending lamination of a lower end.

Theorem 3.1 will be obtained by combining the following theorem with a
simple lemma regarding the Thurston compactification of Teichmüller space.

Theorem 3.2. — In the same setting as in Theorem 3.1, let cmi
and

cni
be shortest pants decompositions of (S,mi) and (S, ni) respectively. Let

ν−, ν+ be the Hausdorff limits of {cmi
} and {cni

} respectively after passing to
subsequences. Then the minimal components of ν+ that are not simple closed
curves coincide with the ending laminations of upper ends of (H3/Γ)0. More-
over, every upper parabolic curve is contained in ν+. Similarly the minimal
components of ν− that are not simple closed curves coincide with the end-
ing laminations of lower ends of (H/Γ)0, and every lower parabolic curve is
contained in ν−.

Conversely every simple closed curve contained in either ν− or ν+ that
has isolated leaves spiralling around it is a parabolic curve. Every such simple
closed curve in ν+ that is not contained in ν− is an upper parabolic curve
whereas every such simple closed curve in ν− that is not contained in ν+ is
a lower parabolic curve.

3.2. Divergence theorems

We shall next state our theorems on divergence of quasi-Fuchsian groups,
where we shall give sufficient conditions for sequences of quasi-Fuchsian
groups to diverge.
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Theorem 3.3. — Let {(mi, ni)} be a sequence in T (S)×T (S) satisfying
the following conditions.

(1) {mi} converges to a projective lamination [µ−] ∈ PML(S) whereas
{ni} converges to [µ+] ∈ PML(S) in the Thurston compactification
of the Teichmüller space.

(2) There are components µ+
0 of µ− and µ−0 of µ+ which are not weighted

simple closed curves and have the minimal supporting surfaces shar-
ing at least one boundary component up to isotopy.

Then the sequence {qf(mi, ni)} ⊂ QF (S) diverges in AH(S).

Theorem 3.3 follows rather easily from Theorem 3.1. If we use Theo-
rem 3.2 instead of Theorem 3.1, we get the following.

Theorem 3.4. — Let {mi} and {ni} be sequences in T (S) and T (S)
without convergent subsequences, and let cmi

and cni
be shortest pants de-

compositions of the hyperbolic surfaces (S,mi) and (S, ni) respectively. Sup-
pose that cmi and cni converge to geodesic laminations µ− and µ+ in the
Hausdorff topology respectively. Suppose that there are minimal components
µ−0 of µ− and µ+

0 of µ+ which are not simple closed curves and have minimal
supporting surfaces sharing at least one boundary component up to isotopy.
Then {qf(mi, ni)} ⊂ QF (S) diverges in AH(S).

In the setting of these two theorems above, the case when µ−0 and µ+
0

have the same support is most interesting. In fact, if they do not, it is much
easier to prove the theorems just by using the continuity of length function
in hyperbolic manifolds and the fact that on the ending lamination of an
end e of the non-cuspidal part is maximal on a frontier component of a
relative compact core facing e. Also the assumption that µ−0 and µ+

0 are not
simple closed curves is essential. In the case when µ− and µ+ share simple
closed curves, the construction of Anderson–Canary [2] gives an example of
convergent sequence. Still, we can show the following theorem.

Theorem 3.5. — Let µ− and µ+ be two measured laminations on S such
that the components shared by |µ−| and |µ+| are all simple closed curves or
there are no components shared by |µ−| and |µ+|. Suppose that either

(1) there is a boundary component of the minimal supporting surface of
a non-simple closed curve component of µ+ which is contained in
|µ−| up to isotopy, or

(2) there is a boundary component of the minimal supporting surface of
a non-simple closed curve component of µ− which is contained in
|µ+| up to isotopy.
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Then for every {mi ∈ T (S)} converging to [µ−] and {ni ∈ T (S)} converg-
ing to [µ+] in the Thurston compactification of the Teichmüller space, the
sequence {qf(mi, ni)} ⊂ QF (S) diverges in AH(S).

In the case when a simple closed curve component of |µ+| which does not
lie on the boundary of minimal supporting surface of non-simple closed curve
component, up to isotopy, is shared by |µ−| as the same kind of component,
we need to take into accounts the weights on c1, . . . , cr, as was done in Ito [26]
in the case of once-punctured torus groups.

Theorem 3.6. — Consider, as in Theorem 3.5, sequences {mi} and
{ni} converging to [µ−] and [µ+] respectively, and suppose that their supports
share only simple closed curves c1, . . . , cr. Suppose that none of c1, . . . , cr is
isotopic into the boundary of the minimal supporting surface of a component
of µ− or µ+. Then {qf(mi, ni)} converges after taking a subsequence only if
the following conditions are satisfied.

(1) For each cj among c1, . . . , cr, neither lengthmi
(cj) nor lengthni

(cj)
goes to 0.

(2) There are sequences of integers {p1
i }, . . . , {pri }, {q1

i }, . . . , {qri } such
that the following hold after passing to a subsequence:
(a) If |µ−| \

⋃r
j=1 cj is non-empty, then (τp

1
i
c1 ◦ · · · ◦ τ

pr
i
cr )∗(mi) con-

verges to [µ− \
⋃r
j=1 wjcj ] in the Thurston compactification,

where wj is the transverse measure on cj which µ− defines
and τcj denotes the Dehn twist around cj. Otherwise, (τp

1
i
c1 ◦

· · · ◦ τp
r
i
cr )∗(mi) either stays in a compact set of the Teichmüller

space or converges to a projective lamination [ν−] which con-
tains none of c1, . . . , cr as a leaf.

(b) In the same way, if |µ+| \
⋃r
j=1 cj is non-empty, (τ q

1
i
c1 ◦ · · · ◦

τ
qr

i
cr )∗(ni) converges to [µ+ \

⋃r
j=1 vjcj ] in the Thurston com-

pactification, where vj is the transverse measure on cj which µ+

defines. Otherwise, (τ q
1
i
c1 ◦ · · · ◦ τ

qr
i
cr )∗(ni) either stays in a com-

pact set of the Teichmüller space or converges in the Thurston
compactification to a projective lamination [ν+] which contains
none of c1, . . . , cr as a leaf.

(c) There exist aj ∈ Z (j = 1, . . . , r) with aj 6= 0,−1 and kji ∈ Z
with |kji | → ∞ such that pji = kji aj and qji = kji (aj + 1) for
every j = 1, . . . , r and large i.

If the sequence really converges, then cj is an upper parabolic curve of the
algebraic limit if ai > 0, and a lower parabolic curve otherwise.
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Conversely, let aj ∈ Z (j = 1, . . . , r) be any number, and µ−, µ+ measured
laminations whose supports share only (possibly empty) simple closed curves
c1, . . . , cr and which satisfy the following conditions.

(1*) The laminations µ− and µ+ do not have non-simple-closed-curve
components whose minimal supporting surfaces share a boundary
component up to isotopy.

(2*) In the case when both µ− and µ+ are connected and the minimal
supporting surfaces of µ− and µ+ are the entire surface S, the sup-
ports |µ−| and |µ+| do not coincide.

(3*) No simple closed curve in |µ−| is isotopic into the boundary of the
minimal supporting surface of a non-simple-closed-curve component
of µ+. In the same way, no simple closed curve in |µ+| is isotopic
into the boundary of the minimal supporting surface of a non-simple-
closed-curve component of µ−.

Then, there is a sequence of {(mi, ni)} in T (S) × T (S) with algebraically
convergent {qf(mi, ni)} such that {mi} converges to [µ−] and {ni} converges
to [µ+] in the Thurston compactification, and the two conditions (1) and (2)
above are satisfied.

The latter half of this theorem shows that as sufficient conditions for
divergence expressed in term of the limits of the conformal structures in the
Thurston compactification, Theorems 3.3 and 3.5 together with the main
theorem of [45] are best possible.

3.3. Non-existence of exotic convergence

The assumptions in Theorem 3.5 is related to the fact that such a se-
quence as in the statement cannot converge exotically to a b-group. The
condition that none of c1, . . . , cr lies on the boundary of the supporting sur-
face of a component of µ− or µ+ is essential for the exotic convergence. We
can prove the following related results. (Recall that a non-peripheral par-
abolic locus is said to be isolated if it does not touch a simply degenerate
end.)

Theorem 3.7. — Let G be a b-group without isolated parabolic locus.
Then there is no sequence of quasi-Fuchsian groups exotically converging
to G.
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3.4. Self-bumping

As the results of McMullen [39], Bromberg [9] and Magid [34] suggest, the
singularities of AH(S) which are found thus far are all related to the con-
struction of Kerckhoff–Thurston [30] and Anderson–Canary [2]. The follow-
ing results show that convergence to geometrically infinite groups in AH(S)
without isolated parabolic loci is quite different from the situation for regular
b-groups where QF (S) bumps itself.

Theorem 3.8. — Let Γ be a geometrically infinite group with isomor-
phism ψ : π1(S) → Γ in AH(S). Suppose that Γ does not have an isolated
parabolic locus. Let {(mi, ni)} and {(m′i, n′i)} be two sequences in T (S) ×
T (S) such that both {qf(mi, ni)} and {qf(m′i, n′i)} converge to (Γ, ψ). Then
for any neighbourhood U of the quasi-conformal deformation space QH(Γ, ψ)
of (Γ, ψ) in AH(S), we can take i0 so that if i > i0, then there is an arc αi
in U ∩QF (S) connecting qf(mi, ni) with qf(m′i, n′i). In the case when Γ is
a b-group whose lower conformal structure at infinity is m0, we can take αi
satisfying further the following condition. For any neighbourhood V of m0
in T (S), we can take i0 so that for any i > i0, the arc αi is also contained
in qf(V × T (S)).

We shall then get a corollary as follows.

Corollary 3.9. — In the setting of Theorem 3.8, suppose furthermore
that each component of ΩΓ/Γ that is not homeomorphic to S is a thrice-
punctured sphere. Then QF (S) does not bump itself at (Γ, ψ), and in par-
ticular AH(S) is locally connected at (Γ, ψ).

We can generalise this corollary by dropping the assumption that there
are no isolated parabolic loci. The same result has been obtained by sub-
stantially different methods in Brock–Bromberg–Canary–Minsky [12]; see
also Canary [19]. Also, a related result has been obtained by Anderson–
Lecuire [3].

Corollary 3.10. — Let Γ be a group on the boundary of QF (S) with
isomorphism ψ : π1(S)→ Γ. This time we allow Γ to have isolated parabolic
loci.

(1) If every component of ΩΓ/Γ is a thrice-punctured sphere, then
QF (S) does not bump itself at (Γ, ψ).

(2) If Γ is a b-group and every component of ΩΓ/Γ corresponding to
upper ends of (H3/Γ)0 is a thrice-punctured sphere, then the Bers
slice containing (Γ, ψ) on the boundary does not bump itself.
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3.5. General Kleinian surface groups

We can generalise Theorems 3.2 and 3.3 to sequences of Kleinian surface
groups which may not be quasi-Fuchsian.

Let G be a Kleinian surface group with marking φ : π1(S)→ G, and set
M = H3/G. The marking φ determines a homeomorphism h : S × R→ M .
Let P+ be the upper parabolic locus on S. We consider all the upper ends
of the non-cuspidal part M0. For a geometrically finite end, we consider its
minimal pants decomposition, and for a simply degenerate end, we consider
its ending lamination. Take the union of all these curves and laminations
together with core curves of P+, and denote it by e+. In the same way, we
define e− for the lower ends. We call e+ and e− the upper and the lower
generalised shortest pants decompositions respectively.

We now state a generalisation of Theorem 3.2

Theorem 3.11. — Let {(Gi, φi)} be a sequence of Kleinian surface
groups which have upper and lower generalised shortest pants decompositions
e(i)+ and e(i)−. Suppose that {(Gi, φi)} converges algebraically to (Γ, ψ).
Consider the Hausdorff limit e(∞)+ of {e(i)+} and e(∞)− of {e(i)−} after
passing to subsequences. Then every minimal component of e(∞)+ (resp.
e(∞)−) that is not a simple closed curve is the ending lamination of an up-
per end (resp. a lower end) of (H3/Γ)0. Conversely any ending lamination
of an upper end (resp. a lower end) of (H3/Γ)0 is a minimal component of
e(∞)+ (resp. e(∞)−). Moreover, every upper (resp. lower) parabolic curve
is contained in e(∞)+ (resp. e(∞)−).

Next we shall state a generalisation of Theorem 3.3.

Theorem 3.12. — Let {(Gi, φi)} be a sequence of Kleinian surface
groups which have upper and lower generalised shortest pants decompositions
e(i)+ and e(i)−. Let e(∞)+ and e(∞)− be the Hausdorff limits of {e+(i)}
and {e−(i)} respectively, after passing to subsequences. If there are minimal
components λ of e(∞)− and µ of e(∞)+ which are not simple closed curves
and whose minimal supporting surfaces share a boundary component up to
isotopy, then {(Gi, φi)} diverges in AH(S).

3.6. Application

We shall briefly explain here an application of the main results, in partic-
ular of Theorem 11 and Theorem 5.2, which appears in Ohshika [49]. For a
point m0 ∈ T (S), the subspace of QF (S) in the form of qf({m0}×T (S)) is
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called the Bers slice based on m0, and is denoted by Bm0 . Bers proved in [4]
that the closure of Bm0 in AH(S) is compact for anym0 ∈ T (S). The closure
is called the Bers compactification of the Teichmüller space T (S) (identified
with T (S)) based on m0. We denote its boundary by ∂Bm0

T (S). Kerckhoff
and Thurston proved in [30] that there are two points m0,m1 ∈ T (S) such
that the natural homeomorphism between Bm0 and Bm1 , which is obtained
by identifying them with T (S), cannot extend continuously to a homeomor-
phism between their boundaries ∂Bm0

T (S) and ∂Bm1
T (S). This implies that

the action of the mapping class group MCG(S) on T (S) does not extend
continuously to the Bers compactification (based on any point).

In [49], we considered a quotient space of the Bers boundary by collapsing
each quasi-conformal deformation space lying there into a point, and showed
that the mapping class group acts on this quotient space. (According to Mc-
Mullen, Thurston already considered this space and conjectured this result.)
We denote this quotient space obtained from ∂Bm0

T (S) by ∂RBm0
T (S) and

call it the reduced Bers boundary based on m0. Applying Theorem 11 in
the present paper, we also showed that conversely every automorphism of
∂RBm0
T (S) is induced from an extended mapping class. The same kind of re-

sult was obtained for the unmeasured lamination space by Papadopoulos [51]
and Ohshika [47], and for the geodesic lamination space with the Thurston
topology by Charitos–Papadoperakis–Papadopoulos [20].

4. Models of geometric limits

4.1. Brick decompositions of geometric limits

In this section, we shall review the results in Ohshika–Soma [50] and
show some facts derived from them, which are essential in our discussion.
We shall give sketches of proofs for all necessary results so that the reader
can understand them without consulting [50].

Throughout this section, we assume that we have a sequence {(Gi, φi)} in
AH(S) converging to (Γ, ψ), and that {Gi} converges geometrically to G∞,
which contains Γ as a subgroup. We do not assume that Gi is quasi-Fuchsian,
to make our argument work also for the proofs of Theorems 3.11 and 3.12.
Recall that M∞ = H3/G∞ is a Gromov–Hausdorff limit of Mi = H3/Gi
with basepoints yi which are projections of some point fixed in H3. We
denote H3/Γ by M ′. Let p : M ′ → M∞ denote the covering associated to
the inclusion of Γ to G∞. Let ρi : Bri

(Mi, yi)→ BKiri
(M∞, y∞) denote an

approximate isometry corresponding to the pointed Gromov convergence of
(Mi, yi) to (M∞, y∞).
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In [50], we introduced the notion of brick manifolds. A brick manifold is a
3-manifold constructed from “bricks” which are defined as follows. We note
that a brick is an entity different from a block introduced by Minsky which
we explained in Preliminaries. Still, as we shall see, they are closely related,
and actually, in our settings every brick is decomposed into blocks.

Definition 4.1. — A brick is a product interval bundle of the form
Σ×J , where Σ is an incompressible subsurface of S with χ(Σ) < 0 and J is
a closed or half-open interval in [0, 1]. We assume that Σ is a closed subset
of S, i.e. FrΣ is contained in Σ. (Recall that we say that a (not necessarily
proper) subsurface is incompressible if none of its boundary components is
null-homotopic and at least one boundary component is non-peripheral, i.e.
if it is either essential or S itself.) Note that it may be possible that two
boundary components of Σ are parallel in S. For a brick B = Σ×J , its lower
front, denoted by ∂−B, is defined to be Σ×inf J , and its upper front, denoted
by ∂+B, is defined to be Σ× sup J . When J is an half-open interval, one of
them may not really exist, but corresponds to an end. In this case, it is called
an ideal front. A brick naturally admits two foliations: one is a codimension-
1 horizontal foliation whose leaves are horizontal surfaces Σ × {t}, and the
other is a codimension-2 vertical foliation whose leaves are vertical lines
{p} × J . We define ξ(B) to be ξ(Σ).

A brick manifold is a manifold consisting of countably many bricks, whose
boundary consists of tori and open annuli. Two bricks can intersect only at
their (non-ideal) fronts in such a way that an essential subsurface, which is
possibly disconnected but none of whose components is an annulus, in the
upper front of one brick is pasted to an essential subsurface in the lower
front of the other brick. In the case when the manifold is homeomorphic to
S × (0, 1), we allow two bricks intersect at their entire non-ideal fronts. We
also assume that an infinite sequence of bricks cannot accumulate inside the
manifold, i.e. an infinite sequence of bricks must correspond to an end of the
manifold after passing to a subsequence.

Since Gi is a Kleinian surface group, H3/Gi has a bi-Lipschitz model
which was constructed by Minsky [40] and was proved to be bi-Lipschitz by
Brock–Canary–Minsky [13]. We ignore cusp neighbourhoods in the model
manifolds of Minsky to make them models for the non-cuspidal parts. Let
Mi be a model manifold for (Mi)0 = (H3/Gi)0 in the sense of Minsky with
a bi-Lipschitz model map fi : Mi → (Mi)0. Minsky’s construction is based
on complete hierarchies of tight geodesics which are determined by the end
invariants of Mi, as we explained in Preliminaries. The model manifold has
decomposition into blocks and Margulis tubes, which corresponds to a res-
olution of a complete hierarchy. When we talk about model manifolds Mi,
we always assume the existence of complete hierarchies hi beforehand, and
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that the manifolds are decomposed into blocks and Margulis tubes using
resolutions. The metric of model manifolds are defined as the union of met-
rics on internal blocks and metrics determined by conformal structures at
infinity on boundary blocks. We should note that as was shown in [40], the
decomposition of Mi into blocks and the metric on Mi depend only on hi
and end invariants, and are independent of choices of resolutions.

We shall now see that geometric limits of algebraically convergent quasi-
Fuchsian groups have also model manifolds. The following is one of the main
theorems of [50] which is fitted into our present situation.

Theorem 4.2 (Ohshika–Soma [50]). — Let {(Gi, φi)} be a sequence in
AH(S) converging to (Γ, ψ) with M ′ = H3/Γ, and M∞ a geometric limit
of Mi = H3/Gi with basepoint at yi. Then, there are a model manifold M
of (M∞)0, which has a structure of brick manifold and is a geometric limit
of Mi as a metric space, and a model map f : M → (M∞)0 which is a
K-bi-Lipschitz homeomorphism for a constant K depending only on χ(S).
The model manifold M has the following properties.

(0) Each brick of M is decomposed into blocks and Margulis tubes as
in Minsky’s model manifolds, each of which is a limit of blocks and
Margulis tubes in Mi.

(1) M can be embedded in S × [0, 1] (with its image in S × (0, 1)) in
such a way that the vertical and horizontal foliations of the bricks
are mapped into horizontal surfaces and vertical lines of S × [0, 1]
respectively.

(2) There is no essential properly embedded annulus in M.
(3) An end contained in a brick is defined to be either geometrically finite

or simply degenerate. The model map takes geometrically finite ends
to geometrically finite ends of (M∞)0, and simply degenerate ends
to simply degenerate ends of (M∞)0.

(4) Every geometrically finite end of M corresponds to an incompress-
ible subsurface of either S × {0} or S × {1}.

(5) An end not contained in any brick is neither geometrically finite
nor simply degenerate. For such an end, there is no half-open incom-
pressible annulus tending to the end which is not properly homotopic
into a boundary component. We call such an end wild.

(6) There are only countably many ends.
(7) There is a π1-injective map g : S →M which is π1-injective also as

a map to S × [0, 1], such that (f ◦ g)# coincides with ι ◦ ψ, where ι
is the monomorphism from Γ = π1(M ′) to π1(M∞) induced by the
inclusion of the algebraic limit Γ into the geometric limit π1(M∞).

(8) For any sequence of points {xi ∈ M} tending to an end of M, its
image in S × [0, 1] converges, after passing to a subsequence, to a
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point in S× [0, 1] \M. There are no two sequences in M tending to
distinct ends of M whose images in S × [0, 1] converge to the same
point.

Before starting the proof, we shall illustrate how a wild end as was de-
scribed in (5) looks. Suppose that an end corresponding to Σ × {t0} with
an incompressible subsurface Σ of S is wild. Then there is a sequence of
either torus cusps or simply degenerate ends (or both) whose images in
S × [0, 1] accumulate to Σ× {t0}. In the case when torus cusps accumulate
to Σ × {t0}, the vertical projections of its core curves to S converge to an
arational geodesic lamination in the Hausdorff topology. In the case when
simply degenerate ends ei accumulate to Σ × {t0}, the end ei corresponds
to Σi × {ti} with ti → t0 such that Σi is a subsurface of Σ for large i, and
each boundary component of Σi converges to the same arational lamination
on Σ in the Hausdorff topology. The conditions that the Hausdorff limits are
arational prevents the existence of an essential open annulus as described in
the part (5) above. Figure 4.1 illustrates the case when simply degenerate
ends accumulate to a wild end from below.

t0

Figure 4.1. Σ × {t0} is a wild end to which simply degenerate ends
accumulate from below. The vertical line at the right end denotes
the coordinate [0, 1]. Two vertically long rectangles at the left and
right sides correspond to either frontier components or punctures of
Σ. Small rectangles attached to black regions are sent into cusp neigh-
bourhoods. Each long horizontal side of black regions corresponds to
a simply degenerate end.
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4.2. Proof of Theorem 4.2

Although this theorem was already proved in [50], we shall give an
abridged version of its proof here, using sometimes an explanation a bit
different from the one given in [50].

This model manifold M is obtained as the non-cuspidal part of a geo-
metric limit of Minsky’s model manifolds for H3/Gi with suitable basepoints
chosen. Let Mi be Minsky’s model manifold for (Mi)0 with a bi-Lipschitz
model map fi as explained above. We put a basepoint xi in Mi which is
mapped to yi by fi. Recall that Minsky’s model manifold is composed of
blocks and tubes. As was explained in Section 2.5, there are two kinds of
blocks: internal blocks and boundary blocks. An internal block is topologi-
cally homeomorphic to Σ× [0, 1], where Σ is either a sphere with four holes
or a torus with one hole. Geometrically it has two ditches, and has form of
B = Σ × [0, 1] \ (Nα × [0, 1/4] ∪ Nβ × [3/4, 1]), where Nα, Nβ are annular
neighbourhoods of simple closed curves α, β on Σ with i(α, β) = 2 if Σ is
a sphere with four holes and i(α, β) = 1 if Σ is a torus with one hole. We
should also recall that the isometry type of B is unique once we fix Σ to
be a sphere with four holes or a torus with one hole. A boundary block
corresponds to a geometrically finite end of (H3/Gi)0 as was explained in
Section 2.6. We also have an embedding of Mi into S × [0, 1] such that the
product structure of each block coincides with that of S× [0, 1], in particular
each horizontal surface in a block is mapped into a horizontal surface of the
form S × {t}. Recall each Σ is an incompressible subsurface of S. For each
Σ, we fix an embedding of Σ into S by fixing some hyperbolic metric on
S and making each boundary component of Σ geodesic if no two boundary
components of Σ are parallel on S, and a simple closed curve with small
constant geodesic curvature otherwise. By this way, the vertical projection
of B into S is determined. We note that this hyperbolic metric on S has
nothing to do with the metric which we endow on model manifolds.

After gluing blocks in accordance with the information given by a hierar-
chy of tight geodesics associated to Gi, we get a 3-manifold whose boundary
consists of two surfaces homeomorphic to S and countably many tori. We
denote by Mi[0] this manifold before filling Margulis tubes, which is a sub-
set of Mi. For each torus boundary, we fill in a Margulis tube, which is a
solid torus whose isometry type is determined by the flat structure and the
marking on the boundary torus which is determined by the hierarchy.

Now, we shall see that a geometric limit of these model manifolds serves
as a model manifold of (H3/G∞)0 once cusp neighbourhoods are removed.
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Lemma 4.3. — Put a basepoint xi in Mi[0]. Then {(Mi, xi)} converges
geometrically to a 3-manifold xM consisting of internal and boundary blocks,
Margulis tubes, and cusp neighbourhoods, after passing to a subsequence.
By removing the cusp neighbourhoods, we get a brick manifold M. The bi-
Lipschitz model map fi : Mi → (H3/Gi)0 also converges geometrically to
a bi-Lipschitz map whose restriction to M is a bi-Lipschitz model map to
(H3/G∞)0.

Proof. — For internal blocks, their isometry types depend only on
whether Σ is a sphere with four holes or a torus with one hole. Therefore,
their geometric limits are also internal blocks. We now turn to boundary
blocks. Since topologically a boundary block is homeomorphic to Σ× [0,∞)
or Σ × (−∞, 0] for an incompressible subsurface Σ of S, we can assume,
passing to a subsequence, Σ does not depend on i. A boundary block as we
explained in Section 2.6 has a metric uniquely determined by the conformal
structure at infinity of the corresponding geometrically finite end. In the
case when the conformal structures at infinity are bounded (in the moduli
space) as i varies, by taking a subsequence, we can assume that the con-
formal structures converge in the moduli space, and it is evident that the
geometric limit of boundary blocks is again a boundary block corresponding
to the limit conformal structure at infinity.

Now we consider the situation where the hyperbolic metric mi
0 on the ge-

ometrically finite end corresponding to Σ×{∞} varies with i and goes to an
end in the moduli space. Let c1, . . . , cp be a shortest pants decomposition of
(Σ,mi

0). Since {mi
0} is unbounded in the moduli space, the lengths of some

of c1, . . . , cp with respect mi
0 go to 0 as i → ∞. By renumbering c1, . . . , cp,

we can assume c1, . . . , cq to be the curves whose lengths go to 0. If the length
of ck with respect to mi

0 goes to 0, then the modulus of the annulus A(ck),
whose boundaries we assumed to have length ε2 in Section 2.6, goes to ∞,
and hence in a geometric limit, the surface Σ is cut along ck. If we put a
basepoint on Σ × {−1} \ (

⋃p
k=1A(ck) × {−1}), then the boundary blocks

have a geometric limit after passing to a subsequence, and the limit is iden-
tified with (Σ \

⋃q
k=1 ck)× [−1,∞) \ (

⋃p
k=q+1A(ck)× [−1, 0). By Lemma 3.4

in Minsky [40], there is a uniform bi-Lipschitz map (i.e. with bi-Lipschitz
constants independent of i) from this boundary block to a component of the
complement of the convex core of any hyperbolic structure on Σ×R whose
conformal structure at infinity is mi

0, with tubular neighbourhoods of closed
geodesics corresponding to the pants decomposition c1, . . . , cp removed. This
implies that the geometric limit of boundary blocks is again a boundary block
after its intersection with ε0-cusp neighbourhoods is removed.

Next we turn to Margulis tubes. Let Vi be a Margulis tube in the model
manifold Mi. We can parametrise Mi by S × [0, 1] in such a way that Vi

– 832 –



quasi-Fuchsian spaces

corresponds to Ai × [s, t] for some essential annulus Ai on S. Each Margulis
tube Vi has a coefficient ωMi(Vi) which is defined as follows. The boundary of
the tube ∂Vi has a flat metric induced from the metric of Mi[0] determined
by the blocks. We can give a marking (longitude-meridian system) (αi, βi) to
∂Vi by defining αi to be a horizontal curve in a block and βi to be ∂(ai×[s, t])
for some essential arc ai connecting the two boundary components of Ai. The
flat metric and the marking determine a point in the Teichmüller space of
a torus identified with {z ∈ C | =z > 0}, which we define to be ωMi(Vi).
More concretely, we define the point zi = ωMi(Vi) in the upper half plane to
be the point corresponding to ∂Vi if ∂Vi with marking (αi, βi) is conformal
to C/(Z + ziZ) taking αi to the curve coming from the first Z and βi to
the curve coming from ziZ. We note that this parametrisation is continuous
with respect to the geometric topology.

By our construction of metrics on blocks =ωMi
(Vi) is bounded away from

0. If |ωMi
(Vi)| is bounded, then passing to a subsequence, we can assume that

{ωMi
(Vi)} converges to some number w, hence that {Vi} converges to some

Margulis tube whose coefficient is w. If <ωMi(Vi) → ∞ whereas =ωMi(Vi)
is bounded, then the conformal structure on a torus corresponding to ωMi is
bounded in the moduli space as i→∞. Therefore, ∂Vi converges some flat
torus passing to a subsequence. On the other hand, since <ωMi

(Vi) diverges,
the length of the meridian for Vi diverges. This means that passing to a sub-
sequence, {Vi} converges to a torus cusp neighbourhood. If =ωMi(Vi)→∞,
passing to a subsequence, the conformal structure on a torus correspond-
ing to ωMi

(Vi) diverges in the moduli space. Since the length of longitude
of ∂Vi is defined to be constant, this means that ∂Vi converges to an open
annulus geometrically. This is possible only when {Vi} converges geometri-
cally to one or two rank-1 cusp neighbourhoods. Since we are considering
the non-cuspidal part of the geometric limit, these cusp neighbourhoods are
removed and what remain are torus or annulus boundaries. (What should be
removed is an ε0-cusp neighbourhood, whereas the limit is an ε2-cusp neigh-
bourhood. This does not matter since they are constant only depending on
S and we can map the ε2-cusp neighbourhood to the ε0-cusp neighbourhood
by a uniform bi-Lipschitz map.)

Thus we have seen that the non-cuspidal part of the geometric limit of
Mi with basepoint at xi, which is defined to be M, is a union of (internal
and boundary) blocks and Margulis tubes. We denote by M[0] the part of
M which is the geometric limit of Mi[0] inside M. Now, we shall see how
a structure of brick decomposition of the geometric limit appears. Since the
blocks of Mi[0] are embedded and they are pasted together along horizontal
surfaces, we see that the notion of horizontal surfaces (and of horizontal
foliation) makes sense in Mi[0]. Taking their geometric limit, we see that
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M[0] also has well-defined horizontal surfaces. Each Margulis tube of Mi

is foliated by horizontal annuli. Since Margulis tubes filled into M[0] are
geometric limits of Margulis tubes in Mi, they are also foliated by horizontal
annuli. Therefore, horizontal surfaces intersecting a Margulis tube extend to
annuli in the tube to form horizontal surfaces corresponding to subsurfaces of
S. Taking geometric limits of these surfaces, we see that also in the geometric
limit, horizontal surfaces intersecting Margulis tubes can be extended to
annuli in the Margulis tubes to form subsurfaces of S, which we regard
as horizontal surfaces. We consider a maximal union of vertically parallel
horizontal surfaces, and define its closure to be a brick of M. It is easy to
see that two bricks can intersect each other only along (a part of) horizontal
boundaries, and that the intersection consists of essential subsurfaces by
the fact that it is decomposed into horizontal surfaces lying in blocks and
horizontal annuli in Margulis tubes. We can also check that there is no
annulus component among the intersection, since every boundary component
corresponds to a cusp limit of Margulis tubes, and no two such components
are homotopic. Thus we can see that the geometric limit admits a structure
of a brick manifold. As the restriction of a geometric limit of the model maps
fi : Mi → (Mi)0 to the non-cuspidal part, we get a model map f∞ : M →
(M∞)0. �

Thus we have obtained M and f∞ and by construction the condition (0)
holds. We now check that the conditions (1)–(6) of the statement hold. Since
fi is a homeomorphism and takes Margulis tubes whose cores are sufficiently
short to the same kind of Margulis tubes in H3/Gi, there is a one-to-one cor-
respondence between the Margulis tubes with short cores of Mi and those of
(H3/Gi)0. Since there are no two distinct Margulis tubes in (H3/Gi)0 whose
cores are homotopic, the same holds for Margulis tubes with short cores in
Mi. The condition (2) is derived from this property since two homotopic
longitudes on ∂M give rise to two Margulis tubes with homotopic very short
core curves for large i.

Next we turn to the condition (3). Let B be a brick in M, and suppose
that B has an end e. If the end e is contained in a boundary block of M, we
define e to be geometrically finite. Since fi takes the end of every boundary
block of Mi to a geometrically finite end of Mi and a boundary block of M
is a geometric limit of boundary blocks of Mi, as was seen in the proof of
Lemma 4.3 above, which must also correspond to a geometrically finite end
of (M∞)0, the limit f also takes e to a geometrically finite end of (M∞)0.

If e in B is not contained in a boundary block, we define e to be simply
degenerate. Such an end appears only when there are infinitely many blocks
constituting B ∼= Σ × J . This implies that there are infinitely many Mar-
gulis tubes tending to the end e. Since each core curve of Margulis tube is
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homotopic to a simple closed curve on Σ, and f takes such a core curve to
a closed geodesic in M∞, we see that the end of (M∞)0 corresponding to e
is simply degenerate.

Now we check the condition (5). Let e be an end of M which is not
contained in a brick. We need to show the following.

Lemma 4.4. — There is no essential half-open annulus whose end tends
to the end e.

Proof. — We prove this by contradiction. Suppose that A is an essential
half-open annulus tending to e. Then A intersects infinitely many bricks Bn
tending to e. Since the Bn are distinct, by using the condition (2), we can
choose a vertical boundary of Bn with core curve cn so that the f(cn) rep-
resent all distinct homotopy classes in M∞. Moreover the distance between
the basepoint y∞ and the closed geodesic homotopic to f(cn) goes to ∞ as
n→∞. Let a be a core curve of A. Then a and cn can be realised as disjoint
curves on a horizontal surface on which cn lies. Pulling back this situation to
Mi and Mi, we see that there is a pleated surface kin : S → Mn homotopic
to fi|S × {t} which realises both a and cn at the same time. This is im-
possible since the distance modulo the thin part between kin(a) and the one
representing kin(cn) goes to∞, which contradicts the compactness of pleated
surfaces. (When f(a) represents a parabolic class, we need some more care,
but essentially the same kind of argument works, for f(a) is homotoped into
a cusp which does not touch the end e in this case.) �

What now remain are (1), (4), (6) and (7).

Before starting to prove them, we shall describe general settings. First, we
consider a monotone increasing exhaustion of M by connected submanifolds
consisting of finitely many bricks; that is, a sequence of submanifolds N1 ⊂
N2 ⊂ . . . such that M =

⋃
n Nn, each Nn is a connected union of finitely

many bricks in M, and every brick of Nn is attached to Nn−1 at either
its upper front or lower front or both. (See Definition 4.1 for definitions of
upper and lower fronts.) Each compact brick of Nn is contained in the range
of the approximate isometry from Mi to M for large i, and hence we can
embed it preserving the vertical and horizontal foliations. In the same way,
for each non-compact brick B of Nn, its real front, which we denote by Σ,
is contained in the range of the approximate isometry for large i. Since B is
homeomorphic to either Σ× [0, 1) or Σ× (0, 1], by embedding its real front
using the embedding of Mi and the approximate isometry, we can embed B
into S× [0, 1], again preserving the vertical and horizontal foliations. We can
also adjust the image of its ideal front so that the closures of the images of
two bricks do not intersect, i.e. so that even two ideal fronts do not intersect.
Since Nn has only finitely many bricks, by taking sufficiently large i, we can
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embed Nn into S× [0, 1] using these embeddings of its bricks induced by the
embedding of Mi into S×[0, 1], keeping the horizontal and vertical foliations.
We denote this embedding of Nn by ηn.

Passing to a subsequence and isotoping the ηn vertically, we can assume
that for each brick B of M, the horizontal level of ηn(B) is independent of n if
it is defined, without changing the condition that the upper ends of the upper
boundary blocks lie on S × {1} and the lower ends of the lower boundary
blocks lie on S ×{0}. Here we call a boundary block of the form Σ× [s, t) a
upper and that of the form Σ×(s, t] lower, and its end is called an upper end
and a lower end respectively. Now for each brick B of M, let supB and inf B
be the levels of ηn(∂+B) and ηn(∂−B) with respect to the second factor of
S × [0, 1] (which we call horizontal levels from now on) under an embedding
ηn for which ηn(B) is defined. As noted above, these are independent of n.
We consider the set C = {supB, inf B | B are bricks in M} ⊂ [0, 1] and its
closure C. We can further perturb ηn (for all n simultaneously) so that two
distinct bricks share inf or sup only at 0 and 1.

For each t ∈ [0, 1], we consider the surface Intηn(Nn) ∩ S × {t}, which
we regard as a subsurface of S identifying S × {t} with S, and we denote it
by Dηn

(t). Since bricks are embedded with horizontal foliations preserved,
Dηn(t) is an incompressible subsurface of S and there are no components
of Dηn(t) which are discs or annuli. For convenience, we fix a hyperbolic
structure on S, and we can assume that each boundary component of Dηn

(t)
either is geodesic or has small curvature, so that if two of such surfaces are
homotopic, then they are vertically parallel to each other. Since there are
neither annuli nor discs, for any t ∈ [0, 1], the Euler characteristic ofDηn

(t) is
monotone non-increasing with respect to n. Therefore, the homeomorphism
type of Dηn(t) does not change for large n. Furthermore, since there are only
finitely many ways to embed a surface essentially into S up to automorphisms
of S, we can assume that there is n0 such that the homeomorphism type of
(S,Dηn

(t)) as a pair does not change for n > n0. We say that Dηn
(t) is stable

in this situation. For stable Dηn(t), we denote its Euler characteristic, which
is independent of n, by χstab(D(t)).

Now we start to prove (6). Since an end either lies in a brick or is a
limit of bricks, it always corresponds to a number in C. (Although we have
not assumed that M is embedded in S × [0, 1] at this stage, the horizontal
level of an end makes sense because the horizontal levels of each brick are
well defined.) Moreover, since there is a uniform bound for the number of
components of Dηn(t), and one can approach S × {t} only from two sides,
from above and from below, there is a uniform bound for the number of ends
corresponding to t ∈ C. Therefore, to show (6), what we need to show is the
following.
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Lemma 4.5. — The set C is countable.

Let t∞ be an accumulation point of C. Then we can easily see the fol-
lowing. We define two subsurfaces Σ−ηn

(t∞) and Σ+
ηn

(t∞) of S to be the sets
of limit points of S \Dηn

(x− ε) and S \Dηn
(x+ ε) as ε↘ 0 respectively. We

denote the complements of Σ−ηn
(t∞) and Σ+

ηn
(t∞) by D+

ηn
(t∞) and D−ηn

(t∞)
respectively.

Claim 4.6. — There is δ > 0 such that for any t ∈ [t∞ − δ, t∞) ∪
(t∞, t∞ + δ] we have χstab(D(t)) 6 χstab(D(t∞)) and Dηn(t∞) is vertically
isotopic into Dηn(t) in S×[0, 1] for sufficiently large n. Moreover, for any t ∈
[t∞− δ, t∞), the surface D−ηn

(t∞) is vertically homotopic into either Dηn
(t),

and for any t ∈ (t∞, t∞ + δ], the surface D+
ηn

(t∞) is vertically homotopic
into Dηn(t).

Proof. — By the same reason as the argument just before the lemma,
there are only finitely many bricks of M the closures of whose images under
ηn intersect the level surface S × {t∞}, which we name {Bt∞j }. (Again this
property does not depend on n, and that both inf ηn(Bt∞j ) and sup ηn(Bt∞j )
are independent of n.) We set t+ = minj{supBt∞j | supBt∞j > t∞} and t− =
maxj{inf Bt∞j | inf Bt∞j 6 t∞}. Then δ which is defined to be min{t+ − t∞,
t∞ − t−} has the desired property. �

Proof of Lemma 4.5. — By Claim 4.6, for any t ∈ [t∞ − δ, t∞), the
surface D−ηn

(t∞) is vertically homotopic into Dηn(t). Moreover, if t∞ is an
accumulation point from below, since ηn(Nn) is connected and bricks inter-
sect only along fronts, there is no t ∈ [t∞− δ, t∞) such that χstab(Dηn

(t)) =
χ(D−ηn

(t∞)), and hence for any t ∈ [t∞ − δ, t∞), we have χstab(Dηn
(t)) <

χ(D−ηn
(t∞)). Therefore if there is an accumulation point t of C in [t∞ − δ,

t∞), then max{χ(D−ηn
(t)), χ(D+

ηn
(t))} < χ(D−ηn

(t∞)) for large n. The
same holds when t∞ is an accumulation point from above just changing
− to +. Repeating the same argument using Claim 4.6, we can take a
neighbourhood [t − δt, t + δt] such that for any t′ ∈ [t − δt, t + δt],
we have max{χ(D−ηn

(t′)), χ(D+
ηn

(t)} < max{χ(D−ηn
(t)), χ(D+

ηn
(t))}. Since

max{χ(D−ηn
(t)), χ(D+

ηn
(t))} is between χ(S) and 0, in finite steps, we reach a

situation where there are no accumulation points in a neighbourhood. Thus
we have shown that there are only countably many accumulation points of
C, and hence C is countable. �

Thus we have proved (6).

For later use, using (6), we modify ηn further as follows. If there is a
brick B whose front (real or ideal) is mapped by ηn into S × {t} for an
accumulation point t of C, we can perturb ηn|B off from S × {t} for all n
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at the same time since there are only countably many accumulation points
In the same way, if there are two sequence of bricks {Bj} and {B′j} such
that limj supBj = t = limj inf B′j , and if supBi converges to t from below
whereas inf B′i converges from above, then by using Claim 4.6, we can perturb
ηn|B′n so that limi supB′j < t holds.

Thus we can assume the following.
Assumption 4.7. — No point of C is an accumulation point of C. To

each accumulation point of C points of C accumulate either only from below
or only from above and cannot accumulate from both sides at the same time.

Next we turn to the most difficult one, the condition (1), whose proof
was given in [50, §3.1]. The subtle point is that we cannot construct an
embedding of M into S × [0, 1] simply as a limit of the embeddings ηn of
Nn. This is because for distinct m and n, the images of a brick by ηm and
ηn may be different even homotopically. Therefore, instead of taking a limit
of ηn, we construct embeddings hn of Nn inductively which stabilise if we
restrict them to each brick. The embedding hn is not an extension of the
previous hn−1, but an extension of an embedding obtained by “twisting”
hn−1. We shall use the original embeddings ηn in a step of induction to
define “twisting maps”. Although hn and ηn send each brick to the same
horizontal levels, there is no simple direct relation between the two.

First we shall explain intuitively how to construct hn provided hn−1 is
already defined. We consider a decomposition of [0, 1] into subintervals by
setting the set of the sup and the inf of the bricks of Nn to be the dividing
points. Then we subdivide the bricks of Nn so that each brick is contained in
the product of S and one of the above subintervals. We give an order, defined
using the horizontal levels, to the set Bn of bricks (after the subdivision)
which are contained in Nn but not in Nn−1. Let B be a brick in this set,
and suppose that we have already defined hn for bricks in Bn which are
smaller with respect to the given order, and denote this embedding by hBn
and the union of bricks in Bn smaller than B by B(B). We cannot always
extend hBn to B since even if both ∂−B and ∂+B are contained in Nn−1 ∪
B(B), their images under hBn may not be vertically isotopic. (If they are
vertically isotopic, then we can define hn|B simply by extending hBn so that
the horizontal level of hn(B) is the same as that of ηn(B).) We shall avoid
these difficulties by composing to hBn what we call a solid twisting map,
which is a map obtained by cutting S × [0, 1] at two levels Σ × {a} and
Σ× {c} with an essential subsurface Σ of S, and twisting the part Σ× [a, c]
by using a homeomorphism from Σ to Σ fixing the boundary.

Now we start a formal discussion. We let Cn be a subset of C defined by
Cn = {supB′, inf B′ | the B′ are bricks in Nn}, and number the elements
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of Cn as a1, . . . , as. We subdivide the brick decomposition of Nn by cutting
them along the level surfaces corresponding to S × {aj} for j = 1, . . . , s via
ηn. By this operation, the image of each brick in Nn under ηn is contained
in S× [aj , aj+1] for some j = 1, . . . , s, where we set a0 to be 0 and as+1 to be
1. For each aj among a1, . . . , as, we shall define a twisting map ϕaj

: S → S,
which is a homeomorphism, and a solid twisting map pϕaj

: S × [0, 1] →
S × [0, 1] for j = 1, . . . , s, which is discontinuous only along at most two
horizontal subsurfaces embedded in S × [0, 1]. Depending on the location
of aj , the map pϕaj twists either a compact submanifold of S × [0, 1] above
S × {aj} or below S × {aj} and leaves the remaining part of S × [0, 1]
unchanged. To determine which region we twist, we first need to define an
accumulation point of C to which aj “belongs”.

Recall that a subsurface Dηn
(x) of S was defined for any x ∈ [0, 1] and

n ∈ N. Suppose that d is an accumulation point of C. By Assumption 4.7,
we see that d is not contained in C and that C accumulates to d either
from above or from below, not from both at the same time. We set Σηn

(d)
to be the complement of Dηn

(d) on S. By Claim 4.6, after passing to a
subsequence of {Nn}, we can find δ > 0 such that for any n and x ∈ [d− δ,
d+ δ], the subsurface Σηn(x) is vertically isotopic into Σηn(d). Furthermore,
by Assumption 4.7, by taking smaller δ if necessary, we can assume the
following.

Assumption 4.8. — On the side from which C does not accumulate,
Σηn

(x) is vertically parallel to Σηn
(d) for every x ∈ [d−δ, d+δ] and large n.

We note that δ above may depend on d but not on n if it is large enough.
Now since there are only finitely many bricks whose images under the ηn
intersect S×{d}, by taking δ small enough, changing the order of appearance
of finitely many bricks and passing to a subsequence, we can assume the
following.

Assumption 4.9. — For every accumulation point d of C and δ > 0 as
above, the first brick put in S × (d− δ, d) or S × (d, d+ δ) appears after all
bricks intersecting S×{d}, that is, if a brick B with ηn(B) ⊂ S× (d−δ, d)∪
S × (d, d + δ) is contained in Nn, for any B′ with ηm(B′) ∩ S × {d} 6= ∅,
there is j < n with B′ ⊂ Nj.

Let {di} be the set of accumulation points of C, and for each di, we
take δi so that [di − δi, di)∪ (di, di + δi] has the properties of Claim 4.6 and
Assumptions 4.8 and 4.9. We set Ii to be (di− δi, di)∪ (di, di + δi). We note
that it may be possible that two distinct Ii1 and Ii2 intersect, but we can
choose smaller δi if necessary so that if Ii1 ∩ Ii2 6= ∅, then one of the two
contains the other. By cutting bricks along S × {di − δi} and S × {di + δi},
we can assume the following:
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Assumption 4.10. — For a brick B, if one of its sup and inf is contained
in Ii, then the other is contained in its closure Ii.

We say that a point a ∈ C belongs to an accumulation point di if a is
contained in Ii and if Ii is the smallest with respect to the inclusion among
the intervals Ii containing a. We say that a brick B belongs to di if Ii is the
smallest among the intervals {Ii} that contains both supB and inf B.

Let a be a point in Cn \ {0, 1}. We say that a point a ∈ Cn belonging to
di is an lower twisting point when a lies in (di− δi, di), and a upper twisting
point otherwise. Since there are only finitely many points of C which are
contained in none of the Ii, by passing to a subsequence, we can assume the
following.

Assumption 4.11. — If a brick B has inf and sup neither of which
contained in any Ii, then B is contained in N1.

Twisting maps (or solid twisting maps) at lower twisting points, which
we shall define below, will be called lower (solid) twisting maps, and those
at upper twisting points upper (solid) twisting maps. We shall define a new
embedding hn for Nn for every n ∈ N inductively, starting from h1, which is
set to be η1. The embedding hn will be defined to each brick with the same
sup and inf as the original embedding ηn, but our construction is based on
the induction, and ηn will be used only to define twisting maps. Suppose
that the embedding hn−1 is defined on Nn−1 in such a way that hn−1 sends
each brick of Nn−1 to the same horizontal levels as ηn−1 (and hence also ηn)
does. We now start to define hn on Nn.

Let Bn be the set of bricks contained in Nn but not in Nn−1. We let C ′n
be a subset of Cn defined by C ′n = {supB, inf B | B ∈ Bn} ∩ (

⋃
j Ij). We

consider accumulation points of C to which some point of C ′n belongs. Since
Nn has only finitely many bricks, there are only finitely many such accumu-
lation points. We renumber such accumulation points and the corresponding
intervals as d1, . . . , dr and I1, . . . , Ir in such a way that if Ij1 is (properly)
contained in Ij2 for dj1 , dj2 ∈ {d1, . . . , dr}, then j1 > j2.

Starting from I1, and in the order according to the subscripts, we shall
define twisting maps for each brick B in Bn which belongs to dj , and hn on
B after twisting the embedding defined up to that point. We let Nj−1

n be
the union of bricks of Nn and bricks in Bn belonging to d1, . . . , dj−1. Now,
assuming that we have already defined the embedding hj−1

n for Nj−1
n , we

shall define an embedding hjn for Nj
n, which is not necessarily an extension

of hj−1
n . By Assumption 4.8, either all points of C ′n belonging to dj are upper

twisting points or all of them are lower twisting points. Since the argument
is quite the same for both cases, we here assume that they are lower twisting
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points. Let {a1, . . . , ap} be the points in C ′n belonging to dj , aligned in
the increasing order. We shall proceed again inductively to define a lower
twisting map ϕak

for each ak among a1, . . . , ap and the corresponding lower
solid twisting map pϕak

: S × [0, 1]→ S × [0, 1]

Let ak be one among {a1, . . . , ap}, and suppose that we have already
constructed solid twisting maps pϕa1 , . . . , pϕak

in such a way that pϕak
◦ · · · ◦

pϕa1 ◦ hj−1
n extends to an embedding hj−1

n (k − 1) of the union of Nj−1
n and

the bricks in Bn whose suprema are in {a1, . . . , ak−1}, which we denote by
Nj−1
n (k − 1). We let Bl1 , . . . , Blt be the bricks with suprema at ak which

are contained in either Bn or Nn−1 in such a way that their images under
hj−1
n (k − 1) are contained in Σhj−1

n
(dj) × [0, ak]. We now define a lower

twisting map ϕak
: S → S at ak, which is supported on Σhj−1

n (k−1)(dj)
and the corresponding lower solid twisting map pϕak

which is supported in
Σhj−1

n (k−1)(dj)× [ak, dj).

Since both ηn and hj−1
n (k − 1) embed Nj

n−1(k − 1) into S × [0, 1] and
they send each brick at the same horizontal level, there is a homeomor-
phism ςjn(k) : hj−1

n (k − 1)(Nj
n−1(k − 1)) → ηn(Nj

n−1(k − 1)) preserving
the horizontal levels. Since ηn also embeds Nj

n−1(k − 1) ∪ (Bl1 , . . . , Blt),
for each l among l1, . . . , lt, its bottom ηn(∂−Bl) is vertically homotopic
to its top ηn(∂+Bl) if ∂+Bl is contained in Nj

n−1(k − 1). Therefore there
is a homeomorphism ϕak

: S → S which is supported on Σhj−1
n (k−1)(dj)

such that hj−1
n (k − 1)(∂−Bl) is vertically homotopic to hj−1

n (k − 1)(∂+Bl)
if ∂+Bl is contained in Nj

n−1(k − 1). We let this ϕak
be the lower twist-

ing map at ak, and define the corresponding lower solid twisting map pϕak
:

S × [0, 1] → S × [0, 1] to be (ϕak
(x), t) for (x, t) ∈ Σhj−1

n (k−1)(di) × [ak, dj)
and the identity elsewhere. Then pϕak

◦hj−1
n (k− 1) extends to an embedding

of Nj
n−1(k − 1) ∪ (Bl1 , . . . , Blt). Repeating this construction inductively on

a1, . . . , ap first then d1, . . . , dr next, we get an embedding hn of Nn.

We shall now show that for each brick B of M, the restriction hn|B sta-
bilises for large n. (Here we are considering the original brick decomposition,
not the subdivided one as the argument above.)

For a given brick B, take the smallest m such that B is contained in Mm.
We consider twisting maps at points ai ∈ Cni

for some ni > m belonging to
an accumulation point di, which appear in the construction of the embed-
dings above. We shall show that there are finitely many i and ni for which
the solid twisting map affects the embedding of B. We first consider the case
where hm(B) ∩ (S × (ai, di)) = ∅ (ai < di) or hm(B) ∩ (S × (di, ai)) = ∅
(ai > di). For such ai, the solid twisting map does not affect the embedding of
B because the solid twitting map only moves S×(ai, di) or S×(di, ai) in this
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case. Next suppose that either hm(B)∩(S×(ai, di)) or hm(B)∩(S×(di, ai))
is non-empty. Since the argument is the same for both cases, we only consider
the case when ai lies in (di−δi, di) and hm(B)∩(S×(ai, di)) 6= ∅. If di is con-
tained in (inf B, supB], then hn−1(B) ∩ S × {di} is contained in Dhn−1(di),
which implies that hn−1(B) is outside the support of the solid twisting map
at ai. Therefore, we can assume that di > supB. Since ai < supB < di,
if there are infinitely many such ai ∈ Cni

with ni > m, the sequence {ai}
consisting of these points has an accumulation point a∞ 6 supB. Since a∞
is an accumulation point of C, there is j such that a∞ = dj . For sufficiently
large i, the point ai is contained in Ij . Since ai belongs to di, this implies
that Ii is contained in Ij . Since di − δi < ai 6 dj = a∞ 6 supB < di, we
see that Ii, which contains (di− δi, di) cannot be contained in Ij which does
not contain dj . This is a contradiction. Thus, we have shown that there are
only finitely many solid twisting maps which affect the embeddings of B.
Therefore, {hn} stabilises on each brick for large n, and the limit of {hn} is
a well-defined embedding of M into S × [0, 1].

The condition (4) is much easier to see. As was shown in the proofs
of (3) and (5), each geometrically finite end appears as a geometric limit of
geometrically finite ends in boundary blocks of the Mi. Since they can be
assumed to lie on S × {0, 1} by the embedding hi of Mi constructed above,
we can see the limit also lies on S × {0, 1}.

We shall next check the condition (7). We fix a generator system of π1(S)
so that none of the generators has image under φi which converges to a
parabolic element in Γ as i→∞. Since {(Gi, φi)} converges algebraically, the
geodesic loops representing the generators based at yi have bounded lengths
as i → ∞. Therefore, we can construct a map gi : S → Mi triangulated
by ideal triangles whose image contains these geodesic loops so that {gi}
converges geometrically to a map pg : S →M∞ which can be lifted to a map
from S to M ′. Then {f−1

i ◦ gi} also converges to f−1 ◦ pg, which we set to be
g. By construction, g is π1-injective also as a map to S × [0, 1]. Moreover,
since pg = f ◦ g can be lifted to M ′ as a homotopy equivalence, we see that
(f ◦ g)#π1(S) corresponds to the image of π1(M ′).

Finally, we shall check the condition (8). Since we chose ηn so that no
ideal front intersects another front in S×[0, 1], the embedding of M which we
constructed has the same property. Since we isotoped ηn so that there is no
accumulation point of C contained in C itself and there is no accumulation
point of C to which points of C accumulate from both below and above as
in Assumption 4.7, there is no wild end which intersects a front of a brick or
another wild end.
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4.3. Block decomposition

Regard M as a subset of S × [0, 1] which is embedded preserving the
horizontal and vertical foliations as in Theorem 4.2. Then a brick of B has a
form Σ×J with respect to the parametrisation of S× [0, 1]. We denote sup J
by supB and inf J by inf B as in the previous subsection. Note that supB is
the level of the horizontal leaf on which the upper front of B lies and inf B
that on which the lower front of B lies. Each end of M, even if it is wild,
corresponds to Σ × {t} for some incompressible subsurface Σ of S. By the
condition (2), every geometrically finite end is contained in either S × {0}
or S × {1}. We call those contained in S × {0} lower geometrically finite
ends and those in S × {1} upper geometrically finite ends. By moving the
embedding vertically if necessary, we can assume that S × {0} and S × {1}
consist of a union of ends, annuli homotopic in S× [0, 1]\IntM to the closure
of open annulus boundary components of M, and open annuli corresponding
to punctures of S.

Occasionally, it is convenient to consider the complement of M in S ×
(0, 1). Let C be a component of S × (0, 1) \M. Then FrC ∩ C consists of
(countably many) horizontal surfaces, each corresponding to an end of M
which is either simply degenerate or wild. (Note that by the condition (8),
each component of FrC∩C corresponds to only one end of M.) On the other
hand, FrC \C consists of either annuli or a single torus, which are boundary
components of M.

We can associate to each geometrically finite end of M a marked con-
formal structure at infinity of the corresponding geometrically finite end of
(M∞)0. As was shown in the proof of Lemma 4.3, each geometrically finite
end is contained in a geometric limit of boundary blocks of Mi. Therefore,
this conformal structure at infinity given on each geometrically finite end
coincides with the conformal structure at infinity of the corresponding geo-
metrically finite block. Similarly, we can associate to each simply degenerate
end of M the ending lamination of the corresponding simply degenerate end
of (M∞)0. We call these conformal structures and ending laminations labels.

In general a brick manifold each of whose non-wild ends has a label, an
arational lamination for a simply degenerate end, and a conformal structure
at infinity for a geometrically finite end, is called a labelled brick manifold. We
showed in [50] that any labelled brick manifold is decomposed into blocks in
the sense of Minsky [40] and tubes. This is just a generalisation of Minsky’s
construction of model manifolds in [40] based on hierarchies of tight geodesics
defined in [38]. In particular in the case of Kleinian surface groups, our
decomposition into blocks coincides with the construction of Minsky’s model
manifolds completely.
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In our present situation, we do not need this general theory since M[0],
which is a geometric limit of Mi[0], has a decomposition into blocks which
is a limit block decomposition of Mi[0] as was stated in the part (0) of
Theorem 4.2. We put a metric of a Margulis tube into each tube so that
the flat metric induced on the boundary coincides with that induced from
the metric on M[0] determined by blocks. As was explained in Proof of
Theorem 4.2, each Margulis tube V = A× [s, t] has a coefficient ωM(V ) lying
in {z ∈ C | =z > 0}. We define M[k] to be the complement of the tubes
whose ωM have absolute value greater than or equal to k. By defining a brick
to be the closure of a maximal union of parallel horizontal leaves, we can
define a brick decomposition of Mi[k] and M[k]. Such a brick decomposition
is called the standard brick decomposition.

The following proposition was first shown in the proof of Theorem A
in [50, §5.2]. The claims in this proposition were already proved in Theo-
rem 4.2 above except for the existence of labels. The labels can be given by
pulling back those on (M∞)0 as we have just explained above.

Proposition 4.12. — In the situation of Theorem 4.2, let xi ∈Mi be a
point in Mi such that fi(xi) = yi. Then (Mi[0], xi) converges to M[0] after
passing to a subsequence. The model manifolds M and Mi have structures
of labelled brick manifolds admitting block decompositions with the following
conditions.

Let ρM
i be an approximate isometry between Mi and the union of M and

cusp neighbourhoods, which corresponds to the geometric convergence. Then
we can arrange ρM

i so that the following hold.

(1) For any compact set K in M, the restriction ρi ◦ fi ◦ (ρM
i )−1|K

converges to f |K uniformly as i→∞.
(2) For any block b of M[0], its pull-back (ρM

i )−1(b) is a block in Mi[0]
for large i.

(3) ρM
i preserves the horizontal foliations.

4.4. Algebraic limits in the models

By Theorem 4.2(7), there is an inclusion of π1(S) in π1(M) corresponding
to the inclusion of Γ into G∞. We realise this inclusion by a π1-injective
immersion g : S →M so that (f ◦ g)#π1(S) is equal to the image of π1(M ′)
in π1(M∞) under the covering projection as in Theorem 4.2(7). We call such
g an algebraic locus.
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Lemma 4.13. — An algebraic locus g can be homotoped to a map g′ as
follows.

(1) The surface S is decomposed into incompressible subsurfaces Σ1,
. . . ,Σm, none of which is an annulus, and (possibly empty) annuli
A1, . . . , Aµ.

(2) The restriction of g′ to Σj is a horizontal embedding into Σj×{tj} ⊂
M.

(3) Each annulus g′(Aj) is composed of 2n−1 horizontal annuli and 2n
vertical annuli for some n ∈ N and goes around a torus boundary of
M n-times. See Figure 4.2.

Proof. — Recall that g is π1-injective even as a map to S × [0, 1]. Since
every π1-injective map from S to S × [0, 1] is homotopic to a horizontal
surface (see Waldhausen [57, Prop. 3.1]), g is homotopic to a horizontal
surface S × {t} in S × [0, 1].

Since M is a brick manifold, we can homotope g within M so that g(S)
consists of horizontal leaves in bricks and vertical annuli. By the additivity of
Euler characteristics, we see that the sum of the Euler characteristics of the
horizontal leaves is equal to χ(S). We consider the projection of horizontal
leaves to S. Since g is homotopic to S×{t} in S×I, we see by the invariance
of the algebraic intersection number that for each point x ∈ S the surface
g(S) contains x×{s} for some s ∈ I. This implies that the horizontal leaves
cannot overlap along a surface with negative Euler characteristic. It follows
that only compact regions that g(S) can bound in S×I are solid tori. If such
a solid torus is contained in M, we can eliminate it by a homotopy. The only
remaining possibility is that such a solid torus contains components of ∂M.
By Theorem 4.2(2), there is only one boundary component contained in each
solid torus. Thus we have reached the situation as in our statement. �

We call a map g′ : S →M as in Lemma 4.13 a standard algebraic immer-
sion. Recall that there is a homotopy equivalence Φi : S → Mi realising φi.
By composing the inverse of the model map, we have a homotopy equivalence
from S to Mi, which we denote by ΦM

i .

Lemma 4.14. — Let ρM
i be an approximate isometry between Mi and M

with basepoints at the thick parts as in Theorem 4.2 and Proposition 4.12.
For sufficiently large i, the immersion (ρM

i )−1 ◦ g′ is homotopic to ΦM
i as a

map to Mi.

Proof. — By the definition of g′, we see that f ◦ g′ is homotopic to Ψ.
Since ρ−1

i ◦ Ψ is homotopic to Φi for large i, our lemma follows from the
condition (1) of Proposition 4.12. �
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torus boundary

Figure 4.2. g′ going around a torus boundary component (the case
when n = 1).

Definition 4.15. — Let e be a simply degenerate end of M contained
in a brick B = Σ× J . We say that e is an upper algebraic end if J = [s, s′)
and Σ×{s′− ε} is freely homotopic in M to g′(Σ) which lies in a horizontal
part of g′(S) for sufficiently small ε > 0. In the same way, we say that e is
a lower algebraic end if J = (s, s′] and Σ × {s + ε} is freely homotopic in
M to g′(Σ) which lies in a horizontal part g′(S) for sufficiently small ε > 0.
We also call the ending lamination of an algebraic simply degenerate end
algebraic, and say that the ending lamination is upper or lower depending
on whether the end is upper or lower.

Similarly, a core curve of an open annulus boundary component or a
longitude (i.e. a horizontal curve) of a torus boundary component of M is
said to be an algebraic parabolic curve if it is homotopic in M to a simple
closed curve lying on a horizontal part of g′(S). We also call its image of
the vertical projection to S an algebraic parabolic curve. A parabolic curve
is said to be upper or lower in the same way as simply degenerate ends, but
we should note if it lies on a torus boundary component around which g′(S)
goes (by this we mean that g′(S) goes around the torus boundary component
k-times with k 6= 0,−1), then the curve is defined to be both upper and
lower at the same time. An algebraic parabolic curve is said to be isolated if
it is a core curve of an isolated parabolic locus of M ′0.

Lemma 4.16. — Any algebraic parabolic curve lying on a torus boundary
component of M is isolated.

Proof. — Let c be an algebraic parabolic curve lying on a torus bound-
ary component of M. Let P be a parabolic locus of a relative core C of
(M ′)0 into which the lift of f(c) to M ′ is homotopic. Suppose, seeking a
contradiction, that P is not isolated. Then, there is a simply degenerate end
e touching the Z-cusp corresponding to P . By Thurston’s covering theo-
rem (see [54] and Canary [18]) together with the argument in the proof of
Lemma 2.3 in [44], there is a neighbourhood U of e which is projected in to
M∞ homeomorphically by the covering projection. This implies that M has
a simply degenerate brick which touches an open annulus boundary of M
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into which c is homotopic. Since no two distinct boundary components of M
have homotopic essential closed curves by Theorem 4.2(2), this contradicts
the assumption that c lies on a torus boundary. �

Lemma 4.17. — The algebraic simply degenerate ends of M correspond
one-to-one to the simply degenerate ends of M ′0 by mapping them by f and
lifting them to M ′0. The upper (resp. lower) ends correspond to upper (resp.
lower) ends of M ′0.

Proof. — Consider a simply degenerate end corresponding to the upper
ideal front of a brick B = Σ×[s, s′) of M. By the definition of the model map
f , there is an infinite sequence of horizontal surfaces Σ× {tj} in B tending
to Σ× {s′} which are mapped to a sequence of pleated surfaces f(Σ× {tj})
tending to the corresponding simply degenerate end e of (M∞)0. Since Σ×
{t} ∈ B is freely homotopic into g′(S), the pleated surfaces f(Σ× {tj}) lift
to pleated surfaces f̃ i tending to an end of M ′0.

Since the model map f has degree 1 with respect to the orientation of
(M∞)0, the end e is situated above f ◦ g′(S). Lifting this to M ′0, we see that
the end to which the f̃ i tend is an upper end. Similarly, we can show that if
the simply degenerate brick B has the form Σ×(s, s′], then the corresponding
end of M ′0 is a lower end.

Conversely, suppose that e′ is a simply degenerate end of M ′0. By
Thurston’s covering theorem and some argument applying it ([18], [54] and
the argument in the proof of Lemma 2.3 of [44]), there is a neighbourhood
E of e′ such that p|E is a proper embedding into (M∞)0. Let e denote the
simply degenerate end of (M∞)0 contained in p(E). Then, there is a simply
degenerate end pe of M which is sent to e by f . Since e′ is simply degenerate,
there is an essential subsurface Σ of S and a sequence of pleated surfaces
hi : Σ→ M ′0 taking ∂Σ into ∂M ′0 which tend to e′. Their projections p ◦ hi
are pleated surfaces tending to e. This implies that the end pe is contained in
a simply degenerate brick Be ∼= Σ×J , where J is a half-open interval. Since
f(Σ×{t}) is homotopic to p◦hi and p◦hi is homotopic into f ◦g′(S), we see
that Σ × {t} is freely homotopic to g′(Σ). By Lemma 4.13, this is possible
only when Σ × {t} is homotopic into a horizontal part of g′(S), and we see
that the end pe is algebraic. �

4.5. Simply degenerate ends in limit models

As was shown in Theorem 4.2, except for the geometrically finite ends
lying on S × {0, 1}, all the tame ends of M are simply degenerate. Next
we shall see how simply degenerate ends in the model manifold M are ap-
proximated in Mi. Recall that the model manifold Mi corresponds to a
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hierarchy hi of tight geodesics. Recall also that we have a homeomorphism
pΦi : S × (0, 1)→Mi inducing φi between the fundamental groups. This de-
termines an embedding ιi = f−1

i ◦ pΦi of the standard S× (0, 1) into S× [0, 1]
in which Mi is embedded. We identify the standard S× [0, 1] and S× [0, 1] in
which Mi is embedded so that this ιi becomes an inclusion. In other words,
by this identification, the model map fi is homotopic to pΦi if regarded as a
map from S × (0, 1). We identify two S × [0, 1] in which Mi1 and Mi2 are
embedded respectively for every pair i1, i2 using ιi1 and ιi2 .

We fix a complete marking µ on S once and for all. For a domain X in
S, by considering a component of πX(base(µ)), we can define a basepoint in
CC(X). We call this basepoint the basepoint determined by µ.

Proposition 4.18. — Let B = Σ × J be a simply degenerate brick in
M whose end e is algebraic. Then passing to a subsequence there is a tight
geodesic γi contained in the hierarchy hi (which was used to construct Mi)
as follows.

(1) The support of γi is IntΣ.
(2) Either all γi are geodesic rays, or they are finite geodesics whose

lengths go to ∞ as i→∞.
(3) In the case when the γi are geodesic rays, their endpoints at infinity

converge to the ending lamination of e in EL(IntΣ) as i→∞, and
γi contains a simplex whose distance from the basepoint determined
by µ is bounded as i→∞.

(4) Suppose that the γi are finite geodesics. In the case when the end e
is upper, the last vertex of γi converges to the ending lamination of
e as i → ∞. In the case when the end is lower, the first vertex of
γi converges to the ending lamination as i → ∞. In both cases, γi
contains a simplex whose distance from the basepoint determined by
µ is bounded as i→∞.

Before starting the proof of Proposition 4.18, we shall show the following
lemma which is similar to Lemma 6.2 in Masur–Minsky [38].

Lemma 4.19. — There are constants M and P depending only on ξ(S)
with the following property. Let h be a hierarchy of tight geodesics on S,
and D a domain (i.e. an open incompressible subsurface) of S. Suppose that
there are two vertices v, w of CC(D) which are contained in simplices of tight
geodesics constituting h such that dCC(D)(v, w) > M . Then there is a tight
geodesic in h supported on D which contains simplices sv and sw such that
dCC(D)(v, sv) 6 P and dCC(D)(w, sw) 6 P .
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Proof. — Lemma 6.2 in Masur–Minsky [38] says that there is a constant
M ′ depending only on ξ(S) such that for if dCC(D)(I(H), T (H)) > M ′ for
some hierarchy H on S, then D supports a geodesic in H. Our lemma can
be proved by repeating the argument of the proof Masur–Minsky’s lemma
or modifying the hierarchy h so that we can apply Masur–Minsky’s lemma.
We shall explain the latter here.

We set M = M ′ + 2 and let v, w be vertices in CC(D) as are given in the
statement. Let σv and σw be simplices on geodesics of h containing v and w
respectively. We construct a resolution of h, which we denote by τ = {τj},
where τj is a slice and j ranges in an interval in Z. By the definition of
resolutions, there are slices τjv

containing σv and τjw
containing σw. Since

dCC(D)(v, w) > 2, they have non-zero intersection number, and hence cannot
appear in the same slice, which implies that jv 6= jw. By interchanging v
and w if necessary, we can assume that jv < jw.

Now, we consider a subsequence of the resolution defined to be τ ′ =
{τj}jv6j6jw . By the definition of elementary moves in a resolution (see [38,
§5]), for any geodesic g in h, the simplices v on g such that (g, v) is con-
tained in slices of τ ′ form a contiguous subset of the set of simplices on g. We
denote this subset by V (g), and a subgeodesic of g consisting of simplices
contained in V (g) by g′, which might be empty. Moreover, if g1 ↘d (g, v)
or (g, v) d↙ g1 and V (g1) 6= ∅, then (g, v) appears in some slice in τ ′ by
the definition of slices. Therefore, the set of geodesics {g′}g∈h with the re-
lation of subordination inherited from h forms a hierarchy on S by setting
its initial marking to be τjv

and its terminal marking to be τjw
. (Strictly

speaking, a geodesic of this hierarchy may have the first simplex or the
last simplex which may not be vertices. This does not affect the argu-
ment for proving Lemma 6.2.) Let h′ denote this hierarchy. Then we have
dCC(D)(I(h′), T (h′)) = dCC(D)(τjv

, τjw
) > dCC(D)(v, w) − 2 > M ′. Now, by

applying Masur–Minsky’s lemma for h′ and D, we see that D supports a
geodesic g′D in h′. Since g′D is a subgeodesic of a geodesic in h, we see that
D supports a geodesic in h.

Now we shall show the existence of simplices sv, sw in gD with the con-
dition given in the statement. Lemma 6.1 of [38] implies that there is a
constant M1 depending only ξ(S) which bounds both dCC(D)(I(h′), I(gD))
and dCC(D)(T (h′), T (gD)). We set P in the statement to be M1 + 1. Let vD
be the first simplex of g′D and wD the last simplex of gD. Since σv is con-
tained in I(h′), we have dCC(D)(σv, vD) 6 M1 + 1. Since vD is a simplex
on gD, this gives a bound as we wanted for v. In the same way, we have
dCC(D)(σw, wD) 6M1 + 1. This complete the proof. �
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Proof of Proposition 4.18. — Recall that {(Mi, xi)} converges to the
union of (M, x∞) and cusp neighbourhoods. We denote by ρM

i a (Ki, ri)-
approximate isometry associated to this convergence with domainBri(Mi,xi)
as before. The intersection of the range of ρi and M is the Kiri-ball centred
at x∞, which we denote by BKiri

(M, x∞).

Since B is assumed to be simply degenerate brick, there is a sequence
of Margulis tubes T1, T2, . . . appearing in the block decomposition of M,
which tend to the end of B and whose core curves projected into Σ, which we
denote by c1, c2, . . . , converge to the ending lamination for the end. Passing
to a subsequence, we can assume that dCC(Σ)(cj1 , cj2) > |j1 − j2| for any
j1, j2 ∈ N. For any n ∈ N, we can take i0 ∈ N such that for any i > i0,
the ball BKiri

(M, x∞) contains all tubes T1, . . . , Tn. Since the end of B is
algebraic, the core curve of (ρM

i )−1(Tj) is homotopic in Mi to cj regarded as
lying on S×{1/2}. Since (ρM

i )−1(T1), . . . , (ρM
i )−1(Tn) are Margulis tubes of

Mi, the curves c1, . . . , cn are contained in simplices of geodesics constituting
the hierarchy hi. Since dCC(Σ)(c1, cn) > n, by letting n be greater than M
given in Lemma 4.19, we see that Σ supports a geodesic in hi, which we
define to be γi. Then the part (1) holds automatically, and moreover by
passing to a subsequence, we can assume either all the γi are finite geodesics
or all of them are geodesic rays.

By Lemma 4.19, passing to a subsequence again, we can assume that γi
contains a simplex si with dCC(Σ)(ci, si) 6 P . Since {ci} tends to the ending
lamination of e as i→∞, if the γi are finite geodesics then {γi} converges to
a geodesic ray which tends to the ending lamination of e, which implies that
the last vertex of γi converges to the ending lamination of e. Suppose that
passing to a subsequence all the γi are geodesic rays. Then again since γi
contains si tending to the ending lamination, by the hyperbolicity of CC(Σ)
the endpoint of γi converges to the ending lamination of e. In both cases,
since γi contains s1 for large i with dCC(Σ)(c1, s1) 6 P by Lemma 4.19, we see
that it contains a simplex with its distance from the basepoint determined
by µ bounded as i→∞. �

In the proof of Proposition 4.18, we used the assumption that the end
in B is algebraic only to show that the support of γi is Σ. Even in the case
when the end in B may not be algebraic, the argument above shows that we
still have a geodesic as γi in hi, and its support is the preimage of Σ, which
may depend on i. Thus we get the following corollary.

Corollary 4.20. — Let B = Σ × J be a simply degenerate brick of
M. Let V be the union of all boundary components of M touching the ver-
tical boundary of B, and Vi the union of Margulis tubes corresponding to
(ρM
i )−1(V ∩BKiri

(M, x∞)). Then, there is a geodesic γi in hi satisfying the
following conditions.
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(1) For sufficiently large i, the preimage (ρM
i )−1(B) is contained in a

brick Bi = Σi × Ji in the standard brick decomposition of Mi \ Vi.
(2) The geodesic γi is supported on Σi. Passing to a subsequence, we can

assume that all γi either have finite lengths or are geodesic rays.
(3) If the γi have finite lengths, their lengths go to ∞ as i→∞.
(4) Let ∂realB be the real front of B. Let ki : Σ → Σi be a homeomor-

phism induced from (ρM
i )−1|∂realB. If γi has finite length, for the

last vertex vi of γi, its image k−1
i (vi) on Σ converges to the ending

lamination of the simply degenerate end of B. If γi is a ray, then
for the endpoint ei of γi at infinity, k−1

i (ei) converges to the ending
lamination of the end in B in EL(Σ).

5. Limits of end invariants and ends of models

In this section, we consider the situation where {(Gi, φi) = qf(mi, ni)}
converges to (Γ, ψ) in AH(S) and {Gi} converges geometrically to G∞.
We assume that {mi} converges to [µ−] and {ni} converges to [µ+] in the
Thurston compactification of the Teichmüller space. Let Σ+ and Σ− be the
boundary components of the convex core of Mi = H3/Gi facing the upper
and lower ends respectively. We shall first recall the following fact, which
follows from the continuity of length function.

Lemma 5.1. — Let ν be a component of either µ− or µ+. If ν is a
weighted simple closed curve, then Ψ(|ν|) represents a parabolic class of Γ.
Otherwise, its image Ψ(ν) represents the ending lamination for an end ofM ′0.

Proof. — This is just a combination of Thurston’s theorem and the con-
tinuity of the length function proved by Brock [9] in general form. We can
assume that ν is a component of µ− since the argument for the case of
µ+ is exactly the same. Thurston’s Theorem 2.2 in [55] (whose proof can
be found in [23] and [56]) shows that there is a sequence of simple closed
curves riγi converging to µ+ such that lengthmi

(riγi) goes to 0. By Bers’
inequality [4], this implies that lengthΣ−

i
(riγi) also goes to 0. By the con-

tinuity of the length function with respect to the algebraic topology (see
Brock [9]), we have lengthM ′Ψ(µ−) = 0, which means every component of
Ψ(µ−) represents either a parabolic class or an ending lamination. �

We shall refine this lemma in Corollary 5.8 to show that in M the com-
ponents of the limit of {mi} appear as lower algebraic parabolic curves or
lower algebraic ending laminations, whereas those of {ni} appear as upper
algebraic parabolic curves or upper algebraic ending laminations. (See Defi-
nition 4.15 for the definitions of these terms.)
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Theorem 5.2. — Let cmi
and cni

constitute shortest (hyperbolic) pants
decompositions of (S,mi) and (S, ni) respectively. Let ν− and ν+ be the
Hausdorff limits of {cmi} and {cni} respectively. Then the minimal compo-
nents of ν+ that are not simple closed curves coincide with the upper al-
gebraic ending laminations of M. Moreover, every upper algebraic parabolic
curve of M, regarded as a curve on S, is contained in ν+. Similarly the min-
imal components of ν− that are not simple closed curves coincide with the
lower algebraic ending laminations of M, and every lower algebraic parabolic
curve is contained in ν−.

Proof. — We shall only deal with ν+. The argument for ν− is obtained
only by turning M upside down. Let hi be a hierarchy corresponding to
qf(mi, ni), and consider the model manifold Mi such that Mi[k] converges
geometrically to M[k] as before. We regard M as being embedded in S×[0, 1]
as usual.

We shall first show that any upper algebraic ending lamination of M is
a minimal component of ν+. Let B = Σ × [s, t) be a algebraic simply de-
generate brick of M containing an end e. By Proposition 4.18, the hierarchy
hi contains a geodesic γi supported on Σ whose last vertex converges to
the ending lamination λe of e in UML(Σ). Now, as was shown in Masur–
Minsky [38, §6] using Theorem 3.1 in the same paper, the distance between
the last vertex of γi and the projection of the terminal marking T (hi) of hi to
Σ is uniformly bounded. In particular, for the shortest pants decomposition
cni

, which consists of the base curves of T (hi), its projection to Σ converges
to λe in UML(Σ). Since the Hausdorff limit of cni |Σ contains the limit of the
projection of cni in UML(Σ), this shows that any upper algebraic ending
lamination is contained in ν+.

Secondly, we shall show that every upper algebraic parabolic curve is
contained in ν+. Let c be an upper algebraic parabolic curve on S, and
denote a standard algebraic immersion by g′ : S →M. There are three cases
which we have to consider. The first is the case (a) when g′(c) is homotopic
to a curve on a torus boundary of M; the second is the case (b) when g′(c)
is homotopic to a core curve of an open annulus boundary component of M
at least one of whose ends touches a geometrically finite end; and the third
is the case (c) when g′(c) is homotopic to a core curve of an open annulus
boundary component whose ends touch only simply degenerate or wild ends.

(a). — We first consider the case when the curve g′(c) is homotopic into
a torus component T of ∂M. For later use, we state here the result of the
case (a) as a claim, taking into account also the case of ν−.

Claim 5.3. — Let c be a simple closed curve on S such that g′(c) is
homotopic into a torus boundary component of M. Then c is a minimal
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component of ν+ if c is an upper parabolic curve and is a minimal component
of ν− if c is a lower parabolic curve.

Proof. — Let Vi be the Margulis tube bounded by (ρM
i )−1(T ) in Mi for

large i. Its boundary ∂Vi has a marked flat structure which is parametrised
by ωMi(Vi) as was explained in the proof of Lemma 4.3. The real part of
ωMi(Vi) corresponds to the difference of the marking on the top horizontal
annulus and that of the bottom horizonal annulus, hence to the length of
the tight geodesic of hi supported on an annulus on S homotopic to the
vertical projection of the horizontal annulus of Vi. Since ∂Vi converges to
the boundary of a torus cusp neighbourhood, <ωMi

(Vi) goes to ∞ whereas
the imaginary part is bounded as i → ∞. Let ci be a simple closed curve
on S whose image by ΦM

i is homotopic to the longitude of Vi. Since the
longitude of ∂Vi converges to that of T which is homotopic to the image of
a simple closed curve under g′, the homotopy class of ci is independent of
i for large i. Therefore, by taking a subsequence, we can assume that ci is
constantly c. Let A be an annulus on S which is a regular neighbourhood of
c. Since <ωMi(Vi)→∞, as was explained above, there is a geodesic γi in hi
supported on A whose length goes to ∞ as i→∞. Let a(i) and b(i) be the
first and last vertices of γi, and let n(a)i and n(b)i be the (signed) numbers
of times a(i) and b(i) respectively go around c compared to the transversal
of the marking determined by ΦM

i . Then |n(b)i−n(a)i| goes to∞ as i→∞.
We set n(i) to be n(b)i − n(a)i.

By the definition of hierarchy, there is a vertex of a geodesic gi in hi
with ξ(D(gi)) = 4 which represents c (and is denoted also by c), satisfying
πA(prec(c)) = a(i) and πA(succ(c)) = b(i). As was shown above, the distance
between πA(prec(c)) and πA(succ(c)) goes to ∞. Since these prec(c) and
succ(c) may depend on i, we denote prec(c) in gi by vi and succ(c) in gi
by wi.

Since there is an elementary move changing vi to c, there is a block bi
in Mi realising this elementary move by the definition of model manifold by
Minsky [40]. Let Ui be the Margulis tube in Mi whose core curve represents
vi, and ui a horizontal longitude on ∂Ui. Recall that the block decomposition
of Mi converges geometrically to that of M as i→∞. Therefore, the block
bi can be pushed forward to a block b∞ in M for large i, and hence there
is either a Margulis tube or a torus boundary in M whose core curve or
longitude, which we denote by u∞, is homotopic to ρM

i (ui) for every large i.
First suppose that g′ does not go around T . Then, since c is upper parabolic,
g′ can be homotoped so that it passes b∞ horizontally, and consequently,
there is a simple closed curve u on S such that g′(u) is homotopic to u∞.
By pulling back this to Mi, we see ΦM

i (u) is homotopic to prec(c) for large
i. This means that n(a)i is bounded as i→∞, and hence |n(b)i| goes to ∞.
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We next consider the case when g′ goes k-times around T for an integer
k with k 6= 0, 1. (We shall only consider the case when k is positive for
simplicity. In the case when k < −1, we move (ρM

i )−1 ◦ g′ in the negative
direction to pass through Vi.) In this case, to homotope (ρM

i )−1 ◦ g′ to an
immersion g′′i which does not go around Vi, we have to make it pass k times
through Vi in the upward direction. This g′′i converges geometrically to a
surface which passes b∞ horizontally, and therefore, in the same argument
as the previous paragraph, there is a simple closed curve u on S as above
such that g′′i (u) is homotopic to ui. Recall, as we explained in the proof of
Lemma 4.3, the meridian βi of Vi realises a homotopy between the markings
below and above, and hence as the surface passes Vi in the positive direction,
the transverse of c is twisted n(i)-times. This implies that the kn(i)-time
Dehn twist of ui around c represents the constant homotopy class u for large
i. Therefore, |n(a)i| grows in the order of |kn(i)|, and |n(b)i| does in the
order of |(k + 1)n(i)| in this case.

In either case, we see that |n(b)i| goes to∞. Therefore, by Section 6 of [38]
again, the projection of the shortest pants decomposition cni

to CC(A) also
goes around n′(i) times around c with n′(i) → ∞. This shows that the
Hausdorff limit ν+ of {cni

} contains c as a minimal component. �

(b). — Next we consider the second case when g′(c) is homotopic to
a core curve of an open annulus boundary component T which touches a
geometrically finite end e of M. Then we shall prove the following claim,
which will also be used later.

Claim 5.4. — Let Σ be an incompressible subsurface of S such that Σ×
{1} corresponds to a geometrically finite end of M with conformal structure
nΣ. Let a be a simple closed curve on S such that g′(a) is homotopic to a
curve a′ on Σ×{1}. Then the hyperbolic length lengthni

(a) converges to that
of a′ with respect to nΣ. In particular, if a′ is peripheral, then lengthni

(a)
goes to 0.

Proof. — By the definition of conformal structures on the geometrically
finite bricks of M in Section 4.3, there is a subsurface Σi in S such that
(Σi, ni) converges to (Σ, nΣ) geometrically. Since g′ is an algebraic locus, for
a simple closed curve a′ of Σ homotopic to g′(a) is pulled back to a curve on
Σi homotopic to ΦM

i (a). This implies the hyperbolic length of a with respect
to ni converges to that with respect to nΣ. �

This implies that the length of c with respect to ni goes to 0, and the
pants decomposition cni

must contain c. Therefore c is contained in the
Hausdorff limit of {cni} also in this case.
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(c). — Now, we consider the third case when g′(c) is homotopic to a core
curve of an open annulus boundary component T whose ends touch only
simply degenerate or wild ends. Suppose, seeking a contradiction, that there
is a minimal component d of ν+ intersecting c transversely. By Claim 5.3, we
see that d cannot intersect an upper algebraic parabolic curve on S whose
image by g′ is homotopic into a torus boundary component. We shall first
show the following claim.

Claim 5.5. — There is either a simply degenerate end or a horizontal
annulus on a torus boundary component, corresponding to Σ × {t} lying
above g′(S) and an incompressible subsurface F of S containing d such that
g′(F ∩ Σ) is vertically parallel into Σ × {t − ε} for any small ε > 0, and d
intersects Σ essentially on F . (Here F ∩Σ is assumed to have no inessential
intersection.)

Proof. — Suppose first that there is an upper algebraic simply degenerate
end corresponding to Σ × {t} such that Σ intersects d essentially. (This is
equivalent to saying that d intersects the minimal supporting surface of an
upper ending lamination essentially.) Then, by letting F be the entire S, the
condition above holds.

Suppose next that d can be homotoped so as to be disjoint from any min-
imal supporting surface of the upper ending lamination (i.e. from the surface
Σ for any upper algebraic simply degenerate ends as described above). Let
F be a component of the complement in S of the union of the minimal
supporting surfaces of the upper algebraic ending laminations and annular
neighbourhoods of parabolic curves of the case (a) above (i.e. those homo-
topic into a torus boundary component), which contains d. Since c, as well
as d, cannot intersect the minimal supporting surface of an upper algebraic
ending lamination and a parabolic curve of (a) above, c is also contained in
F . Consider a simply degenerate end or a lower horizontal annulus of a torus
boundary corresponding to Σ′ × {t} above g′(S) such that Σ′ intersects d
essentially. We can see that such an end or a torus exists since the boundary
component into which g′(c) is homotopic touches either a simply degenerate
end or a wild end and there is no essential half-open annulus tending to a
wild end. We take a lowest one among such Σ′×{t}, and denote it by Σ×{t}.
Then (Σ∩F )×{t− ε} is homotopic to g′(Σ∩F ) in M for any small positive
ε. (See Figure 5.1.) Thus we get subsurfaces F and Σ as we desired. �

Suppose now that Σ × {t} corresponds to a simply degenerate end, and
denote it by e. Let λ be the ending lamination of the end e, and B the brick of
M containing e. By Corollary 4.20, there are bricks Bi ∼= Σi× Ji containing
(ρM
i )−1(B) and geodesics γi supported on Σi whose lengths go to ∞ as

i → ∞. The approximate isometry induces a homeomorphism fi : Σ → Σi.
Also, we know that for the last vertex ti of γi, its image (fi)−1(ti) converge

– 855 –



Ken’ichi Ohshika

g’(S)

e=Σ×{t}

g’(F)

g’(c)g’(d)

Figure 5.1. The definition of F and the lowest end

to the ending lamination λ. By the same argument as before using Section 6
of [38], {(fi)−1πΣi(cmi)} converges to a geodesic lamination containing λ.
We state this as a claim for later use.

Claim 5.6. — Suppose that Σ × {t} corresponds to a simply degener-
ate end. Then there is a homeomorphism fi : Σ → Σi induced from an
approximate isometry between M and Mi, and the sequence of multicurves
{(fi)−1πΣi

(cmi
)} converges to a geodesic lamination containing λ.

Since g′(F ∩Σ) is vertically homotopic into Σ×{t−ε} in M for any small
positive ε, we see that fi|(F∩Σ) can be isotoped so that it is the identity map
if restricted to F ∩Σ. Since λ is arational in Σ, and Σ intersects d essentially,
we see that λ intersects d essentially. On the other hand, by Claim 5.6,
{f−1
i (cmi

)} converges to a geodesic lamination containing λ whereas {cmi
}

converges to ν containing d, both in the Hausdorff topology. Considering the
fact that fi|F ∩ Σ can be assumed to be the identity, we see that this is
impossible.

Next suppose that Σ×{t} is a horizontal annulus lying on a torus bound-
ary component T . Let Σi be the lower horizonal annulus on ρ−1

i (T ). Then by
the same argument as in the proof of Claim 5.3, we see that πΣi

(cni
) spirals

around the core curve of Σi more and more as i→∞. Since (Σ∩F )×{t−ε}
is homotopic to g′(Σ∩F ) and Σ∩F intersects d essentially, this shows that
the Hausdorff limit of {cni} intersects d transversely. This is a contradiction.
Thus we have shown that an upper algebraic parabolic curve cannot intersect
a minimal component of ν+ transversely. Since ν+ is a Hausdorff limit of
pants decomposition, every closed geodesic either intersects ν+ transversely
or is contained in ν+. Therefore implies that any upper algebraic curve is
contained in ν+.

Thus we have shown that both the upper algebraic ending laminations
and the upper algebraic parabolic curves are contained in ν+. To complete
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the proof, it remains to show that every minimal component of ν+ that
is not a simple closed curve is an upper algebraic ending lamination. For
that we have only to show that ν+ has no minimal component that is not
a compact leaf and is disjoint from the minimal supporting surfaces of the
upper algebraic ending laminations up to isotopy. We recall that no minimal
component of ν+ intersects an upper parabolic locus regarded as lying on
S by the results of the cases (a)–(c) above. Let Σ1, . . . ,Σj0 be the minimal
supporting surfaces of the upper algebraic ending laminations. Let F be a
component of the complement of the union of

⋃j0
j=1 Σj and all upper para-

bolic loci. What we have to show is that every minimal component d of ν+

contained in F is a simple closed curve.

The argument is quite similar to the proof of the case (c). Before dealing
with the general situation, we begin with considering the special case when
g′(F ) is homotopic into an end lying above g′(S). The end cannot be wild
since a wild end has no essential open annulus tending to the end. Hence
the end is either geometrically finite or simply degenerate. Then there is an
incompressible subsurface Σ of S containing F such that g′(F ) is homotopic
into an end corresponding to Σ × {s} (i.e. into Σ × {s − ε} for any small
positive ε), where s = 1 if the end is geometrically finite. We first consider the
case when s = 1 and Σ× {1} is geometrically finite. As shown in Claim 5.4,
the surface Σ × {1} has a hyperbolic metric n∞ which is a geometric limit
of (S, ni) with base point lying in the thick part of (Σi, ni|Σi) for some
subsurface Σi homeomorphic to Σ. Since F × {1− ε} in M is homotopic to
g′(F ), we see that Σi contains F up to isotopy for large i and that ni induces
a hyperbolic structure ni|F on F with geodesic boundary, which converges
to n∞|F preserving the markings. Note that ν+|F is a Hausdorff limit of
cni |F and d is contained in it. Since ni|F converges to n∞|F , we see that
any minimal component of the Hausdorff limit ν+ of {cni

} contained in F
must be a compact leaf.

Next suppose that there is a simply degenerate end e of M of the form
Σ × {s} with ending lamination λ, lying above g′(S) into which g′(F ) is
homotopic. Then this end cannot be algebraic since F lies in the complement
of the minimal supporting surfaces of upper algebraic ending laminations up
to isotopy. This implies that F is a proper subsurface of Σ up to isotopy.
By Claim 5.6, there is a homeomorphism fi : Σ → Σi for a subsurface Σi
of S, and {f−1

i (πS′
i
(cni

))} converges to a geodesic lamination containing λ.
Now, since g′(F ) is homotopic into Σ × {s} and λ is arational in Σ, this
shows that the Hausdorff limit of {cni

|F} consists only of arcs. Therefore,
F cannot contain d, contradicting our assumption.

In general, as shown in Claim 5.5, there is a simply degenerate end or a
horizontal annulus on a torus boundary component, corresponding to Σ×{t}
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situated above g′(S), such that g′(F ∩ Σ) is homotopic into Σ × {t − ε} in
M for any small positive ε, and such that F ∩ Σ intersects d essentially.
(See Figure 5.1 again.) Suppose first that Σ × {t} corresponds to a simply
degenerate end e. Then as in Claim 5.6, the Hausdorff limit of cni

|(F ∩ Σ)
must contain the restriction of the ending lamination λ of e to F . Since F ∩Σ
intersects d essentially, λ is arational in Σ, and Σ×{t} is not algebraic, this
shows that the Hausdorff limit of cni

|(F ∩Σ) intersects d transversely. This
is a contradiction.

Next suppose that Σ× {t} lies on a torus boundary component T . Then
each component of Σ ∩ F is a strip. As in the proof of Claim 5.3, for each
component ∆ of Σ ∩ F , the Hausdorff limit of cni |F has a leaf running to
join the two components of FrΣ∆. Since F ∩ Σ intersects d essentially on
F , each component of d ∩Σ ∩ F joins two boundary components of Σ. This
implies that the Hausdorff limit of cni

intersects d transversely, which is a
contradiction again. Thus we have shown that every minimal component of
the Hausdorff limit of {cni} contained in F is a compact leaf. This completes
the proof of Theorem 5.2. �

Theorem 3.2 is obtained as a corollary of Theorem 5.2, as follows.

Proof of Theorem 3.2. — Each simply degenerate end of M is mapped to
that of (M∞)0. Let p : M ′ →M∞ be a covering associated to the inclusion of
the algebraic limit Γ into the geometric limit G∞. By the covering theorem
of Thurston [54] and Canary [18] with the argument in Lemma 2.3 of [44],
each simply degenerate end of (M ′)0 has a neighbourhood which is mapped
homeomorphically to a neighbourhood of a simply degenerate end of (M∞)0.
Furthermore the ending lamination of an end of (M ′)0 is identified with that
of the corresponding end of (M∞)0 by p, which follows immediately by the
definition of ending laminations. Therefore the algebraic simply degenerate
ends of M correspond to simply degenerate ends of (M ′)0 one-to-one pre-
serving the ending laminations. It is also obvious that upper (resp. lower)
ends of M correspond to upper (resp. lower) ends of (M ′)0. Similarly the
algebraic parabolic curves correspond to the core curves of the parabolic loci
of M ′. Therefore, Theorem 5.2 implies the statement of Theorem 3.2 except
for the last paragraph.

Suppose that c is a simple closed curve in ν− or ν+ that has isolated
leaves around it. We assume that c is contained in ν− for simplicity. Then
there is a component di of cmi

spiralling around c more and more as i→∞.
Since the length of di is bounded, by the continuity of length function this
shows that the geodesic length of ψ(c) is 0, and hence c is a parabolic curve.
Suppose further that c is not contained in ν−. Then by Theorem 5.2, c
cannot be a lower parabolic curve of M, which means in particular that
c is an upper parabolic curve of M. Furthermore this implies that even if
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g′(c) is homotopic into a torus boundary component T of M, the algebraic
locus g′(S) cannot go around T . Therefore, c is an upper parabolic curve
of M ′. �

Lemma 5.7. — Let {gi} be a sequence in the Teichmüller space T (S)
which converges to a projective lamination [µ] in the Thurston compactifica-
tion. Let ci be a pants decomposition on (S, gi) whose total length is uniformly
bounded independently of i. Then the Hausdorff limit of any subsequence of
{ci} contains all the components of |µ| as minimal components.

Proof. — Let λ be the Hausdorff limit of a convergent subsequence of
{ci}. Since ci is a pants decomposition of S, every measured lamination
on S except for the components of ci intersects ci essentially. Therefore
every measured lamination on S other than those contained in λ intersects
λ essentially. Let µ0 be a component of µ, and suppose that its support is
not a minimal component of λ. Then µ0 must intersect λ transversely.

We shall first consider the case when µ0 is not a simple closed curve.
Let Σ be the minimal supporting surface of µ0. We consider a sequence
of essential arcs and simple closed curves ci ∩ Σ on Σ. Note that ci ∩ Σ
converges to λ ∩ Σ with respect to the Hausdorff topology, which is non-
empty. If λ∩Σ has a minimal component contained in IntΣ, then there is a
sequence of positive numbers ri going to 0 such that rici ∩ Σ converges to
a measured lamination γ in Σ. Otherwise we can find a bounded sequence
of positive numbers ri such that {rici} converges to a non-empty union γ of
essential arcs. (The limit is taken in the space of weighted essential curves in
Σ with the weak topology of transverse measures.) In either case, let R be
supi ri. Now, lengthgi

(ci) > rilengthgi
(ci)/R, where the right hand goes to

∞ since i(µ0, γ) > 0 and an arc with non-zero intersection with the Thurston
limit has length going to ∞ if we consider hyperbolic structures on Σ with
geodesic boundaries. This implies that lengthgi

(ci) must also go to∞, which
is a contradiction.

Next suppose that µ0 is a simple closed curve. If the length of µ0 with
respect to gi goes to 0, then we can take an annular neighbourhood Ai(µ0) of
µ0 whose width (with respect to ni) goes to ∞ as i→∞. Since λ intersects
µ0 essentially, ci passes through Ai(µ0) for large i. This implies the length of
ci in (S, gi) goes to∞, which is a contradiction. Next suppose that the length
of µ0 is bounded from both above and below by positive constants. Then
we can take an annular neighbourhood Ai(µ0) whose width is bounded away
from 0. Consider the shortest essential arc αi in Ai(µ0). Since µ0 is contained
in the limit lamination [µ] of {gi}, the shortest arc αi must spiral around
µ0 more and more as i → ∞. Since λ does not contain µ0, the number of
spiralling of ci around µ0 is bounded. This means twisting number between
αi and ci|Ai(µ0) goes to ∞. Therefore, the length of ci|Ai(µ0) goes to ∞ as
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i → ∞, which is a contradiction. In the case when the length of µ0 goes to
∞, we take Ai(µ0) whose width goes to 0 as i → ∞. Also in this case, the
shortest essential arc αi spirals around µ0 more and more as i → ∞. Since
the twisting number between αi and ci|Ai(µ0) goes to ∞ also in this case,
we see that the length of ci|Ai(µ0) goes to ∞. This is a contradiction. �

Combining this lemma with Theorem 5.2, we get the following corollary.

Corollary 5.8. — In the setting of Theorem 3.2, let [µ−] and [µ+]
be projective laminations to which {mi} and {ni} converge in the Thurston
compactification of T (S) after taking subsequences. Then each minimal com-
ponent of |µ+| is either an upper algebraic ending lamination or an upper
algebraic parabolic curve of M. Similarly, each component of |µ−| is either
the ending lamination of a lower algebraic simply degenerate end or a lower
algebraic parabolic curve of M.

Proof. — As usual, we shall only deal with |µ+|. Each component of |µ+|
that is not a simple closed curve is the ending lamination of an upper simply
degenerate end by Theorem 5.2 and Lemma 5.7. Let c be a component of
|µ+| which is a simple closed curve. Then by Lemma 5.1, ψ(c) is parabolic.
Therefore c is an algebraic parabolic locus in M. It remains to show that c
is upper.

Suppose that c is not upper, seeking a contradiction. This assumption
implies, in particular, that if c is isolated and is homotopic to a curve lying
on a torus boundary T of M, then the standard algebraic immersion g′ does
not go around T by our definition of the upperness. Since there is no essential
half-open annulus tending to a wild end, there are only three possibilities for
the curve c: (1) the first is when c lies in a domain F of S as a non-peripheral
curve and g′(F ) is homotopic into some simply degenerate end above g′(S),
(2) the second is when there exists F containing c as above such that g′(F )
is homotopic into geometrically finite end, lying on S × {1}, and (3) the
third is when there are a domain F as above and either a simply degenerate
end or a horizontal annulus on a torus boundary component above g′(S),
corresponding to Σ× {t}, such that c intersects Σ essentially and g′(F ∩Σ)
can be homotoped into Σ× {t− ε} for arbitrarily small ε > 0.

(1). — Suppose that g′(F ) is homotopic into a simply degenerate end e
corresponding to Σ×{t}. Then its ending lamination λ intersects c essentially.
As in Claim 5.6, there are bricks Bi ∼= Σi × Ji and a homeomorphism fi :
Σ → Σi induced from the approximate isometry between M and Mi, such
that {f−1

i (cni |Σi)} converges to a geodesic lamination containing λ in the
Hausdorff topology. Let A(c) be an annulus with core curve c. Since g′(F ) is
homotopic into e, we see that fi|F is isotopic to the identity. In particular,
we can assume that fi|A(c) is the identity. Therefore cni

|A(c) regarded as a
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vertex of CC(A(c)) converges a vertex represented by λ|A(c). On the other
hand, by Lemma 5.7, {cni} must converge to a lamination containing c
in the Hausdorff topology; hence cni |A(c) diverges in CC(A(c)). This is a
contradiction.

(2). — In the second case, g′(F ) is homotopic into an upper geomet-
rically finite end of M. Take a simple closed curve δ on F intersecting c
essentially. Since g′(δ) is homotopic to a curve in an upper geometrically
finite end, by Claim 5.4, lengthmi

(δ) is bounded as i→∞. This contradicts
the assumption that c is contained in µ+.

(3). — Now we turn to the third case. Suppose first that Σ × {t} is a
simply degenerate end e in a brick B ∼= Σ × J with ending lamination λ.
Then, as in the case (1), by Claim 5.6, there is a homeomorphism fi : Σ→ Σi
induced from the approximate isometry between M and Mi such that the
Hausdorff limit of f−1

i (cni
|Σi) contains λ. Since F ∩ Σ is homotopic into

Σ×{t−ε}, and fi fixes F ∩Σ, we see that the Hausdorff limit of f−1
i (cni |Σi)

contains c ∩ Σ. This is a contradiction since c intersects λ transversely. The
same kind of argument works also for the case when Σ× {t} is a horizontal
annulus on a torus boundary using Claim 5.3 instead of Claim 5.6. �

6. Proofs of Theorem 3.1, Theorem 3.3 and Theorem 3.5

We can now prove Theorem 3.1, Theorem 3.3 and Theorem 3.5 making
use of our results obtained in the previous section.

Proof of Theorem 3.1. — We consider the geometric limit M∞ of Mi

and the model M of its non-cuspidal part as before. By the definition of
algebraic simply degenerate ends of M, they are mapped by the model map
f to simply degenerate ends of (M∞)0 which lift to those of the algebraic
limit (M ′)0. Upper ends among them are mapped to those lifted to upper
ends of (M ′)0, and lower ones to those lifted to lower ends of (M ′)0. Now, by
Corollary 5.8, every component of |µ+| that is not a simple closed curve is
an upper algebraic ending lamination. Therefore, it is the ending lamination
of a upper simply degenerate end of (M ′)0. The same argument works for
|µ−|.

The second paragraph of the statement also follows immediately from
Corollary 5.8. �

Proof of Theorem 3.3. — Suppose, seeking a contradiction, that
{qf(mi, ni)} as in the statement of Theorem 3.3 converges after taking a
subsequence. Then by Theorem 3.1, µ+

0 is an ending lamination of an upper
end of (M ′)0 and µ−0 is that of a lower end of (M ′)0. Let Σ+ and Σ− be the
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minimal supporting surfaces of µ+
0 and µ−0 respectively, which were assumed

to share at least one boundary component c. Since c lies on the boundary of
both Σ− and Σ+, it represents a Z-cusp both above and below Ψ(S). This
is impossible since no two distinct cusps have homotopic core curves. �

Proof of Theorem 3.5. — As in the statement, let µ− and µ+ be two
measured laminations on S and suppose that there is a boundary component
c of a non-simple closed curve component of the minimal supporting surface
of a non-simple closed curve component µ0 of µ+ which is contained up to
isotopy in |µ−| as in the part (1) of the statement. We can argue in the
same way also when the part (2) of the statement holds just by exchanging
+ and −.

Suppose, seeking a contradiction, that {qf(mi, ni)} converges passing to
a subsequence. By Corollary 5.8, there is an upper algebraic simply degen-
erate end of M in the form Σ(µ0)× {t} with Σ(µ0) the minimal supporting
surface of µ0, which has |µ0| as the ending lamination. This implies that
there is a boundary component of M which is an open annulus with core
curve homotopic to c, and one of whose ends tends to this simply degenerate
end. By Lemmas 4.16 and 4.17, this shows that c is an upper algebraic para-
bolic curve of M and moreover that it cannot be a lower algebraic parabolic
curve at the same time since c does not lie on a torus boundary component.
In the same way, by Corollary 5.8, if c is contained in |µ−|, it must be a
lower algebraic parabolic curve of M. This is a contradiction. Thus we have
completed proof of Theorem 3.5. �

7. Proof of Theorem 3.6

7.1. Necessity

We shall first show that the condition (1) is necessary. Suppose, on the
contrary, that there is cj among c1, . . . , cr such that lengthni

(cj) goes to 0
whereas {(Gi, φi) = qf(mi, ni)} converges. (The argument for the case when
lengthmi

(cj) goes to 0 is quite the same.) Let G∞ be the geometric limit of
a subsequence of {Gi} as before, and set Mi = H3/Gi and M∞ = H3/G∞.
Consider the model manifold M of (M∞)0. By Corollary 5.8, cj is an upper
algebraic parabolic curve of M. Let g′ : S → M be a standard algebraic
immersion. Since lengthni

(cj)→ 0, the boundary blocks of Mi corresponding
to the upper boundary are pinched along an annulus with core curve cj ,
and the one in the geometric limit is split along the annulus. By pushing
forward this core curve and Φi(cj) to M∞ and pull it back to M, we get
a homotopy between a core curve of an open annulus component of ∂M
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and g′(cj). By Lemma 4.13, this shows that g′(S) cannot go around a torus
boundary component whose longitude corresponds to cj . In particular, cj
cannot be a lower algebraic parabolic curve of M. This contradicts, by way
of Corollary 5.8, the fact that |µ−| also contains cj . This completes the proof
of the necessity of the condition (1).

Next we turn to showing the necessity of the condition (2). By Corol-
lary 5.8 again, we see that if {(Gi, φi)} converges algebraically, each of
c1, . . . , cr must be both upper and lower algebraic parabolic curves of M. By
Lemma 4.13, this is possible only when g′(S) goes around a torus bound-
ary component Tj of M whose longitude is homotopic to g′(cj) for each
j = 1, . . . , r. Suppose that g′(S) goes aj times around Tj for an integer aj ,
where we define the counter-clockwise rotation in Figure 4.2 (when viewed
from the right to the left) to be the positive direction. As before, we define
the condition aj = 0 means that g′(S) passes below Tj , and if g′(S) passes
above Tj not going around it, we define aj to be −1. Since g′(S) goes around
Tj , we have aj 6= 0,−1.

Let Mi be a model manifold of (Mi)0. Since Mi[0] converges to M[0]
geometrically, there is a torus boundary Tj(i) of Mi[0] which is mapped
to Tj by the approximate isometry ρM

i . The torus Tj(i) consists of two
horizontal annuli and two vertical annuli. We choose a meridian-longitude
system of Tj in such a way that the longitude lj lies on a horizontal annulus
and the meridian mj is shortest among all the simple closed curves on Tj
intersecting the longitude at one point. We choose orientations on lj and mj

so that the three-dimensional orientation determined by the frame formed
by lj ,mj and the normal vector of Tj pointing inward coincides with that of
M. By pulling back this system using the approximate isometry ρM

i between
Mi[0] and M[0], we get an oriented longitude lj(i) and an oriented meridian
mj(i) on Tj(i). There is a Margulis tube Vj(i) attached to Tj(i) in Mi. The
compressing curve of Vi(j) intersects the longitude lj(i) only at one point.
Therefore we can express the homology class of the compressing curve as
kji [lj(i)]+[mj(i)] if we choose an orientation on the compressing curve. Since
Tj(i) converges geometrically to a torus boundary component of M, we have
|kji | → ∞.

Fix some j, and consider cj . In M, there is a block B+ intersecting Tj by
an annulus A+ containing the upper horizontal annulus of Tj in the middle.
Similarly, there is a block B− intersecting Tj by an annulus A− containing
the lower horizontal annulus of Tj in the middle. One or both of these may be
boundary blocks. We shall only consider the case when aj > 0, i.e. the case
when g′(S) goes around Tj counter-clockwise in Figure 4.2 if it proceeds from
left to right. Since cj is an algebraic parabolic curve, the standard immersion
can be homotoped to pass through both B− and B+.

– 863 –



Ken’ichi Ohshika

Now, consider a simple closed curve γ− on the lower horizontal annulus
of B− which is homotopic to a core curve if B− is an internal block. When
B− is a boundary block, we consider horizontal upper boundary components
of B− adjacent to A−. If there are two such surfaces, we denote their union
by ∆−, and if there is only one such surface, we denote it by ∆−. We take a
simple closed curve γ− which lies in A− ∪∆− and intersects the core curve
of A− at two points when ∆− consists of two components and at one point
when ∆− is connected. We define γ+ in the same way. By pulling back γ+

and γ− by (ρM
i )−1, we get simple closed curves γ+(i) and γ−(i), which are

horizontal except for vertical parts passing through vertical annuli contained
in A− or A+. Using the vertical projection to S in Mi, we regard γ+(i) and
γ−(i) also as curves on S.

Let g′i : S →Mi be a pull-back of the standard immersion g′ obtained by
composing (ρM

i )−1. We consider to homotope g′i to unwrap it around Tj(i)
and make the surface lie under Tj(i), by making it pass aj times through
Vj(i). Let g′′i be a surface obtained by modifying the part of g′i going around
Tj(i) to a horizontal annulus and giving a natural marking coming from the
structure of S× I, which is equal to a marking determined by a pull-back of
a horizontal surface in M obtained by removing the parts of g′ going around
torus boundaries. Note that g′′i and g′i are not homotopic as maps because
of the difference of markings. (This means that g′′i is not homotopic to ΦM

i .)

Recall that the homology class of compressing curves for Vj(i) is expressed
as kji [lj(i)] + [mj(i)]. We fix an orientation on the compressing disc whose
normal vector points towards the orientation given on lj(i). Recall that the
torus Tj(i) consists of four annuli; two horizontal annuli, the lower annulus
and the upper annulus, which are expressed as Aj(i)× {u} and Aj(i)× {v}
with respect to the inclusion of Mi into S × [0, 1], and two vertical annuli
∂Aj(i)× [u, v]. Consider an essential simple arc α : [0, 1]→ Aj(i) such that
its image in the lower annulus αu(t) = (α(t), u) is a part of the meridian:
mj(i)∩(Aj(i)×{u}). Then by considering the homotopy class of a compress-
ing curve as above, we see that αu is homotopic (relative to the endpoints) to
an arc obtained by joining a vertical arc expressed as α(0) × [u, v] oriented
upward, a horizontal arc αv(t) = (α(t), v), another horizontal arc repre-
senting −kji [lj(i)] × {v}, and another vertical arc expressed as α(1) × [u, v]
oriented downward. Therefore, each time g′i(S) passes through Vj(i) in the
positive direction, a curve δ on S intersecting cj is twisted −kji -times around
cj . Here the positive direction is the direction to which a horizontal surface
below Vj(i) passes to one above Vj(i). We fix such a transverse orientation
for immersions of S. If g′i(S) passes through Vj(i) in the negative direction
δ is twisted kji -times around cj . (It goes |kji |-times around ci in the direc-
tion of the right hand Dehn twist if kji > 0 and in the opposite direction if
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kji < 0.) Since γ−(i) is homotopic to g′′i (γ−), we see that g′i(τ
kj

i
aj

cj (γ−)) is
homotopic to γ−(i). Similarly, since γ+(i) is homotopic to g′′i (τk

j
i (γ+)), we

see that g′i(τ
kj

i
(aj+1)

cj (γ+)) is homotopic to γ+(i).

Let hi be a hierarchy of tight geodesics for Mi as before. Since Vj(i)
appears as a Margulis tube in Mi, we see that an annular neighbourhood
A(cj) of cj supports a geodesic hi(cj) in hi. By the definition of gluing
blocks in Minsky [40], we see that πA(cj)(γ−(i)) is the initial marking and
πA(cj)(γ+(i)) is the terminal marking of hi(cj) if both B− and B+ are in-
ternal blocks. By Section 6 of Masur–Minsky [38], we see that πA(cj)(I(hi))
is in a uniformly bounded distance from πA(cj)(γ−(i)) and πA(cj)(T (hi)) is
in a uniformly bounded distance from πA(cj)(γ+(i)). Even when B− or B+

is a boundary block, we have the same properties: for, since the length of
γ−(i) with respect to mi or that of γ+(i) with respect to ni is bounded, its
projection to A(cj) is within uniformly bounded distance from those of I(hi)
or T (hi). Since g′i is homotopic to Φi for large i and Mi is identified with a
subset of S× (0, 1) using Φi as a marking, we see that πA(cj)(I(hi)) is within

a uniformly bounded distance from πA(cj)(τ
kj

i
aj

cj (γ−)), whereas πA(cj)(T (hi))

is within a bounded distance from πA(cj)(τ
kj

i
(aj+1)

cj (γ+)). If we consider the

pulled-back metrics (τk
j
i
aj

cj )∗mi and (τk
j
i
(aj+1)

cj )∗ni instead of mi and ni, the
initial and the terminal markings are twisted around ci by −kiaj times and
−kji (aj + 1) times respectively. Therefore for the quasi-Fuchsian representa-
tion qf((τk

j
i
aj

cj )∗mi, (τ
kj

i
(aj+1)

cj )∗ni), the tight geodesic supported on cj has
length bounded as i → ∞. Therefore, the shortest pants decompositions of
(S, (τk

j
i
aj

cj )∗mi) and (S, (τk
j
i
(aj+1)

cj )∗ni) have Hausdorff limits which do not
spiral around cj . Since the lengths of cj with respect to (τk

j
i
aj

cj )∗mi and
(τk

j
i
(aj+1)

cj )∗ni do not go to 0, by the proof of Lemma 5.7, this implies that
the limits of (τk

j
i
aj

cj )∗mi and (τk
j
i
(aj+1)

cj )∗ni in the Thurston compactification
of T (S) do not contain cj as a leaf. We repeat the same argument for every
cj , and let pji and q

j
i be kji aj and k

j
i (aj + 1) respectively. This completes the

proof of the necessity.

If aj > 0, i.e. g′ goes around the torus containing cj in the counter-
clockwise in Figure 4.2 as it proceeds from left to right, then the torus lies in
the positive direction viewed from g′(S). Therefore f(cj) is lifted to a curve
lying above the core surface obtained the lift of f ◦g′ inM ′. This shows that
cj is a core curve of an upper parabolic locus if aj > 0. We can argue in the
same way also when aj < 0.
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7.2. Existence

We shall next show that the existence of limits of quasi-Fuchsian groups
satisfying the conditions (1) and (2). Our construction just follows the ar-
gument of Anderson–Canary [2].

We first construct a geometrically finite Kleinian group Γ0 such that
N = H3/Γ0 is homeomorphic to the complement of cj ×{1/2} (j = 1, . . . , r)
in S× (0, 1), and the conformal structures corresponding to the ends S×{0}
and S × {1} are the same point m0 ∈ T (S). (Here we identify S with
S × {0} and S × {1} by the natural inclusions.) We consider an immersion
g0 : S → N0 which is in the standard form in the sense of Lemma 4.13,
and wraps aj times around each cj × {1/2} counted counter-clockwise as
it proceeds from left to right in Figure 4.2 when we identify N0 with its
embedding in S × [0, 1].

Next, we consider a quasi-conformal deformation of Γ0. Let µ−1 , . . . , µ−s
and µ+

1 , . . . µ
+
t be the components of µ− and µ+ that are not shared simple

closed curves. We consider the minimal supporting surfaces Σ(µ−1 ), ...,Σ(µ−s )
of µ−1 , . . . , µ−s and isotope them so that if two boundary components are iso-
topic, they coincide. We move the supporting surfaces of µ+

1 , . . . µ
+
t in the

same way. Let d−1 , . . . , d−σ be the simple closed curve components of |µ−|
which are not shared by |µ+|, and d+

1 , . . . , d
+
τ those of |µ+| not shared by

|µ−|. We let e−1 , . . . , e−q be the frontier components of
⋃s
j=1 Σ(µ−j ) which do

not appear in d−1 , . . . , d−σ , and in the same way, we let e+
1 , . . . , e

+
r be the fron-

tier components of
⋃t
j=1 Σ(µ+

j ) which do not appear in d+
1 , . . . , d

+
τ . We define

a Kleinian group Γk for k ∈ N to be the one obtained by quasi-conformally
deforming the conformal structures m0 on S × {0} by the earthquake with
respect to k(

⋃s
j=1 µ

−
j ) and pinching along d−1 , . . . , d−σ ; e−1 , . . . , e−q so that the

ε0-thin part around each of d−1 , . . . , d−σ has height k whereas that around
each of e−1 , . . . , e−q has height

√
k; and m0 on S × {1} by the earthquake

with respect to k(
⋃t
j=1 µ

+
j ) and pinching along d+

1 , . . . , d
+
τ ; e+

1 , . . . , e
+
r in the

same way. The pinching is performed so that the conformal structures on
S \ ((

⋃s
j=1 Σ(µ−j )) ∪ d−1 ∪ · · · ∪ d−σ ) and S \ ((

⋃t
j=1 Σ(µ+

j )) ∪ d+
1 ∪ · · · ∪ d+

τ )
do not change. Let Nk be H3/Γk and hk : N → Nk a natural homeomor-
phism derived from the quasi-conformal deformation. We regard Nk also as
embedded in S× [0, 1] in such a way that the images of drilled out curves lie
on S × {1/2}, and the natural identification of this S × [0, 1] with the one
in which N is embedded is compatible with hk. Then we get an immersion
gk : S → Nk which is defined to be the composition hk ◦ g0.

In S × [0, 1] where N is embedded, we regard µ+ as lying on S × {1}
and µ− as lying on S × {0}. Then every essential annulus in S × [0, 1]
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either intersects a torus cusp or µ+ ∪ µ−, or has a boundary component
contained as a non-peripheral curve in a component of either S × {0} \ µ−
or S × {1} \ µ+, where the conformal structure is not deformed, by the
conditions (1*), (2*), and (3*). Therefore, by the main theorem of [43], we
see that Nk with marking determined by hk converges algebraically to a
hyperbolic 3-manifold N∞ = H3/Γ∞ with a homeomorphism h∞ : N →
N∞. The laminations µ−1 , . . . , µ−s ;µ+

1 , . . . , µ
+
t represent ending laminations

of simply degenerate ends of N∞. Since we pinched all frontier curves of
S \ (

⋃s
j=1 Σ(µ−j ) ∪ d−1 ∪ · · · ∪ d−σ ) and of S \ (

⋃t
j=1 Σ(µ+

j ) ∪ d+
1 ∪ · · · ∪ d+

τ ),
by Lemma 3 of [1] each component Σf of S \ (

⋃s
j=1 Σ(µ−j ) ∪ d−1 ∪ · · · ∪ d−σ )

or S \ (
⋃t
j=1 Σ(µ+

j ) ∪ d+
1 ∪ · · · ∪ d+

τ ) appears as a surface with punctures
on the boundary at infinity of N∞. On the other hand, the same surface at
infinity also appears in the geometric limit since a subregion of a component
of ΩGi

invariant under π1(Σf ) converges to the corresponding component
of ΩΓ in the sense of Carathéodory. (See the proof of Proposition 4.2 of
Jørgensen-Marden [27].) This shows that each geometrically finite end of
(H3/Γ∞)0 has a neighbourhood which is projected homeomorphically into
the geometric limit. The covering theorem of Thurston and Canary ([54],
[18]) and the argument of Lemma 2.3 of [44] implies that every geometri-
cally infinite end also has a neighbourhood descending homeomorphically to
the geometric limit. Therefore the convergence is strong. Let g∞ : S → N∞
be an immersion which is defined to be h∞ ◦ g0.

Let lj and mj be respectively a longitude which lies in a tubular neigh-
bourhood of cj × {1/2} lying on a level surface along cj × {1/2}, and any
meridian intersecting lj at one point. Let mj(k) and lj(k) be a meridian and
a longitude in Nk obtained by pulling back mj and lj using approximate
isometries. We orient them so that the coordinate system lj−mj determines
an orientation of a torus around cj×{1/2} whose normal vectors point to the
inside of N∞. Now, we consider a Dehn filling of Nk such that the compress-
ing disc is attached along a curve represented by k[lj(k)]+ [mj(k)]. Since Nk
converges geometrically to N∞, we see, by passing to a subsequence, that the
filling corresponding to k[lj(k)] + [mj(k)] gives rise to a convex cocompact
hyperbolic structure. (A general version of hyperbolic Dehn surgery theorem,
which applies to this case, was proved by Bromberg [14].) We define Mk to
be the thus obtained geometrically finite hyperbolic 3-manifold, which is
homeomorphic to S× (0, 1). We let Gk be the corresponding quasi-Fuchsian
group, and φk : π1(S)→ π1(Mk) an isomorphism derived from the pull-back
of gk by an approximate isometry between Nk and Mk. By the same argu-
ment as in [2], we see that the conformal structure at infinity of Mk on the
end corresponding to S × {0}, denoted by mk, is obtained by performing
the −kaj-time (right-hand) Dehn twist around the cj , the earthquake along

– 867 –



Ken’ichi Ohshika

k(µ−1 ∪ · · · ∪ µ−s ) and pinching along d−1 , . . . , d−σ ; e−1 , . . . , e−q from m0, and
that on the end corresponding to S×{1}, denoted by nk, by performing the
−k(aj + 1)-Dehn twist around the cj , the earthquake along k(µ+

1 ∪ · · · ∪µ
+
t )

and pinching along d+
1 , . . . , d

+
τ ; e+

1 , . . . , e
+
r . (Note that the deformation by

−kaj-time Dehn twist is the same as the pull-back by kaj-time Dehn twist.)
By Kerckhoff’s cosine formula (see [29, Cor. 3.4] and also [48, §2.2]) we see the
contribution of the part of µ−j or µ+

j to the growth of the length for a curve
γ traversing it is asymptotically in the same order as ki(γ, µ−j ) or ki(γ, µ+

j )
as k → ∞. Therefore the divergence transverse to µ−j (resp. µ+

j ) has the
same order as that of d−1 , . . . , d−σ (resp. d+

1 , . . . , d
+
τ ), whereas that transverse

to e−1 , . . . , e−q (resp. e−1 , . . . , e+
r ) has lower order. This shows that the lim-

its in the Thurston compactification of the conformal structures mk and nk
are [µ−] and [µ+] respectively, and that those of (τ−ka1

c1
◦ · · · ◦ τ−kar

cr
)∗(mk)

and (τ−k(a1+1)
c1 ◦ · · · ◦ τ−k(ar+1)

cr )∗(nk) are [µ−1 ∪ · · · ∪µ−s ∪ d
−
1 ∪ · · · ∪ d−σ ] and

[µ+
1 ∪· · ·∪µ

+
t ∪d+

1 ∪· · ·∪d+
τ ] respectively. In the case when one of these latter

two projective laminations is empty, the corresponding conformal structures
stay in a compact set of the Teichmüller space.

By the diagonal argument, we see that {(Gk, φk)} converges algebraically
to a subgroup of Γ∞ corresponding to the covering of N∞ associated to
(g∞)∗π1(S). Thus we have obtained a sequence of quasi-Fuchsian groups
{(Gk, φk)} as we wanted.

For the example which we have constructed above, if either µ− or µ+

consists only of c1, . . . , cr, then {(τ−ka1
c1

◦ · · · ◦ τ−kar
cr

)∗(mk)} or {(τ−k(a1+1)
c1 ◦

· · · ◦ τ−k(ar+1)
cr )∗(nk)} stays in a compact set of the Teichmüller space. We

can also make it converge to a projective lamination ν− or ν+ not containing
c1, . . . , cr as leaves, by composing the earthquake along

√
kν− or

√
kν+.

8. Non-existence of exotic convergence

We shall prove Theorem 3.7 in this section.

Let Γ be a b-group as in the statement and ψ : π1(S)→ Γ an isomorphism
giving the marking. Let {(Gi, φi)} be a sequence of quasi-Fuchsian groups
converging to (Γ, ψ). What we need to show is that the conformal structures
at infinity of the bottom ideal boundaries of the Mi = H3/Gi are bounded
in the Teichmüller space then.

Let M∞ be a geometric limit (of a subsequence) of Mi with basepoint
coming from a fixed basepoint in H3 as usual. Let M be a model manifold
of (M∞)0 with a model map f∞ : M → (M∞)0. Let g′ : S → M be
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a standard algebraic immersion. By our assumption, there is no isolated
algebraic parabolic loci in M. This implies by Lemma 4.16 that there is
no torus boundary around which g′ can go. If there is an algebraic simply
degenerate end below g′(S), it is mapped to a simply degenerate end of
(M∞)0 which is lifted to a lower simply degenerate end of (H3/Γ)0. This is
a contradiction since Γ is a b-group. Similarly, there is no lower algebraic
parabolic locus. Since g′ does not go around a torus boundary component,
an end closest to g′(S) among those below g′(S) must be algebraic. These
imply that the only possible end below g′(S) is a geometrically finite end
corresponding to the entire S × {0}.

The diameter of the manifold cobounded by f∞ ◦ g′(S) and the lower
boundary of the convex core in (M∞)0 is finite since the manifold cobounded
by g′(S) and S×{0} in M has finite diameter. This cobordism in (M∞)0 can
be pulled back to (Mi)0 for large i. Note that there is no closed geodesic in
(M∞)0 below the lower boundary of the convex core. This implies that the
distance from the lower boundary of the convex core ofMi and the pull-back
of the cobordism must go to 0. It follows that the lower boundary of the con-
vex core of Mi converges geometrically to that of M∞. Since the cobordism
above gives a marking on the lower boundary of the convex core homotopic
to g′, the marked hyperbolic structure on the lower boundary component of
the convex core of Mi converges to that of M∞. This shows that the lower
conformal structure at infinity of Mi is bounded in the Teichmüller space as
i→∞ by Sullivan’s theorem (see Epstein–Marden [22]).

9. Self-bumping

In this section, we shall prove Theorem 3.8 and Corollary 3.9. For that,
we shall show that for {qf(mi, ni)} as in the statement of Theorem 3.8,
there is a continuous deformation to a strong convergent sequence whose
algebraic limit is a quasi-conformal deformation of Γ. This will be done by
using a model manifold of qf(mi, ni) with a special property, which we shall
construct in Lemma 9.2. This model does not come from a hierarchy of tight
geodesics hi as before, but its geometric limit can be better understood. Let
us state the existence of such a deformation as a proposition.

Proposition 9.1. — We consider quasi-Fuchsian groups qf(mi, ni) and
their algebraic limit (Γ, ψ) as in Theorem 3.8. Let c1, . . . , cs be upper par-
abolic curves and c′1, . . . , c

′
t lower parabolic curves on S of (Γ, ψ). Then,

passing to a subsequence of {(mi, ni)}, there is an arc αi : [0, 1] → QF (S)
with the following properties. Let (mi, ni) denote a point in T (S) × T (S)
such that qf(mi, ni) = αi(1).
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(1) αi(0) = qf(mi, ni).
(2) {αi(1) = qf(mi, ni)} converges strongly to a quasi-conformal defor-

mation (Γ′, ψ′) of (Γ, ψ) as i→∞.
(3) The length of each of c1, . . . , cs with respect to ni goes to 0, and

the length of each of c′1, . . . , c′t with respect to mi also goes to 0 as
i→∞.

(4) In the case when Γ is a b-group, the lower conformal structure at
infinity of αi(t) is constant with respect to t, for every i.

(5) For any neighbourhood U in AH(S) of the quasi-conformal defor-
mation space QH(Γ, ψ), there exists i0 such that for i > i0, the arc
αi is contained in U .

9.1. Proof of Proposition 9.1

Our basic strategy for the proof of this proposition is as follows. We first
consider to deform continuously the model manifold of the geometric limit
of {qf(mi, ni)} to that of the strong limit of {qf(mi, ni)}. Corresponding to
this, we get a continuous deformation of the model manifold of qf(mi, ni)
to that of qf(mi, ni). This will give rise to an arc αi as desired.

Set (Gi, φi) = qf(mi, ni) and Mi = H3/Gi. We consider the geometric
limit M∞ of Mi with basepoints coming from some fixed basepoint in H3.
Let Mi be a bi-Lipschitz model of (Mi)0 with a model map fi and M that
of (M∞)0 as before. Let g′ : S → M be a standard algebraic immersion
as in Lemma 4.13. Let E1, . . . , Ep be the algebraic simply degenerate ends
of M. Recall that Mi converges geometrically to the union of M and cusp
neighbourhoods, and Mi corresponds to a hierarchy of tight geodesics hi
determined by Gi.

We renumber E1, . . . , Ep so that E1, . . . , Eq are upper ends whereas
Eq+1, . . . , Ep are lower. (It is possible that q = 0 or q = p.) We let Σj
be a subsurface of S such that Ej is contained in a brick Bj of the form
Σj × Jj . Since we assumed that Γ has no isolated parabolic loci, each of
c1, . . . , cs is homotopic to a component of FrΣj for j = 1, . . . , q and each of
c′1, . . . , c

′
t is homotopic to a component of FrΣj for j = q + 1, . . . , p.

We shall show that we can modify model manifolds Mi of Mi to M′
i so

that in its geometric limit M′ the ends E1, . . . , Eq lie on the same horizon-
tal levels, and the same holds for Eq+1, . . . , Ep. This manifold M′

i will be
constructed by removing product regions from S × (0, 1) which should con-
verge to neighbourhoods of these ends, and considering the standard brick
decomposition. We shall construct a uniform Lipschitz map from M′

i to Mi

in Claim 9.3 just by taking split level surfaces to pleated surfaces as in
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the construction of model manifolds by Minsky [40]. We need some more
argument to show this map can be homotoped to a uniform bi-Lipschitz
homeomorphism in Claim 9.4.

In the following argument, we shall only describe the case when both
q > 1 and p > q; that is both upper algebraic simply degenerate ends and
lower algebraic simply degenerate ends exist. When one of these does not
exist, we can modify the argument below easily just regarding it as an empty
set.

Lemma 9.2. — There are uniform bi-Lipschitz model manifolds M′
i for

(Mi)0 and M′ for (M∞)0, both of which are embedded in S× [0, 1] preserving
horizontal and vertical foliations, and have the following properties.

(1) We can choose basepoints in the thick parts so that M′
i[0] converges

geometrically to M′[0] with these basepoints.
(2) Under the same choice of the basepoints, M′

i converges geometrically
to the union of M′ and cusp neighbourhoods, which are geometric
limits of Margulis tubes.

(3) There is a homeomorphism from M to M′ taking an algebraic locus
of M to that of M′. (See Section 4.4 for the definition of algebraic
locus.)

(4) We use the same symbol Ej (j = 1, . . . , p) to denote the end of
M′ corresponding to Ej of M. Then, Ej is contained in a brick
Bj = Σj × Jj of M′ such that inf B1 = · · · = inf Bq, supB1 = · · · =
supBq, supBq+1 = · · · = supBp, and inf Bq+1 = · · · = inf Bp, with
inf B1 > supBp unless q = 0 or p = q.

(5) An algebraic locus in M′ can be homotoped to a horizontal surface
lying between the horizontal levels of supBp and inf B1.

Proof. — For each component c of FrΣj for Σj among Σ1, . . . ,Σq, which
were defined above, we consider a solid torus V (c) in S × (0, 1) which has
the form of A(c) × Jc, where A(c) is an annulus with core curve c and Jc
is a closed interval in [0, 1] such that min Jc = inf Bj and max Jc = supBj ,
where Bj is a brick in M as described above. Let T + be the union of the V (c)
for all frontier components c of Σ1, . . . ,Σq. Even if a curve c is homotopic
to frontier components of two distinct Σj and Σj′ , we take only one solid
torus. In such a case, we take Jc so that sup Jc = max{supBj , supBj′}, and
inf Jc = min{inf Bj , inf Bj′}. In the same way, we take T − for Σq+1, . . . ,Σp.

Recall that there is an approximate isometry ρM
i between Mi[0] and

M[0]. For each component T of T + or T −, the preimage of its boundary
(ρM
i )−1(∂T ∩M[0]) lies on a boundary component of Mi[0], which bounds a

solid torus in Mi. We denote the union of such solid tori for T + by T +
i ,

and that for T − by T −i . Although (ρM
i )−1 is not defined on the entire
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S × (0, 1), since ρM
i takes the algebraic locus g′ to an immersion homo-

topic to Φi, it induces a homeomorphism %i between S × (0, 1) \ (T + ∪ T −)
and Mi \ (T +

i ∪ T
−
i ). The model map fi takes T +

i to Margulis tubes in
Mi, which we denote by V i1 , . . . , V is and T −i to other Margulis tubes which
we denote by V i1

′
, . . . , V it

′, whose core geodesics ci1, . . . , cis; ci1
′
, . . . , cit

′ corre-
spond to Φi(c1), . . . ,Φi(cs); Φi(c′1) . . . ,Φi(c′t). Note that the length of each
of ci1, . . . , cis; ci1

′
, . . . , cit

′ goes to 0 as i → ∞. Since fi is a homeomorphism,
fi ◦ %i is also a homeomorphism between S × (0, 1) \ (T + ∪ T −) and Mi \
(V i1 ∪ · · · ∪ V is ∪ V 1

1
′ ∪ · · · ∪ V it

′).

Now for each V (c) = A(c) × Jc in T +, we let V ′(c) be A(c) × [5/8, 3/4]
in S × [0, 1], and denote the union of such solid tori by T +. Similarly, for
each V (c) in T −, we let V ′(c) be A(c)× [1/4, 3/8], and denote the union of
such solid tori by T −. Then, we see that there is a homeomorphism from
S × (0, 1) \ (T − ∪ T +), in which M is embedded, to S × (0, 1) \ (T − ∪ T +)
taking a standard algebraic immersion g′ to S×{1/2} since M has no torus
boundary around which g′ can go (Lemma 4.16) and T − lies in the lower
component of S × [0, 1] \ g′(S) whereas T + lies in the upper component.

We let a new brick manifold M be the one obtained by the standard
brick decomposition of S × (0, 1) \ (T − ∪ T +). Then M consists of bricks
lying on five levels: the top one S× [3/4, 1), those touching T + along vertical
boundaries, the middle one S × [3/8, 5/8], those touching T − along vertical
boundaries, and the bottom one S× (0, 1/4]. For each i, we define a labelled
brick manifold |Mi to be the one obtained by giving the conformal structures
mi to the bottom and ni to the top.

Corresponding to |Mi, we shall construct a geometrically finite hyperbolic
manifold from Mi using the drilling theorem of Bromberg [15] and Brock–
Bromberg [10]. First, recall that we have closed geodesics ci1, ..., cis; ci1

′
, ..., cit

′

in Mi, which are core curves of Margulis tubes. The complement of the core
curves |Mi = Mi\(

⋃s
j=1 c

i
j∪
⋃t
j=1 c

i
j
′), regarded as a 3-manifold topologically,

admits a geometrically finite hyperbolic structure with conformal structures
mi at the bottom and ni at the top, by Thurston’s uniformisation theorem.
Since the lengths of ci1, . . . , cis; ci1

′
, . . . , cit

′ go to 0 as i→∞, we can apply the
drilling theorem to see that there are a constant K independent of i and a
K-bi-Lipschitz homeomorphism qfi between Mi \ (

⋃s
j=1 V

i
j ∪

⋃t
j=1 V

i
j
′) and

(|Mi)0. Composing this with the homeomorphism fi◦%i from S×(0, 1)\(T −∪
T +) toMi\(

⋃s
j=1 V

i
j ∪
⋃t
j=1 V

i
j
′) and the one from |Mi to S×(0, 1)\(T −∪T +)

described above, we get a homeomorphism from |Mi to (|Mi)0.
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Now, we shall show that for sufficiently large i, this homeomorphism is
taken to be a K ′-bi-Lipschitz homeomorphism for a constant K ′ indepen-
dent of i. Any labelled brick manifold has a decomposition into blocks and
geometrically finite bricks, obtained by putting unions of solid tori corre-
sponding to tight geodesics, which we call tube unions, as we mentioned in
Section 4.3 and can be found in [50, §3]. We now show how this decom-
position is obtained in our specific situation. We first take shortest pants
decompositions of (S,mi) and (S, ni), and denote their decomposing curves
by e−1 , . . . , e

−
3g−3 and e+

1 , . . . , e
+
3g−3 respectively, where g denotes the genus

of S. We put tubes V −1 , . . . , V −3g−3, each of which is bounded by two horizon-
tal annuli and two vertical annuli, into the bottom brick corresponding to
S× (0, 1/4] so that inf V −j = 1/16, supV −j = 3/16 for every j = 1, . . . , 3g−3
and the vertical projection of a core curve of V −j is e−j . In the same way we
put V +

1 , . . . , V +
3g−3 into the top brick corresponding to S × [3/4, 1) so that

inf V +
j = 13/16, supV +

j = 15/16 and the vertical projection of a core curve
of V +

j is e+
j .

We remove the interiors of these tubes from |Mi and regard the remain-
ing manifold |M1

i as a labelled brick manifold by considering the standard
brick decomposition and keeping the conformal structures at infinity mi and
ni. The bricks corresponding to S × (0, 1/16] and S × [15/16, 1) turn into
geometrically finite bricks. For each brick B = Σ × J of |M1

i , where Σ is
either S or one of Σ1, . . . ,Σp, such that J is one of [3/16, 1/4], [1/4, 3/8],
[3/8, 5/8], [5/8, 3/4], and [3/4, 13/16], we consider A− = ∂−B ∩ ∂|M1

i and
A+ = ∂+B ∩ ∂|M1

i , both of which consist of disjoint horizontal annuli. We
consider a tight geodesic gB in CC(Σ) by setting I(gB) to be the vertical
projections of core curves of A−, and T (gB) to be the vertical projections
of core curves of A+. We put a tube union into B corresponding to gB , i.e.
for each simplex s of gB , we put a union Vs of solid tori bounded by two
horizontal annuli and two vertical annuli, whose core curves are vertically
homotopic to s, in such a way that inf VvI

= inf B for the initial vertex vI ,
supVvT

= supB for the terminal vertex VT , and inf Vs = supVprecs when
ξ(B) > 4, whereas inf Vs > supVprecs if ξ(S) = 4. If two tubes contained in
different bricks have core curves homotopic to each other without touching
other tubes, we fuse them into one by putting a tube between the two. We
remove the interior of this tube union from |M1

i for every B as above and get
a brick manifold |M2

i by considering the standard brick decomposition. We
repeat the same construction for every brick of |M1

i that is neither a geomet-
rically finite brick nor with ξ(B) = 3, and remove the interiors of the tube
unions to get a new brick manifold |M2

i . We stop this process when we reach
the situation where every brick B either is geometrically finite or ξ(B) = 3
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or ξ(B) = 4 but gB has length 1. We denote the brick manifold at the final
stage by |Mi[0]. By cutting every brick of |Mi[0] with ξ = 3 into halves and
paste them to bricks above it and below it, we get a decomposition of |Mi[0]
into blocks in the sense of Minsky.

We decompose |Mi[0] into blocks in this way, and put a metric on |Mi[0]
defined by them, i.e. from the standard metric on each block. Next we attach
a Margulis tube to each boundary component of |Mi[0] except for those
corresponding to T − and T + in the same way as was explained in the proof
of Lemma 4.3. For this model manifold, we have the following:

Claim 9.3. — There are a constant K ′0 depending only on ξ(S) and a
K ′0-Lipschitz map f ′i : |Mi → (|Mi)0 which takes every split level surface to a
pleated surface realising the closed geodesics corresponding to core curves of
Margulis tubes which the split level surface touches.

Proof. — Recall that by construction, |Mi consists of the following parts:
two geometrically finite bricks, which are also boundary blocks, at the top
and the bottom; the second bottom part, the second top part, and the middle
part each of which is homeomorphic to S × I; and the parts homeomorphic
to Σj × I for j = 1, . . . , p. The decomposition into blocks constructed above
induces a hierarchy of tight geodesics in each of these parts, except for the
two geometrically finite bricks. In particular, by Lemma 7.9 of Minsky [40],
the closed geodesics in Mi corresponding to core curves of Margulis tubes in
|Mi have lengths bounded by a constant D depending only on ξ(S), for Σj
is also a subsurface of S. We then construct a map taking every split level
surface to the corresponding pleated surface as in [40], and this map extends
to a Lipschitz map f ′i : |Mi → (|Mi)0 by the technique of “interpolating
pleated surfaces”, whose Lipschitz constant depends only on ξ(S) by the
same argument as Minsky [40]. �

Next we shall show that this map can be homotoped to a uniform bi-
Lipschitz homeomorphism.

Claim 9.4. — The Lipschitz map f ′i can be homotoped to a K0-bi-
Lipschitz homeomorphism f ′i : |Mi → (|Mi)0, where K0 depends only on
ξ(S).

Proof. — For Kleinian surface groups, it was shown in Brock–Canary–
Minsky [13] that the map is homotoped to a homeomorphism keeping the
Lipschitz property, by rearranging the order of pleated surfaces to make
it accord with the order of split level surfaces, and then homotoping each
pleated surface to an embedding. Some argument involving geometric limits
was then used to show the resulting map is in fact uniformly bi-Lipschitz,
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which works without changes in our situation. In each of the first two pro-
cesses, to guarantee the Lipschitz property of the map, it was necessary to
show that we can choose a homotopy which does not pass through a Margulis
tube around a very short closed geodesic. To homotope a pleated surface to
an embedding, the technique of Freedman–Hass–Scott [24] was used, and we
can use the same argument in our situation. What we only need to check in
our settings is that we can rearrange the order of pleated surfaces without
passing through Margulis tubes around very short closed geodesics.

In each of the parts of |Mi that we have described above except for the
two geometrically finite blocks, the block decomposition of |Mi[0] gives a
sequence of split level surfaces {Fk} in which Fk+1 is obtained from Fk by
changing two adjacent thrice-punctured spheres to another pair of thrice-
punctured spheres in such a way the step corresponds to an elementary
move of slices of a hierarchy. In the construction of the Lipschitz map f ′i
above, the homotopy between the pleated surface corresponding to Fk and
Fk+1 was chosen to move only such a four-times punctured sphere or an
once-punctured torus so that intermediate surfaces have curvature less than
−1 in the moving part. The standard argument using the area of meridional
discs in Margulis tubes implies that for sufficiently small ε > 0 depending
only on ξ(S), the image of f ′i can intersect any ε-Margulis tube V in |Mi only
as the image of the corresponding Margulis tube in |Mi.

Now, we see how we can rearrange the order of pleated surfaces without
passing through ε-Margulis tubes. Since the argument is the same for every
part, we only consider the case of the second bottommost part corresponding
to S× [3/16, 1/4]. The uppermost split level surface is a union of three-holed
spheres corresponding to pants decomposition of S obtained by deleting from
S × {1/4} the tube unions which we put into |Mi, and each of the pairs of
pants is mapped to a pleated surface which is a thrice-punctured sphere with
each of its punctures lying on the axes of Margulis tubes or extends to a torus
cusp. We note that each of c′1, . . . , c′t is homotopic to a boundary component
of one of these pairs of pants. We denote by U(Σ) the pleated surface which
is the union of (the closures of) these thrice-punctured spheres. Let V be a
Margulis tube appearing in the part of |Mi corresponding to S × [3/16, 1/4]
below those which S×{1/4} passes through, and suppose that it is mapped
by f ′i to a Margulis tube V with axis having length less than ε in |Mi which
lies above U(Σ), i.e. such that there is no proper half-open arc starting from
V and tending to S×{0} without algebraic intersection with U(Σ). We can
take a sub-solid torus V ′ of V which is mapped by f ′i onto the ε-Margulis
tube V ′ in V . Since each vertex can appear only once in the hierarchy and
by our choice of ε, we see that f ′i((|Mi∩S× (0, 1/4])\V ′) is disjoint from V ′.
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Therefore, f ′i|((|Mi \ (f ′i)−1(IntV ′)) is a proper map to (|Mi)0 \ IntV ′. Since
V ′ lies below S × {1/4}, its longitude can be homotoped towards the lower
end corresponding to S × {0} without algebraic intersection with the split
level surface lying on S × {1/4} nor (f ′i)−1(IntV ′). This property must be
preserved by the map f ′i, whereas the longitude of V ′ cannot be homotoped
towards the lower end without touching U(Σ). This is a contradiction.

Next suppose that there is a split level surface F of |Mi ∩ S × [3/16, 1/4]
which is mapped into a pleated surface P (F ) above U(Σ). Since F is homo-
topic to the lower end of |Mi, the pleated surface P (F ) can be homotoped
below U(Σ). If the image of the homotopy can intersect an ε-Margulis tube,
it must be one coming from a Margulis tube lying below F in |Mi. Since
we have already shown that such an ε-Margulis tube cannot lie above U(ε),
we see that P (F ) can be homotoped below U(Σ) without passing through
ε-Margulis tubes.

By replacing the uppermost split level surface with any split level surface
in the part corresponding to S × [3/16, 1/4] and repeating the argument
above, we see that we can homotope f ′i without passing ε-Margulis tubes
to make it preserve the order of split level surfaces. This proves the most
important step of the proof of our claim.

As we explained at the beginning of the proof, we can then homotope f ′i
to make the image of each split level surface an embedding using the result
of Freedman–Hass–Scott [24], and the entire map a homeomorphism, both
without passing through ε-Margulis tubes. The fact that the homotopy which
we constructed does not pass through ε-Margulis tubes implies the resulting
homeomorphism is again K ′′0 -Lipschitz for some K ′′0 depending only on ξ(S).
Finally, by applying the argument of [13] involving geometric limits, we can
show that the resulting map is aK0-bi-Lipschitz homeomorphism f ′i for some
constant K0 depending only on ξ(S). �

Now, by composing ( qfi)−1 with f ′i , we get a K ′-bi-Lipschitz embedding
of |M′

i into Mi, with K ′ depending only on K and K0. By filling appropriate
Margulis tubes into |M′

i, we get a K ′′-bi-Lipschitz model manifold M′
i for

(Mi)0, with K ′′ independent of i, for sufficiently large i.

It remains to verify that this M′
i has a geometric limit with the desired

properties. Since M′
i has decomposition into blocks and geometrically finite

bricks, and is a uniform bi-Lipschitz model for (Mi)0, by the same argument
as the proof of Theorem 4.2 (see also [50, §5] for the original argument),
there is a labelled brick manifold M′ which is a bi-Lipschitz model manifold
of (M∞)0 such that M′

i converges to the union of M′ and cusp neighbour-
hoods geometrically. This shows the conditions (1) and (2). Since both M
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and M′ are model manifolds of the same geometric limit (M∞)0, there is
a homeomorphism taking an algebraic locus to an algebraic locus between
them, which shows the condition (3).

Since the geometric convergence of M′
i to M′ preserves horizontal folia-

tions, and the embedding of M′ also preserves the horizontal levels, we see
that the two horizontal annuli of each component of T − lie on S×{1/4} and
S×{3/8}, whereas those of T + lies on S×{5/8} and S×{3/4}. Therefore, we
have inf B1 = · · · = inf Bq and supBq+1 = · · · = supBp. We can modify the
embedding of M′ into S × [0, 1] only at these bricks to make them have the
same height and to make the condition supB1 = · · · = supBq, inf Bq+1 =
· · · = inf Bp hold. Finally, we verify the condition (5). Since E1, . . . , Eq are
upper ends and Eq+1, . . . , Ep are lower ends, an algebraic locus must pass
under B1, . . . , Bq and above Bq+1, . . . , Bp. By our assumption, there are no
other algebraic ends, neither torus boundary components containing alge-
braic parabolic curves. Therefore, there is no obstruction to homotope an
algebraic locus to a horizontal surface in this region above Bq+1, . . . , Bp and
below B1, . . . , Bq. �

We shall use the symbol g′ to denote the horizontal algebraic locus in
M′ as in (5) of the above lemma. (This is the same symbol as the standard
immersion in M, but there is no fear of confusion since we can distinguish
them by model manifolds in which they are lying.)

Take t and t′ such that Bj = Σj × [5/8, t) for j = 1, . . . , q and Bj =
Σj × (s′, 3/8] for j = q + 1, . . . , p. Let ρM′

i denote an approximate isometry
between M′

i and M′ which is associated to the geometric convergence of
M′

i to the union of M′ and cusp neighbourhoods. We denote by x′i and
x′∞ basepoints in the thick parts of M′

i and M′, which we used for the
geometric convergence. By our construction of M′

i, there are bricks Bji ∼=
Σj × [5/8, 3/4] (j = 1, . . . , q) and Bji ∼= Σj × [1/4, 3/8] (j = q + 1, . . . , p) of
|M′
i which contains (ρM′

i )−1(Bj ∩BKiri(M′, x∞)).

Now, we shall construct two sequences of markings on S starting from cmi

and cni
respectively, and a sequence of markings on Σj for j = 1, . . . , p, in

both of which a marking advances by an elementary move. Recall that |M′
i,

which we defined in the proof of Lemma 9.2 above, consists of interior bricks
lying on five levels, a disjoint union of the product I-bundles over three-
holed spheres lying at two levels, and two geometrically finite bricks. As was
described there, there are tube unions in |M′

i which decompose it into blocks.
Since the hierarchies which we used for the decomposition are all complete,
by perturbing tubes vertically if necessary, each real front of every brick can
be assumed to intersect the tubes constituting the decomposition in such
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a way that the complement of the tubes in the front is a disjoint union of
thrice-punctured spheres.

We first consider the bottom interior brick corresponding to S×[3/16,1/4].
We denote this brick by Bi. By our construction of tube unions in the proof
of Lemma 9.2, we have a 4-complete hierarchy qh(Bi) on S corresponding to
tube unions in Bi, whose initial marking is cmi

. In each annular component
domain in qh(Bi) except for those corresponding to tubes intersecting the up-
per front of Bi, we can put a tight geodesic, which is uniquely determined.
The length of such a geodesic determines the ω

|M′
i
of the Margulis tube

which was attached to the corresponding torus boundary. For each annular
component domain corresponding to a tube intersecting the upper front, we
put a geodesic of length 0 at this stage, for the terminal markings for such
geodesics are not determined if we look only at Bi. We denote by h(Bi) the
hierarchy obtained by adding such annular geodesics to qh(Bi). A resolution
τ(Bi) = {τ(Bi)k} of h(Bi) gives rise to a sequence of split level surfaces
starting from the one lying on the lower front and ending at the one lying
on the upper front. On the other hand, forward steps in the resolution τ(Bi)
correspond to elementary moves of markings which can be assumed to be
clean. (See Minsky [40].)

The situation is quite similar for the top interior brick, which corresponds
to S × [3/4, 13/16], and we denote by pBi. As in the case of Bi, we have a
hierarchy h( pBi). Reversing the order of slices of this hierarchy, we get a
resolution, which we denote by τ( pBi) = {τ( pBi)k}, giving rise to split level
surfaces starting from the one on the upper front and ending at the one
on the lower front, and a sequence of clean markings on S advancing by
elementary moves. Since M′

i is obtained from |M′
i by filling Margulis tubes,

the split level surfaces as above for Bi and pBi can be also regarded as lying
in M′

i.

Next we consider a brick Bji for j = q+1, . . . , p, which corresponds to Bj
by ρM′

i . Again, we have a complete hierarchy h(Bji ) supported on Σj corre-
sponding to the decomposition of Bji into blocks and filled-in Margulis tubes.
We can take a resolution τ(Bji ) = {τ(Bji )k} starting from the restriction of
the last slice of τ(Bi) to Σj . Similarly, for each brick Bji for j = 1, . . . , p, we
have a complete hierarchy h(Bji ). We reverse the order of slices in this case,
and consider a resolution τ(Bji ) = {τ(Bji )k} starting from the restriction of
the last slice of τ( pBi).

For each n ∈ N, we consider the n-th slice τ(Bji )−n counting from the last
one of each τ(Bji ) for j = q + 1, . . . , p. Corresponding to the slice τ(Bji )−n,
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we have a split level surface S(Bji )(n) embedded in Bji . Taking the union of
all S(Bji )(n) for j = q + 1, . . . , p together with the thrice-punctured spheres
lying on ∂+Bi \(

⋃q
j=p+1B

j
i ) which are parts of the last slice of τ(Bi), we get

a split level surface S−i (n). From this, we construct an extended level surface
pS−i (n) as follows.

Let T− be the union of Margulis tubes intersecting S−i (n). Each torus T
in ∂T− is split into two annuli by cutting it along T ∩ S−i (n), which we call
the upper annulus and the lower annulus depending on their locations. We
paste the upper one to S−i (n) for each T and get a surface homeomorphic to
S, which we define to be pS−i (n). We also regard a union of slices, taken one
from each τ(Bji ) (j = q + 1, . . . , p) as above, as a marking on the entire S
by defining its restriction to S \

⋃p
j=q+1 Σj to be the marking defined by the

last slice of τ(Bi), and setting a transversal of a component c of FrΣj to be
the one determined by the first vertex of a geodesic in h(Bi) supported on
an annular neighbourhood A(c) of c, which is uniquely determined by the
Margulis tube of M′

i corresponding to c. We note that every curve in the
FrBji is a base curve of the last slice of τ(Bi) since it is a core curve of the
intersection of the upper front of Bi and a torus boundary component of
|Mi. We repeat the same construction for Bji with j = 1, . . . , q, considering
the n-th slice τ(Bji )n j = 1, . . . , q counting from the first one, and get a
split level surface S+

i (n) and an extended split level surface pS+
i (n), this time

using lower annuli. Also, we can regard a union of slices taken one from each
τ(Bji ) (j = 1, . . . , q) as a marking on the entire S in the same way, by setting
a transversal of each component of FrΣj to be the last vertex this time.

Recall that in the construction of model manifolds, Minsky defined the
initial and terminal markings to be the shortest markings for the conformal
structures at infinity. We consider a correspondence in the opposite direction.
We can choose some positive constant δ0 such that for any clean marking,
there is a marked conformal structure on S for which the marking is short-
est and in which all the curves (both base curves and transversals) of the
marking have hyperbolic lengths greater than δ0. (The existence of such a
constant is easy to see since there are only finitely many configurations of
clean markings up to homeomorphisms of S. Recall that a clean marking is
said to be shortest when its base curves constitute a shortest pants decom-
position and the transversals are shortest among those obtained by Dehn
twists around the base curves.)

Definition 9.5. — For each marking µ, we define the marked conformal
structure m(µ) to be one for which a clean marking µ0 compatible with µ is
shortest and such that every curve of µ0 has hyperbolic length greater than δ0.
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Although there are more than one such structures, we just choose any
one of them. By using Kerckhoff’s formula in [28] for instance, we can easily
see that there is a universal constant K depending only on δ0 (and S) such
that if µ′ is obtained from µ by one step in the resolutions τ(Bi) or τ( pBi)
or τ(Bji ), which corresponds to an elementary move of markings on S or Σj ,
then the Teichmüller distance between m(µ) and m(µ′) is bounded by K,
whatever choices of m(µ) and m(µ′) we make.

Now, we shall consider two sequences of markings: the first one connects
the marking corresponding to first marking of τ(Bi) with that corresponding
to the union of τ(Bji )−n (j = q + 1, . . . , p); and the other, which proceeds
in the negative direction, connects the marking corresponding to the last
slice of τ( pBi) with that corresponding to the union of τ(Bji )n j = 1, . . . q.
The first one is obtained by combining a sequence of markings corresponding
to τ(Bi) with those corresponding to the τ(Bji ) (j = q + 1, . . . , p). By our
definition of markings corresponding to slices in τ(Bji ), if we choose the first
slice from every τ(Bji ), the corresponding marking coincides with the one
corresponding to the last slice of τ(Bi), where vertices on annular geodesics
are set to be the first ones. Therefore after the sequence of markings corre-
sponding to τ(Bi), we can append the one obtained by advancing slices in
the τ(Bji ) (j = q + 1, . . . , p), so that we proceed at each step by advancing
a slice in τ(Bji ) which is farthest from the goal, i.e. the n-th slice counted
from the last one, up to the point where all the slices are the n-th counting
from the last one. We denote the thus obtained sequence of markings by
µ−(i, n) = {µ−k (i, n)}k. In the same way, we define a sequence of markings
obtained by combining one corresponding to τ( pBi) with those corresponding
to τ(Bji ) (j = 1, . . . , q). We denote this sequence by µ+(i, n) = {µ+

l (i, n)}l.
To simplify the notation, we denote the last markings in µ−(i, n) and µ+(i, n)
by µ−∞(i, n) and µ+

∞(i, n) respectively.

For any n, if we take a sufficiently large i, the component of (ρM′
i )−1(M′∩

BKiri
(M′, x∞)) intersecting (ρM′

i )−1(g′(S)) contains all pS−i (k) and pS+
i (k)

with k 6 n, since the distance between Bji and (ρM′
i )−1(g′(S)) is uniformly

bounded, and so are the diameters of extended level surfaces. Moreover mak-
ing i larger if necessary, we can make pS−i (k) and pS+

i (k) with k 6 n all homo-
topic to (ρM′

i )−1(g′(S)) in (ρM′
i )−1(M′ ∩ BKiri

(M′, x∞)) since there is no
torus boundary inside the Bj , which implies that if we fix k, then the diam-
eters of Margulis tubes intersecting essentially a homotopy between pS−i (k)
(or pS+

i (k)) and (ρM′
i )−1(g′(S)) in M′

i are bounded independently of i. Now,
for each i, let ni be the largest number such that both S−i (k) and S+

i (k) with
all k 6 ni are contained in the component of (ρM′

i )−1(M′ ∩BKiri
(M′, x∞))

intersecting (ρM′
i )−1(g′(S)) and are homotopic to (ρM′

i )−1(g′(S)) there. By
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the above observation, we have ni →∞ as i→∞. We then take another n′i
which also goes to∞, such that ni−n′i is positive and goes to∞ as i→∞.

With this preparation in hand, we can now construct arcs in the Te-
ichmüller space as follows. Since µ−k (i,n′i) proceeds by advancing the slice
among those in τ(Bji ) which is farthest from the n′i-th one counting from the
last one, we see that for some k = k0 the marking µ−k (i,n′i) reaches the split
level surface S−(ni). Recall that for each µ−k (i,n′i) in µ−(i,n′i), the point
m(µ−k (i,n′i)) in the Teichmüller space was defined.

Definition 9.6. — We define a new functionm′ by settingm′(µ−k (i,n′i))
to be m((µ−k (i,n′i)) for k 6 k0, and for k > k0 to be the hyperbolic structure
obtained from m((µ−k (i,n′i)) by pinching the curves c′1, . . . , c′t so that their ex-
tremal lengths become ek0−k and the lengths of other curves in base(µ−k (i,n′i))
remain bounded below by δ0.

Starting from µ−1 (i,n′i), which is a shortest marking for mi, we consider
for each step µ−k (i,n′i)→ µ−k+1(i,n′i) in µ−(i,n′i), a Teichmüller geodesic arc
connecting m′(µ−k (i,n′i)) with m′(µ−k+1(i,n′i)), and then construct a broken
geodesic arc α−(i,n′i) connecting m′(µ−1 (i,n′i)) to m′(µ−∞(i,n′i)) by joining
them. We note that by the definition of m′, each constituting geodesic arc
has uniformly bounded length. Both m′(µ−1 (i,n′i)) and mi have µ−1 (i,n′i) as
a shortest marking, but the hyperbolic lengths of base curves of µ−1 (i,n′i) in
mi may be different from those in m′(µ−1 (i,n′i)). We can connect mi with
m′(µ−1 (i,n′i)) by a Teichmüller quasi-geodesic so that base(µ−1 (i,n′i)) remains
a shortest pants decomposition throughout the points on the geodesic. (The
quasi-geodesic constant depends only on S.) We define α−(i,n′i) to be a bro-
ken quasi-geodesic arc obtained by joining this quasi-geodesic with α−(i,n′i).
In the same way, we construct a broken quasi-geodesic arc α+(i,n′i), which
connects ni with m(µ+

∞(i,n′i)) by pinching the curves c1, . . . , cs. In the case
when either lower or upper algebraic simply degenerate ends do not exist,
we define the corresponding α−(i,n′i) or α+(i,n′i) to be a constant map.

Let α±i : [0, k±i ] → T (S) be broken quasi-geodesic arcs α±(i,ni) con-
necting m′(µ±∞(i,n′i)) with mi, ni which are constructed as above by join-
ing Teichmüller geodesics and one quasi-geodesic. We parametrise α±i so
that α±i |[0, 1] is the appended quasi-geodesics connecting mi or ni with
m′(µ±1 (i,n′i)), and α±i |[s, s + 1] for s ∈ N corresponds to the Teichmüller
geodesic constituting α±i which connects m′(µ±s (i,n′i)) with m′(µ±s+1(i,n′i)).
We define βi : [0, ki]→ QF (S) by setting βi(t) to be qf(α−i (t), α+

i (t)), where
ki = max{k+

i , k
−
i } and assuming that the arcs α±i stay at the endpoint after

t gets out of the domain.

– 881 –



Ken’ichi Ohshika

Claim 9.7. — A sequence of quasi-Fuchsian group {qf(m′(µ−∞(i,n′i)),
m′(µ+

∞(i,n′i))} converges strongly to a quasi-conformal deformation of (Γ, ψ)
as i→∞ after passing to a subsequence.

Proof. — By our definition of the function m′ and the argument in
the proof of Lemma 9.2, a uniformly bi-Lipschitz model manifold for the
quasi-Fuchsian group qf(m′(µ−∞(i,n′i)),m′(µ+

∞(i,n′i))), which we denote by
M′(n′i), can be obtained from the submanifold of M′

i[0] cobounded by S−i (n′i)
and S+

i (n′i) by pasting boundary blocks corresponding to m′(µ−∞(i,n′i)) and
m′(µ+

∞(i,n′i)) respectively and filling Margulis tubes. For large i, this model
manifold contains (ρM′

i )−1 ◦g′(S) and (ρM′
i )−1 ◦g′ is homotopic to Φi. It fol-

lows that for a fixed generator system of π1(S) with base point on (ρM′
i )−1 ◦

g′(S), the length of the shortest closed loop in M′(n′i) representing each gen-
erator is bounded as i→∞, and hence that qf(m′(µ−∞(i,n′i)),m′(µ+

∞(i,n′i)))
converges algebraically after passing to a subsequence. Let (Γ′, ψ′) be the al-
gebraic limit, and denote H3/Γ′ by MΓ′ .

Let M′(n′∞) be the geometric limit of the complement of the boundary
blocks in M′(n′i) as i→∞. Then M′(n′∞) is embedded in M′ as a subman-
ifold, by our definition of M′(n′i). For each j = 1, . . . , q, the intersection of
ρM′
i (S+

i (n′i)) with Bj goes deeper and deeper into Bj to the direction of the
end Ej as i → ∞ since n′i → ∞. The same holds for ρM′

i (S−i (n′i)) ∩ Bj for
j = q + 1, . . . p. Therefore the entire Bj is contained in M′(n′∞) for every
j = 1, . . . , p.

Now we look at the two boundary blocks of M′(n′i), which we denote by
b−i and b+i , where b

−
i has conformal structure at infinitym′(µ−∞(i,n′i)) and b+i

has conformal structure at infinity m′(µ+
∞(i,n′i)), and consider their geomet-

ric limits. By our definition of m′ and from the fact that ni−n′i →∞, we see
that the hyperbolic lengths of ci1

′
, . . . , cit

′ with respect to m′(µ−∞(i,n′i)) and
those of ci1, . . . , cis with respect to m′(µ+

∞(i,n′i)) go to 0. Let F 1, . . . , F r be
the components of S \

⋃q
k=1 Σk. Then m′(µ+

∞(i,n′i)) restricted to each one
of F 1, . . . , F r has pants decomposition whose lengths are bounded below
by δ0, and the boundary components of F 1, . . . , F r correspond to c1i , . . . , cis.
Therefore, the geometric limit of b+i with basepoint in the part of F k is home-
omorphic to IntF k× I with conformal structure at infinity corresponding to
a complete hyperbolic structure on IntF k making each frontier component a
cusp. The same holds for b−i considering the components of S \

⋃p
k=q+1 Σk.

Therefore, the geometric limit of M′(n′i) has upper simply degenerate
ends corresponding to Σ1, . . . ,Σq, lower simply degenerate ends correspond-
ing to Σq+1, . . . ,Σp, upper geometrically finite ends corresponding to the
components of S \

⋃q
k=1 Σk, and lower geometrically finite ends correspond-

ing to the components of S \
⋃p
k=q+1 Σk, all of which are algebraic. This
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shows that the geometric limit has fundamental group isomorphic to π1(S),
and hence that the convergence is strong. We denote a representative of this
strong limit by (Γ′, ψ′). The model manifold shows that the ends of MΓ′

consists of simply degenerate ends corresponding to E1, . . . , Ep and geomet-
rically finite ends and that every parabolic locus touches one of E1, . . . , Ep.
Since the ending laminations of E1, . . . , Ep are the same as those of the cor-
responding ends of M ′ = H3/Γ, by the ending lamination theorem due to
Brock–Canary–Minsky [13], we see that (Γ′, ψ′) is a quasi-conformal defor-
mation of (Γ, ψ). �

Claim 9.8. — For any sequence {ti ∈ [0, ki]}, the sequence {βi(ti) ∈
QF (S)} converges algebraically to a quasi-conformal deformation of (Γ, ψ).

Proof. — Recall that βi(ti) = qf(α−i (ti), α+
i (ti)), and that α− and α+ are

broken quasi-geodesic arcs consisting of Teichmüller geodesics with bounded
lengths except for the first quasi-geodesics; α±|[0, 1], which may be long.

We first assume that neither α−i (ti) nor α+(ti) lies on the first quasi-
geodesics, which connect m′(µ−1 (i,ni)) with and m′(µ+

1 (i,ni)) with respec-
tively. In this case, since α−i (ti) and α+(ti) lie on Teichmüller geodesics with
bounded length, we have only to consider the case when both α+(ti) and
α−i (ti) are endpoints of Teichmüller geodesic arcs constituting α− and α+,
i.e. the case when ti is an integer. The marking α−(ti) corresponds to ei-
ther a slice in τ(Bi) or a union of slices, taken one from each of τ(Bji ) (j =
q + 1, . . . , p). This corresponds in turn to an extended level surface pS−i (ti).
Similarly, we have an extended level surface pS+

i (ti) corresponding to α+(ti).
Then, we can see that a uniform bi-Lipschitz model manifold M′(βi(ti)) for
βi(ti) is obtained from the submanifold of M′

i cobounded by S−i (ti) and
S+
i (ti) by pasting boundary blocks and filling Margulis tubes by the ar-

gument of Lemma 9.2. Now, by the same argument as in the proof of the
previous claim, we see that {βi(ti)} converges algebraically after passing
to a subsequence, and the geometric limit M′

∞(β) of M′(βi(ti)) contains
bricks B1, . . . , Bp. Since the internal blocks of M′

∞(β) also lie in M′, the
ends of the algebraic limit other than those corresponding to E1, . . . , Ep are
geometrically finite and there are no extra parabolic loci. This implies that
the algebraic limit is a quasi-conformal deformation of (Γ, ψ) by the ending
lamination theorem, as in the previous claim.

Next suppose that α+(ti) lies in the first quasi-geodesic, i.e. ti ∈ [0, 1].
Then all the internal blocks of M′

i above (ρM′
i )−1 ◦ g′(S) lie also in a model

manifold M′(βi(ti)) for βi(ti) = qf(α−i (ti), α+
i (ti)) defined in the same way

as above. Therefore, the algebraic ends of M′
i lie also in the model manifold

M′(βi(ti)). The above argument for showing that there is no extra parabolic
loci works also in this case.
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We can argue in the same way also in the case when α−(ti) lies (or both
α−(ti) and α+(ti) lie) in the first quasi-geodesic. �

Now, we shall complete the proof of Proposition 9.1, by setting αi(t) =
βi(kit) for βi defined above, and showing thus constructed arc αi satisfies the
conditions in the statement. The conditions (1) and (2) have already been
shown. Let us show (3). By our definition ofm′, the lengths of c1, . . . , cs with
respect to m′(µ+

∞(i,n′i)) go to 0, and also those of c′1, . . . , c′t with respect to
m′(µ−∞(i,n′i)) go to 0. This means that the length of each of c1, . . . , cs with
respect to ni and that of each of c′1, . . . , c′t with respect to mi goes to 0.

Next we turn to the condition (4). In the case when Γ is a b-group, there
is no lower algebraic simply degenerate ends for M′. By our definition of
βi, in this case the lower conformal structure α−i (t) is the same as m0 for
every t.

Finally, we verify the condition (5). Suppose, seeking a contradiction,
that the condition (5) does not hold. Then, there exist a neighbourhood
U of QH(Γ, ψ) and ti ∈ [0, ki] such that βi(ti) stays outside U for every i
after passing to a subsequence. Now, we apply Claim 9.8 to see that β(ti)
converges to a point in QH(Γ, ψ) after passing to a subsequence. This is a
contradiction. Thus we have completed the proof of Proposition 9.1.

9.2. Proofs of Theorem 3.8 and Corollaries 3.9, 3.10

Proof of Theorem 3.8. — Having proved Proposition 9.1, to prove Theo-
rem 3.8, it remains to show that two sequences strongly converging to groups
in the quasi-conformal deformation space of (Γ, ψ) as constructed in the
proof of Proposition 9.1 can be joined by arcs in small neighbourhoods of
the deformation space, fixing the conformal structure at bottom when Γ is
a b-group.

Let {(Gi, φi)} and {(Hi, ϕi)} be two sequences of quasi-Fuchsian groups
both of which converge algebraically to quasi-conformal deformations of
(Γ, ψ). Let M′

i and N′i be model manifolds for H3/Gi and H3/Hi constructed
as in Lemma 9.2, converging geometrically to model manifolds M′ and N′
for the geometric limits of {Gi} and {Hi} respectively. Since the algebraic
limits of {(Gi, φi)} and {(Hi, ϕi)} are quasi-conformally equivalent, M′ and
N′ have the same number of algebraic simply degenerate ends with the same
ending laminations λ1, . . . , λp. As in Proposition 9.1, we renumber them so
that those having λ1, . . . , λq as ending laminations are upper whereas the
rest are lower. In particular, we can assume that the boundary components
touching these ends are the same open annuli in S × [0, 1] for M′ and N′.
We denote the union of these annuli by T .
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Let {(G′i, φ′i) = qf(mi, ni)} and {(H ′i, ϕ′i) = qf(µi, νi)} be two strongly
convergent sequences as constructed in Proposition 9.1 for the two sequences
{(Gi, φi)} and {(Hi, ϕi)}. Recall that in the construction of such a sequence
in Proposition 9.1, we took a number n′i. Note that the construction works
if we take a number smaller than n′i for each i provided that it goes to
∞. Therefore, we can let the number n′i be common to both G′i and H ′i.
Let M′(n′i) and N′(n′i) be model manifolds for them as in the proof of
Proposition 9.1. Then both M′(n′i) and N′(n′i), regarded as embedded in
S × [0, 1], have the following properties. There are unions of Margulis tubes
Vi and V′i coming from T in M′(n′i) and N′(n′i) respectively, which can be
assumed to correspond to the same union of solid tori in S × [0, 1]. As in
the proof of Proposition 9.1, the complements M′(n′i) \Vi and N′(n′i) \V′i
have decompositions into bricks among which there are Bji

′
= Σj × Jji

′
in

M′(n′i) and Bji
′′

= Σj × Jji
′′
in N′(n′i) on the same side of the preimages

of the standard algebraic immersions. The bricks Bji
′
and Bji

′′
contain tube

unions corresponding to tight geodesics γji
′
and γji

′′
supported on Σj whose

lengths go to ∞ as i→∞. Furthermore, for each of γji
′
and γji

′′
, one of the

endpoints stays in a compact set and the other endpoint (which we denote
by bji

′
for γji

′
and bji

′′
for γji

′′
) goes to the ending lamination λj as i → ∞.

Also, the tube unions put in Bji
′
and Bji

′′
induce hierarchies hji

′
and hji

′′
on

Σj with main geodesics γji
′
and γji

′′
respectively.

In the following, we only consider the case when the end of M′ (hence
also that of N′) having λj as the ending lamination is an upper end, i.e.
j = 1, . . . q. The case when it is an lower end can be dealt with just by turn-
ing everything upside down as usual. Recall that we constructed a sequence
of markings µ+(i,n′i) in the proof of Proposition 9.1. We construct its coun-
terpart µ+′(i,n′i) for N′. As can been seen in the construction of M′(n′i)
in the proof of Proposition 9.1, the last slices of hji

′
and hji

′′
correspond to

the restrictions of the last terms µ+
∞(i,n′i) and µ+

∞
′(i,n′i) of the sequences

of markings µ+(i,n′i) and µ+′(i,n′i).

Since the length of the frontier of Σj goes to 0 with respect to both ni and
νi, we can assume that the length of each component of FrΣj with respect
to ni is equal to that with respect to νi without changing the algebraic limit
and the structure of the model manifolds except for the boundary blocks, by
deforming mi and νi locally in thin annular neighbourhoods of FrΣj .

Now, we connect the endpoint bj
′

i of γj
′

i with the endpoint bj
′′

i of γj
′′

i

by a tight sequence γi = {si1, . . . , siui
} in CC(Σj). By the hyperbolicity of

CC(Σj), for any choice of an integer vi between 1 and ui, the simplex sivi

also converges to the lamination λj as i → ∞. By letting µ+
∞(i,n′i) and
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µ+
∞
′(i,n′i) be the initial and the terminal markings respectively, we can re-

gard γi as a tight geodesic, and there is a hierarchy h(γi) on Σj which has
γi as its main geodesic. Considering a resolution of this hierarchy h(γi),
we can connect µ+

∞(i,n′i) with µ+
∞
′(i,n′i) by elementary moves of mark-

ings µi∞(r), r = 0, . . . , wi. Recall that µ+
∞(i,n′i) is a shortest marking for

(S, ni) and µ+
∞
′(i,n′i) is a shortest marking for (S, µi) and that both of

them contain every component of FrΣj . Therefore we can connect ni with
ni|(S\Σj)∪νi|Σj by a piecewise Teichmüller geodesic arc δi : [0, wi]→ T (S)
so that for any integer r, the restriction µi∞(r)|Σj is a shortest marking for
δi(r)|Σj whereas δi(r)|(S\Σj) = ni|(S\Σj). Since the base curve of µi∞(r)|Σj
lies among si1, . . . , siui

, every one of which converges to λj , and the structure
of M′

i(n′i) outside Bj is unchanged, we see that qf(mi, δi(ti)) converges to
(Γ, ψ) strongly for any sequence {ti ∈ [0, wi]}. By the same argument as
in the proof of Proposition 9.1, we see that for any neighbourhood U of
QH(Γ, ψ), the arc qf(mi, δi[0, wi]) is contained in U for large i.

We repeat the same procedure for each j = 1, . . . , p. Then, we get an arc
α′i connecting qf(mi, ni) with qf(mi|(S \

⋃p
j=q+1 Σj)∪µi|

⋃p
j=q+1 Σj , ni|(S \⋃q

j=1 Σj) ∪ νi|
⋃p
j=1 Σj) such that for any neighbourhood U of QH(Γ, ψ),

the arc α′i is contained in U for sufficiently large i. Since all of the mi|(S \⋃p
j=q+1 Σj), the µi|(S \

⋃p
j=q+1 Σj), the ni|(S \

⋃p
j=1 Σj), and the νi|(S \⋃p

j=1 Σj) are bounded in the Teichmüller spaces with free boundary, and
the lengths of the boundary components are the same for mi and µi and for
ni and νi and go to 0 as i → ∞, we can deform qf(mi|(S \

⋃p
j=q+1 Σj) ∪

µi|
⋃p
j=q+1 Σj , ni|(S \

⋃q
j=1 Σj) ∪ νi|

⋃p
j=1 Σj) to qf(pµi, pνi) by a uniformly

bounded quasi-conformal deformation, where the differences between pµi and
µi and between pνi and νi are just compositions of Fenchel–Nielsen twists
around c1, . . . , cs and c′1, . . . , c′t respectively. This quasi-conformal deforma-
tion gives an arc connecting qf(mi|(S \

⋃p
j=q+1 Σj) ∪ µi|

⋃p
j=q+1 Σj , ni|(S \⋃q

j=1 Σj)∪νi|
⋃p
j=1 Σj) to qf(pµi, pνi) which is contained in the neighbourhood

U for large i.

Now, we connect pµi with µi and pνi with νi by arcs µi(x),νi(x) in the
Teichmüller space realising these compositions of Fenchel–Nielsen twists cor-
responding to their differences. Then the lengths of c1, . . . , cs with respect to
µi(x) also go to 0 as i→∞ for any x, and so do the lengths of c′1, . . . , c′t with
respect to νi(x). Therefore, by the same argument as before, we can connect
qf(pµi, pνi) with qf(µi, νi) by an arc which is contained in U for large i.

Thus, joining the arcs obtained this way, we have shown that we can con-
nect (G′i, φ′i) = qf(mi, ni) with (H ′i, ψ′i) = qf(µi, νi) by an arc αi in QF (S)
such that for any neighbourhood U of QH(Γ, ψ), the arc αi is contained in
U large i. On the other hand, by our definition of (mi, ni) and (µi, νi) which
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uses Proposition 9.1, there are arcs with such a property connecting (Gi, φi)
with (G′i, φ′i) and (Hi, ψi) with (H ′i, ψ′i). Therefore, connecting these three
arcs, we get an arc as we wanted.

In the case when Γ is a b-group, by Theorem 3.7, the lower conformal
structures at infinity of both (Gi, φi) and (Hi, ψi) converge tom0. Therefore,
we can construct an arc as above keeping the lower conformal structures in
an arbitrarily small neighbourhood of m0 for large i. This shows the second
paragraph of our theorem. �

Corollary 3.9 follows easily from this as follows.

Proof of Corollary 3.9. — Suppose that every small neighbourhood of
(Γ, ψ) intersects more than one component of QF (S). Then for every small
neighbourhood U of (Γ, ψ) in AH(S), there are sequences {qf(mi, ni)} and
{qf( pmi, pni)} both converging to (Γ, ψ) such that qf(mi, ni) and qf( pmi, pni)
belong to different component of U ∩QF (S). Applying Theorem 3.8, we see
that for any small neighbourhood V of QF (Γ, ψ) in AH(S), for sufficiently
large i, the two points qf(mi, ni) and qf( pmi, pni) must be connected in V ∩
QF (S). In the case when every component of ΩΓ/Γ is a thrice-punctured
sphere, this is a contradiction since QH(Γ, ψ) consists of only (Γ, ψ) then
and we can let V be U .

In the case when there is a component of ΩΓ/Γ which is homeomorphic
to S, the Kleinian group Γ is a b-group. Then the second paragraph of
Theorem 3.8 shows that we can connect qf(mi, ni) to qf( pmi, pni) keeping
the lower conformal structure within a small neighbourhood. This means
that they can be connected in a small neighbourhood of (Γ, ψ) in QF (S).
This again is a contradiction. �

To get Corollary 3.10, we need to review the argument of the proof of
Theorem 3.8.

Proof of Corollary 3.10. — In Corollary 3.10, we have allowed isolated
parabolic loci to exist. We consider a sequence of quasi-Fuchsian groups
{qf(mi, ni)} converging to (Γ, ψ) in this generalised setting, and shall show
that we can deform {qf(mi, ni)} continuously to a sequence which converges
strongly to (Γ, ψ). In the proof of Theorem 3.8, we used the assumption that
Γ has no isolated parabolic loci in two places; first to show that the standard
immersion g′ can be isotoped to a horizontal embedding, and secondly in
the proofs of Claims 9.7 and 9.8 to show that the limits are quasi-conformal
deformations of (Γ, ψ). We shall show how to modify the argument in the
latter part first.

(1). How to modify the proofs of Claims 9.7 and 9.8. — In the proofs
of these claims, we used the fact that all the parabolic loci of the algebraic
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limit Γ′ of the new sequence touch simply degenerate ends to imply that
the parabolic loci of Γ′ and Γ are the same. In our setting now, if we do
the same construction, this is not the case any more. To preserve the para-
bolic loci of algebraic limits throughout the modification of quasi-Fuchsian
groups, we consider to modify the model manifolds M′ and M′

i constructed
in Lemma 9.2 and the function m as follows.

We divide the isolated parabolic loci of Γ into two categories. Let c be a
core curve of an isolated parabolic locus P of Γ. We can regard c as lying
on the boundary of the model M′ of the non-cuspidal part of the geometric
limit (M∞)0. We say that the parabolic locus P and its core curve c are
of torus type if c can be regarded as lying on a torus boundary component
of M′ and are of annulus type if c is regarded as lying on an open annulus
component of M′.

Let d1, . . . , du be core curves of the isolated parabolic loci, not caring
whether they are of torus type or annulus type. We renumber them so that
d1, . . . , dv are upper and dv+1, . . . , du are lower. These curves correspond
to algebraic parabolic curves lying on boundary components in the original
model manifold M. We take annular neighbourhoods A(d1), . . . , A(dv) and
A(dv+1), . . . , A(du) of these curves on S so that both A(d1), . . . , A(dv) and
A(dv+1), . . . , A(du) are pairwise disjoint. We set V (dj) = A(dj)× [5/8, 3/4]
for j = 1, . . . , v and V (dj) = A(dj) × [1/4, 3/8] for j = v + 1, . . . , u. We set
U+ to be

⋃v
j=1 V (dj) and U− to be

⋃u
j=v+1 V (dj).

We then define M to be S × [1/8, 7/8] \ (T − ∪ T + ∪ U− ∪ U+), where
T − and T − are unions of solid tori corresponding to non-isolated parabolic
curves which were defined in the proof of Lemma 9.2. This new M also ad-
mits standard brick decomposition having five stages although the bottom
and top levels are changed to 1/8 and 7/8. The bottom brick and the top
brick are denoted Bi and pBi as before. By the same construction as in the
proof of Lemma 9.2, we can construct labelled brick manifolds |Mi by attach-
ing geometrically finite blocks corresponding to mi and ni, and then model
manifolds M′

i by filling in Margulis tubes. As in the proof of Lemma 9.2,
we put tube unions in Bi and pBi, which are parts of block decomposition of
|Mi, and decompose them into blocks. These give rise to resolutions τ(Bi)
and τ( pBi) as before.

Next we turn to the levels [1/4, 3/8] and [5/8, 3/4]. On these levels, there
lie bricks Bji , among which B1

i , . . . , B
q
i are contained in S × [5/8, 3/4] and

Bq+1
i , . . . , Bpi are contained in S × [1/4, 3/8]. For these, hierarchies h(Bji )

resolutions τ(Bji ) are defined in the same way as before. On the other hand,
the decomposition of |Mi into blocks determines a geodesic hi(dj) supported
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on A(dj) for j = 1, . . . , u. If the length of hi(dj) goes to∞ as i→∞, then dj
is of torus type, otherwise it is of annulus type. Now, recall that for n ∈ N, we
defined a slice on S extending the n-th slices on the τ(Bji ), and then defined
a sequence of markings µ−(i, n). In the present situation where there are
isolated algebraic parabolic loci, we also have to take into account geodesics
supported on the A(dj). For each dj (j = v + 1, . . . , u) of torus type, we
take the vertex of hi(dj) which is the n0-th counting from the last one, and
denote it by τ(dj)−n0 . Starting from the last slice of τ(Bi), we advance, by
elementary moves, vertices on geodesics supported on Σj (j = q + 1, . . . , p)
and A(dj) (j = v+1, . . . , u) for dj of torus type until it gets to τ(Bji )−n on Σj
and to τ(dj)−n0 on A(dj), and obtain a sequence of markings {µ−(i, n, n0)}
as before. Note that we do not move other vertices from those lying on the
last slice of τ(Bi). In particular if dj (j = v+1, . . . , u) is of annulus type, the
vertex on A(dj) remains to be the first one. In the same way, we define τ(dj)n
for dj (j = 1, . . . v) of torus type and a sequence of markings {µ+(i, n, n0)}.

We also need to modify the definition of the function m in Definition 9.5.
For each µ in µ−(i, n, n0), we define m(µ) to be a point in T (S) such
that a clean marking compatible with µ is a shortest marking in (S,m(µ)),
the length of each curve d of torus type among dv+1, . . . , du is equal to
δ0/dA(d)(I(hi(d)), µ|A(d)), where µ|A(d) is the marking on A(d) determined
by µ, and the lengths of curves of annulus type among dv+1, . . . , du are equal
to lengthmi

of the curves. We define m for µ ∈ µ+(i, n) similarly. Before
Claim 9.7, we introduced the number n′i and considered the last marking
in the sequence µ±(i,n′i), which we denoted by µ±∞(i,n′i). In the present
case, we define n′i in the same way as before, and fix n0 independently of
i. We define the function m′ in the same way as in Definition 9.6 by de-
creasing gradually lengths of curves corresponding to non-isolated parabolic
loci. Then the rest of the construction in the proof of Proposition 9.1 works
without any change, and we can define broken quasi-geodesics α−i and α+.

We need to show that the algebraic limits appearing Claims 9.7 and 9.8
has d1, . . . , du as parabolic elements whatever point you choose on α− or α+

by our definitions of m and m′ as above. Suppose first that c is a curve in
d1, . . . , du of annulus type. Let A be a boundary component of M′ having c
as a core curve. Since c is an isolated curve this means that the geometri-
cally finite block is split along c, which implies that either lengthmi

(c)→ 0
or lengthni

(c)→ 0 depending on c is lower or upper. Therefore, by our mod-
ified definition of m above, we see that the length of c with respect to the
sequences appearing Claims 9.7 and 9.8 goes to 0, and hence c is parabolic
in their algebraic limits.

Suppose next that c is of torus type. We first consider the algebraic
limit of qf(m′(µ−∞(i,n′i, n0)),m′(µ+(i,n′i, n0)), corresponding to Claim 9.7.
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By our definition of the function m (and m′) above, we see that if c is
among d1, . . . , dv, then lengthm′(µ+(i,n′

i
,n0))(c) goes to 0 as i → ∞, and if

it is among dv+1, . . . , du, then lengthm′(µ−(i,n′
i
,n0))(c) goes to 0. This shows

that c is parabolic in the algebraic limit of this sequence.

We now turn to considering the algebraic limit of the sequence {βi(ti)},
where βi(t) = qf(α−i (t), α+

i (t)). Suppose that c is a curve of torus type
among dv+1, . . . , du, and we consider the point α−i (ti) in the Teichmüller
space. There are essentially three cases to consider. In the first and the second
cases, we assume that α−i (ti) lies on a Teichmüller geodesic with endpoints
m′(µ1(i)),m′(µ2(i)) for some adjacent slices µ1(i), µ2(i) in µ−(i,ni, n0). In
the first case, we further assume that µ1(i) contains the k(i)-th vertex on
hi(c), where length(γ(i)) − k(i) → ∞. Then the same holds for µ2(i) since
they are adjacent. Then for the hierarchy of tight geodesics connecting for
α−i (ti) with α+

i (ti) has a geodesic supported on A(c) with length at least
length(γ(i)) − k(i) − 1, which goes to ∞. Therefore in the geometric limit
M∞(β), the curve c lies on a torus boundary. This implies that c is parabolic
in the algebraic limit. In the second case, we assume on the contrary that
length(γ(i))− k(i) is bounded, which implies k(i)→∞. Then by our mod-
ified definition of the function m (and m′), we have lengthm′(µ1(i))(c) and
lengthm′(µ2(i))(c) go to 0, which implies that lengthα−

i
(ti)(c) also goes to 0.

Therefore c is a parabolic curve in the algebraic limit also in this case. The
third case is when α−i (ti) lies a quasi-geodesic connecting mi with the first
marking µ−1 (i,n′i, n0). Then the situation is the same as the first case and c
lies on a torus boundary of the geometric limit M∞(β) since the initial and
the terminal markings are the same as the case of connecting µ−1 (i,n′i, n0)
with µ+

1 (i,n′i, n0) and the hierarchy of tight geodesics connecting them has
a geodesic of length hi(c) → ∞ supported on A(c). Thus we have shown
that c is a parabolic curve in all the cases. The same argument works also
when c is of torus type among d1, . . . , dv, and we can prove them to be
upper parabolic of the algebraic limit of {βi(ti)}. We note that M∞(β) has
the geometrically infinite ends corresponding to E1, . . . , Ep by our definition
of α±i . This implies that M∞(β) has no isolated algebraic parabolic curves
other than d1, . . . , du. Therefore we also see that there are no other isolated
parabolic curves other than d1, . . . , du in the algebraic limit of {βi(ti)}.

Thus we have shown that Claims 9.7 and 9.8 holds under the assumption
that g′ does not go around a torus boundary component. In particular, this
shows that the algebraic limit of βi(ti) is a quasi-conformal deformation
of (Γ, ψ).

(2). To show that g′ does not go around a torus boundary component. —
It remains to show that the standard immersion g′ does not go around a torus
boundary component in M′ in our setting. We consider first the case when
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Γ is a b-group. Let {(Gi, φi) = qf(m0, ni)} and {(Gi, φi) = qf(m0, ni)} be
sequences in the Bers slice converging to (Γ, ψ). Let M′ and M′ be model
manifolds for non-cuspidal parts of geometric limits G∞ and G′∞ of {Gi}
and {G′i}, which are non-cuspidal parts of geometric limits of the model
manifolds M′

i and M′
i constructed as in Lemma 9.2 respectively. Let g′ :

S →M′ and g′ : S →M′ be standard algebraic immersions. Since the lower
geometrically finite ends must be lifted to the algebraic limits, neither g′ nor
g′ can go around torus boundary components, hence homotopic to horizontal
surfaces in M′ and M′ respectively. Therefore the argument of the proof of
Theorem 3.8 works, and we see that for any neighbourhood U of (Γ, ψ), there
is an arc αi connecting (Gi, φi) and (Gi, φi) in the Bers slice U ∩Bm0 .

Next suppose that Γ is not a b-group. Let {(Gi, φi) ∈ QF (S)} be a
sequence converging to (Γ, ψ). Again, we let M′ be a model manifold of the
non-cuspidal part of the geometric limit G∞, which is the non-cuspidal part
of the geometric limit of M′

i. Suppose that g′ goes around a torus component
T of M′ counter-clockwise. Let c be a longitude of T . Then, c, regarded as
lying on S, is an upper parabolic curve of MΓ = H3/Γ.

Since we assumed that ΩΓ/Γ consists of thrice-punctured spheres, there
is either a lower parabolic curve d or an ending lamination λ of a lower
end, intersecting c essentially. If there is a lower parabolic curve d, then
there is a boundary component T ′ of M′ whose core curve or a longitude
is homotopic to g′(d) and which is situated below g′(S). This is impossible
since g′ goes around T whose longitude intersects d essentially on S. If there
is an ending lamination λ, then there is a algebraic simply degenerate end
contained in Σ × (s, t] in M having λ as the ending lamination. Then Σ ×
{s + ε} must be homotopic to g′(Σ). Again this is impossible since g′ goes
around T whose longitude intersects λ essentially on S. Thus, we are lead
to a contradiction in both cases, and see that g′ cannot go around a torus
boundary component counter-clockwise. The case when g′ goes around a
torus boundary component clockwise can be deal with in the same way just
by turning everything upside down. �

10. Proof of Theorems 3.11 and 3.12

10.1. Proof of Theorem 3.11

After passing to a subsequence, {Gi} can be assumed to converge geo-
metrically to a Kleinian group G∞ containing Γ as before. This induces a
pointed Gromov convergence of (Mi, yi) to (M∞, y∞) with M∞ = H3/G∞.
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Let M be a model manifold of (H3/G∞)0, and Mi that of (Mi)0 = (H3/Gi)0
as before. Then Mi[0] converges geometrically to M[0] by taking a basepoint
xi in Mi which is mapped by the model map to a point within uniformly
bounded distance from the basepoint yi of Mi. As in Lemma 4.13, we take
a standard algebraic immersion g′ : S →M.

Let E be an algebraic simply degenerate end of M with ending lamination
λE , and B = Σ × J a brick of M containing E. We assume that E is an
upper end. The case when E is a lower end can be argued in the same way
by just turning everything upside down as usual. Then by Proposition 4.18,
there is a tight geodesic γi in CC(Σ) one of whose endpoints (possibly at
infinity) converges to λE as i→∞. In the case when γi is a geodesic ray, its
endpoint at infinity is an ending lamination of an upper end of Mi, which is
contained in e+(i). Therefore, we see that λE is contained in the Hausdorff
limit of e+(i).

Next suppose that γi is a finite geodesic. Then, by Theorem 3.1 and
Section 6 of Masur–Minsky [38], the last vertex of γi and πΣ(e+(i)) are within
uniformly bounded distance, and hence the endpoint of γi and πΣ(e+(i))
converge to the same lamination λE with respect to the topology of UML(Σ)
as i → ∞. Since λE is arational, we see that the Hausdorff limit of e+(i)|Σ
contains λE .

The converse can be shown by the same argument as the proof of Theo-
rem 5.2.

10.2. Proof of Theorem 3.12

Suppose, seeking a contradiction, that a sequence {(Gi, φi)} as in the
statement converges. Then by Theorem 3.11, λ is an ending lamination of an
upper end and µ is an ending lamination of a lower end of the algebraic limit.
This implies the shared boundary component of the minimal supporting
surface of µ is a parabolic locus which is both upper and lower. This is
impossible, and we have completed the proof of Theorem 3.12.
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