logo AFST

The canonical solution operator to ¯ restricted to spaces of entire functions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 11 (2002) no. 1, pp. 57-70.
@article{AFST_2002_6_11_1_57_0,
     author = {Haslinger, Friedrich},
     title = {The canonical solution operator to $\bar{\partial }$ restricted to spaces of entire functions},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {57--70},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 6, 11},
     number = {1},
     year = {2002},
     doi = {10.5802/afst.1018},
     mrnumber = {982059},
     zbl = {01982059},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1018/}
}
Friedrich Haslinger. The canonical solution operator to $\bar{\partial }$ restricted to spaces of entire functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 11 (2002) no. 1, pp. 57-70. doi : 10.5802/afst.1018. https://afst.centre-mersenne.org/articles/10.5802/afst.1018/

[1] Axler (S.). - The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. | MR 850538 | Zbl 0633.47014

[2] Arazy (J.), Fisher (S.) and Peetre (J.). - Hankel operators on weighted Bergman spaces, Amer. J. of Math. 110 (1988), 989-1054. | MR 970119 | Zbl 0669.47017

[3] Elstrodt (J.). - Maß - und Integrationstheorie, Springer Verlag, Berlin 1996. | Zbl 0861.28001

[4] Fu (S.) and Straube (E.J.). - Compactness of the ∂-Neumann problem on convex domains, J. of Functional Analysis 159 (1998), 629-641. | MR 1659575 | Zbl 0959.32042

[5] Fu (S.) and Straube (E.J.). - Compactness in the ∂-Neumann problem, Complex Analysis and Geometry (J.McNeal, ed.), Ohio State Math. Res. Inst. Publ. 9 (2001), 141-160. | MR 1912737 | Zbl 1011.32025

[6] Haslinger (F.). - Weighted spaces of entire functions, Indiana Univ. Math. J. 35 (1986), 193-208. | MR 825636 | Zbl 0559.46012

[7] Haslinger (F.). - The canonical solution operator to ∂ restricted to Bergman spaces, Proc. Amer.Math. Soc. 129 (2001), 3321-3329. | MR 1845009 | Zbl 0977.32019

[8] Hörmander (L.). - An introduction to complex analysis in several variables, North-Holland Publishing Company, Amsterdam 1990 (3rd edition). | MR 1045639 | Zbl 0685.32001

[9] Janson (S.). - Hankel operators between weighted Bergman spaces, Ark. Mat. 26 (1988), 205-219. | MR 1050105 | Zbl 0676.47013

[10] Krantz (St.). - Function theory of several complex variables, Wadsworth & Brooks/Cole, 1992 (2nd edition). | Zbl 0776.32001

[11] Krantz (St.). - Compactness of the ∂-Neumann operator, Proc. Amer. Math. Soc. 103 (1988), 1136-1138. | MR 954995 | Zbl 0736.35071

[12] Meise (R.) und Vogt (D.). - Einführung in die Funktionalanalysis, Vieweg Studium 62, Vieweg-Verlag 1992. | MR 1195130 | Zbl 0781.46001

[13] Salinas (N.), Sheu (A.) and Upmeier (H.). - Toeplitz operators on pseudoconvex domains and foliation C* - algebras, Ann. of Math. 130 (1989), 531-565. | MR 1025166 | Zbl 0708.47021

[14] Wallsten (R.). - Hankel operators between weighted Bergman spaces in the ball, Ark. Mat. 28 (1990), 183-192. | MR 1049650 | Zbl 0705.47023

[15] Weidmann (J.). - Lineare Operatoren in Hilberträumen, B.G. Teubner Stuttgart, Leipzig, Wiesbaden 2000. | MR 1887367 | Zbl 0972.47002

[16] Zhu (K.H.). - Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. 109 (1990), 721-730. | MR 1013987 | Zbl 0731.47028