logo AFST
Torus-like solutions for the Landau–De Gennes model.
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 30 (2021) no. 2, pp. 301-326.

Dans cette note, nous présentons des avancées récentes [10, 11, 12] sur l’etude des minimiseurs globaux d’une énergie continue de Landau–De Gennes dans des domaines 3D utilisée dans la modélisation des cristaux liquides nématiques.Dans un premier temps, nous décrivons l’absence de singularités des configurations minimisantes sous contrainte de norme, ainsi que l’absence de phase isotrope pour les minimiseurs non contraints, et le phénomène de fuite biaxiale en résultant. Sous certaines hypothèses sur la topologie du domaine et la condition de Dirichlet au bord, nous montrons ensuite comment la régularité / absence de phase isotrope des configurations minimisantes permet de déduire une structure topologique non triviale des ensembles de niveau de la biaxialité. Enfin, nous discutons ces mêmes proprietés pour des minimiseurs sous contrainte de symétrie axiale et sous contrainte de norme. Dans ce dernier cas, nous montrons que les minimiseurs ne satisfont qu’une régularité partielle, à savoir la régularité en dehors d’un ensemble fini situé sur l’axe de symétrie. De plus, nous démontrons que ces singularités ponctuelles peuvent en effet exister pour des raisons énergétiques, et nous décrivons en détails le comportement asymptotique des minimiseurs près de ces points singuliers. Pour terminer, nous donnons quelques propriétés qualitatives des surfaces de biaxialité pour une classe de domaines et de données au bord montrant que les minimiseurs réguliers présentent une structure en tore biaxial comme celle prédite dans [16, 24, 25, 39].

In this note we report on some recent progress [10, 11, 12] about the study of global minimizers of a continuum Landau–De Gennes energy functional for nematic liquid crystals in three-dimensional domains. First, we discuss absence of singularities for minimizing configurations under norm constraint, as well as absence of the isotropic phase for the unconstrained minimizers, together with the related biaxial escape phenomenon. Then, under suitable assumptions on the topology of the domain and on the Dirichlet boundary condition, we show that smoothness of energy minimizing configurations yields the emergence of nontrivial topological structure in their biaxiality level sets. Then, we discuss the previous properties under both the norm constraint and an axial symmetry constraint, showing that in this case only partial regularity is available, away from a finite set located on the symmetry axis. In addition, we show that singularities may appear due to energy efficiency and we describe precisely the asymptotic profile around singular points. Finally, in an appropriate class of domains and boundary data we obtain qualitative properties of the biaxial surfaces, showing that smooth minimizers exibit torus structure, as predicted in [16, 24, 25, 39].

Publié le :
DOI : 10.5802/afst.1676
Mots clés : Liquid crystals; axisymmetric torus solutions; harmonic maps
Adriano Pisante 1

1 Dipartimento di Matematica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2021_6_30_2_301_0,
     author = {Adriano Pisante},
     title = {Torus-like solutions for the {Landau{\textendash}De} {Gennes} model.},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {301--326},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {2},
     year = {2021},
     doi = {10.5802/afst.1676},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1676/}
}
TY  - JOUR
AU  - Adriano Pisante
TI  - Torus-like solutions for the Landau–De Gennes model.
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 301
EP  - 326
VL  - 30
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1676/
DO  - 10.5802/afst.1676
LA  - en
ID  - AFST_2021_6_30_2_301_0
ER  - 
%0 Journal Article
%A Adriano Pisante
%T Torus-like solutions for the Landau–De Gennes model.
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 301-326
%V 30
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1676/
%R 10.5802/afst.1676
%G en
%F AFST_2021_6_30_2_301_0
Adriano Pisante. Torus-like solutions for the Landau–De Gennes model.. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 30 (2021) no. 2, pp. 301-326. doi : 10.5802/afst.1676. https://afst.centre-mersenne.org/articles/10.5802/afst.1676/

[1] Jr. Almgren; Elliot H. Lieb Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds, Ann. Math., Volume 128 (1988) no. 3, pp. 483-530 | DOI | MR | Zbl

[2] Paul Baird; John C. Wood Harmonic morphisms between Riemannian Manifolds, London Mathematical Society Monographs, 29, London Mathematical Society, 2003 | MR | Zbl

[3] John M. Ball Liquid crystals and their defects, Mathematical thermodynamcis of complex fluids (Cetraro, Italy, June 2015) (Lecture Notes in Mathematics), Volume 2200, Springer, 2017, pp. 1-46 | DOI | MR

[4] John M. Ball; Arghir Zarnescu Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., Volume 202 (2011) no. 2, pp. 493-535 | DOI | MR | Zbl

[5] Haïm Brézis; Jean-Michel Coron; Elliot H. Lieb Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986), pp. 649-705 | DOI | MR | Zbl

[6] Eugenio Calabi Minimal immersions of surfaces in Euclidean spheres, J. Differ. Geom., Volume 1 (1967), pp. 111-125 | MR | Zbl

[7] Sun-Yung A. Chang; Lihe Wang; Paul C. Yang Regularity of harmonic maps, Commun. Pure Appl. Math., Volume 52 (1999) no. 9, pp. 1099-1111 | DOI | MR

[8] Andres Contreras; Xavier Lamy Biaxial escape in nematics at low temperature, J. Funct. Anal., Volume 272 (2017) no. 10, pp. 3987-3997 | DOI | MR | Zbl

[9] G. De Luca; A. D. Rey Point and ring defects in nematics under capillary confinement, J. Chem. Phys., Volume 127 (2007), 104902 | DOI

[10] Federico Dipasquale; Vincent Millot; Adriano Pisante Torus-like solutions for the Landau–De Gennes model. Part II: topology of S 1 -equivariant minimizers (https://arxiv.org/abs/2008.13676)

[11] Federico Dipasquale; Vincent Millot; Adriano Pisante Torus-like solutions for the Landau–De Gennes model. Part III: torus solutions vs split solutions (in preparation)

[12] Federico Dipasquale; Vincent Millot; Adriano Pisante Torus like solutions for the Landau–De Gennes model. Part I: The Lyuksyutov regime, Arch. Ration. Mech. Anal., Volume 239 (2021), pp. 599-678 | DOI | MR | Zbl

[13] Lawrence C. Evans Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 116 (1991) no. 2, pp. 101-113 | DOI | MR | Zbl

[14] Jr. Gartland Scaling and limits of Landau-de Gennes models for liquid crystals: a comment on some recent analytical papers, Math. Model. Anal., Volume 23 (2018), pp. 414-432 | DOI | MR

[15] Jr. Gartland; S. Mkaddem Instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes free-energy models, Phys. Rev. E, Volume 59 (1999), pp. 563-567 | DOI

[16] Jr. Gartland; S. Mkaddem Fine structure of defects in radial nematic droplets, Phys. Rev. E, Volume 62 (2000), pp. 6694-6705

[17] Pierre-Gilles de Gennes; J. Prost The Physics of Liquid Crystals, International Series of Monographs on Physics, 83, Clarendon Press, 1993

[18] Robert Hardt; David Kinderlehrer; Fang-Hua Lin Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys., Volume 105 (1986), pp. 547-570 | DOI | MR | Zbl

[19] Robert Hardt; Fang-Hua Lin A remark on H 1 mappings, Manuscr. Math., Volume 56 (1986), pp. 1-10 | DOI | Zbl

[20] Duvan Henao; Apala Majumdar; Adriano Pisante Uniaxial versus biaxial character of nematic equilibria in three dimensions, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2, 55, 22 pages | MR | Zbl

[21] Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3390-3425 | DOI | MR | Zbl

[22] Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 2, pp. 633-673 | DOI | MR | Zbl

[23] M. Kléman Defects in liquid crystals, Rep. Prog. Phys., Volume 52 (1989), pp. 267-311 | DOI | MR

[24] Samo Kralj; Epifanio G. Virga Universal fine structure of nematic hedgehogs, J. Phys. A, Math. Gen., Volume 34 (2001) no. 4, pp. 829-838 | DOI | MR | Zbl

[25] Samo Kralj; Epifanio G. Virga; S. Žumer Biaxial torus around nematic point defects, Phys. Rev. E, Volume 60 (1999), pp. 1858-1866 | DOI

[26] Xavier Lamy Uniaxial symmetry in nematic liquid crystals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 5, pp. 1125-1144 | DOI | Numdam | MR | Zbl

[27] Defects in Liquid Crystals: Computer Simulations, Theory and Experiments (Oleg D. Lavrentovich; Paolo Pasini; Claudio Zannoni; Slobodan Žumer, eds.), NATO Science Series II: Mathematics, Physics and Chemistry, 43, Springer, 2012

[28] Jr. Lawson Surfaces minimales et la construction de Calabi-Penrose, Séminaire Bourbaki 1983/84 (Astérisque), Volume 121-122, Société Mathématique de France, 1985, pp. 197-211 | Numdam | Zbl

[29] Luc Lemaire Applications harmoniques de surfaces Riemanniennes, J. Differ. Geom., Volume 13 (1978), pp. 51-78 | MR | Zbl

[30] Fang-Hua Lin On nematic liquid crystals with variable degree of orientation, Commun. Pure Appl. Math., Volume 44 (1991) no. 4, pp. 453-468 | MR | Zbl

[31] Fang-Hua Lin; Changyou Wang The analysis of harmonic maps and their heat flows, World Scientific, 2008 | Zbl

[32] Stanisław Łojasiewicz Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles (Paris, 1962) (Colloques internat.), Volume 117, Éditions du Centre National de la Recherche Scientifique, 1962, pp. 87-89 | Zbl

[33] Stephan Luckhaus Partial Hölder Continuity for Minima of Certain Energies among Maps into a Riemannian Manifold, Indiana Univ. Math. J., Volume 37 (1988) no. 2, pp. 349-367 | DOI | Zbl

[34] Igor F. Lyuksyutov Topological instability of singularities at small distances in nematics, Zh. Eksp. Teor. Fiz, Volume 75 (1978), pp. 358-360 | MR

[35] Apala Majumdar The radial-hedgehog solution in Landau-de Gennes theory for nematic liquid crystals, Eur. J. Appl. Math., Volume 23 (2012) no. 1, pp. 61-97 | DOI | MR | Zbl

[36] Apala Majumdar; Arghir Zarnescu Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond, Arch. Ration. Mech. Anal., Volume 196 (2010) no. 1, pp. 227-280 | DOI | MR | Zbl

[37] Charles Bradfield jun. Morrey Multiple integrals in the calculus of variations, Grundlehren der Mathematischen Wissenschaften, 130, Springer, 1966 | MR | Zbl

[38] Nigel J. Mottram; Christopher J. P. Newton Introduction to Q-tensor theory (2014) (https://arxiv.org/abs/1409.3542)

[39] E. Penzenstadler; H.-R. Trebin Fine structure of point defects and soliton decay in nematic liquid crystals, J. Phys. France, Volume 50 (1989), pp. 1027-1040 | DOI

[40] C. Scheven Variationally harmonic maps with general boundary conditions: boundary regularity, Calc. Var. Partial Differ. Equ., Volume 25 (2006) no. 4, pp. 409-429 | DOI | MR | Zbl

[41] Richard M. Schoen Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983) (Mathematical Sciences Research Institute Publications), Volume 2, Springer, 1983, pp. 321-358 | DOI | MR | Zbl

[42] Richard M. Schoen; Karen Uhlenbeck A regularity theory for harmonic maps, J. Differ. Geom., Volume 17 (1982), pp. 307-335 | MR | Zbl

[43] Richard M. Schoen; Karen Uhlenbeck Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983), pp. 253-268 | MR | Zbl

[44] Richard M. Schoen; Karen Uhlenbeck Regularity of minimizing harmonic maps into the sphere, Invent. Math., Volume 78 (1984), pp. 89-100 | DOI | MR | Zbl

[45] Leon Simon Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Mathematics, Birkhäuser, 2012 | Zbl

[46] Epifanio G. Virga Variational theories for liquid crystals, Applied Mathematics and Mathematical Computation, 8, CRC Press, 1995 | Zbl

Cité par Sources :