logo AFST
Spectral study of a self-adjoint operator on L 2 (Ω) related with a Poincaré type constant
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 5 (1996) no. 1, pp. 105-123.
@article{AFST_1996_6_5_1_105_0,
     author = {Maurice Gaultier and Mikel Lezaun},
     title = {Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a {Poincar\'e} type constant},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {105--123},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 6, 5},
     number = {1},
     year = {1996},
     doi = {10.5802/afst.821},
     zbl = {0869.35066},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.821/}
}
TY  - JOUR
TI  - Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a Poincaré type constant
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1996
DA  - 1996///
SP  - 105
EP  - 123
VL  - Ser. 6, 5
IS  - 1
PB  - Université Paul Sabatier
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.821/
UR  - https://zbmath.org/?q=an%3A0869.35066
UR  - https://doi.org/10.5802/afst.821
DO  - 10.5802/afst.821
LA  - en
ID  - AFST_1996_6_5_1_105_0
ER  - 
%0 Journal Article
%T Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a Poincaré type constant
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1996
%P 105-123
%V Ser. 6, 5
%N 1
%I Université Paul Sabatier
%C Toulouse
%U https://doi.org/10.5802/afst.821
%R 10.5802/afst.821
%G en
%F AFST_1996_6_5_1_105_0
Maurice Gaultier; Mikel Lezaun. Spectral study of a self-adjoint operator on $L^2 (\Omega )$ related with a Poincaré type constant. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 5 (1996) no. 1, pp. 105-123. doi : 10.5802/afst.821. https://afst.centre-mersenne.org/articles/10.5802/afst.821/

[1] Brézis (H.) .- Analyse fonctionnelle, Théorie et Applications. Masson, Paris (1983). | MR | Zbl

[2] Carnhan (B.), Luther (H.A.) and Wilker (J.O.) .- Applied Numerical Methods, John Wiley & Sons (1969). | Zbl

[3] Dautrey (R.) and Lions (J.-L.) .- Analyse Mathématiques et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris (1984). | MR | Zbl

[4] Gaultier (M.) and Lezaun (M.) .- An existence and uniqueness theorem for the transfer of mass and heat in a rectangular cavity, I.M.A. J. Appl. Math. 48 (1992), pp. 125-148. | MR | Zbl

[5] Grisvard (P.) .- Elliptic Problems in Nonsmooth Domains, Pitman, London (1985). | MR | Zbl

[6] Necas (J.) .- Les méthodes directes en théories des équations elliptiques, Masson, Paris (1967). | MR

[7] Teman (R.) .- Navier-Stokes Equations, North-Holland, Amsterdam (1977). | MR | Zbl

[8] Wang (Z.X.) and Guo (D.R.) .- Special functions, World Scientific Publishing Co., Singapore (1989). | MR | Zbl

[9] Watson (G.N.) .- A treatise on the theory of Bessel functions, 2nd ed., Cambridge University Press, London (1944). | MR | Zbl

Cited by Sources: