A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 4, pp. 915-935.

We give an example of an extension of two dimensional regular local rings in a tower of two independent defect Artin–Schreier extensions for which strong local monomialization does not hold.

Nous donnons un exemple d’extension d’anneaux locaux réguliers à deux dimensions dans une tour de deux extensions d’Artin–Schreier de défauts indépendants pour lesquelles la monomialisation locale forte ne tient pas.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1790
Classification: 14B05, 14B25, 13A18
Keywords: valuation, positive characteristic, defect, strong monomialization

Steven Dale Cutkosky 1

1 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2024_6_33_4_915_0,
     author = {Steven Dale Cutkosky},
     title = {A counterexample to strong local monomialization in a tower of two independent defect {Artin{\textendash}Schreier} extensions},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {915--935},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 33},
     number = {4},
     year = {2024},
     doi = {10.5802/afst.1790},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1790/}
}
TY  - JOUR
AU  - Steven Dale Cutkosky
TI  - A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2024
SP  - 915
EP  - 935
VL  - 33
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1790/
DO  - 10.5802/afst.1790
LA  - en
ID  - AFST_2024_6_33_4_915_0
ER  - 
%0 Journal Article
%A Steven Dale Cutkosky
%T A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2024
%P 915-935
%V 33
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1790/
%R 10.5802/afst.1790
%G en
%F AFST_2024_6_33_4_915_0
Steven Dale Cutkosky. A counterexample to strong local monomialization in a tower of two independent defect Artin–Schreier extensions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 33 (2024) no. 4, pp. 915-935. doi : 10.5802/afst.1790. https://afst.centre-mersenne.org/articles/10.5802/afst.1790/

[1] Shreeram Abhyankar On the valuations centered in a local domain, Am. J. Math., Volume 78 (1956), pp. 321-348 | DOI | MR | Zbl

[2] Steven Dale Cutkosky Local factorization and monomialization of morphisms, Astérisque, 260, Société Mathématique de France, 1999, 149 pages | Numdam | Zbl

[3] Steven Dale Cutkosky Monomialization of Morphisms from 3 Folds to Surfaces, Lecture Notes in Mathematics, 1786, Springer, 2002, v+235 pages | DOI | MR

[4] Steven Dale Cutkosky Counterexamples to local monomialization in positive characteristic, Math. Ann., Volume 362 (2015) no. 1-2, pp. 321-334 | DOI | MR | Zbl

[5] Steven Dale Cutkosky The role of defect and splitting in finite generation of extensions of associated graded rings along a valuation, Algebra Number Theory, Volume 11 (2017) no. 6, pp. 1461-1488 | DOI | MR | Zbl

[6] Steven Dale Cutkosky Erratic birational behavior of mappings in positive characteristic, Math. Nachr., Volume 296 (2023) no. 11, pp. 5123-5156 | DOI | MR | Zbl

[7] Steven Dale Cutkosky; Hussein Mourtada; Bernard Teissier On the construction of valuations and generating sequences, Algebr. Geom., Volume 8 (2021) no. 6, pp. 705-748 | DOI | MR | Zbl

[8] Steven Dale Cutkosky; Olivier Piltant Ramification of Valuations, Adv. Math., Volume 183 (2004) no. 1, pp. 1-79 | DOI | MR | Zbl

[9] Steven Dale Cutkosky; Pham An Vinh Valuation semigroups of two dimensional local rings, Proc. Lond. Math. Soc., Volume 108 (2014) no. 2, pp. 350-384 | DOI | MR | Zbl

[10] Samar ElHitti; Laura Ghezzi Dependent Artin-Schreier defect extensions and strong monomialization, J. Pure Appl. Algebra, Volume 220 (2016) no. 4, pp. 1331-1342 | DOI | MR | Zbl

[11] Otto Endler Valuation Theory, Universitext, Springer, 1972, xii+243 pages | DOI | MR | Zbl

[12] Franz-Viktor Kuhlmann Valuation theoretic and model theoretic aspects of local uniformization, Resolution of singularities. A research textbook in tribute to Oscar Zariski (Progress in Mathematics), Volume 181, Birkhäuser, 2000, pp. 381-456 | Zbl

[13] Franz-Viktor Kuhlmann A classification of Artin Schreier defect extensions and characterizations of defectless fields, Ill. J. Math., Volume 54 (2010) no. 2, pp. 397-448 | MR | Zbl

[14] Franz-Viktor Kuhlmann; Olivier Piltant Higher ramification groups for Artin-Schreier defect extensions, 2012 (manuscript)

[15] Franz-Viktor Kuhlmann; Anna Rzepka The valuation theory of deeply ramified fields and its connection with defect extensions, Trans. Am. Math. Soc., Volume 376 (2023) no. 4, pp. 2693-2738 | MR | Zbl

[16] Josnei Novacoski; Mark Spivakovsky Key polynomials and pseudo convergent sequences, J. Algebra, Volume 495 (2018), pp. 199-219 | DOI | MR | Zbl

[17] Olivier Piltant On the Jung method in positive characteristic, Ann. Inst. Fourier, Volume 53 (2003) no. 4, pp. 1237-1258 (Proceedings of the International Conference in Honor of Frédéric Pham) | DOI | Numdam | MR | Zbl

[18] Mark Spivakovsky Valuations in function fields of surfaces, Am. J. Math., Volume 112 (1990) no. 1, pp. 107-156 | DOI | MR | Zbl

[19] Michel Vaquié Famille admissible de valuations et défaut d’une extension, J. Algebra, Volume 311 (2007) no. 2, pp. 859-876 | DOI | MR | Zbl

[20] Oscar Zariski; Pierre Samuel Commutative algebra. Vol. I, The University Series in Higher Mathematics, D. van Nostrand Company, 1958, xi+329 pages | Zbl

[21] Oscar Zariski; Pierre Samuel Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. van Nostrand Company, 1960, x+414 pages | DOI | MR | Zbl

Cited by Sources: