@article{AFST_1990_5_11_2_67_0, author = {A. Benkirane}, title = {Approximations de type {Hedberg} dans les espaces $W^m L \log L\left( \Omega \right)$ et applications}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {67--78}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {5e s{\'e}rie, 11}, number = {2}, year = {1990}, doi = {10.5802/afst.703}, zbl = {0731.46016}, language = {fr}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.703/} }
TY - JOUR TI - Approximations de type Hedberg dans les espaces $W^m L \log L\left( \Omega \right)$ et applications JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1990 DA - 1990/// SP - 67 EP - 78 VL - 5e s{\'e}rie, 11 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.703/ UR - https://zbmath.org/?q=an%3A0731.46016 UR - https://doi.org/10.5802/afst.703 DO - 10.5802/afst.703 LA - fr ID - AFST_1990_5_11_2_67_0 ER -
%0 Journal Article %T Approximations de type Hedberg dans les espaces $W^m L \log L\left( \Omega \right)$ et applications %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1990 %P 67-78 %V 5e s{\'e}rie, 11 %N 2 %I Université Paul Sabatier %C Toulouse %U https://doi.org/10.5802/afst.703 %R 10.5802/afst.703 %G fr %F AFST_1990_5_11_2_67_0
A. Benkirane. Approximations de type Hedberg dans les espaces $W^m L \log L\left( \Omega \right)$ et applications. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 11 (1990) no. 2, pp. 67-78. doi : 10.5802/afst.703. https://afst.centre-mersenne.org/articles/10.5802/afst.703/
[1] Sobolev spaces, Acad. Press (1975) | MR: 450957 | Zbl: 0314.46030
) .-[2] On the Orlicz-Sobolev Imbedding theorem, J. Func. Analysis, 24 (1977) pp. 241-257 | MR: 430770 | Zbl: 0344.46077
) .-[3] Potentiel de Riesz et problèmes elliptiques dans les espaces d'Orlicz, Thèse de Doctorat, Université libre de Bruxelles (1988)
) . -[4] An approximation theorem in higher order Orlicz-Sobolev spaces and applications, Studia Math., 92 (1989) pp. 231-255 | MR: 985555 | Zbl: 0684.46030
) and ) .-[5] Some properties of higher-order Sobolev spaces, J. Math. Pures Appl., 61 (1982) pp. 245-259 | MR: 690395 | Zbl: 0512.46034
) et ) .-[6] Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal., 8 (1971) pp. 52-75 | MR: 301500 | Zbl: 0216.15702
) and ) .-[7] Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Soc., 190 (1974) pp. 163-2?? | MR: 342854 | Zbl: 0239.35045
) .-[8] Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74 (1982) pp. 17-24 | MR: 675429 | Zbl: 0503.46018
) . -[9] A strongly non linear elliptic boundary value problem, in Orlicz-Sobolev spaces Proc. Sympos. Pure. Math., 45, Amer. Math. Soc. (1986) pp. 455-462 | MR: 843579 | Zbl: 0602.35037
) .-[10] Two approximation properties in functions spaces, Ark. Math., 16 (1978) pp. 51-81 | Zbl: 0399.46023
) . -[11] Approximation in Sobolev spaces and non linear potential theory, Proc. symp. Pur. Math. Amer. Math. Soc., 45 (1986) pp. 473-480 | MR: 843581 | Zbl: 0626.46022
) .-[12] Convex fonctions and Orlicz spaces, Noordhoff (1961)
) .-[13] Fractional intégration in Orlicz spaces, Trans. Amer. Math. Soc. 115 (1965) pp. 300-328 | MR: 194881 | Zbl: 0132.09201
) .-[14] Boundary value problems for strongly non linear elliptic equations, J. London Math. Soc. 21 (1980) pp. 123-132 | MR: 576188 | Zbl: 0438.35029
) . -Cited by Sources: