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Exact asymptotics of nonlinear difference equations
with levels 1 and 1+®)

G.K. ITmming®

ABSTRACT. — We study a class of nonlinear difference equations admit-
ting a 1-Gevrey formal power series solution which, in general, is not 1-
(or Borel-) summable. Using right inverses of an associated difference op-
erator on Banach spaces of so-called quasi-functions, we prove that this
formal solution can be lifted to an analytic solution in a suitable domain of
the complex plane and show that this analytic solution is an accelero-sum
of the formal power series.

RESUME. — On étudie une classe d’équations aux différences finies, non-
linéaires, possédants une solution formelle en forme de série 1-Gevrey qui,
en général, n’est pas Borel-sommable. En utilisant des inverses a droite
d’un opérateur aux différences associé, définies sur des espaces Banach de
quasi-fonctions, on démontre qu’a la solution formelle peut étre associée,
de fagon unique, une solution analytique sur un domaine approprié, qui
est une accéléro-somme de la solution formelle.

1. Introduction

This paper is concerned with the summability of formal power series
solutions of certain nonlinear difference equations, i.e. with the existence
of analytic solutions, represented asymptotically by the formal solution in
some unbounded domain and characterized, in some way, by their asymp-
totic properties. We begin by discussing two very simple examples of linear
difference equations, which may be regarded as building blocks for the class
of equations considered below.

Ezxample 1.1. — The equation

y(z—&-l)—ay(z):g, a,be C*a#1 (1.1)

(*) Regu le 21/06,/2006, accepté le 24/09/2007.
(1) Faculty of Economics, University of Groningen, P.O. Box 800, 9700 AV Groningen,
g.k.immink@rug.nl
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G.K. Immink
is a difference equation of level 1. It has a formal power series solution

f =72, apz" with the property that |as| < A"h" for all h > 1, where
A is a positive constant, i.e. f is 1-Gevrey. Its formal Borel transform

o(t) =Bf )= Wt
h=1

has a positive radius of convergence. ¢ is the germ of a meromorphic func-
tion, to be denoted by the same symbol :

The directions «; = arg(—Log a + 2l7i), where Log denotes the principal
value of the logarithm and [ € Z, are so-called singular directions and the
directions —m/2 — oy, | € Z, are Stokes directions of (1.1). Let |a| < 1. The
Laplace integrals

(2e1 2e

e o0 € o0 b .
/ d(t)e P dt = / e '*dt, Re ze'* >0
0 0

et —a

with « € (qj—1, ), can be ‘glued together’ to yield an analytic solution y;
of (1.1) with asymptotic expansion f as z — oo in the (maximal) sector :

S1 = Une(ar_1,0n{7 : Re ze"* > 0},

uniformly on closed subsectors. This solution y; is called the 1-sum or Borel-
sum of f in a direction a € (ay—1, ), or on (ag—1, ). It is uniquely deter-
mined by its asymptotic properties in .S;. The difference of two ‘neighbour-
ing’ 1-sums is an exponential function of order 1 :

2mib olmi

1(2) = i(2) = o elbos a2l

The asymptotic behaviour of y; changes when we cross the Stokes ray with
direction —m/2 — «y, or the anti-Stokes ray with direction 7/2 — ;1.

Ezample 1.2. —
a b .
ye+1)-Sy) =2, abeC (1.2)

This is a difference equation of level 1T (cf. [2, 6, 7], the nonlinear case is
discussed in [8]). It has a formal power series solution f = > 7., apz™"
with the property that |as| < Ah(%)h for all h > 2, which we will call

lo,
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Exact asymptotics of nonlinear difference equations with levels 1 and 17

17-Gevrey. Its formal Borel transform has infinite radius of convergence and
defines an entire function with supra-exponential growth :

¢(t) = Bf (t) = be ™" exp(t + ac')

The so-called critical variable for the level 11 is zlogz, or any variable
() equivalent to it, in the sense that lim, .., ¥(z)(zlogz)~! = 1. The
formal Borel transform of f with respect to the critical variable ¢g(z) :=
zlog(ze') :

—h tg(z
Bl+9 27_” Zah/ ete )dwg( )

where 8 € R and U is a U-shaped contour, consisting of the half line from
—00 — 10 to § —id, the segment from § — i to § + i and the half line from
0 410 to —oo +1d, & > 0, converges for small positive ¢ and defines a quasi-
analytic function ¢y on the positive real axis, provided 6 # —Arg a + 2Iw
for any | € Z. (By Arg a we denote the value of arg a in (—m,n].) The
directions 0, = —Arg a + 2lw, | € Z, are called pseudo-Stokes directions.

The Laplace integrals
/ Pt —te(2) g

with 8 € (6,-1,0;), can be glued together to yield an analytic solution y; of
(2), represented asymptotically by f as z — oo in

Dy = Uae(al,l,el){z : Re ¢p(2) = c},

uniformly on subdomains of the type Uger{z : Re ¥y(z) = '}, where I is a
closed subinterval of (6;_1,6;) and ¢’ some sufficiently large positive number.
The functions y; satisfy certain generalized Gevrey conditions and can be
viewed as ‘1T-sum’ of f on Dy, as they are characterized by their asymptotic
properties in D;. Accordingly, the difference of two neighbouring 1+-sums
is an exponential function ‘of order 17’ :

2mibe™

yl+1( ) yl( ) T (Log a72l7ri)z1—\(z)71

= ~7los(ze"")(1+o(1) a5 2, 00 in Dy N Dy

uniformly on subdomains of the type Noeps,—s,6,+6112 : Re ¥o(2) = c5},
where § and cs > 0.
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Combining the equations in examples 1 and 2, we obtain the simplest
(and, admittedly, somewhat trivial) example of a difference equation with
levels 1 and 17 :

n(z+1) —ay(z) =2, a1,by € C*ay #1
(1.3)
Ya(z +1) — Rya(z) = bf, as, by € C*

Its formal solution f € C2[[z~!]] is 1-Gevrey, but not 1-summable in any di-
rection a € (—m/2,7/2). Nor is it multi-summable in any of these directions.
Its formal Borel transform ¢ = B f has a positive radius of convergence. ¢
can be continued analytically in any direction « # arg(—Log a; + 2lwi),
where [ € Z, but has supra-exponential growth. If 0 is not a singular direc-
tion of level 1, it can be accelerated to level 1T by means of a weak accel-
eration operator, which is an extension of a Laplace transformation (i.e. an
inverse (ordinary) Borel transformation), followed by a Borel transformation
with respect to the variable 1y(z). The accelerate ¢y defines a quasi-analytic
function on the positive real axis, provided 6 is not a pseudo-Stokes direction
of level 17 : § # 6, := —Arg ao + 2I7, for all | € Z. The Laplace transforms
in the variable 1y(z), of the functions ¢y, with § € (0;_1,6;), can be glued
together to yield an accelero-sum of the formal solution and a solution of
(1.3). This accelero-sum is a particular case of the (1,17 )-sum introduced in
[1], where it was proved that formal solutions of linear systems of difference
equations with levels 1 and 17 are (1,17)-summable on suitable domains,
provided 0 is not a singular direction of level 1. It is the purpose of the
present paper to extend this result to nonlinear systems of difference equa-
tions and lift the restrictive condition on the singular directions of level 1.
The equations we consider can be represented in the form

e(z,y(2),y(z +1)) =0 (1.4)

where ¢ is a C™-valued function, analytic in a neighbourhood of (c0,y0,%0),
yo € C™, or in a more general type of domain (cf. §3 for the exact con-
ditions). We assume that (1.4) possesses a formal power series solution
f= Yoo apz~ P with ag = yo and p € N, and that the (formal) dif-
ference operator obtained by linearization about the formal solution has no
levels < 1 (cf. §2.1 for more details).

In general, the accelero-sums of the formal solution are not character-
ized by their asymptotic expansion and the corresponding Gevrey type error
bounds, as the domain in which the asymptotic expansion is valid is usually
not large enough. Therefore, instead of considering individual solutions, we
work with so-called quasi-functions (introduced by Ramis in [12]). In our
case, these will be pairs of solutions, defined on overlapping domains and
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Exact asymptotics of nonlinear difference equations with levels 1 and 17

differing by an exponentially small function on the intersection of these
domains. Quasi-functions can in many ways be treated like ordinary func-
tions. In particular, they may satisfy Gevrey type conditions and admit
an asymptotic expansion, which is necessarily the same for each individual
function. If the union of the individual domains is sufficiently large, they
can, under some additional conditions, be characterized by the asymptotic
expansion. In this paper we prove that the equations considered here have
unique quasi-function solutions, which turn out to be accelero-sums of the
formal solution.

In the case that 0 is a singular direction of level 1, the singularities of
o = B f on the positive real axis present a problem, due to the fact that
the acceleration operator we would like to apply involves integration of ¢
along this axis. It turns out that these singularities can, in a certain sense,
be ‘circumvented’ or ‘regularized’ by replacing the ordinary formal Borel
transformation by a Borel transformation with respect to a variable ry(z)
defined by

Vo (2) ‘
=) e
ro(2) log z S log z’

where 6 is a suitable real number, different from 0. Note that r¢(z) is equiv-
alent to the variable z, as lim, ., 7¢(2)z71 = 1.

The domains considered in this paper are ‘right’ domains, invariant un-
der z — z+ 1. Analogous results can be derived for ‘left’ domains, invariant
under z — z — 1. As there exists a simple relation between results for the
two types of domains (cf. [5]), we restrict ourselves to domains of the first

type.

The paper is organized as follows. In §2.1 and §2.2 we introduce some
basic notions and summarize the main properties of the curves Cyp(z) (level
curves of Re 1) and the domains D;(z) and D;(z), which play a major role
in the theory, comparable to that of sectors of aperture < 7w and > m, re-
spectively, in problems of level 1 (the generic case). In §2.3 we define classes
of analytic functions admitting asymptotic expansions with prescribed error
bounds and recall some of their properties. §3 contains the main existence
results : Theorems 3.1 and 3.2. The first theorem is concerned with exis-
tence and uniqueness of Gevrey type solutions of (1.4), while the second
one deals with quasi-function solutions. Both theorems are based on the
existence of right inverses of the difference operator A€, on suitable Banach
spaces of analytic functions, or quasi-functions, respectively. The existence
of these right inverses is proved in §4.1 for ordinary functions and in §4.2
for quasi-functions. In §5 (Theorem 5.9) it is shown that the quasi-functions
in Theorem 3.2 consist of two accelero-sums of the formal solution.
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2. Preliminaries

2.1. Formal theory

By 7 we denote the ‘shift operator’, defined by
ry() = y(= + 1),
We use the same symbol for the automorphism of End(n,P), where
P = UpenCll=~7]][="/7],
defined by
T(21/P) = Z1/P i (1}/119) zh peN

h=0
Let A and B € Gl(n,P), and let A := A + Br. By a transformation

A~ (tF)'B7'AF (2.1)
with F' € Gl(n; P), A can be reduced to a canonical form (cf. [11, 5])
A =@l Af (2.2)

where
c .__ c c —1
A =1 —yi(z + Dyj(2) (2.3)

Y5 is an nj X n;- matrix function of the form
y5(z) = 24i%ehi i (2) ,Ci (2.4)

where d; € Q, u; € C, ¢;(2) is a polynomial in 21/P for some p € N, of
degree < p and without constant term if ¢; # 0, and Cj; is a Jordan block
of order n; : C; = N; +;1,,;, with eigenvalue v;, j = 1,...,m. The number
5 is determined up to a multiple of 274 and will be chosen such that

0<Im p; <27

Furthermore, we assume that ¢; = 0 for all j € {1,...,m} such that d; =
i; = 0. In that case, the equation has no levels less than 1. If there is a
J € {1,...,m} such that d; # 0, A is said to possess a level 1.

DEFINITION 2.1 (Gevrey conditions). — By Oy we denote the ring of 1-
Gevrey formal power series of the form Y o~ anz~"? where p € N. These

are characterized by the property that there exists a positive number A such
that, for all h > 1,

lan| < APh¥.
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 DEFINITION 2.2 (Stokes directions). — Let A = A+ Br, where A and
B € Gl(n,P). Suppose that A has a canonical form A€, with blocks AS of
the form (2.3). The directions m/2 — arg(p; + 2{mi), where j € {1,...,m}
such that d; =0, 1 € Z, 1 # 0 if p; = 0, are the Stokes directions ofA of
level 1. By ©F(A) we denote the following set :

Of(A)={#ecR:d;jd = Im p; mod 2r for some j € {1,...,m}

such that +d; > 0}.

We call the elements of O(A) := Ot(A)U O~ (A) the pseudo-Stokes direc-
tions of A, of level 17.
Note that ©(A) = O(A) = U™, O(A9).

Remark 2.5. — In ‘right’ domains, invariant under z — z+1, the pseudo-
Stokes directions belonging to ©1(A) may be disregarded, whereas in do-
mains invariant under z +— z — 1 the same is true of the pseudo-Stokes

directions belonging to ©~ (A).

2.2. Domains
By St we denote the sector
Sy = {z |arg 2| < 7}
of the Riemann surface of the logarithm. Let 0 € R, z € S, and
Ye(z) := z(log z + i6)

We consider two types of domains : Dy(z) and Dy (z), which play a crucial
role, similar to sectors of aperture < m and > 7, respectively, in problems
of level 1. Each domain contains a sector of the form {z € S; : |argz| <
w/2 =9, |z| > R} for every 0 € (0,7/2) and some sufficiently large R, and
is bounded by curves with limiting directions /2.

DEFINITION 2.4. — Let z € Sy such that Rey(z) > 1/e+10|. By Cy(z)
we denote the level curve of Re vy through z :

Co(z) ={¢ € 54+ Repy(C) = Re vg(2)}
In particular, if R > 0, such that Rlog R > 1/e + |0
Co(R) ={z € S; : Re (zlogz +1i0z) = Rlog R}
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We define Cy (z) and Cy (2) by
CF(2) ={C€Cy(2): % Im (¢ — 2) > 0}.

For all R > 0 such that Rlog R > 1/e+0|, C4 (R) is contained in the sector
{z € S :Jargz| < m/2,|2| > 1} iff 0 > —n/2 and Cy (R) is contained in
this sector iff 0 < w/2 (cf. Figure 1).

By Dy(z) we denote the domain

Do(2) :=={C € S¢ : Re ¢o(C) > Re ¢o(2)}.

Let I be a finite interval of R, 61 = inf I and 0, = supI. Let z € Sy and
suppose that Re vg(z) > 1/e + 10| for all € I. By D;(z) we denote the
domain

D[(Z) = OQGIDQ(Z) = Dy, (Z) N Do, (Z)
and by Dy(z)
5[(2’) = Ugeng(Z).
By R; we denote the positive number such that

RrlogRr =1/e+sup{|f|: 0 € I'}.

20
6l el C_,s\g C_10) CL, (19

12

T

4+

-8t

1ol 7

-6 -12 -8 -4 0 4 8 12 16 20

Figure 1. — Examples of Cy(R) for various values of § and R = 10
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Remark 2.5. — Dj(z) is a closed domain, bounded by C’;; (2) and Cy (2),
whereas D;(z) is bounded by Cy.(2) and Gy, (2) (cf. Figure 2). Di(z) is
open when I is open and closed when I is closed. Note that I C I’ implies
D[(Z) C D]/(Z), but D]/(Z) C D[(Z)

The condition Re 9g(z) > 1/e + |0 ensures that |(| > 1 for all ( € Cy(z)
(ct. [9]).

Let I be a finite interval and z € Sy such that Re ¢p(z) > 1/e + |0]
for all @ € I. Then there exist positive numbers R and R’ such that
Rlog R = infger Re 19(2) and R'log R = supyc; Re 14(2), and we have :
Di(R) € Di(z) C D;(R) and D;(R') C D;(z) C D;(R). Conversely, let
¢ € (—m/2,7/2) be a fixed number and RlogR > 1/e + || for all 6 € I.
Since Re 1g(R"e'?) = R"log R” cos ¢(1+0(1)) as R — oo, uniformly on I,
there exists a positive number R such that infge; Re 19(R"e'?) > Rlog R.
This implies that D;(R"e**) c D;(R).

201

16

4t

-6}

Figure 2. — 5[,,“,%](6) is the large domain, bounded by C'~ . (6) and C’irﬂ (6)
1

For a detailed discussion of the curves Cy(z) the reader is referred to
[9]. Here we give a brief survey of those properties that will be needed here.
For all z € Sy such that Re ¢g(z) > 1/e + |0, Co(z) admits a parameter
representation of the form :

Co(z) ={¢(z) = p(x) + iz : z € R}.
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where z = Im ((x). It is easily seen that

||
log |z

p(x) = O(

) as || — oo

Putting arg {(z) = ¢(x), |¢(x)| = r(x) and Re 1y(z) = ¢(z) we have

o) = (50 25)

#(z) = r(z)/;((?j 12(;2(3;)) (26)

inf o(x) — —g and sup é(z) — g as ¢(z) — oo (2.7)
) = sinota) + ;20D cosoa) 23)

1< minr(z) = 102(5()2) (1+o(1)) as ¢(z) — 0o (2.9)

(cf. [9]). (2.6) shows that ¢'(x) > 0 whenever p(z) > 0. From (2.5), (2.7)
and (2.9) we infer that p’ < 0if § < —7/2 and p’ > 0 if § > 7/2, provided
¢(z) is sufficiently large.

LEMMA 2.6. — Let I = [01,02], 20 € S+ such that Re ¢¥g(z0) > 1/e+|0]
for all@ € I, and D = D;(z) or D = Dy(z).
(i) Cy (2) C D for every z € D and every § < 61, and C, () C D for every
z €D and every 6 > 0.
(ii) Let « € (—7/2,7/2). If |20| is sufficiently large, the half line from z to
oo with direction a is contained in D for all z € D.

(iii) Cy(z) C Dy(z0) for all z € Dy(zp) and all 6 € I.

Proof.— (i) We give the proof for C, (z), the proof for C;(z) is analo-
gous. Let z € D, 0 < 6, and ¢ € Cy (2). For i € {1,2} we have

Re 19, (¢) — Re 9y, (2) = Re ¢g({) — Re pg(z) + (0 — 6;) Im (¢ — 2)

and the right-hand side is nonnegative, as Re 19(¢) = Re 1g(z), < 61 <
02 and Im ¢ < Imz. If z € Dj(z), then it follows that Re 1)y, ({) >
Re 19, (z) = Re 1p,(29) for both i = 1 and ¢ = 2. If, on the other hand,
2 € Dy(z0), then Re v, (¢) > Re g, (2) > Re g, (20) for either i = 1 or
1 = 2. In both cases this implies that ( € D.

(ii) follows easily from (2.5).
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(iii) Let z € Dy(20), 6 € I and ¢ € Cp(2). Then Re ¢9(() = Re ¢g(z) >
Re 19(20) and, consequently, ¢ € Dy(z). O

In §4.1 we will use the following technical lemma (cf. [9, Lemma 3.10],
[10, Lemma 2.5]).

LEMMA 2.7. — (i) Let s > 0, d; € R. There exists a positive number K
such that, for all z € Sy with the property that |z+ x| > 1 for all x > 0 and
for all o € [0, 5],

|5 (2)y5 (= + 0) 71 < K277

(it) For each 6 > 0 there exists a positive number K, such that, for all z,
¢ €Sy, such that d(¢,z+7Z) > 6,

|ei2ﬂ'i(C—Z) o 1|—1 < K:S

2.3. Asymptotic expansions with Gevrey-type error bounds

In this section we define classes of functions admitting asymptotic ex-
pansions with particular types of error bounds and discuss some of their
properties. The sets A;(I) defined below consist of functions that are 1-
Gevrey, uniformly on closed subsectors of {z € S} : |argz| < 7/2}, and
satisfy additional conditions on Dy (R) for any open interval I’ containing
1, which can be expressed in terms of a convenient variable r4(z), equivalent
to z.

DEFINITION 2.8. — For all z € 5S4 : 2 # 1 and 0 € R we define

_ Yo(2)

log 2z

ro(2)

and pg(z) = Re r¢(2)

Remark 2.9. — Obviously, ro(z) = 2. rg(2) is equivalent to z in the sense

that
ro(2) i

log 2z
In [10] it is shown that, for any 6’ € R such that 6’ # 6 + 7/2,

=14o0(1)asz— 0

(60 + Im)lz|

1
= 1 —_— " 2.1
pQ(Z) IOg |Z| ( + O(lOg |Z‘) as z — 00 on C’G (R) ( O)

and, for any 6’ # 0 — /2,

(0 -6+ %71’)|Z‘

— 1 "
po(z) = oz 2| (1+ O(1 | ) as z — oo on Cy, (R) (2.11)

og 2|
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Hence it can be deduced that pg(z) — oo on D(R), where I = [f1,05], if
0 € (0, — /2,05 + 7/2), whereas pg(z) — oo on Dy(R) if 03 — 01 < 7 and
0 e (02 77’(‘/2,61 +7T/2)

DEFINITION 2.10 (Generalized Gevrey classes). — Let I be a finite in-
terval of R and let I = [01,0s). By |I| we denote the length of T :

|[I| =supI —inf I =6y — 64

By A(I) or Ao(I) we denote the set of continuous functions f: Sy — C,
admitting an asymptotic expansion f = Zh_ anz=M?, with p € N, such
that, for any open interval I' containing I and some sufficiently large R >
Ry (depending on I'), f is holomorphic in int Dy (R) and for all N € N,
there exists a positive constant My (I') such that

N-1
Ry (f32)] == 1f(2) = > anz""P| < My (I')|2|7N/P
h=0

uniformly on Dy (R). By Ai1(I) we denote the set of f € A(I) with the
property that, for any open interval I' = (0},0%) containing I and some
(or any, cf. Remark 2.11 below) 0 € (0} — +m,04 + L), there exist positive
constants A’ and R > Ry (depending on I'), such that, for all N € N,

R (f52)] < ANNNPpy(2) =N/

uniformly on Dp(R). We write A(0) instead of A([0,0]). By Ago(I) we
denote the set of f € A(I) such that f =0, and A o(I) := Ao,o(I)NA ().

Letyy € C™. By A(I;yo) we denote the set of functions ¢ : S; xC?*" — C
with the following properties :
(i) There exists a neighbourhood U of yo, such that ¢ is holomorphic on
Dp/(R) x U x U for any open interval I' containing I and some R > R;.
(#i) There exist p € N and (holomorphic) functions @p : U x U — C with
the property that, for any open interval I' containing I and some R > Ry,
and for all N € N, there exists a positive constant My (I') such that

2

|R (952,91, 92)| = | (2,91, 2) Z n(y1,y2)z P < My (1) |27/,

uniformly on Dp(R) x U x U. By A1(I;y0) we denote the set of func-
tions o € A(I;yo) with the property that, for any open interval I' = (6], 0%)
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containing I and some 0 € (0} — 27,05 + 47), there exist positive constants
A’ and R > Ry (depending on I'), such that, for all N € N,

B (32,91, y2)| < ANNNPpy(2) =P,
uniformly on Dp/(R) X U x U.
Let I be a finite, open interval. We define
A(I) = Ao(I) == Ngrer A(6")

and

-/Il(]) = NgrerAi(0")

or, equivalently, /ll(I) 1s the set of f € fl(I), with the property that, for
any closed interval I' = [0},05] C I of length |I'| < m and some 0 € (0, —
$m,0) + im), there exist positive constants A’ and R > Ry (depending on
I'), such that, for all N € N,

Ry (f:2)] < AN NP pg () =P
uniformly on Dy/(R). By Ay o(I) we denote the set of f € Ai(I) such that
f=o.
Let I be a finite, open interval and yo € C™. We define

A(L; y0) == Ngrer A9 10)

and ~
A1 (L yo) == Ngrer A (6’5 0)

or, equivalently, the set of functions p € jl(]; yo) with the property that,
for any closed interval I' = [01,65] C I of length |I'| < m and some 8 €
(05 — 37,01+ 37), there exist positive constants A" and R > R; (depending
on I'), such that, for all N € N,

R (032,51, 92) < AN NP pg ()= NP,
uniformly on Dy/(R) x U x U.

Remark 2.11. — Tt can be shown that A, (1), A1 (I;y0), Ai(I) etc. are
independent of the choice of § (cf. [10]).

The elements of A;(I) need not be Gevrey of order 1, uniformly on
Dy (R) for any open interval I’ containing I, but they are Gevrey of order
1, uniformly on closed subsectors of {z € Sy : |arg z| < 7/2, |z| = R}.
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DEFINITION 2.12. — Let I be a finite interval of R. By A+ (I) we de-
note the set of f € A(I), with the property that, for any open interval I'
containing I and some 0 € I, there exist a positive constant A’ and a positive
number R > Ry (depending on I'), such that, for all N > 2,

A'N

logN)N/pdg(Z)_N/p (2.12)

[Rn(f;2)] < (
where dg(z) = min{|(| : Re ¥(¢) = Re ¢¥y(z)}, uniformly on Dy (R). By
A+ o(I) we denote the set of f € Ay+(I) such that f=o.

We shall need the following Borel-Ritt type theorem (cf. [10]), which
generalizes a well-known result (the case 6 = 0).

THEOREM 2.13. — Let f =37 japz"? € 01, 0 €R and R > 1.
There exists a function f, holomorphic on pg(z) = R, with the property
that, for all N € N,

RN (f;2)] < ANNNPpy(z)~N/P

Elements of Ay o(/) and A;+ o(I) are characterized by their rate of de-
crease at oo in appropriate domains. For the proofs of the following lemmas
we refer the reader to [10].

LEMMA 2.14. — (i) Let I be a finite interval of R and let I = [0y, 05].
f € Aio(I) iff for each open interval I' containing I there exist positive
constants R and a such that

sup | f(2)e**F] < oo
z€D(R)
where 0 € (61 — 5,02 + 3.
(ii) Let I be a finite interval of R and let I = [01,62]. f € Ay+ o(I) iff for
each open interval I' containing I there exist positive constants R and a
such that

sup |f(z)e‘“p"(z)| < 00
ZEDI/(R)

where 0 € [61,02).

LEMMA 2.15. — 1. Let I be a finite interval of R, T = [01,0-]. and
R a sufficiently large number. Let either D(R) = Dy(R) and 0 € (61 —
i, 05+ im), or |I| < m, D(R) = D;(R) and 6 € (0 — 37,61 + 7). Let
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f i D(R) — C a continuous function, holomorphic in int D(R). Then the
following statements are equivalent.
(i). There exist positive numbers a and C, such that, for all z € D(R),

|f(2)] < Cemre®)

(i1). There exist positive numbers 6 and C, such that, for all z € D(R),

1=

f(2)] < Ce™’ e

2. If f is an analytic function on a domain EI(R), where I is a finite
interval of R of length |I| > m and R > Ry, with the property that

[z

F(2)] < Cemomita
for all z in this domain, where C' and ¢ are positive constants, then f = 0.

COROLLARY 2.16. — If I is an open interval of R of length |I| > =, then
any f € A1(I) is uniquely determined by its asymptotic expansion.

LEMMA 2.17. — 1. Let 01 < (92, 1= [91,92], R > R; andf : D[(R) —C
a continuous function, holomorphic in int Di(R). Let € (61, 63). Then the
following statements are equivalent.
(i). There exist positive numbers t and C, such that, for all z € Dy(R),

|f(2)] < Cem e vol)
(ii). There exist positive numbers 6 and C, such that, for all z € Di(R),
|/(2)] < Ce™*

2. (cf. [7]). Let 0 € R. If there exist positive numbers 6 and C, such that
|f(2)] < Ce 01, uniformly on Dg(R), then f = 0.

3. Existence theorems

The first theorem concerns the existence of ordinary solutions, charac-
terized by their asymptotic expansion f . The class of equations to which
it applies is larger than that mentioned in the introduction. Instead of as-
suming ¢ analytic at (0o, 3o, y0), we assume that it satisfies certain Gevrey
conditions : ¢ € A1 (I;y0)™ (cf. Definition 2.10).
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THEOREM 3.1. — Let I be a finite interval of R, yg € C" and ¢ €
A1(I;90)"™, admitting an asymptotic expansion ¢. Suppose that equation
(1.4) possesses a formal solution f € @{7 with constant term yo, and that
the following conditions are satisfied :

1. The formal matrix functions A and B defined by

= @i(f,mf), B=@h(f,mf)!
belong to Gl(n,P).

II. The difference operator A := A + Bt has a canonical form (2.2),
where A§ is of the form (2.8), with ¢; =0 for all j € {1,...,m} such that
dj = p; =0 (i.e. A has no levels different from 1 and 17 ).

III. T contains no pseudo-Stokes directions ofAA of level 17 (cf. Defini-
tion 2.2 and Remark 2.3; more precisely : INO~(A)=10).

IV. (i) : I is closed and, if —m/2 is a Stokes direction of A of level 1, then
IN[=%,5]=10, or (i) : I is an open interval : I = (01,02), p € Ai(L;y0)"
and, if —mw/2 is a Stokes direction of A of level 1, then either 6, < —m/2

and 0y < /2, or 01 > —7/2 and O > /2.

Then the equation (1.4) has a unique solution y € Ay (I)" ory € Ay (I)",
respectively, with asymptotic expansion f.

In the case that f 0, the statements remain wvalid if the condition
o € Ai(L;y0)" or ¢ € fll(I yo)™ is replaced by : ¢ € A(I;0)" and @o €
Aro()", or ¢ € A(I;0)" and o € Ay o(I)", respectively, where @q is
defined by vo(z) = ¢(%,0,0).

Proof. — In the cases that condition IV (i) is satisfied, or that condition
IV (ii) is satisfied and |I| < 7, the statements of Theorem 3.1 can be deduced
from proposition 4.4 below, with the aid of Theorem 2.13, by means of a
classical argument (cf. [10]). Now suppose that condition IV (ii) is satisfied
and |I| = 62 —6; > m. Then we have either 61 +7 < /2 and 0y — 7 < —7/2,
or 1 +7 > 7/2 and 05 —7 > —x /2. In both cases, (1.4) has unique solutions
y1 € /11(01,01 + )" and yo € A1(02 — m,02)™. Moreover, it has a unique
solution y € .,211(92 —m, 01 +m)"if Oy — 0 < 2w, ory € Ay ([61 + 7,02 —7])"
if 85 — 0, > 27. The uniqueness of these solutions implies that y; and ys are
analytic continuations of y. O

Our main result is an existence and uniqueness theorem for quasi—func:cion
solutions (fi, f2), where f; and fy are represented asymptotically by f in

(1) By @4 (y1,y2) we denote the Jacobian matrix of ¢ with respect to y;
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overlapping domains and differ by an exponentially small function on the
intersection. The most interesting case is that where |I| > 7 : then the
solutions f1 and fo are accelero-sums of f (cf. Theorem 5.9).

THEOREM 3.2. — Let yo € C”, let I, Iy be open intervals of R : I; =
(07,07) such that 0f < 05 . Let Iz = [07,05] and I = (07,05). Assume

that
L o e Ay(I;y0)".

I1.(1.4) has a formal solution fe @{l and conditions I. and II. of The-
orem 3.1 are satisfied.

HI. Iy U Iy contains no pseudo-Stokes directions of A of level 17 (more
precisely : (I Ul)NO~(A)=0).

IV. If —7/2 is a Stokes direction of A of level 1, then either one of the
following conditions holds.
a) 07 < —m/2 and 05 < /2,
b) 07 > —7/2 and 05 > /2.

Then the equation (1.4) has unique solutions f; € Ai(I;)", i = 1,2, rep-
resented asymptotically by f, with the property that fo — f1 € Ay+ o(I12)".
Moreover, if Iy contains no pseudo-Stokes directions of A of level 17, then

fa=f1.

Proof .— To begin with, assume that |I| < 7. According to Theorem
2.13 there exists a function f € .Al( )™, with asymptotic expansion f The
substitution

(zy1,52) = (2,01 + f(2), 2+ f(z + 1))

changes ¢ to a function ¢ € fll(l; 0)", such that the function ¢ defined
by @o(2) = #(2,0,0) belongs to A o(I)™, and the corresponding difference
equation has a formal power series solution with vanishing coefficients. By
another simple transformation it can be reduced to an equation in the ‘pre-
pared form’ (3.1) below, and thus the theorem can be deduced from The-
orem 3.3 below, except for the last statement, which follows immediately
from Theorem 3.1.

Next, suppose that |I| > m. If condition IV a) holds, we define I} :=
(05 ,05), where 0y = 05 if |I5| < 7 and 04 € (65,05 + ) if |Io| > 7, and we
define I, := (67,6 ) where 67 max{@1 0, —7}(< 05) and 0 € (07 ,05]
such that I; N ©~(A) = (). As both 6; and 6) — 7 are less than —m/2, so
is ;. Moreover, 8 — ;7 < 7, and thus (1. 4) has solutions f; € A;(I;)"
and f} € A (I4)™, represented asymptotically by f , with the property that
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fi—he A+ o [07,65])". Without loss of generality we may assume that
07 > 0/, hence fi — fi € Ay+ o([07,05])". Note that either I = I, in
which case we put f5 = fa, or 6, < 05 — 7 < —7/2. In the latter case,
according to Theorem 3.1, (1.4) has unique solutions f € A;(I>)™ and
f} € Ai(I})™ with asymptotic expansion f. The uniqueness implies that fs
is the analytic continuation of f}. Again by Theorem 3.1, (1.4) has unique
solutions f; € Ay (1) and f; € A;(I;)" with asymptotic expansion f. In
the case that 65 — 7 < 67 this implies that f; is the analytic continuation
of f1 and the result follows. If 91 =0, —7 > 01 , we proceed with I; in
the role of I and define I := (6,05 ), where 0" = max{6;",0;" — 7} and
05 € (65 ,07] such that 65 > 6 and L, N O~ (A) = (. In this manmer7 we
obtam a finite number of open sublntervals I = ((9] ,Qj Yof I,j=1,...N,
such that 6 < 9+ 97 1 < 65 and 9 9 < wforj=2,...,N and
HNR, < 67, and unique solutlons fj € Al( j)" With asymptotic expansion f,
such that f;—f;_1 € Ay, ([6‘] ,HJ D™ A+ o([67,65])". The uniqueness
of f1 and fN implies that these two solutions coincide. Consequently, f1 —
fo= Z o fi—fioitfi—fa€ Ar o([07,65])™. The remaining cases can
be proved similarly. O

THEOREM 3.3. — Let I, I be open intervals of R : I; = (6; 9+), such

that 07 < 0y and 05 — 07 < m. Let Iip = [07,05], I = (67,03) and
p € A(I;0)". Assume that

1. can be written in the form

@(Z7y17y2) = QDO(Z) + A(Z)yl + B(z)yQ + ¢(Z7y17y2)

where pg € Al,o(I)”, A and B € End (n; /IO)O(I)) and for any closed subin-
terval I' of I, there exists a positive number R > Ry, such that ¥5(2,0,0) =
¥4(2,0,0) =0 for all z € Dp/(R).

II. I U I contains no pseudo-Stokes directions ofA of level 1T (more
precisely : (ILUL)NO™(A)=10).

III. If —7/2 is a Stokes direction of A of level 1, then, either 07 < —m/2
or 05 > m/2. Then the equation

A%Y(z) = ¢(z,y(2),y(z + 1)) (3.1)

where A€ is of the form (2.8), with ¢; =0 for all j € {1,...,m} such that
d; = pj =0, has unique solutions f; € A1 o(L;)", i = 1,2, with the property
that fo — f1 € Ay o(I12)™.

An outline of the proof of this theorem can be found at the end of §4.2.
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4. Right inverses of Af

4.1. Right inverses of A} on Banach spaces of analytic functions

DEFINITION 4.1. — Let D be a closed domain of S.. Let 8 € R and
a > 0. By béya(D) we denote the Banach space of continuous functions
f D — C that are holomorphic in int D and have the property that

1£15, 5 := sup [e*®) f(2)] < o0
zeD

By bé;(D) we denote the Banach space of continuous functions f: D — C
that are holomorphic in int D and have the property that

1715, 5 := sup [e**®) f(2)] < o0
zeD

We will consider the Banach spaces b})’a(D)" and bé:b(D)” equipped with

the norms ||(f1, ., fa)ll% p = maxie 1 . ny 1fills p and [[(f1, - F)S 5 =
max;e(1,....n} Il fi |||2,D, respectively.

DEFINITION 4.2. — Let I be a finite interval of R. We define

Ji(D) = fel{l,...om}:d;j=0,p; #0:argu; =7} if IN(=F5,5)#0
! ) otherwise

~ [ (D) ifIC(—%,%)
Si(l) = { 0 otherwise

Tie(I) i={j € {1,..,m} : ©7(AS) N T # 0}

Remark 4.3. — Jy(I) or Ji(I) # 0 implies that D;(R;) or D;(R;) is
contained in the right half plane and —7/2 is a Stokes direction of level 1.
J1(I) U Jy+(I) is the set of indices j € {1,...,m} such that, for some | € Z
(equal to 0 in the case that d; =0, p; # 0 and argp; = 7), y]?(z)ezl”z ~0

as z — oo, uniformly on D;(R;). Obviously, J;(I) = Jy(I).

j € Ji(I) implies that y5(z) ~0as z — oo on Dy (R;), uniformly on

_ﬁ (Ryp), for any closed subinterval I’ C int I and uniformly on D;(R;) if
IC(—7/2,7/2).

In what follows we shall associate with certain closed intervals I of R
two types of closed domains D(R) with the property that

d(R) :==min{|z|: z€ D(R)} = R(1 4+ 0(1)) as R — o0 (4.1)
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These are defined as follows. Let I = [01,62], R > R; and assume that
01,0, N {—n/2,7/2} = 0. If Jy(I) = O, D(R) = D;(R) or D;(R) (this
is the case when —m/2 is not a Stokes direction of level 1, or, when either
0y < —m/2, or 6 > 7/2). Next, suppose that J;(I) = 0, but Ji(I) # 0, and
|I] < m. This implies that either ; < —7/2 < 0 < /2 or —7/2 < 61 <
/2 < 02. In the first case we choose ¢ € (—m/2, —62), in the second case
we choose ¢ € (—01,7/2), and in both cases we define : D(R) := Dy(Rei?).
From (2.5) and (2.7) it can be seen that, on the boundary of D(R), Re z
decreases monotonely to —oo (and thus ei# increases monotonely to co for
all j € J1(I)) as Im z — oo in the first and as Imz — —oo in the second
case, provided R is sufficiently large. (Cf. Figure 3.)

401

30

20

10

Figure 3. — In this picture, R = 20, ¢ = 7 and D = 5[7%’3%](1%61.45)
PROPOSITION 4.4. — Let 61,02 € R, 61 < 03 and I = [0, 63]. Suppose

that Jy+ (I) = Ji(I) = {61, 0:}0{—7/2,7/2} = 0. We consider the following

two cases :

a) J1(I) =0, D(R) = Dy(R) and 0 € (61 — /2,05 +7/2), or

b) |I| < 7 and D(R) = D;(Re™®), where ¢ = 0 if Jy(I) = 0 and, in the case

that Jl(I) 7é @, (i) € (—71'/2, —92) zf@l < —7T/2 < By < 7T/2, ¢ € (—01,71'/2)

if —m/2 <01 <w/2 <0, and 0 € (02 — /2,01 +7/2).
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There exist positive numbers ag and Ry such that, for each j € {1,...,m},
AS is a bijective mapping from U(G,R)bé’a(D(R))”f onto itself, where the
union is taken over all a € (0,a0) and R > Ry. Its inverse A has the
following properties :
(1) There exists a real number v; such that, for all a € (0,a9) and R > Ry,

A5 (bg,o(D(R))™) C 2" by o (D(R))"
(ii) There exists a positive constant C}, independent of R, such that
127 A5 15 ey < CIL NG ey (4.2)
for all f € b ,(D(R))", provided a € (0,a0) and R > Ry.

Proof.— Let j € {1,...,m},0 € R, R> Ry, a > 0and f € by ,(D(R))"™.
We define Aff by

e PmeHys(C+ 1))
eQTri(C—Z) -1

ASH(2) = 4(2) / 4C—y(2)ys(=4+1) 7 £ ()

C;(2')
where [; is a suitable integer and C;(2’) is a path in D(R) with limiting
directions a~ € [—7/2,0) and o™ € (0,7/2], intersecting the line Im ¢ =
Im z exactly once, at a point 2’ on the segment (z,z + 1), described in the
direction of increasing imaginary part. We shall briefly discuss each of the
different cases that may occur and derive estimates of the form (4.2). For
more details we refer the reader to [5, 9], where similar proofs can be found.
Without loss of generality, we may assume that || f ||Z p(ry = 1. We begin

by noting that, due to lemma 2.7(i), we have, for all z € D(R),
Y5 (2)y5 (2 + 1) 7 < Kz~ (4.3)
and for all ( € D(R), choosing 2z’ = z+ 1/2,
5 ()95 (C+ D7 < KKl ol “0 275 (g5 (O (44)

provided R is sufficiently large.

Case 1. d; = 0 and p; = 0. We can take C;(z') to consist of a half line

from coe’®  to 2/ and a half line from 2’ to coe’®’, where a~ € (—7/2,0)
and ot € (0,7/2). With the aid of residue calculus we find

ASF(2) = =y5(2) > sz +h+1)" f(z+ h) (4.5)

h=0
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(Or, alternatively, A§f could be defined by the above expression.) We have

d cin G
%bgyj(Z)f ~

and 1 )

Hence we deduce that, for all z € D(R) and all h € N,
eape(z)—ape(z-l-h)|y]cj(z)y]q(z+h+ 1)—1| < Ke—ah/Q

where K is a positive number, independent of R, provided R is sufficiently
large. It follows that

MDA F () < K Y e
h=0

Obviously, the right-hand side is independent of R. Thus Af f € bé, J(D(R))™
(v; =0) and HA‘;fHZ pry < €, where the constant € = K(1 — e~/2)"1

is independent of R, provided R is sufficiently large.

Case 2. d; > 0. We can choose a path C;(z'), similar to that in case 1.
Here again, the use of residue calculus yields the representation (4.5), and,
with the aid of (4.3), we obtain an estimate of the form

oo

DN < Y Kb el 4 1)z 4+ B < Ol
h=0

where C; is a positive constant, independent of R. This implies that Ajf €
2= %by (D(R))™ (v; = —d;) and szjA§f||Z,D(R) < €}, where C} is a
positive constant, independent of R, provided R is sufficiently large.

Case 3. If d; =0, p; # 0 and |arg u;| < 7 (in view of the definition of
this implies 0 < argpu; < ), we take I; = —1 and C;(#') to consist of two
half lines ;" (2') and C’;'(z’) from 2’ to oo with directions

a; € (=m/2,min{0, 7/2 — arg(u; + a)})

and
ozj € (max{0,37/2 — arg(p; +a — 2mi)},7/2),

respectively. Here we choose arg(u; + a) € [0,7) and arg(p; + a — 27i) €

(m,2m) (note that Im (p; + a — 2mi) < 0). According to lemma 2.6(ii),
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C; (') and C’;“(z’ ) are contained in D(R) if R is sufficiently large. Putting

(=2+ e if ¢ € C;r(z/) and using (4.6) and (4.1), we have

a(pe(2') — po(¢)) + Re (1 — 2mi) (2" = C)

1

N al
= —(Re (s +a—2m)e™ ) + O

)z

Similarly, putting ¢ = 2’ + €' z if € C; (¢'), we have

1

alpo(') = pol©)) + Re (2" = ) = ~(Re (1 +@)e™ ™) + O(5))e

Using lemma 2.7(ii) and the fact that both cos(arg(u; +a — 2mi) +a; ) > 0
and cos(arg(p; +a) + ;) > 0, one easily obtains an estimate of the form

Ay ()T (C)

etro®) ly5(2) e2mi(C—2) _ 1

| d¢| < K/ e %% dy
Cj(z’) 0

where K and ¢ are positive numbers, independent of R, provided R is suf-
ficiently large. With the aid of (4.3) and (4.4) we conclude that ASf €
bg,o(D(R))™ (v; = 0) and [ASFIIS by < Cf

a ;> where C’; is a positive con-
stant, independent of R.

Case 4. If d; < 0, we choose C;(z') to consist of Cy (') and Cy (/).
According to lemma 2.6(i), these paths lie in D(R) for all z € D(R). Let
0’ € R. Putting ¢ = ((z) if ¢ € Cyp/(z) and using the notation of §2.1, the
identities (2.5), (2.8) and (4.6), we have

)=o) 4= 2D (47)
% log r(z) = 0(%), (4.8)

(€)= Re {[1+ (s = oI ) =
_ ¢(fg;(9;; b O(m) (4.9)

and
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% log [y5(¢(x))e*™ )| = Re {[d;(log ¢(x) + 1) + (u; + 20;70)]¢’ (2) }+
+0(r(z)YP) = d;0' — Tm pj — 27 + O(@) (4.10)

Due to the assumption that J;+ (1) = 0, there exists a unique integer n with
the property that

Im p; +2(n+ 1w <6, and Im p; + 2nm

(7]
d; d; e

Now, choose [; to be this integer. Then we have
dj92 —Im i — 21]'71' > 0 and dj91 —Im i — Q(ZJ + ].)7'(' <0 (411)

Using (4.3), (4.4), (4.10), (4.11) and lemma 2.7(ii), we obtain an estimate
of the form

e 22y (C+ )G
e2mi((—z) _ ]

P02 |2 by (2) |

(oo}
[|d¢| < K/ e %%dx
Cj(Z/) 0

where K and § are positive numbers, independent of R, provided R is suffi-
ciently large. With the aid of (4.4) we conclude that AS f € Z7 29 béﬂ (D(R))™
(v; = —3d;) and ||z%diAijZ7D(R) < Cf, where C} is a positive constant,

independent of R. (Note that a similar result holds for any v; > —d;, as we

can choose 2’ arbitrarily close to z.)

Case 5. Now suppose d; = 0, uj # 0, arg p1; = 7. The assumption J(I) =0

implies that 67 < —7/2, or 3 > 7/2. We shall discuss the case that

61 < —m/2 and take [; = 0.

First, suppose that J; (1) = 0, so 63 < —7/2 as well. Let D(R) = D;(R)
and 0 € (01 —7/2,02+7/2) (case a) of proposition 4.4), or |I| < 7, D(R) =
Di(R) and 6 € (8 — /2,61 + 7/2) (case b)). In both cases, § < 0. We
choose C;(2') to consist of a half line C; (2") from 2’ to oo with direction

a; € (—m/2,min{0, /2 —arg(u; +a+2mi)}) and C;; (2'). The integral over

C; (%) is similar to that in case 3 above. Using lemma 2.7(ii) and (4.4), we

find that, for all ¢ € C’g; (),

apg(z) yjc(z)y]C(C + 1)_1f(§)
€ ‘ e2mi(C—2z) _ ]

| < KePo@=rojye(z)ye(()7  (4.12)

where K is a positive constant, independent of R, provided R is sufficiently
large. We put ¢ = ((z) for all ¢ € Cy,(2’) and use the notation of §2.1. In
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view of (2.7), there exists a positive number § such that ¢(x) + 602 < —d for
all z € R, provided R is sufficiently large. From (2.5) we deduce that p is
monotone decreasing on R. With the aid of (4.7) and (4.9) we find

() = (50 0 ),
T 10835 (C(a))] = s () + O(r(0) /%) = (s + O ) o),
4C(2)| = Ollog (@) dp(a)
and J )
7z loglog[¢(x)| = O(Z)p' (x)

After a change of variable, setting p(z’) = pg and noting that, for all z € R,

m > 0, we obtain

a z')— —1y,,¢c c -1
L e om0
05\ %

PO
g/ s at Ol po—r) g

provided a < |u;| and R is sufficiently large. With the aid of (4.12) we
conclude that ASf € z1by ,(D(R))" for a < |u;| and any positive number
vj,and ||z=" A§f||Z,D(R < C;, where CJ’- is a positive constant, independent
of R, provided R is sufficiently large.

Next, we consider the case that |I| < w, D(R) = D;(R) and Jy(I) # 0,
so —m/2 < 0y < 0 +7 < w/2, and 0 € (02 — 7/2,0; + 7/2). In this
case, D(R) = D;(Re'?), with ¢ € (—m/2,—0,). If 2’ € Dy, (Re™®), we can
proceed as above. If 2/ & Dy, (Re'?), we have to choose a slightly more
complicated path of integration, consisting of a half line C';” (') as above,
the arc of C;“(Z) (2') connecting 2’ and Re'?, where 0(z) € [0, 02] is defined by
Re g2y (') = Re 9g(.)(Re™), and C’;’l (Re'?). The integrals over the path
from 2’ to Re' and C;rl (Re?) can be estimated similarly to the integral
over C’g; (') in the previous case, due to the fact that, on each of these
paths, Re ¢ decreases sufficiently fast as Im ¢ increases (cf. the proof of
proposition 4.7). The case , > /2 is similar.

Moreover, a careful analysis reveals that Ry can be taken independent
of a, provided a < ap < inf{|y;| : j € {1,...,m},d; = 0,arg u; = w}. This
completes the proof of (i) and (ii).
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The proof of the fact that ASASf = ASASf = f for all f € by ,(D(R))™
is straightforward and similar to, for example, the proof of the correspond-
ing part of proposition 3.6 in [9]. It involves deformation of contours and
application of Cauchy’s theorem. O

4.2. Right inverses of A} on Banach spaces of quasi-functions

In this section we consider Banach spaces of so-called quasi-functions :
pairs of functions, defined on overlapping domains D;(R) and Ds(R), and
differing by an exponentially small function on the intersection of the do-
mains. The domains D;(R) and D2(R) are defined as follows. Let I; and
I be finite, closed intervals of R : I; = [0;,60;], such that 6] < 05,
03 — 07 < . Let R be a sufficiently large positive number. If ] < —7/2 <
05 < m/2 we choose ¢19 € (—7/2,—07), if —7/2 < 0] < 7/2 < 05 we
choose ¢12 € (=07 ,7/2), otherwise we take ¢12 = 0. In all cases we define
212 = Re'®12 and Dy(R) := Bzi(zm) for i = 1, 2. Furthermore, we put
Di1N Dy = D15 and D1 U Dy = D. Note that D is defined similarly to D(R)
in proposition 4.4 b), with I = [07,605]. (cf. Figure 4.)

DEFINITION 4.5. — Let Iy, Iy be finite, closed intervals of R : I; =
(07,07, such that 67 < 05 and 65 < 0] + 7. Let R be a sufficiently

lazrge Zpositive number and, for i = 1,2, let D; := D;(R) denote the do-
main defined above and Dyy = Dy N Dy. Let 6 € (05 — /2,607 + 7/2),
0 € (07,05), a and b > 0. By Bg”g,(R) we denote the Banach space of
quasi-functions F = (f1, f2) € by ,(D1) x by ,(D2) with the property that

fi—fa€ bétb(Dlg), equipped with the norm

|IF )| == max{[|f1]17.p, | f2lla.p,s KRN f1 — fol
where K(R) = sup,¢p,, |earo (2)=bor(2)|
By 7F and A;F we denote the quasi-functions
TF = (1f1,7f2), AJF :=(Aff1,Aff2)

and by zV F the quasi-function (g1, g2), where g;(z) = 2" f;(z) for all z € D;,
i=1,2.

’
b.0ws

Remark 4.6. — Obviously, K(R) also depends on a, b, § and §’. For all
z € Dy5 we have
Re (Yo (2) — Yo (212)) = max{(§' — 07)Im (212 — 2), (05 — 6)Im (2 — 212)}

With the aid of this inequality it is easily seen that, for every 6’ € (],65)
and every 0 € R, K(R) = |e®o(z12)=0% (212)|  provided R is sufficiently
large.
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40 1_D1
+ in/4 + in/4
w0l C’ (208 C,./5(20e™)
20t
2oein/4
10 [ D
0] 12
0
-10}
20+
: — - in/4
Cys20e™ | B2Pra \&-CTypol206™)
_30 L
-30 20 -10 0 10 20 30 40
Figure 4. — In this picture, ) = [~ %, -], [ = [2£,3%], R=20and ¢ = T

PROPOSITION 4.7. — Let I, Iy be finite, closed intervals of R : I; =
07,0, i € {1,2}, such that 0] < 605, 05 < 07 + 7 and, for i = 1,2,
Ji (L) = {07,067 yn{—=/2,m/2} = 0. Moreover, if there is a j € {1,...,m}
such that d; =0, p; # 0 and arg p; = m, we assume that either 6; < —m/2
or 05 > /2.

Let 0 € (05 —n/2,07 +7/2) and 0' € (07,05). There exist positive
numbers ag, by and Ry such that, for each j € {1,....,m}, A is a bijective
mapping from U b R) Bl‘i’g/(R)"f onto itself, where the union is over all a €
(0,a0), b € (0,bp) and R > Ry. Its inverse A? has the following properties :
(i) There exists a real number v; such that, for all a € (0,a0), b € (0,bo)

and R > Ry, 0 0
AI(BES(RY™) € 2 Byg (R)™

(ii) There exists a positive constant C}, independent of R, such that
Iz ATF| < CHIF|
for all F € Bgy’g,(R)"j, provided a € (0,a0), b € (0,b9) and R > Ry.
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Proof.— Let j € {1,...,m},aand b > 0, R > Ry, where I = [0, , 0], let
F = (f1,f2) € Bgy’g,(R)”f and ¢ € {1,2}. Again, without loss of generality,
we may assume that |[F|| = 1. If j ¢ Jy(I;) (cf. definition 4.2) we define g; :=
(AgF)i = A§ f;, where A§ denotes the mapping mentioned in proposition 4.4.
According to proposition 4.4, ASf; € 2"iby ,(D;)"™ and

277 AS fi

O b, <CHIflC b, < Ct

where C’j’: is a positive constant, independent of R, provided R is sufficiently
large.

Now suppose that j € jl(Iz) This implies that d; = 0, p; # 0 and
argu; = m, and I; C (—m/2,7/2). We shall discuss the case that i = 2,
ie.j & Ji(I), but j € Jy(I3). The case that j ¢ Jy (), but j € Ji(I}) is
similar. For all z € Dy we define

S(C+1 -1

e [ BEHVIRO e [ BN RO,
C; (=)

e2mi((—z) _ 1 Ci (o 20) e2mi(C—z) _ 1

CCHD)THfo -
w05 [ e e ) )

Here z, is some point in De; (212) N Da, C’]*(z*) = C’(;t(z*)7 Ci(#,2) is
1
a suitable path from 2’ to 2., Cj (z') is a half line from 2’ to co in a
divection a; € (—7/2,7/2 — arg(u; + a 4 2mi)) and Cj?(2.) is a half line
from z, to oo in a direction aj € (0,7/2). If @ < |pj|, we can choose
arg(pj +a+2mi) € (m/2,m), so that a; € (—m/2,0). (Note that, essentially,
the path C}(2) U C; (2, 2.) U C;r(z*) is the same as the path C;(2) in the
last part of the proof of case 5 of proposition 4.4, if we replace 6, and 65
in that proof by 6; and 9; , respectively. The fact that the function in the
integrand changes from f> to fi at some point on this path, necessitates a

“corrective term” involving the difference fo — fi.)

We deduce from lemma 2.6 (iii) that Cf(z*) C D1, Cj*(z.) C Dy, and

C;(2') C Dq for all z € Dy if R is sufficiently large. It is easily seen
that, within certain limits, the above definition is independent of the choice
of z.. If Re wel— (Z/) > Re wel— (212) (1e 2 € Dy N D&; (Z12) - Dlg), we
take z, = 2/, otherwise we choose it to be the intersection of dD; and
0D>, i.e. z12. In the latter case we have Re %3 (2) = Re 1/)9; (212) and
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Re ng; (z) <Re ng; (212), or, equivalently,

07 ITm (212 — 2) < Re (z12log 212 — zlog 2) < 05 Im (212 — 2)

for all z € Dy — Dy- (212). Thus, if 2’ € Dy — Del—(Zlg), there is a 0(z) €
[0, 0], such that Re Yo(z)(2") = Re 9g(z)(2«), (more precisely, 0(z)Im (z12—
z) = Re (z12log z12 — 2’ log2’)) and we take C;(2,z) to be the arc of
Co(z)(212) between 2’ and z,.

The integral over C} (z) can be estimated in a way similar to the corre-
sponding integrals in cases 3 and 5 in the proof of proposition 4.4 above.
The integral over C;r(z*) is similar to the integral over Cet (2') in case 5 of

that proof (with z, instead of 2z’ and 6; instead of 63), and we have the
following estimate

y5(C+1)” 1f1(€)
jeQWi(C z) _ dc‘

(log [2.]) e )]s (2.) / (4.13)

where C] is a positive number, independent of R. If 2’ € Dg;(212) we

are done. If 2/ € Dy — D,-(z12) we have z, = z12, Im z < Im 215 and
1

argz’ < ¢12 < —03. Putting ¢ = ((2) if ¢ € Cy)(z) and using the

notation of §2.1 and (2.5) and (2.8), we have

%[ape(C(w)) + log |y(¢(x))| — loglog |¢(x)]]

(lcg (':l))Q

logr(x) )

As ¢(x) < ¢12 < —05 for all x < Im 215 and 6(2) < 65, the left-hand side is
positive for all x < Im z15, provided a is a sufficiently small positive number
and R is sufficiently large. Consequently,

(log |2']) ™" log |z1afe (e Dm0 (i2D [y () g (210) 7| < 1 (4.14)

forall 2/ € D2_D01— (#z12), provided a is sufficiently small and R is sufficiently
large. With (4.3), (4.4) and (4.13) this implies that, for all z € D,

y5(C+ 1)1 f1(0)
J627ri(cfz) -1 dCl

(log |2]) ~LeoP )y 2) / <cr

C;r (2)

where C/ is a positive number, independent of R. The integral over C;(z', 212)
can be estimated in a similar manner, due to the fact that, for all { €
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C;(#', 212), arg¢ + 0(2) < ¢12 + 05 < 0. Due to the supra-exponential
decrease of fy — f1 on Cj?(z.), one easily verifies that

bipgr(z4),,C y‘]c(c+ ) (fofl)( ) " 9’
o) [ o e <G Al
where C}" is a positive number, independent of R. Since K (R)||f— f1l|?
< ||F|| = 1, it suffices to prove that K (R)~ et ()~ b%/(z*)y (2)y5(24) ™ 1
uniformly bounded on Ds, by a constant independent of R. Thls is obv1ously
trueif 2/ € De; (212), in which case z, = 2’. For 2’ € D27D917 (212) it follows

easily from (4.4) and (4.14). Combining the above estimates, we find that
g2 € 2"ibg ,(Dy)™ for any positive number v; and

v; (2)
||Z ’ g2 ||a ,Do X C]
where 07(2) is a positive constant, independent of R.

It remains to be proved that, for 6’ € (67,6, ), sufficiently small b and
sufficiently large R, g1 — g2 € 2% bétb(Dlg) and

— s

(g1 — g2)|||b D1y SClf2— flls

Il=

where C' is a positive constant, independent of R. By means of residue
calculus we find, if d; > 0,

91(2) — g2(2) = y(z Zyjz+h+ L f)(z+h)

Furthermore, we have
Yy (2) =logz + 1+ 16’
Hence it follows that, for all h > 0,
e (Yo (2) = o (2 + h)) < —hlogd(R)

where d(R) = min{|z| : z € D12}. With the aid of lemma 2.7(i) and (4.1)
we find

. d; 0’ 0’
2% (g1 — 9218 s, < Zm )y~ @EOR £y — FillY b, < 20f2 — FillY D,
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if R is sufficiently large. Thus, we can conclude that, if d; > 0 and R is
sufficiently large, there exists a v; € R such that AJF € 2% B;”;;’, (R)™ and

||zf”-7‘A;1.F|| <G (4.15)
where C is a positive constant, independent of R.

Now consider the case that d; < 0. Then we have for ¢ € {1,2} (cf.
Proposition 4.4, case 4)

e 2himiC=2ye(¢ + 1)~ £i(Q)

eQ'frl'(C—z) -1 dC - y;(Z)yjc(Z + 1)71f(2’)

52 =45 |

Cj(2')
where C;(z') is the path consisting of €, (2’) and C’;;r ('), l1 and I3 are the
unique integers with the property that, for i € {1, 2}:
d;0F —Imp; — 207 > 0 and d;0; —Im p; —2(L; + )7 < 0 (4.16)
By lemma 2.6(i) we have, for all z € D, C’; (2) € Dy (as 65 > 6) and
2

C,-(2') C D2 (as 6 <65 ). From (4.16) we deduce that

¢ =

/ 3*212”i(<’z)y§(4 + 1) f1(Q)
CANED e -1

1

dg

e2mi((—z) _ ]

/ e 2emiC=2)ye(C 4 1)1 f1(C)
c&(z’)

and

¢ =

/ 672117@((%)%%(( +1)71f2(¢)
o 27mi(C—2z) _ ]
00; (=) ¢

dg

/ e 2hmiC=2)ye(¢ + 1)1 f5(C)
C_(2) et =1
91

Putting f1 — fo = f12 we obtain

e—2l271'i((*z)y]c_(< +1)7H(f12)(Q)
e27r7l((:*z) —1

y5(2) " (g1(2) — g2(2)) = / dc

C%(Z’)

dg

. / elelm(cfz)y]c(g +1)7Y(f12)(C)
C™ (') e 1
o
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(€—2l17ri(C—z) _ e—QZzﬂi(C—Z))y;}(C + 1)—1f1 (C)d e
* C+ ( /) €2ﬂi(<_z) -1 C ( ' )
of i
N (¢72m60) — D 1))
(2 e?‘n’i((—z) -1

For all ¢ € €, (2') we have, due to (4.16),
1

log (' /Q)V w5 ()5 () T2 FITEI | L hRe (v () — 0 (C))

={d;07 —Im p;—2(l;+1)7+b(A; —0")+O( ; ) Hm (2—¢) < —dIm (2—()

and, for all ¢ € Cgt ("),
log|(2'/Q) Py (2')y5 Q)1 e*=™ =9 1 bRe (Y (=) — 9o () =

= {05 = Tm 1y = 2Dy + (5 =) + Ol Hm (== )

< 6Im (2 — ¢)

where § is a positive number, independent of R, provided R is sufficiently
large. Hence we deduce, with the aid of (4.4), an estimate of the form

|z3df/2y?(2){/ e M AyS(C+ 1) fa(¢)
J

ct (z') 627ri((—z) -1

¢+

e 2hmilC=2)ye(¢ + 1)~ f12(C) acy)
_ , eeri((:—z) -1
(Z )
< Ol frallf, pya e P, 2 € Dip
where C]‘ is a positive number, independent of R.

For all z € Diq, such that Im z # Im zyo, there exists a real number
0(2) : 0(2) < 0] if Im z < Im 219, 0(2) > 05 if Im z > Im 25, with the
property that

Re thg(.)(2") = Re g2 (212)

By deformation of contours, one easily verifies that the sum of the last two
integrals in (4.17) is equal to

3 /C YE(C+ 1) fra(Q)e 2=

h=lo+1" Ci(z",712)
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5

+ > / (m)e‘%”(<—z>y;(<+1>—1f1(<>d<;

h=l2+1
N e 2hmUC=2) e (¢ 4 1)L £y (¢)dC]
/‘ (#12) ’ 2

where C;(2/, z12) is the (directed) segment from 2’ to z12 if Im 2z = Im 212,
and the arc of Cy(.)(2) connecting 2’ and z1o otherwise. We shall discuss
the case that Im z < Im z15. In that case we have, for all ( € C;(2/, z12)
and all integers h < Iy,

log (=" /¢) 5 (=')y5 (Q) '™+ bRe (o (=) — vor (C)) =

{(d; + b+ O(——))0(z) — Tm ; — 20 — b8 + O ; J}m (= — )

log R
As 0(2) < 07 while 0 > 07, the right-hand side is less than

{d;0F —Tm pj — 2537+ b(0 —6') + O( oz R )}Im (z—=¢)

provided b < —d; and R is sufficiently large. With (4.16) it follows that, for
all ( € Cj(2', z12) and all integers h < Iy,

log | (2 /) By ()5 (Q) 1™ + bRe (1hgr (2)) — g (¢)) < 6Im (2 — ()
(4.18)

where § is a positive number, independent of R, provided b is sufficiently
small and R is sufficiently large. Hence we deduce, with the aid of (4.4), an
estimate of the form

|23d /2 bwel Z / y] C+ 1) 1f12(c)672h7ri((72)d<|

h=ly+17 Ci(2":212)
1
< Cj

where C7' is a positive constant, independent of R, and we have used the
fact that Re 9 (2) < Re ¢/ ().

For all ¢ € C’;r (212) we have, due to (4.16),
log |(212/¢) 15 (212)5(¢) 2™ =279 4 a(pg(212) — pa(())

= {d;07 —Im p; — 2hm + O( )Hm (212 — ¢) < 0Im (212 — () (4.19)

log R
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if h <ly. From (4.18) we infer that, for all h < [y,

log |(2'/212) M y5 (2 )5 (212) T' e ™ E722)| 4 bRe (Yo (2) — Yo (212) < O

provided b is sufficiently small and R is sufficiently large. Using (4.4) and
(4.19), we find

|23d /2 bwgl(z)y Z / 72}””( yj (C + 1) lfl(C)d<| <

h=ly+1 +(Zl2)

l1
S R N N O R AT

h=ly+1 +(212)

<K1‘6bw9,('z12) a7"9(212)‘ Z / 6Im (z12— C)ldq”fl”a o
h=ly+1 +(212

With the aid of remark 4.6 it follows that

K(R)| 234/ 2eh0 (e ( Z / e YL () T A < C

h=ly+1 +(212)

where C'j is a positive constant, independent of R. In a similar manner one
proves that

K(R)|z*4/ 2o Py ( Z / e S (1) fa(Q)dC] < G

h=ly+1 (212

where CN']’ is a positive constant, independent of R. Combining the above
estimates, we conclude that, if d; < 0, AEI.F c z_3di/QBg,’g, (R)™ and

|23%/2 A2 F|| < C (4.20)

where C]‘ is a positive constant, independent of R. This completes the proof
of (i) and (ii). For the proof of the fact that Aj inverts A¢ we refer the
reader to [9]. O

We shall need the following simple lemma, which is a straightforward
generalization of a lemma proved by Wasow (cf. [13, lemma 14.3]).

LEMMA 4.8. — Let ¢ : D x U — C be a holomorphic function, where D
is a domain of C and U a convex subset of C™ containing O. Suppose that
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the Jacobian matriz of (z,u) with respect to u vanishes at uw = 0 for all
z € D and the Hessian matriz of ¥(z,u) with respect to u is bounded on
D x U. Then there exists a positive constant K such that, for all z € D and
all uq, ug, v1 and vo € U,

|1/)(z,u1) - w(szZ) - ’ll)(Z,'Ul) + 1/)(2,”2” <

K [max{|us — u1], |va — v1|} max{|u; — v1], |ug — va|}

+max{|u1|7 luzl, [v1, |U2\}|U2 — U1 — V2 +v1|]

Proof.— For all z € D and all uy, us, v; and vy € U,

|1/)(2,u1) - w(zvuﬂ) - 7[)(2,'[}1) + 1p('zuv2)| =
|/0 %w(z,ug +t(ur — 1)) — (2, v + Hv1 — vo))dt]| =

1 1 82
| / / mw(z, vg + t(vy — va) + s(uz — va + t(ug — uz — v1 + v2)))dsdt]
o Jo

Due to the properties of 1, there exist positive numbers K; and K5 such
that, for all z € D, all uy, u2, v1 and vy € U and (s,t) € (0,1) x (0,1),

2

|m¢(z7v2 + t(vy — v2) + s(ug — v2 + t(ug — ug — v1 + v2)))|
< Kq|vr —va + s(ug — ug — vy 4 va)||ug — vg + t(ug — ug — vy + v2)|+
+K2|’U2 + t(Ul — ’UQ) + S(UQ — Vg + t(u1 — Uy — V1 + UQ))Hul — Uz — V1 + 'UQ‘

Hence the result follows. O

Let U ¢ C*, D; C Sy, i = 1,2, and ¥ a C"-valued function on (D; U
Dy) x U. Fori=1,2,1et f; : D; — U be a given function and let g; : D; —
C™ be defined by

9i(z) = U(z, fi(z)) for all z € D;
Putting (f1, f2) = F, we define
PIE) =G = (g1, 92)

In particular, if U is a neighbourhood of O, D; = D;(R) and F is a given
element of B;’g, (R)™, then 9(F) is well-defined if || F'|| is sufficiently small,
or R is sufficiently large. From lemma 4.8 we derive the following corollary.
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COROLLARY 4.9. — Let Iy, Iy be finite, closed intervals of R : I; =
07,0, i € {1,2}, such that 0] < 0y and 05 < 07 + 7, and let I =
[07,0F]. Fori=1,2, let D; := D;(R) denote a domain of the type defined
at the beginning of section 4.2, let Dio = Dy N Dy and D = Dy U Ds.
Let ¢ € A(I',0)™, where I' is some finite open interval containing I, and
suppose that 1(z,0,0) = 0 and 4(z,0,0) = ¢¥5(2,0,0) = 0 for all z € D.
Let 0 € (05 — /2,07 +/2), 0 € (6,05), a and b > 0 and v € R. For
any positive number M, let Bas(R) denote the ball

Bu(R) ={Y € By (R)" : IY] < M}

Then y1(Y,7Y) € Bg”g, (R)™ for allY € z¥ By (R), provided R is sufficiently
large. Moreover, there exists a positive constant K| (R), such that K| (R) —
0 as R — oo and, for all Y1, Y3 € 2By (R),

9 (Y1, 7Y1) — (Yo, TY2)[| < MK (R)||Y: — Ya|
where Y; = 2VY;, i = 1,2.

Proof.— Let Y = (y1,y2) = 2" (41, 2) € 2 Bar(R). Thus, g; € by ,(D;)"
fori=1,2, 91 —y2 € béj—)b(D12)n and [|(y1,92)|| < M. It is easily seen that
po(z + 1) — pe(z) > 0 and Re (g (2 + 1) — o (2)) > 0 for sufficiently
large |z|. Hence, 75; € by ,(Di)" for i = 1,2 and 7(y1 — 42) € l)é,+,Z)(D12)”7
175l b, < 1Gillf,p, < M and [[r(51 = g2l p,, < s — 27 p,,, if R is
sufficiently large. v is analytic on D X U x U, where U C C" is a (convex)
neighbourhood of 0. For all z € D; we have |y;(z)| < M|z|"e= () = 1,2.
Hence we infer, with the aid of lemma 2.15, that both y;(z) and y;(z+1) € U
if R is sufficiently large. Applying lemma 4.8, with u; = (y;(2),v:(2 + 1)),
i € {1,2}, and uy = v; = v =0, we have, for all z € D;,

[9(2,9i(2), yiz + 1) < 2K (4i(2), yi(z +1))|> < 2M2K, [z e~ 200 )

where K and K, are positive constants, independent of R, if R is suffi-
ciently large. As |z|?e~*%(%) is bounded on D, it follows that ¥(z, y;, 7y;) €
béﬂ(Di)”, i =1,2. Again applying lemma 4.8, now with u; = (y;(2),v:(z +
1)) for i = 1,2, and v; = v = 0, we find that, for all z € Do,
(2 1(2), 1 (2 4+ 1) = ¥ (2 92(2), 2 (2 + 1))
< 2K[(41(2), 91 (2 + 1)) = (42(2), 2 (2 + 1)) max [ (yi(2), yi(2 + 1))
2ME, |22 e o =@y — |}y,
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This shows that ¥(z,y1, 7y1)—¥(2, Y2, Ty2) € b})ib(Dlg)” and thus ¥ 4(Y, 7Y)
€ Bg‘g, (R)". In a similar manner one deduces from lemma 4.8 that, for
i €{1,2} and y1,ya € 2"bj ,(D;)" such that 5118 p, < M, j e{1,2},

Hd’(%ylﬂ'yl)*ﬂ}( 7y2a7—y2)HaD <2MK Sup‘ |2V —aps(z ”yl*yQ
z€D;

Now let Yi = (uy,u2) = 'Y, = 2V (uy,u2) € 2¥ By (R) and Yg (v1,v2) =
2Yy = 2"(01,02) € 2" By (R). Let ¢4(Y1, 7Y1) — W(Yz,TYz) = (91,92)-
Then we have for i = 1,2 : [|a]|? , < 1Yl < M, ||v]|° a.D; ||Y2|| < M,
[|ld; — mllﬁ,Di < ||Y1 — Ya||, hence

lgille.p, = Nz, usmus) — (2, wmw)lli,m
< 2MK,sup 2] em @Y, - Vs (4.21)

and, applying once more lemma 4.8,

’
= H|¢(Z7U1 77'U1)—¢(Z7u2,TUQ)—’IZ)(Z7’U1,TU1)+7//(Z,U2,TU2) mg,Dlg

llgr — g2 H

}

< Ky sup |23 I max ||d; — )], p, max{[lir — @]f, b, [l61 — o
2€D i=1,2

- -~ - - ’
+max{|[i1]|g p, 1452lla b, 19118, p,, 192115, p, i = 01 = @2 + Ball5 p,,

Noting that K(R)|liy — tslf, D S M, K(R)|lvy — ®lf p,, < M and
K(R)|luy — 01 — ta + 2 |Hb7D12 < ||Y1 — Ya||, we obtain the inequality

K(R)llg1 = 92115, p,, < 2MK, sup [z[*e” " |[Y; - V3| (4.22)
z€D

From (4.21) and (4.22) the result follows,

with K/ (R)= 2K, sup,cp|z|?e= ). O

Proof of Theorem 3.3.— If there is no j € {1,...,m} such that d; = 0,

w; # 0 and arg p; = m, i.e. if —m/2 is not a Stokes direction of level 1, then
the statements of the theorem can be deduced from Theorem 3.1. We shall
discuss the case that —m/2 is a Stokes direction of level 1 and 6] < —m/2
(the case that 6 > 7/2 can be proved in a similar manner) Fori=1,2let
[Gl ,6] be a closed subinterval of I; such that {;", 6;"}n{— 7r/2 w/2} =

(Z) and 07 < —m/2. Then I}, ¢ (—7/2,7/2), so Ji(I}) = 0, but J;(I}) may
be nonempty (viz., if §; > —7/2). Obviously, 8] < 6; and 85 — 6] < =
implies that §; < 6y and 85 —0; < 7. Let 6 € (85 —7/2,0; +7/2) and ¢’ €
(6F,65). Let D be a domain of the type mentioned in definition 4.5 with I;
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and I replaced by I and I). In view of lemma 2.14(i), the assumption that
w0 € ,41170(])" implies the existence of a positive number a; such that ¢ €
béﬂ(D)” for all a € (0, ay), if R is sufficiently large. Let a € (0, min{ao, a1 }),
be (0,bp), v =max{y; : j € {1,...,m}}, where ag, by and vj, j = 1,...,m,
are the real numbers mentioned in proposition 4.7, and let A? := @;”ZlA‘;-.
Let M > ||z”’Aq(g00,<po)||Z,D. ¢ is analytic on D x U x U, where U is a

neighbourhood of O. For Y = (y1,y2) € z”B;’g, (R)™, with the property that
yi(z) € U for all z € D;, i = 1,2, we define p4(Y,7Y) := (g1, 92), where
9i(2) = ¢o(2) + A(2)yi(2) + B(2)yi(z + 1) + ¥(2,4i(2), yi(z + 1)). By virtue
of corollary 4.9, p2(Y,7Y) € Bg’g/(R)" for all Y € 2¥Bp(R), provided R is
sufficiently large (depending on M). Furthermore, for all Y3, Y5 € 2”By(R),

[¢?(Y1, 7Y1) — ¢?(Y2, 7Y2)|| < Sug(IZ”A(Z)I +(z 4+ 1)"B(2)])[[Y1 - Yz
z€

+MEK)(R)|[Y1 - Ya|

where Y; = z7"Y; for i = 1,2 and R is supposed sufficiently large. Due to
the fact that A(z) ~ 0, B(z) ~ 0 as z — oo, uniformly on D (R’) for any
closed subinterval I’ of I and some sufficiently large R’, and K (R) — 0 as
R — o0, and in view of proposition 4.7, this implies that, for sufficiently
large R, the mapping T : By (R) — B;’g,(R)" defined by

TY =27V A9p1(Y,7Y) = 2" AU (Y, 1Y) — ¢9(0,0)) + 2~ A% (0, ¢0)

7 )

quasi-function F = (Fl,fg) € B (R), such that TF = F. With proposi-
tion 4.7 it follows that z“F is a unique quasi-function solution of (3.1) in
2¥ B (R), and thus, both Fy := 2YF, and F, := 2V F, are solutions of (3.1).
Increasing I; and I and using the uniqueness of the quasi-function solu-
tions and lemma 2.14, we conclude that F; can be analytically continued to

an element f; of /h,o([i)", 1 =1,2, such that fo — f; € fl1+,o(Ii)".

where AY := @g’;lAq- is a contraction. Consequently, there exists a unique

Remark 4.10 . — Note that the conditions on A and B in Theorem 3.3
can be relaxed. All we need is that sup 3 (R') |z¥ A(z)] and
z€Dy/

sup ) |z¥B(z)| tend to 0 as R’ — oo for any closed subinterval I’

265 /(R’
of I. l\/foreover, both in Proposition 4.4 and Theorem 3.3, the condition

g; =0 for all j € {1,...,m} such that d; = p; = 0 can be lifted.

5. Accelero-sums of f

In this section we generalize results of [7, §4] and show that the solutions
J1 and f2, mentioned in Theorem 3.2, can be obtained from the formal solu-
tion f by means of a summation procedure, known as ‘accelero-summation’,
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provided |I]| > 7. It is shown that, for suitable values of § and ¢’, the formal
Borel transform ¢4 o(s) of f with respect to the variable r¢(z) can be contin-
ued quasi-analytically to the half line arg s = 0 and has so-called accelerable
growth. Its accelerate Ag g/ (¢1,0) to the level 11 (with corresponding ‘crit-
ical variable’ 1g:(2), cf. (5.9) and (5.11)), has at most exponential growth
of order 1 and, depending on the values of  and 6’, the Laplace transform
of Agg(¢10), in the variable g (2), coincides with either f1 or fo. This

Laplace transform is an accelero-sum of f.

Let 6 € R and let f be a continuous function on (R, o), where R > 0.

If f has at most subexponential growth as z — oo, then the function ¢; ¢
defined by

1) 1= g [ FEE Ddra(2) (51)

is analytic in the half plane Re s < 0. If f is analytic in 5I(R), where
I = (61,02) is an open interval of R, and f has subexponential growth as

z — 00 in DI(R) then ¢1 o can be continued analytically to the sector
0 < args < 2m.

LEMMA 5.1. — Let 6 € R and let f be a continuous function on (R, 0).
(i) Suppose that f is analytic in Di(R), where I = (01,02) and f satisfies
a growth condition of the form

[z
sup |f(z)|e” “Telsl < oo for all € >0 (5.2)
z€51(R)

If 6, < 0 — w/2, then g{)l,g defined by (5.1), is continuous on the sector
0 < args < 27 and quasi-analytic on args = 02. If 63 > 0 + w/2, then gz~51 0
is continuous on the sector 0 < arg s < 2w and quasi-analytic on arg s = 2.
(i) If there exist positive numbers C' and w such that

|f(2)] < Ce@21°8% for all z € (R, o0) (5.3)

then ¢~)179 is an entire function satisfying a growth condition of the form
~ Re S
o1,0(s) = exp{cexp(—)}O(1) as Re s — o0, (5.4)
w

uniformly on closed subsectors of | arg s| < w/2, where ¢ is a positive number.

(2) More precisely, the restriction of (51’9 to [a, b] belongs to the Denjoy class DJa, b]
forall0 <a <b
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Proof.— (i) Suppose that 81 < 8 — 7/2. By deformation of the path of
integration in (5.1), it is easily seen that the right-hand side can be continued
analytically to the upper half plane and that it can be represented by

1
Pro(s) = i /C+( )f(z)e”“’(z)drg(z), O<args<m (5.5)
According to (2.11), there exists § > 0 such that pg(z) < 610|g ‘l  for all

z € C(;t (R) with sufficiently large absolute value. Thus, in view of (5.2), the
function defined by the right-hand side of (5.5) is continuous on 0 < arg s <
m and C'*° on arg s = 0, and we have, for all m € N,

7(m 1 m ,sTg(z
o ()= 5 F(2)(ro(2)) e D drg(2), args =0
T C;rl(R)

From (5.2) and (2.11) we deduce an inequality of the form

/ |2
B e er [ ame I m ), args =0
cy (R)

where ¢ and C. > 0 and 0 < € < §s. Application of the Laplace method to
the integral on the right-hand side yields an estimate of the form

167 ()] < K% (mlogm)™, m > 2, s € [a,0],

where K, > 0, for any interval [a,b] C (0,00). Hence it follows that the
restriction of ¢ ¢ to [a,b] belongs to the Denjoy class 'Dla, b] (cf. [4]). The
statement for the case that 62 > 6 + m/2 can be proved similarly, using the
representation

1
277@

bo.0(s) = /C " f(2)e*Pdrg(z), 7 < args < 27 (5.6)

(ii) If f decreases supra-exponentially as z — oo, the right-hand side of
(5.1) obviously defines an entire function. Moreover, if (5.3) is satisfied, we
have, for all z € (R, 00),

sz

|f(z)esr9(z)| < Cefwzlog z4+Re sz—0Im X

The right-hand side of this inequality attains its maximum at a point z(s)
with the property that log z(s) = (822 — 1)(1 + O((PI{’:‘SS)Q)) as (PI\ZISS)Q — 0,
and

sz(s)
log 2(s)

1
—wz(s)log z(s) + Re sz(s) — 6Im =z(s){w+ 0(1:1;1 2)}
hence (5.4) follows easily. O
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Let Iy, I> be open intervals of R : I; = (6;,6), i € {1,2}, such that
07 <03 —mandlet 6 € (07 + %,05 — Z). Suppose we are given functions
fi, analytic on Dy, (R) and satisfying a growth condition of the form (5.2)

on Dy, (R) instead of D;(R), i = 1,2, such that
|f2(2) = fi(2)] < Ce™*1%8% on (R, o),

where C' and w are positive numbers. Let (b[l] = [ r filz Yes e () drg(2),
1 =1,2. Accordlng to lemma 5.1, [1] o(s) is qua51—analyt1c on the half line
arg s = 0, q51 0( s) is quasi-analytic on the half line arg s = 27 and 9?’[12]9 - 45[11]0
is an entire function satisfying a growth condition of the form (5.4). Hence

it follows that qg[ll]e (s) is quasi-analytic on the half line args = 27 as well
and the function ¢ ¢ defined by

$1.0(5) = BL'p(s) — o1 h(se?™) = By (s) — G h(se*™), args =0  (5.7)

is quasi-analytic on the half line arg s = 0 (more precisely, for all 0 < a < b,
the restriction of ¢1 ¢ to [a,b] belongs to the Denjoy class 'Da, b]).

DEFINITION 5.2. — We call ¢1,9 defined by (5.7) the Borel transform
of the quasi-function F = (f1, fo) with respect to the variable r¢(z), and
denote it by By ,g(F).

Remark 5.3. —If f; € Ai(1;) for i = 1,2, with common asymptotic
expansion f =5 he @hZ ™ /P then, for sufficiently small s, the Borel trans-
form ¢1,¢(s) coincides with the analytic function defined by the (formal)
Borel transform of f with respect to the variable rg (2), ie.:

oy an [ 27 hPesme(2) dry(z), where U is a suitable contour in S. This

h=1 2mi
is well-known in the case of the ordinary Borel transform, i.e. § = 0.

PROPOSITION 5.4. — Let I; = [0;,07], i € {1,2}, such that 6] < 65 —
7, let I = (07,05), and 6 € (67 +5 L0 — %). Suppose we are given functions
fj, analytic on ﬁI(R) and satzsfymg a growth condition of the form (5.2)

on Dy, (R) instead of D;(R), i = 1,2, such that
f2(2) = f1(2)] < Ce™%18% on (R, o0), (5.8)
where C' and w are positive numbers. Then the Borel transform ¢19 of

(f1, f2) satisfies a growth condition of the form (5.4) as s — oo, args = 0.
Furthermore, ¢1 9 admits the following integral representation, for all s > 0,
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o) =5 | [ @O = [ e O

2ms -
T Cop (B

+/Roo(f2(z) - fl(z))esre(z)dm(z)}

Proof.— From (5.7) we deduce that

$1,0(5) = 01 () — OLp(se¥™) + (91 — 61p)(se*™), args =0

The integral representation for ¢ ¢ now follows from (5.5) and (5.6) (ex-
tended to 0 < args < m and 7 < arg s < 2, respectively). It is easily seen
that the first two terms in this representation grow at most exponentially
as s — oo, arg s = 0. From (5.8) and lemma 5.1 (ii) it follows that the third
term satisfies a growth condition of the form (5.4). O

The estimate on the growth of ¢; g shows that it can be “accelerated from
level 1 to level 17”7 by means of a weak acceleration operator Ag g, where
0 c(0—75,0+7%) (cf. [3, 4]). Ag g is an integral operator (generalizing the
operators Ag defined in [6, 7]) with kernel Ay g :

1
Ago(ts) = o / eor (=50 (2) dupg, (2), £ >0, 5> 0 (5.9)
U

i

where U denotes a contour consisting of the half line from —oco —id to d —id,
the directed segment from § — id to d + id and the half line from § + id to
—o0 + i, with § > 0. Applying the saddle point method to the integral on
the right-hand side of (5.9) we find that, as § — 0o, Agr ¢ behaves as

—1-i(6'—6)+0(t/s)

23

A oltys) = {4 phgete TR 5 10)

The weak accelerate Ag o(¢) of a function ¢ satisfying an appropriate growth
condition, is defined by

Ae/ﬂ(gi))(t) = /OOO Ag/ﬂ(f, S)¢(8)d$, t> 0 (511)

PROPOSITION 5.5. — Under the conditions of proposition 5.4, the weak
accelerate Ag 9(p1,0)(t) of the Borel transform ¢1,9 of (f1, f2) with respect
to r9(2), defined by (5.11), exists for all ' € (0—7,0+7) and allt € (0,w).
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Proof. — According to proposition 5.4, ¢; ¢ satisfies a growth condition
of the form (5.4). With (5.10) it follows that Ag g(¢1,0)(t) exists for all
te (0,w). O

In [7] we have proved the following proposition ([7, Proposition 2.11]).

PROPOSITION 5.6. — Let 01 < 03, I = [01,02] and R > Ry. Suppose
that f is an analytic function on Di(R), with the following properties
(i) for every e > 0,

sup | f(z)|e”clFllos el < oo
ZEﬁI(R)
(i) f grows at most subexponentially as z — oo on C’g; (R)UCy (R).
Then, for any 0 € (01,02), the function q~51+79 defined by

1+ 0(t) = QLM/R f(2)e* iy (z), Ret <0

can be continued analytically to the sector 0 < argt < 27 and is continuous
on the sector 0 < argt < 2w, and the function ¢1+ ¢ defined on the half line
argt =0, by : ~ R ‘

P1+,0(t) = P14 (1) — 1+ o(t*™)

is quasi-analytic on (0,00) 3. It can be represented by the integral

breo(t) = - / _ H@)e D diy(z)
0D (R)

27

where we integrate in the direction of increasing Im z. Moreover, if f(z) =
O(z") as z — oo, uniformly on Dr(R), where u <0, then

/ b1+ o(t)e M@ dt (5.12)

DEFINITION 5.7. — We call the function ¢+ ¢ the Borel transform of f
with respect to the variable 1o (z) and denote it by Bi+ o(f).

THEOREM 5.8. — Let I; = [07,0], i € {1,2}, such that 0; < 0 for
i=1,2,0] <0 —m and 0] < 6. Let I := (0],05), R a sufficiently
large positive number and D1o := D[12 (R). Suppose we are given functions
fi, analytic on Dy, (R) and O(z") as z — oo, uniformly on Dy, (R), i = 1,2,
where p < 0, with the property that

fa—fi€ bét,w(D12)

(3) More precisely, for all 0 < a < b, the restriction of $1+,9 to [a, b] belongs to 'Dla, b]
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where 0" € Lo and w > 0. Let i € {1,2}, 0/ € (0; ,0]), 0 € (¢ — 3,60’ +

)N (67 + 5,05 — %), and let ¢1,9 denote the Borel transform of (f1, f2)
with respect to the variable ro(z). Then the weak accelerate Ag: o(¢1,9)(t)
coincides with By+ g:(fi)(t) for sufficiently small positive values of t.

Proof.— The proof is similar to that of Theorem 4.5 in [7], but the
presence of the variable ry(z) requires some additional technicalities. Let
0 € (0] +7/2,05 —n/2) and fo; := fo — f1. According to proposition 5.4,
®1,0 can be represented as follows

o) =5 | [ @O = [ e O

2w -
T Cop (B

+/ROO le(z)es”’(z)dra(z)} (5.13)

As fo1 decreases exponentially of order 1 on D15 and e%7¢(?) grows at most
subexponentially as z — oo on Cgir(R) U C;, (R), we have, for s > 0,
1 2

o0
/ fgl(z)esre(z)drg(z) = / fgl(z)es”’(z)drg(z) =
R C (1)

= / fo1(2)esmE) drg(2)
o ()
2
Suppose that ¢’ € (87 ,607) and 6 € (§'—%,6'+%)N(0; +%,05 —%), the other
case is analogous. Let 0 € (§—Z,¢'), 6** € (¢, min{6; ,0+%}), R’ > 0 and
let Cyr (R') denote the contour consisting of Cy (R') and C.. (R'), described
in the direction of increasing Im z. As Re 9p/(2) = R'log R’ + (0 —6))Im =z
for all z € C3(R') and 6 € R, Re ¢g/(2) — —00 as z — oo on Cg(R’) if
6 <0, orz— coon C; (R') if # > . Thus, we can deform the path of
integration in (5.9) so as to obtain

1 '
A p(t,s) = —/ etVor (=510 (2) dapy, (2), >0, 5> 0 (5.14)
2mi Je,, (r
Let M > 0,t >0 and let

M
= (4) = 519($) A,
I () /O ds /Cﬁ(R) drg(C) f21(¢)e Agro(t,s)
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For each M > 0 we can replace the path of integration Co/(R') in (5.14)
by Cy:(Rar), where Ry is a suitable number > R, to be specified later on.
Changing the order of integration we find

v(t) = (2 eter (2) fa1(¢)(eMro(Q=ro(2) _ 1)
I (t) /C o (e /C O )

n
oy

On C,, (R) we have, for any 0" € R,
1

Re 1 (¢) = Rlog R — (8 — 67 )Im ¢

As fa1 € bét7w(D12) for some 6" € (67,605 ), there exist positive numbers c
and C' such that, for all ¢ € C; (R),
1

|f21(¢)] < Ce™ ¢ (5.15)

Furthermore, it can be shown that there exists a positive constant § such
that, for all ¢ € C'Gl+ (R) and all z € Dy+ (R + 1), the following inequality

holds s
— > — .
[ro(C) — ro(2)| = o 7] (5.16)

provided R is sufficiently large. Now consider the integral

Iy (t) = / iy (z)eo ) / dre(C)

Cor (Rar) oy (R) 2mi(rg(C) — ro(2))
1

f21(¢)eM(re(Q=ra(2))

With (5.15) and (5.16) we have

()] < C / (diby (=) log [2|etRe Vo ()= Mpa(2) / (g (C) eI <+MP(©)
Cor (Rar) Co (R)
1

where C’ is a positive constant, independent of M, provided Ry; > R + 1.
A straightforward computation shows that

min (pg(z) —loglog|z|) = R'(1+0(1)) as R' — oo
2€Cy (RY)

For all z € Cj.(Ry) we have Re g (2) = Rarlog Ry + (0% — 6/)Im 2,
while, for all z € C_\ (Ra), Re ¢ (2) = Rarlog Ry + (67 — 0")Im 2. As
1

0* < ' < 6**, there exists o € (0,1) and a positive number K, independent
of M, such that, for every ¢t > 0,

/ |d¢9/(z)\ log ‘Z|€tRe Vg1 (z)—Mpg(2) < EetRM log Ryy—aM Ry
Cor (Rar) t
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provided Rj; is sufficiently large. In order to derive an estimate for
fC Ry ldro(C ()]ecM™ ¢+Mpa(Q)  we put Tm ¢ = 2 and Re ¢ = p(x) for all

e 09+( ) Let ¢(z) = p(x) + iz, ¢(x) = arg ((x) and r(x) = [((x)]. From

the relatlon
p(x)log[¢(z)] = (arg () + 67 )z + Rlog R

we deduce that

(¢(z) + 0] )z + Rlog R 3 exlog r(z) — p(z)¢(z)

Pl = g ) (log r(2))? + o(x)?
_ G407+ o)l + Rlog R 16lr | _ aos

logr(x) (logr(z))2” = log|z|
where ag g is a positive constant and x < —e. Hence it follows that, for
sufficiently large M,

sup  Mpg(((x)) + ca < eMoon/e

z€(—00,—e)

From the above considerations we conclude that, for all sufficiently large
M

)

/ |dr9(4)|6dm C+Mpo () < ebe,ReM‘lG,R/C
(R)

where by, g is a positive constant, independent of M. Let 3 > aec:R. Choosing

Ry = €™ we find that limys oo I5,(t) = 0 for all ¢ € (0,a/3). Conse-
quently, the integral

Dot (t) = /0 ds /R dre(C) 1 (O)e*™ Agr o2, 5)

converges for sufficiently small £ > 0, and equals

- ()Mo (2) . f21(¢)
0= [y WO [ 00 B )~ ey

+
oy

Furthermore, it is easily verified that, for all t > 0,

— = ste(C) A,
t) /0 ds /C;(R) drg(¢) f1(Q)e A o(t,s)

_ ()t (2) f1(¢)
oy /c; w200~ r0(2)

1
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:7/~ d%,(z)etwer(z)/ dro(C) f1(9)

Cor (R C (R) 2mi(rg(C) — ro(2))

and

L(t) = /O T s /c o dre(O)f2(C)e™©) g o(t, )

- (2)et?or (2) . £2(9)
~/C’9/(R’) o (2) /C’+(R) dro(C) 2mi(rg(C) — ro(2))

by

= */~ di/’a/(z)e“"e’(z)/ dre(€) f2(¢)

Cor (RY) ooy () 2mi(ro(C) — 70(2))
1

In view of (5.13) we have

A o(dr.0)(t) = —— (1 (8) + I (1) — I(1))

211

Inserting the above expressions for I1(t), I21(t) and I(¢) into the right-hand
side of this identity we find

Ag p(br0)(t) = — - dipy (2)e o) / dro(¢) ——11)

2mi Cor (R Cyr (R) 2mi(ro(C) — ro(2))

Applying Cauchy’s theorem we get

1

Aoalora)® =5 [ p@e gz
211 Cpr (R")

and this proves that, for sufficiently small ¢t > 0, Ay g(¢1,6) coincides with

the Borel transform of f; (cf. proposition 5.6). O

From Theorem 3.2, Proposition 5.6 and Theorem 5.8 one easily deduces
the following result (cf. also Remark 5.3 and [7, Remark 4.6]).

THEOREM 5.9. — Assume that the conditions of Theorem 3.2 are satis-
fied and that, in addition, |I| > . Then the solutions f1 and fo are accelero-

sums of f, i.e.

o —tyr (2 .
fl('z) =Yo +/ Aeé’oi((bl’ei)(t)e ei( )dt7 Re %1(2) > Ce;, 1=1,2
0
(5.17)
where yo is the zero order term of f, ¢1.9, = B1,o,((f1,f2)), 0, € I;, 0; €
0, —Z,0;+2)N (6, +%,05 — %) and cp; is some sufficiently large positive
number, i =1, 2.
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This theorem shows that, if the conditions of Theorem 3.2 are satis-
fied and |I| > =, then the functions f; and fs are characterized by their
asymptotic properties alone (independently of the equation they satisfy).
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