logo AFST

Some new existence results for the variable density Navier-Stokes equations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 2, pp. 185-204.
@article{AFST_1993_6_2_2_185_0,
     author = {Fern\'andez-Cara, Enrique and Guill\'en, Francisco},
     title = {Some new existence results for the variable density {Navier-Stokes} equations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {185--204},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 6, 2},
     number = {2},
     year = {1993},
     doi = {10.5802/afst.763},
     zbl = {0806.35135},
     mrnumber = {1253388},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.763/}
}
Enrique Fernández-Cara; Francisco Guillén. Some new existence results for the variable density Navier-Stokes equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 2, pp. 185-204. doi : 10.5802/afst.763. https://afst.centre-mersenne.org/articles/10.5802/afst.763/

[1] Antonzev (S.A.) and Kazhikhov (A.V.) .- Mathematical study of flows of nonhomogeneous fluids, Lectures at the University of Nobosibirsk (U.S.S.R.), 1973 (in russian).

[2] Di Perna (R.) and Lions (P.-L.) .- Ordinary differential equations transport theory and Sobolev spaces, Invent. Math. 98 (1989), pp. 511-547. | MR 1022305 | Zbl 0696.34049

[3] Fernández-Cara (E.) and Guillén (F.) .- The existence of nonhomogeneous, viscous and incompressible flow in unbounded domains, Comm. P.D.E. 17 (7 & 8) (1992), pp. 1253-1265. | Zbl 0767.35058

[4] Fiszon (W.) and Zajaczkowski (W.M.) .- Existence and uniqueness of solutions of the initial boundary value problem for the flow of a barotropic viscous fluid global in time, Arch. Mech. 35 (1983), pp. 517-532. | MR 765944 | Zbl 0559.76060

[5] Girault (V.) and Raviart (P.A.) . - Finite element methods for Navier-Stokes equations, Springer- Verlag, Berlin (1986). | MR 851383 | Zbl 0585.65077

[6] Guillén (F.) . - Thesis, University of Sevilla (1992).

[7] Kazhikhov (A.V.) . - Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk. 216 (1974), pp. 1008-1010.

[8] Kufner (A.) and al. .- Function Spaces, Noordhoff International Publishing Leyden (1977). | MR 482102 | Zbl 0364.46022

[9] Ladyzhenskaya (O.A.) .- The mathematical theory of viscous incompressible flow, Gordon & Breach, New York (1969). | Zbl 0184.52603

[10] Ladyzhenskaya (O.A.) and Solonnikov (V.A.) .- Unique solvablity of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids, J. Soviet. Math. 9 (1978), pp. 697-749. | Zbl 0401.76037

[11] Lions (J.-L.) . - Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthiers-Villars, Paris (1969). | MR 259693 | Zbl 0189.40603

[12] Lions (J.-L.) . - On some problems connected with Navier-Stokes equations, In "Nonlinear Evolution Equations", M.C. Crandall, ed. Academic Press, New York (1978). | MR 513812 | Zbl 0499.35090

[13] Lukaszewicz (G.) .- An existence theorem for compressible viscous and heat conducting fluids, Math. Meth. Appl. Sci. 6 (1984), pp. 234-247. | MR 751743 | Zbl 0567.76072

[14] Okamoto (H.) .- On the equation of nonstationary stratified fluid motion: uniqueness and existence of solutions, J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 30 (1984), pp. 615-643. | MR 731521 | Zbl 0596.76119

[15] Padula (M.) .- An existence theorem for nonhomogeneous incompressible fluids, Rend. Circ. Mat. Palermo (4), 31 ( 1982), pp. 119-124. | MR 664401 | Zbl 0485.76025

[16] Padula (M.) .- On the existence and uniqueness of nonhomogeneous motions in exterior domains, Math. Z. 203 (1990), pp. 581-604. | MR 1044066 | Zbl 0694.76016

[17] Simon (J.) . - Existencia de solución del problema de Navier-Stokes con densidad variable, Lectures in the University of Sevilla (1989).

[18] Simon (J.) .- Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure, SIAM J. Math. Anal. 21, n° 5 (1990), pp. 1093-1117. | MR 1062395 | Zbl 0702.76039

[19] Témam (R.) .- Navier-Stokes evaluations. Theory and numerical analysis, North-Holland, Amsterdam (1977). | MR 609732 | Zbl 0383.35057

[20] Valli (A.) and Zajacszkowski (W.M.) .- Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case, Comm. Math. Phys. 103 (1986), pp. 259-296. | Zbl 0611.76082