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The Joly–Becker theorem for ∗–orderings(∗)

Igor Klep(1), Dejan Velušček(2)

ABSTRACT. — We prove the ∗–version of the Joly–Becker theorem: a skew
field admits a ∗–ordering of level n iff it admits a ∗–ordering of level n�
for some (resp. all) odd � ∈ N. For skew fields with an imaginary unit
and fields stronger results are given: a skew field with imaginary unit that
admits a ∗–ordering of higher level also admits a ∗–ordering of level 1.
Every field that admits a ∗–ordering of higher level admits a ∗–ordering
of level 1 or 2.

RÉSUMÉ. — Nous démontrons la version involutive du théorème de Joly
et Becker : une algèbre à division admet un ordre involutif de niveau n si
et seulement si elle admet un ordre involutif de niveau n� pour un certain
(puis tout) impair � ∈ N. Dans le cas d’une algèbre à division avec une
unité imaginaire ou d’un corps commutatif, nous présentons des résultats
plus forts : si une algèbre à division avec unité imaginaire admet un ordre
involutif de niveau supérieur, elle admet aussi un ordre involutif de niveau
1. Tout corps admettant un ordre involutif de niveau supérieur admet un
ordre involutif de niveau 1 ou 2.

An old theorem due to Joly [Jo] states that for a field K the following
are equivalent: −1 �∈

∑
K2 and −1 �∈

∑
K2n for some (resp. all) n ∈ N.

Equivalently, in the terminology of Becker [Be, BHR], a field K admits an
ordering of level 1 iff it admits an ordering of level n for some (resp. all)
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n ∈ N. This result fails for orderings on skew fields and ∗–orderings on
(skew) fields [Ci1, Ci2, KV1], but a variant of it still holds true: a skew
field admits an ordering of level n iff it admits an ordering of level n� for
some (resp. all) odd � ∈ N [Ci1, KV1]. The aim of this paper is to prove the
corresponding result for ∗–orderings on skew fields. Furthermore, this result
is improved for skew fields containing a central skew element i satisfying
i2 = −1 (an imaginary unit): such a skew field admits a ∗–ordering of level
1 iff it admits a ∗–ordering of level n for some (resp. all) n ∈ N. All this is
done in Section 2 after a preparatory Section 1. In the last section we show
that a field admits a ∗–ordering of higher level iff it admits a ∗–ordering of
level 1 or 2.

1. Introduction and basic definitions

We recall some definitions needed in the sequel. Let D be a skew ∗–field
and G a cyclic group. Let 0 �∈ G and G0 := G∪ {0}. As usual, we endow D
with two nonassociative multiplications, [a, b] := ab−ba and {a, b} := ab+ba
for a, b ∈ D. A map σ: SymD → G0 is a ∗–signature of level m if

(S1) σ(−1) = −1,

(S2) σ
(
{s, t}

)
= σ(s)σ(t) for all s, t ∈ SymD,

(S3) σ(rsr∗) = σ(s)σ(rr∗) for all s ∈ SymD and r ∈ D,

(S4) σ
(
(rr∗)m

)
= 1 for all r ∈ D×,

(S5) σ−1(1) is closed under addition.

The positive cone Pσ := σ−1(1) ∪ {0} of the ∗–signature σ of level m is
called a ∗–ordering of level m. ∗–orderings of higher level were introduced
by Cimprič [Ci2]. This notion unifies the notions of orderings of higher level
(cf. [Be, BHR] for orderings of higher level of fields, [Cr1, Po1, Po2, KV1] for
orderings of higher level of skew fields) and ∗–orderings (cf. [Cr2, Cr3, Ho1,
Ho2] for the theory of ∗–orderings of skew fields and [CS, K, Ma1, Ma2]
for ∗–orderings of domains). Since ∗–orderings are in general not closed
under multiplication, one defines extended ∗–orderings: a pair (W, τ), where
W ⊆ D and τ :W → G0, is an extended ∗–signature of level m if

(ES1) SymD ⊆W and τ |Sym D is a ∗–signature of level m,

(ES2) if x ∈W then x∗ ∈W and τ(x) = τ(x∗),

(ES3) if x ∈W and d ∈ D then dxd∗ ∈W and τ(dxd∗) = τ(x)τ(dd∗),
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(ES4) if x, y ∈W then xy ∈W and τ(xy) = τ(x)τ(y),

(ES5) if x, y ∈W and τ(x) = τ(y) = 1, then x+ y ∈W and τ(x+ y) = 1.

Pτ := τ−1(1) ∪ {0} is called an extended ∗–ordering of level m. By [Ci2,
Theorem 3.1], every ∗–signature σ of level m of a skew field with imaginary
unit extends, that is, there exists an extended ∗–signature (W, τ) of level m
such that τ |Sym D = σ.

The Artin–Schreier theory for orderings of higher level was developed by
Becker [Be, BHR] in the commutative case and by Craven and Powers [Cr1,
Po1, Po2] in the noncommutative case. The corresponding theory for ∗–orde-
rings of level 1 is due to Marshall and is nicely presented in [Ma1]; Cimprič
extended this to ∗–orderings of higher level of skew fields with imaginary
unit in [Ci2]. In order to formulate Cimprič’s result, we need to introduce
a notion. Let D be a skew field with involution, assume n ∈ N is even and
let T s

n(D, ∗) be the set of all elements of the form (d1d
∗
1)

n/2 . . . (djd
∗
j )

n/2

c1 . . . ck, where d1, . . . , dj ∈ D×, c1, . . . , ck ∈ [D×, S×] and S = SymD.
T s

n(D, ∗) is the proper generalization of n–th powers (resp. n–th permuted
powers) in the field (resp. skew field) case. Thus we define the higher product
level psn(D, ∗) of a skew ∗–field D as follows: psn(D, ∗) = ∞ if −1 is not
a sum of nonzero elements from T s

n(D, ∗) and psn(D, ∗) = k if −1 is a sum
of k elements from T s

n(D, ∗) but is not a sum of less than k elements from
T s

n(D, ∗). The higher product level psn(D, ∗) is the analogue of the higher
product level psn(D) as studied in [CV]. We use

∑
T s

n(D, ∗) to denote the
set of all finite sums of elements from T s

n(D, ∗).

Theorem 1.1 (cf. Proposition 4.10 in [Ci2]). — Let D be a skew ∗–field
and n ∈ N even. Then psn(D, ∗) = ∞ iff D has an extended ∗–ordering of
level n/2.

In the sequel we will use some results concerning skew fields and the
higher product level psn(D), thus we introduce some additional notation:
Let

∏
nD denote the set of permuted products of n–th powers of elements

of D and let
∑(b)

B := {a1 + . . .+ ab | a1, . . . , ab ∈ B} for B ⊆ D.

2. Higher product levels of skew fields with involution

We start this section by proving that the relation between psn(D, ∗) and
psn�(D, ∗) for odd � is similar to the relation between the analogous higher
product levels in the noncommutative setting (Theorem 2.4 and Theorem
2.1).
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Theorem 2.1 (Compare Theorem 8 in [Ci1] or Corollary 18 in [KV1])
Let D be a skew ∗–field and n ∈ N even. If psn(D, ∗) <∞ then psn�(D, ∗) <
∞ for every odd �.

Lemma 2.2. — For every odd � and every n = 2k there exists bn� such
that for every skew ∗–field D, every s, t ∈ SymD and every i = 0, . . . , n− 1
there exist vi,0, . . . , vi,n−1 ∈

∑(bn�) T s
n�(D, ∗) such that (s + t)i� = vi,0s

i�

+ vi,1s
(i−1)�t� + . . . + vi,i−1s

�t(i−1)� + vi,it
i� + vi,i+1s

(n−1)�t(i+1)� + . . . +
vi,n−1s

(i+1)�t(n−1)�.

Proof. — Take any symmetric elements s, t ∈ D. By [CV, Lemma 4.2],
for every odd � and every n = 2k there exists an� such that for every
skew field D, every x, y ∈ D and every i = 0, . . . , n− 1 there exist elements
ui,0, . . . , ui,n−1 ∈

∑(an�)
∏

n�D satisfying (x+y)i� = ui,0x
i�+ui,1x

(i−1)�y�+
. . .+ui,i−1x

�y(i−1)�+ui,iy
i�+ui,i+1x

(n−1)�y(i+1)�+. . .+ui,n−1x
(i+1)�y(n−1)�.

Set x = 2 and y = {s−1, t}. On the left–hand side we get
(
2+{s−1, t}

)i� =
{s + t, s−1}i� = ci(s + t)i�s−i�, where ci is a sum of 2i� products of com-
mutators. On the right–hand side write {s−1, t}j� = ci,js

i�−j�tj�s−i�, where
ci,j is a sum of 2j� products of commutators for every j = 0, . . . , n − 1.
Since 2 ∈ Z(D) it follows from the proof of [CV, Lemma 4.2] that ui,j ∈∑(an�) Q(s−1t+ ts−1)n�. Hence,

ci(s+ t)i� = ui,0ci,0s
i� + ui,1ci,1s

(i−1)�t� + . . .+ +ui,ici,it
i�+

+ui,i+1ci,i+1s
−lt(i+1)� + . . .+ ui,n−1ci,n−1s

(i+1−n)�t(n−1)�.

Write vi,j = c−1
i ui,jci,j for j = 0, . . . , i, vi,j = c−1

i ui,jci,js
−n� for

j = i + 1, . . . , n and bn� = 22n�an�. It follows that vi,0, . . . , vi,n−1 ∈∑(bn�) T s
n�(D, ∗) and (s+ t)i� = vi,0s

i� +vi,1s
(i−1)�t� + . . .+vi,i−1s

�t(i−1)� +
vi,it

i� + vi,i+1s
(n−1)�t(i+1)� + . . .+ vi,n−1s

(i+1)�t(n−1)�. �

Remark 2.3. — From [CV, Lemma 2.1] we get

an� = G(n)max
{

25
(
n�+ 7

5

)
, (n�+ 1)u(4, n�)

}
,

where u(t, 2ms) = G(2ms)L(s, t)L(2s, t+ 1) · · ·L(2m−1s, t+ 1) for t,m ∈ N

and odd s ∈ N. Here the function L is defined by L(s, t) :=
(
t+ 2s− 1
t− 1

)
and G(m) stands for the m–th Waring number, i.e., the least number
k ∈ N, such that every positive integer is a sum of k m–th powers of positive
integers.
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Theorem 2.4. — For every n = 2k and every odd � ∈ N there exists dn�

such that psn�(D, ∗) � d
psn(D,∗)
n� for every skew field D.

Proof. — LetD be a skew ∗–field, t = psn(D, ∗) and p1, . . . , pt ∈ T s
n(D, ∗)

such that −1 = p1 + . . . + pt. Writing si = pi + p∗i for i = 1, . . . , t,
we get −1 = 1 + s1 + . . . + st. Pick r ∈ N such that 2r−1 � t < 2r

and write s0 = 1 and st+1 = . . . = s2r−1 = 0. It follows that −1 =
(s0 + s1 + . . .+ st + st+1 + . . .+ s2r−1)�.

For every i = 0, . . . , n−1 there exists the smallest number fi,r such that

(s0 + . . .+ s2r−1)i� ∈
(fi,r)∑

T s
n�(D, ∗) (†)

for every choice of p0, . . . , p2r−1 ∈ T s
n(D, ∗): since we can use Lemma 2.2

on the expression (†) recursively, it is enough to show that for every p ∈
T s

n(D, ∗) we have (p + p∗)j� ∈
∑(fj,0) T s

n�(D, ∗) for some fj,0 ∈ N. Observe
that p can be written in the form p = (dd∗)n/2c for some d ∈ D and some
product of commutators c ∈

∏
[D×,Sym (D)]. Hence,

(p+ p∗)j� =
(
(dd∗)n/2c+ c∗(dd∗)n/2

)j� =
(
(dd∗)n/2c+ (dd∗)n/2c̃

)j�

=
(
(dd∗)j

)�n/2(c+ c̃)j�c′,

where c̃, c′ ∈
∏

[D×,Sym (D)]. Clearly, (dd∗)j = d′(d′)∗ for some d′ ∈ D
and the expansion of (c + c̃)j� gives a sum of 2j� terms from T s

n�(D, ∗).
We conclude that there exists a fj,0 ∈ N such that sj�

0 = (p0 + p∗0)
j� ∈∑(fj,0) T s

n�(D, ∗).

Note that f0,r = 1 for every r and from Lemma 2.2 it follows that

fi,r � bn�

(
fi,r−1f0,r−1 + fi−1,r−1f1,r−1 + . . .+

+f0,r−1fi,r−1 + fn−1,r−1fi+1,r−1 + . . .+ fi+1,r−1fn−1,r−1

)
.

Writing Fr := maxi fi,r we get F0 � 2(n−1)� and Fr � nbn�F
2
r−1. Hence,

psn�(D, ∗) � Fr � (nbn�)2
r−1

(
2(n−1)�

)2r

� (nbn�2(n−1)�)2psn(D,∗).

Setting dn� := (nbn�2(n−1)�)2 finishes the proof. �

Proof of Theorem 2.1. — Observe that ∞ > ps2kq(D, ∗) � ps2k(D, ∗)
for every k, q ∈ N with q odd. Thus if n = 2kq and � ∈ N is odd, then
psn�(D, ∗) � d

ps2k (D,∗)
2kq�

< ∞ by Theorem 2.4. This concludes the proof.
�
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Corollary 2.5. — For n ∈ N the following assertions are equivalent :

(i) −1 �∈
∑
T s

2n(D, ∗).

(i’) There exists an extended ∗–ordering of level n of D.

(ii) −1 �∈
∑
T s

2n�(D, ∗) for some odd �.

(ii’) There exists an extended ∗–ordering of D of level n� for some odd �.

(iii) −1 �∈
∑
T s

2n�(D, ∗) for all odd �.

(iii’) There exists an extended ∗–ordering of D of level n� for all odd �.

For the rest of this section D will denote a skew ∗–field with an imag-
inary unit i and σ will be a ∗–signature of level m of D. The set A(σ) :=
{d ∈ D | ∃r ∈ Q>0 : σ(r ± dd∗) = 1} is an invariant valuation ∗–subring
of D with maximal ∗–ideal I(σ) := {d ∈ D | ∀r ∈ Q>0 : σ(r ± dd∗) = 1},
see [Ci2, Theorem 2.1]. Let k(σ) denote the residue skew ∗–field A(σ)/I(σ).
σ induces an archimedean ∗–ordering of level 1 of k(σ) and thus k(σ) is a
∗–ordered skew subfield of H by [Ho1]. The valuation corresponding to A(σ)
will be denoted by vσ:D → Γσ ∪ {∞} and ℘σ:D → k(σ)∪ {∞} will denote
the corresponding place. By [Ci2, Proposition 3.2], vσ is compatible with Pσ,
i.e., for all x, y ∈ Pσ we have vσ(x+ y) = min{vσ(x), vσ(y)}. Furthermore,
by [Ci2, Proposition 3.7], vσ is quasi–commutative for symmetric elements,
i.e., for every a, b ∈ SymD× we have

v(ab− ba) > v(ab) = v(ba). (∗)

By [Ho2, 4.1] or [Cr3, Theorem 2.3], this implies that (∗) holds for all a ∈
SymD× and b ∈ D×. We will prove that vσ is actually quasi–commutative,
i.e., (∗) holds for all a, b ∈ D×. This will be used to deduce a strong version
of Corollary 2.5 for skew fields with imaginary unit.

Proposition 2.6. — Every a ∈ D decomposes uniquely as a = a1 + i a2

for symmetric a1, a2 and vσ(a) = min{vσ(a1), vσ(a2)}.

Proof. — As D admits a ∗–signature, it is of characteristic 0. Thus we
may write x = x+x∗

2 + i x−x∗

2i . This proves the first assertion. For a = a1 +
i a2 with aj symmetric, we have vσ(a) � min{vσ(a1), vσ(a2)}. If vσ(a1) �=
vσ(a2), then vσ(a) = min{vσ(a1), vσ(a2)}. Thus, we may assume vσ(a1) =
vσ(a2).

As vσ is quasi–commutative for symmetric elements, vσ

(
{s, t}

)
= vσ(s)+

vσ(t) for all s, t ∈ SymD. This result also holds if only one of s, t is sym-
metric by the result of Holland mentioned above. Let s ∈ SymD satisfy
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vσ(s) = −vσ(a1). Clearly, {a, s} = {a1, s} + i {a2, s}. In other words, we
may assume vσ(a1) = vσ(a2) = 0.

We claim that vσ(a) = 0. Note that aa∗ = a2
1 +a2

2 + i [a2, a1]. Obviously,
vσ

(
[a2, a1]

)
> vσ(a2a1) = 0. So it suffices to prove that vσ(a2

1+a
2
2) = 0. Once

we have shown this, we get vσ(aa∗) = 0 and hence (as vσ is a ∗–valuation)
vσ(a) = 0.

The canonical place ℘σ maps SymD into R∪{∞}. Hence ℘σ(a1), ℘σ(a2) ∈
R×, so ℘σ(a2

1), ℘σ(a2
2) ∈ R>0. This implies ℘σ(a2

1 + a2
2) ∈ R>0. In particular,

vσ(a2
1 + a2

2) = 0, as desired. �

Theorem 2.7. — vσ is quasi–commutative and k(σ) is a ∗–ordered sub-
field of C.

Proof. — Let a, b ∈ D× be arbitrary. Write a = a1 + i a2 and b = b1 + i b2
for symmetric a1, a2, b1, b2. Then

ab− ba = (a1 + i a2)(b1 + i b2) − (b1 + i b2)(a1 + i a2) =
= (a1b1 − b1a1) + (b2a2 − a2b2) + i (a1b2 − b2a1) + i (a2b1 − b1a2).

Hence

vσ(ab− ba) � min
{
vσ(a1b1 − b1a1), vσ(b2a2 − a2b2),

vσ(a1b2 − b2a1), vσ(a2b1 − b1a2)
}
.

We now use the fact that vσ is quasi–commutative for symmetric elements
to get

vσ(ab− ba) > min
{
vσ(a1b1), vσ(a2b2), vσ(a1b2), vσ(a2b1)

}
=

= min{vσ(a1), vσ(a2)} + min{vσ(b1), vσ(b2)}.

By Proposition 2.6, the right–hand side of the last equation equals vσ(a) +
vσ(b) = vσ(ab). Hence vσ(ab− ba) > vσ(ab), as required. Now k(σ) is com-
mutative subfield of H and thus a ∗–ordered subfield of C. �

Corollary 2.8. — The following statements are equivalent :

(i) D admits a ∗–signature of level 1.

(ii) D admits a ∗–signature of level n for some n ∈ N.

(iii) D admits a ∗–signature of level n for all n ∈ N.
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Proof. — Implications (i) ⇒ (iii) ⇒ (ii) are clear. It remains to prove
(ii) ⇒ (i). For this let χ be a ∗–signature of level n of D. Then vχ is
a quasi–commutative valuation and k(χ) is a ∗–ordered subfield of C by
Theorem 2.7. Hence by [Cr2, Theorem 3.4], there is a bijection between
all ∗–signatures of level 1 of D compatible with vχ and {∗–orderings of
k(χ)} × Hom

(
Γχ/2Γχ, {−1, 1}

)
. In particular, there exists a ∗–signature of

level 1 of D. �

By [Ci2, Theorem 3.1], every ∗–signature of D extends to an extended
∗–signature of D. Hence:

Corollary 2.9. — The following statements are equivalent :

(i) ps2(D, ∗) <∞.

(ii) ps2n(D, ∗) <∞ for some n ∈ N.

(iii) ps2n(D, ∗) <∞ for all n ∈ N.

3. Fields with ∗–orderings of higher level

In this section we focus on fields. We first investigate the existence of
valuations compatible with ∗–orderings of higher level of fields. Cimprič
[Ci2, Theorem 2.1] showed that for a skew field with imaginary unit A(σ) is
an invariant ∗–valuation ring. For (skew) fields without an imaginary unit
the existence of a compatible valuation was left open.

Example 3.1 (Compare Example 2.2 in [Ci2]). — Consider the field
F := Q(

√
2)(X) with the involution given by (p(X) + q(X)

√
2)∗ = p(X) −

q(X)
√

2 for p, q ∈ Q(X). Clearly, SymF = Q(X), so every ∗–ordering of
higher level induces an ordering of higher level of Q(X).

Every nonzero q ∈ F can be written as q(X) = r(X)(X2 −2)k for r ∈ F
with r(

√
2) �= 0. Then σ(q) := sign(r(

√
2)) defines a ∗–signature of level 2

and induces an ordering of level 1 of Q(X). There is only one non–trivial
valuation of Q(X) compatible with this ordering. It is discrete and given by
v(r(X)(X2−2)k) = k. We claim that v cannot be extended to a ∗–valuation
of F . Assume otherwise and let u denote an extension. Since 2u(X−

√
2) =

u
(
(X −

√
2)(X −

√
2)∗) = v(X2 − 2) = 1, we have ℘u(X) = ℘u(

√
2). But

℘u(X) is symmetric and ℘u(
√

2) is skew. This contradicts the fact that u
is a ∗–valuation.

As observed in the last example, if σ is a ∗–signature of a field F , then
σ|SymF is a signature of higher level. Hence there is a natural valuation v of
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SymF compatible with σ|SymF . If F = SymF , then v is a ∗–valuation com-
patible with σ. Otherwise [F : SymF ] = 2 and there is a skew element ζ ∈ F
and {1, ζ} is a SymF–basis of F . Let us investigate under which conditions
v extends to a ∗–valuation u of F (which is automatically compatible with
σ). Set γ := v(ζ2).

Since v is a valuation of SymF , it extends to a valuation of F by Cheval-
ley’s extension theorem (see e.g. [E, §9]). Let E denote the set of all exten-
sions. For each u ∈ E we define the ramification index of u as eu := [Γu : Γv]
and the inertia degree of u as fu := [ku : kv]. Then by the fundamental in-
equality [E, §17]

[F : SymF ] �
∑
u∈E

eufu.

Thus there are at most two extensions of v. As F |SymF is a normal field
extension, we can use [E, (14.1)]. If u ∈ E , then u∗ defined as u∗(x) := u(x∗)
for x ∈ F is also in E . This shows that v extends to a ∗–valuation of F iff the
extension is unique. And in this case the extension cannot be immediate.
Furthermore, if such an extension u exists, it will satisfy

u(a1 + a2ζ) = min{v(a1), v(a2) + u(ζ)}

for a1, a2 ∈ SymF (see e.g. [KV2]).

Assume that γ �∈ 2Γv. In this case set Γu := Γv(γ/2) and extend the
ordering. Every a ∈ F× can be written uniquely as a = as + akζ with
as, ak symmetric. The extension u of v to F is unique and given by u(a) :=
min{v(as), v(ak) + γ/2}. By the above, u is a ∗–valuation.

Now assume γ ∈ 2Γv and let s ∈ SymF satisfy γ = v(s2). By replacing ζ
by ζs−1, we may assume v(ζ2) = 0. We distinguish two cases. If ℘v(ζ2) ∈ k2

v,
then let P̄ denote the ordering of kv induced by the ∗–ordering of F . Assume
v extends to a ∗–valuation u of F . Then the automorphism of ku induced
by the ∗–conjugation with ζ leaves P̄ invariant. But ζPζ∗ ⊆ −k2

vP̄ ⊆ −P̄ ,
a contradiction. For the final case, assume that ℘v(ζ2) �∈ k2

v. If there are
two extensions of v, they are necessarily immediate by the fundamental
inequality. Let u denote one of the extensions. Then ℘u(ζ) = ℘v(s) ∈ kv

for some s ∈ SymS. On the other hand, ℘v(ζ2) = ℘u(ζ2) = ℘v(s)2 ∈ k2
v, a

contradiction. It follows that the extension in this case is unique and is a
∗-valuation.

Proposition 3.2. — Let F be a field that admits a ∗–ordering of higher
level. Then F admits a ∗–ordering of level 1 or 2.
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Proof. — Let σ denote a ∗–signature of higher level of F . Then σ|SymF is
a signature of higher level. This implies (since SymF is a field) that SymF is
formally real, i.e., admits an ordering of level 1, by the classical Joly–Becker
theorem. Fix an ordering P of SymF . We claim that P is a ∗–ordering of
level 1 or 2.

For every a ∈ F , aa∗ ∈ SymF . If all these products are in P , then P is
a ∗–ordering of level 1. Otherwise (aa∗)2 ∈ P for all a ∈ F and so P is a
∗–ordering of level 2 of F . �

Corollaries 2.8 and 2.9 suggest that the upper bound of ps2n(D, ∗), n ∈
N, can be expressed in terms of ps2(D, ∗). We are able to give an explicit
upper bound in the case where D is commutative (Theorem 3.3), but not for
general skew ∗–fields with an imaginary unit. We present the commutative
case.

For the rest of the section assume that F is a ∗–field of characteris-
tic 0 containing an imaginary unit i. In this case the higher product level
ps2n(F, ∗) coincides with the higher hermitian level s2n(F, ∗), which is the
smallest t ∈ N such that −1 = (a1a

∗
1)

n + . . .+ (ata
∗
t )

n and equals infinity if
−1 is not a sum of hermitian 2n–th powers. We will give an upper bound
of s2n(F, ∗) expressed in terms of s2(F, ∗).

The proof of the next theorem will be omitted since it is quite straight-
forward generalization of Joly’s proof of [Jo, Theoreme 6.16], i.e., we use
the following result of Hilbert from 1909: For every r, n ∈ N there exist
λi ∈ Q>0 and cij ∈ Z (1 � i � L(r, n), 1 � j � n) such that

(x2
1 + . . .+ x2

n)r =
L(r,n)∑

i=1

λi(ci1x1 + . . .+ cinxn)2r.

Observe that by replacing xi’s with symmetric elements of F the expres-
sion ci1x1 + . . . + cinxn on the right–hand side of the equation becomes a
symmetric element of F .

Theorem 3.3. — Let t := s2(F, ∗) < ∞ and let k, � ∈ N with � odd.
Then

s2k�(F, ∗) � G(2k�)L(�, 2t)L(2�, 2t+ 1) · · ·L(2k−1�, 2t+ 1).

Proposition 3.2 shows that in the commutative case the absence of the
imaginary unit seems to affect only the connection between s2(F, ∗) and
s4k(F, ∗) for k ∈ N.
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Corollary 3.4. — For a ∗–field K of characteristic 0 the following
statements are equivalent :

(i) s4(K, ∗) <∞.

(ii) s4n(K, ∗) <∞ for some n ∈ N.

(iii) s2n(K, ∗) <∞ for all n ∈ N.

Remark 3.5. — By replacing s2(K, ∗) with s4(K, ∗)/2 in Theorem 3.3 we
get an explicit upper bound for s2k�(K, ∗) expressed in terms of s4(K, ∗).
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