We give an example of an extension of two dimensional regular local rings in a tower of two independent defect Artin–Schreier extensions for which strong local monomialization does not hold.
Nous donnons un exemple d’extension d’anneaux locaux réguliers à deux dimensions dans une tour de deux extensions d’Artin–Schreier de défauts indépendants pour lesquelles la monomialisation locale forte ne tient pas.
Accepted:
Published online:
Keywords: valuation, positive characteristic, defect, strong monomialization
Steven Dale Cutkosky 1

@article{AFST_2024_6_33_4_915_0, author = {Steven Dale Cutkosky}, title = {A counterexample to strong local monomialization in a tower of two independent defect {Artin{\textendash}Schreier} extensions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {915--935}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 33}, number = {4}, year = {2024}, doi = {10.5802/afst.1790}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1790/} }
TY - JOUR AU - Steven Dale Cutkosky TI - A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2024 SP - 915 EP - 935 VL - 33 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1790/ DO - 10.5802/afst.1790 LA - en ID - AFST_2024_6_33_4_915_0 ER -
%0 Journal Article %A Steven Dale Cutkosky %T A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2024 %P 915-935 %V 33 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1790/ %R 10.5802/afst.1790 %G en %F AFST_2024_6_33_4_915_0
Steven Dale Cutkosky. A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 4, pp. 915-935. doi : 10.5802/afst.1790. https://afst.centre-mersenne.org/articles/10.5802/afst.1790/
[1] On the valuations centered in a local domain, Am. J. Math., Volume 78 (1956), pp. 321-348 | DOI | MR | Zbl
[2] Local factorization and monomialization of morphisms, Astérisque, 260, Société Mathématique de France, 1999, 149 pages | Numdam | Zbl
[3] Monomialization of Morphisms from 3 Folds to Surfaces, Lecture Notes in Mathematics, 1786, Springer, 2002, v+235 pages | DOI | MR
[4] Counterexamples to local monomialization in positive characteristic, Math. Ann., Volume 362 (2015) no. 1-2, pp. 321-334 | DOI | MR | Zbl
[5] The role of defect and splitting in finite generation of extensions of associated graded rings along a valuation, Algebra Number Theory, Volume 11 (2017) no. 6, pp. 1461-1488 | DOI | MR | Zbl
[6] Erratic birational behavior of mappings in positive characteristic, Math. Nachr., Volume 296 (2023) no. 11, pp. 5123-5156 | DOI | MR | Zbl
[7] On the construction of valuations and generating sequences, Algebr. Geom., Volume 8 (2021) no. 6, pp. 705-748 | DOI | MR | Zbl
[8] Ramification of Valuations, Adv. Math., Volume 183 (2004) no. 1, pp. 1-79 | DOI | MR | Zbl
[9] Valuation semigroups of two dimensional local rings, Proc. Lond. Math. Soc., Volume 108 (2014) no. 2, pp. 350-384 | DOI | MR | Zbl
[10] Dependent Artin-Schreier defect extensions and strong monomialization, J. Pure Appl. Algebra, Volume 220 (2016) no. 4, pp. 1331-1342 | DOI | MR | Zbl
[11] Valuation Theory, Universitext, Springer, 1972, xii+243 pages | DOI | MR | Zbl
[12] Valuation theoretic and model theoretic aspects of local uniformization, Resolution of singularities. A research textbook in tribute to Oscar Zariski (Progress in Mathematics), Volume 181, Birkhäuser, 2000, pp. 381-456 | Zbl
[13] A classification of Artin Schreier defect extensions and characterizations of defectless fields, Ill. J. Math., Volume 54 (2010) no. 2, pp. 397-448 | MR | Zbl
[14] Higher ramification groups for Artin-Schreier defect extensions, 2012 (manuscript)
[15] The valuation theory of deeply ramified fields and its connection with defect extensions, Trans. Am. Math. Soc., Volume 376 (2023) no. 4, pp. 2693-2738 | MR | Zbl
[16] Key polynomials and pseudo convergent sequences, J. Algebra, Volume 495 (2018), pp. 199-219 | DOI | MR | Zbl
[17] On the Jung method in positive characteristic, Ann. Inst. Fourier, Volume 53 (2003) no. 4, pp. 1237-1258 (Proceedings of the International Conference in Honor of Frédéric Pham) | DOI | Numdam | MR | Zbl
[18] Valuations in function fields of surfaces, Am. J. Math., Volume 112 (1990) no. 1, pp. 107-156 | DOI | MR | Zbl
[19] Famille admissible de valuations et défaut d’une extension, J. Algebra, Volume 311 (2007) no. 2, pp. 859-876 | DOI | MR | Zbl
[20] Commutative algebra. Vol. I, The University Series in Higher Mathematics, D. van Nostrand Company, 1958, xi+329 pages | Zbl
[21] Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. van Nostrand Company, 1960, x+414 pages | DOI | MR | Zbl
Cited by Sources: