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Discrete coagulation-fragmentation system with
transport and diffusion(∗)

Stéphane Brull(1)

ABSTRACT. — We prove the existence of solutions to two infinite sys-
tems of equations obtained by adding a transport term to the classical
discrete coagulation-fragmentation system and in a second case by adding
transport and spacial diffusion. In both case, the particles have the same
velocity as the fluid and in the second case the diffusion coefficients are
equal. First a truncated system in size is solved and after we pass to the
limit by using compactness properties.

RÉSUMÉ. — On démontre l’existence de solutions pour deux systèmes
infinis d’équations de coagulation-fragmentation. Dans un premier cas,
on rajoute un terme de transport au système classique de coagulation-
fragmentation et dans un second cas on rajoute un terme de transport et
un terme de diffusion. Dans les deux cas les particules possèdent la même
vitesse que le fluide et dans le second cas les coefficients de diffusion sont
égaux. On résout dans un premier temps un problème tronqué en taille
puis on passe à la limite en utilisant des lemmes de compacité.

1. Introduction

Coagulation and fragmentation processes describe the mecanism by
which clusters can coalesce with other clusters to form a larger cluster and
can fragment to form two smaller pieces. The clusters are usually identified
to their size which can be a positive number in the case of a continous model
or an integer in the case of a discrete model. In this paper, only discrete
models will be considered. ci(t, x) will denote the concentration of clusters
containing i particles (i-mers, denoted by Pi in the sequel) at time t and
position x. i will be called the size variable. More precisely, the coagulation
corresponds to the chemical reaction

Pi + Pj → Pi+j .

(∗) Reçu le 2 mars 2007, accepté le 10 avril 2008
(1) ANLA, University of Toulon, avenue de l’université, 83957 La Garde, France.
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Two clusters of size i and j will give a bigger cluster of size i+j. The velocity
of this reaction is equal to ai,jcicj , where (ai,j)(i,j)∈N∗×N∗ is called the
coagulation kernel. The fragmentation corresponds to the inverse reaction

Pi+j → Pi + Pj .

One cluster containing i + j particles gives two clusters containing respec-
tively i and j particles. The velocity of this reaction is equal to bi,jci+j ,
where (bi,j)(i,j)∈N∗×N∗ is called the fragmentation kernel.

When the two equations are in competition, we obtain the equilibrium

Pi + Pj
−→←Pi+j .

The velocity vi,j of this reaction is vi,j = ai,jcicj − bi,jci+j . As a math-
ematical point of view, this problem has been widely studied in ([1], [2],
[3]).

In the same time, these particles are in a mouving fluid and the Fick
law reads ([9], [1])

∂tci + div(ji) = Qi(c), (1.1)

where ji is the flux due to the motion of the clusters of size i. The flux is
decomposed into two terms as ji = uici − di∇ci. ui is the velocity of the
clusters of size i and di is the velocity of diffusion of the particles of size i.

The term uici is due to the displacement of the fluid and the term di∇ci
is due to the diffusion of the particles in the fluid. These two terms depend
on the geometry and on the velocity of the flow.

If the fluid is viscous enough, the diffusion term of the flux is prepon-
derant compared to the term due to the transport, (1.1) becomes

∂tci − d(i)∆ci = Qi(c).

This case has been investigated in ([6], [7], [10]). An existence theorem is
proved in ([7]) when the diffusion coefficients d(i) are equal and in ([6]),
the asymptotic behaviour of the solutions in time is studied. In ([11]) an
existence theorem is established when the size variable is continous.

When the transport term is preponderant compared to the diffusion
term, one obtains

∂tci + div(uci) = Qi(c). (1.2)

This case has been studied in ([4], [8]) for continous models.
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When both phenomena are comparable, the equation (1.1) reads

∂tci + div(uci)− d(i)∆ci = Qi(c). (1.3)

Qi(c) is a source term coming from the velocity of the reaction defined by

Qi(c) =
i−1∑
k=1

ak,i−kckci−k + 2
∞∑

k=1

bk,ici+k − 2
∞∑

k=1

ak,ickci −
i−1∑
k=1

bk,i−kci.(1.4)

The term
i−1∑
k=1

ak,i−kckci−k accounts the formation of clusters Pi by coales-

cence of two smaller clusters. 2
∞∑

k=1

bk,ici+k represents the gain of clusters Pi

by fragmentation of larger clusters. 2
∞∑

k=1

ak,ickci accounts the depletion of

clusters Pi by coagulation with another cluster, and
i−1∑
k=1

bk,i−kci represents

the fragmentation of clusters Pi into two smaller clusters.

In this paper, we will assume that the coefficients ai,k and bi,k fulfill the
conditions

ai,k = ak,i > 0, bi,k = bk,i > 0, ai,k = o(k) bi,k = o(k),

sup
k

ai,k

k
<∞, sup

k

bi,k
k

<∞. (1.5)

u(t, x) is the velocity of the fluid in which are the clusters. All the clus-
ters are supposed to have the velocity of the fluid which is assumed to be
incompressible.

This paper is organized as follows. The second section is devoted to the
case 1.2. An existence theorem is proved when all the clusters have the
velocity of the fluid. The third section deals with the case 1.3 where an
existence theorem is established.
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2. The case of pure transport

2.1. Setting of the problem

Consider the equation for any i ∈ N
∗,

∂tci(t, x) + div(uci)(t, x) = Qi(c)(t, x), t > 0, x ∈ R
D, (2.6)

ci(0, x) = c0i (x), x ∈ R
D. (2.7)

where Qi has been defined in (1.4). We will consider weak solutions to the
problem (2.6-2.7) in the following sense

Definition 2.1. — (ci)i∈N∗ is a weak solution to the problem (2.6-2.7)
if for any i ∈ N

∗, ci ∈ C0(R+ × R
D) and

−
∫

RD

c0i (x)ϕ(0, x)dx−
∫

R+

∫
RD

u ci(t, x)∇xϕdsdx

−
∫

R+

∫
RD

ci(t, x)∂tϕdsdx =
∫

R+

∫
RD

Qi(c)(t, x)ϕ(t, x)dxds,

for each ϕ ∈ C1(R+ × R
D) with compact support in R+ × R

D.

In this section the main result is,

Theorem 2.2. — Assume that the coefficients ai,k and bi,k satisfy the
assumptions (1.5), that the initial data satifies for any i ∈ N

∗

c0i � 0, c0i ∈ C1(RD), (i, x) 	→ ∂xc
0
i (x) ∈ L∞(RD × N), ρ0 =

+∞∑
i=1

ic0i ∈ L∞(RD),

and that the velocity u ∈ C1(R+ × R
D) is bounded, fulfills the incompress-

ibility condition div(u) = 0, and is such that ∂xu is bounded.

Then, the system (2.6-2.7) has a weak solution (ci)i∈N in the sense of
Definition 2.1.

As in ([7]-[14]), we shall proceed into two steps. First, a truncated prob-
lem in size will be solved by a fix point argument and in a second step we
will pass to the limit.

2.2. Resolution of a truncated problem

Let N ∈ N be given. In this part, the sizes greater than N are neglected
by considering the following problem for i ∈ {1 · · ·N}.

∂tc
N
i (t, x) + div(ucNi )(t, x) = (GN

i −PN
i )(cN )(t, x), t > 0, x ∈ R

D, (2.8)
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cNi (0;x) = c0,N
i (x), x ∈ R

D, (2.9)

where

c0,N
i = c0i if i � N c0,N

i = 0 else

GN
i (c) =

i−1∑
k=1

ak,i−kckci−k + 2
N−i∑
k=1

bk,ici+k and PN
i (c) = νN

i (c)ci (2.10)

with

νN
i =

i−1∑
k=1

bk,i−k + 2
N−i∑
k=1

ak,ick,i.

Proposition 2.3. — Under the hypotheses of Theorem 2.2, the system
(2.8-2.9) possesses a unique solution on R+ × R

D.

The solution of the truncated problem (2.8-2.9) will be the fix point of
a mapping Γ. First, the following Lemma whose proof is given in ([7]) will
be used.

Lemma 2.4. — For all N -uple {c1.....cN} such that, for all i, ci � 0, it
holds that

νN
i (c) � 0, GN

i (c) � 0, |νN
i | � AN sup

i=1..N
ci +BN ,

|GN
i (c)| � ( sup

i=1..N
cNi )2AN +BN sup

i=1..N
cNi .

Consider YN the solution to the Cauchy problem

dYN

dt
= ANY

2
N +BNYN (2.11)

YN (0) = R0 t > 0 (2.12)

Let TN be the time of existence of the solution and T ∈]0, TN [. Consider
the space

E = {c ∈ [C0([0;T ]× R
D)]N ∩ (L∞([0, T ]× R

d))N ; c � 0;
‖c(t, .)‖[L∞(Rd)]N � YN (t), t ∈ [0, T ]}.

Consider the following iteration

∂td
n+1
i (t, x) + u(t, x).∇xd

n+1
i (t, x) = [GN

i (dn
i )− ν(dn

i )dn+1
i ](t, x), (2.13)

– 443 –
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dn+1
i (0, x) = c0i (x).

(2.14)
Let Γ be the map defining this iteration.

Lemma 2.5. — For the same assumptions as for Lemma 2.4, E is stable
by Γ.

Proof of Lemma 2.5. — The system (2.8-2.9) is solved on a caracteristic.
Consider the vector field X(s, t, x) satisfying

∂sX(s, t, x) = u(s,X(s, t, x)), (2.15)
X(t, t, x) = x. (2.16)

Then, the solution to the system (2.8-2.9) writes for any i ∈ {1 · · ·N}.

cNi (s,X(s, t, x)) = c0i (X(0, t, x)) +
∫ t

0

[GN
i (cN )− νN

i cNi ](s,X(s, t, x))ds.

(2.17)
So, by considering the quantity

dn+1
i (τ,X(τ, t, x)) exp

( ∫ τ

0

νN
i (dn)(s,X(s, t, x))ds

)
,

the solution to the system (2.13-2.14) reads for any i ∈ {1 · · ·N}

dn+1
i (t, x)=c0i (X(0, t, x)) exp(−

∫ t

0

νN
i (dn)(s,X(s, t, x))ds

+
∫ t

0

exp(−
∫ t

s

νN
i (dn)(σ,X(σ, t, x))dσ))GN

i (dn
i (s,X(s, t, x))ds.(2.18)

Then, by continuity of dn
i , dn+1

i is also continous. Moreover, the nonneg-
ativity of c0i and GN

i (dn) implies according to (2.18) the nonnegativity of
dn+1

i . On the other hand, as νN
i � 0, (2.18) leads to

dn+1
i (t, x) � c0i (X(0, t, x)) +

∫ t

0

GN
i (dn)(s,X(s, t, x))ds.

But, as dn ∈ E and by using Lemma 2.4, it holds that

dn+1
i (t, x) � c0i (X(0, t, x)) +

∫ t

0

d

ds
Y N (s)ds.

So, finally, we get that dn+1
i (t, x) � Y N (t). �
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We are going to show that this map is a contraction for the norm

‖|c‖| = sup
s∈[0,T ]

e−ωN s‖|c(s, )‖[L∞(Rd)]N

where ωN is a constant which shall be chosen big enough so that Γ is a
contraction and whose the choice shall be precized during the proof of the
following Lemma.

Lemma 2.6. — There is a nonnegative constant ωN depending only on
N such that the mapping Γ is a contraction from E into itself for the norm
‖| ‖|.

Proof of lemma 2.6. — By considering two consecutive terms of the it-
eration (2.13-2.14) and by substracting them, it holds that

∂t[dn+1
i −dn

i ](t, x)+u(t, x).∇X(dn+1
i −dn

i )(t, x)+νN (dn
i )(t, x)(dn+1

i −dn
i )(t, x)

= [GN
i (dn)−GN

i (dn−1)](t, x) + dn
i (t, x)(νN

i (dn−1
i )− νN

i (dn
i ))(t, x).

So, (dn+1
i − dn

i )(t, x) writes

(dn+1
i − dn

i )(t, x) =
∫ t

0

[GN
i (dn)−GN

i (dn−1)](τ,X(τ, t, x))dτ

+
∫ t

0

dn
i (τ,X(τ, t, x))[νN

i (dn−1)− νN
i (dn)](τ,X(τ, t, x))

exp(−
∫ t

τ

νN
i (dn)(s,X(s, t, x))dsdτ.

According to the expression of GN
i and PN

i , there exists a nonnegative
constant C(N,T ) such that

|GN
i (c)−GN

i (d)| � C(N,T )‖c− d‖[L∞(Ω)]N ,

|PN
i (c)− PN

i (d)| � C(N,T )‖c− d‖[L∞(Ω)]N . (2.19)

So,

‖|(dn+1
i − dn

i )‖| � C(N,T )‖|dn
i − dn−1

i ‖|[ 1− e−ωN t

ωN
].

Hence, by choosing ωN big enough such that k = 2C(N,T )
ωN

< 1, the result is
proved. �
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For the proof of Proposition 2.3, the following Lemma will be used

Lemma 2.7. — For GN
i and PN

i defined in (2.10), it holds that
N∑

i=1

[iGN
i (c)−

iPN
i (c)] = 0.

For the proof, see ([7]). �

Proof of Proposition 2.3. — From previously, (dn
i )n∈N is a converging

sequence in E and Γ is a contraction. Therefore the problem (2.8-2.9) has
a unique solution on [0, T ]× R

d for T ∈]0;TN [.

In order to get a global solution on R+ × R
d, consider

ρN =
N∑

i=1

icNi , ρ =
+∞∑
i=1

ici (2.20)

which represents total mass of particles which react.

Multiply in (2.8-2.9), the equation number i by i, sum on i until N and
use Lemma 2.7, leads to

∂tρ
N (t, x) + u(t, x).∇xρ

N (t, x) = 0, (2.21)

ρN (0, x) = ρN
0 (x) =

N∑
i=1

ic0i (x). (2.22)

So, by considering the vector field X(s, t, x) defined by the system (2.15-
2.16), it holds that

0 � ρN (t, x) = ρN
0 (X(0, t, x)) � ρ0(X(0, t, x)) � ‖ρ0‖L∞(RD). (2.23)

Hence, (∀i ∈ {1;N}), cNi � ‖ρ0‖L∞(RD). Next, we choose R0 = ‖ρ0‖L∞(RD)

and we solve the equation (2.6) for any i ∈ {1....N} on [T, 2T ] with the
Cauchy data equal to ci(T, ·). Then, a reiteration of this process gives global
existence of the solution on R+ × R

D. �

2.3. Solution of the problem

The aim is now to pass to the limit when N tends to +∞ in the system
(2.8-2.9).

Proposition 2.8. — For any compact set [0;T ] × K of R+ × R
D and

for any i ∈ N, the sequence (cNi )N∈N is strongly compact in C0([0;T ]×K).
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Proof of Proposition 2.8. — In order to apply the Ascoli theorem, we
shall control ∂tc

N
i and ∂xc

N
i . Consider BR the closed ball of R

D with a
radius equal to R > 0. Hence, by differentiating the relation (2.17) with
respect to the space variable xj , it holds that

∂xj
(cNi )(t, x) = ∂X [c0i (X(0, t, x))]

+
∫ t

0

∂xj
[QN

i (c)](s,X(s, t, x))∂xj
X(s, t, x)ds. (2.24)

Now, in order to estimate ∂tX(s, t, x) and ∂xX(s, t, x), let us show the
following Lemma.

Lemma 2.9. — If u ∈ C1 is bounded on [0;T ]×R
D and if ∂xu is bounded

on [0;T ]× R
D then ∂xX and ∂tX are bounded on [0;T ]2 × R

D.

Proof of Lemma 2.9. — By integrating (2.15), X writes

X(s, t, x) = x+
∫ s

t

u(σ,X(σ, t, x))dσ. (2.25)

So by differentiating (2.25) with respect to the space variable x and by using
that ∂xu is bounded on [0, T ]× R

D, there exists M > 0 such that

|∂xX(s, t, x)| � 1 +M(
∫ t

s

|∂xX(σ, t, x)|dσ).

So, according to the Gronwall lemma, ∂xX(s, t, x) is bounded on [0;T ]2 ×
R

D. Analogously, the same result holds for ∂tX(s, t, x). �

End of the proof Proposition 2.8. — In order to control the term ∂xjQi

consider the quantity

∂x[GN
i (cN )] =

i−1∑
k=1

ak,i−k

(
∂xc

N
k cNi−k +cNk ∂xc

N
i−k

)
+2

N∑
k=1

bk,i∂xc
N
i+k. (2.26)

A bound on cNi independent of N is first researched in L∞((0, T ); RD).

As ρN
0 =

N∑
i=1

ic0i and ρ0 =
∞∑

i=1

ic0i , with ρ0 ∈ L∞(RD), it holds that

cNi � ‖ρN
0 ‖L∞(RD) � ‖ρ0‖L∞(RD) � M0. (2.27)
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Now, let us control the term
i−1∑
k=1

ak,i−k∂xc
N
k (t, x)cNi−k(t, x) of the right-hand

side of the equation (2.26).

∣∣∣
i−1∑
k=1

ak,i−k∂xc
N
k (t, x)cNi−k(t, x)

∣∣∣ �
i−1∑
k=1

ak,i−k

i− k
|∂xc

N
k (t, x)|(i− k)cNi−k(t, x)

From assumption (1.5), there is A > 0 such that

sup
k∈{1,i−1}

|ak,i−k

i− k
| � A.

Hence,

∣∣∣
i−1∑
k=1

ak,i−k∂xc
N
k (t, x)cNi−k(t, x)

∣∣∣ � A sup
i∈N

sup
x∈RD

|∂xc
N
k (t, x)|

i−1∑
k=1

(i− k)cNi−k.

But, by definition of ρN , it comes that

|
i−1∑
k=1

(i− k)cNi−k| � ρN .

Then (2.23) leads to

|
i−1∑
k=1

(i− k)cNi−k| � ‖ρ‖L∞(RD).

Therefore, by using (2.27), we get the estimate

∣∣∣
i−1∑
k=1

ak,i−k∂xc
N
k (t, x)cNi−k(t, x)

∣∣∣ � AM0

(
sup
i∈N

sup
x∈RD

|∂xc
N
i (t, x)|

)
.

where M0 is a nonnegative constant. In the same way, we obtain

|
i−1∑
k=1

ak,i−k∂xc
N
i−k(t, x)cNk (t, x)| � AM0(sup

i∈N

sup
x∈RD

|∂xc
N
i (t, x)|),

|
N−1∑
k=1

bk,i∂x(cNi+k(t, x))| � B(sup
i∈N

sup
x∈RD

|∂xc
N
i (t, x)|),

where B is a constant independent of the variables k, i, t, x. So finally, there
exists a constant C independent of the variables t, x, i,N such that

|∂x[GN
i (cN )](t, x)| � C(sup

i∈N

sup
x∈RD

|∂xc
N
i (t, x)|).
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The same result holds for PN
i (cN ). So,

sup
x∈RD

‖∂x[cNi (t, x)]‖L∞(RD) � C + α

∫ t

0

sup
x∈RD

‖∂x[cNi (s, x)]‖L∞(RD)ds,

where α and C are nonnegative constants independent of the variables
t, x,N . From the Gronwall lemma, it holds that

(∀i ∈ N
∗), (∀t ∈ [0;T ]), ‖∂xc

N
i (t, x)‖L∞(RD) � Ceαt.

By reasonning in the same way, we can prove that ∂tc
N
i is also controled.

Then, by using the Ascoli Theorem, the sequence (cNi )N∈N is strongly com-
pact in C0([0;T ]×BR) for any i. �

Proof of Theorem 2.2. — By using a diagonal process, there is a subse-
quence cφ(N) of cN such that (∀i ∈ N), cφ(N)

i is converging to a continous
function ci uniformly on all compact set of the form [0;T ]×BR. By arguing
as in ([7]), it holds that GN

i (cN ) (resp. PN
i (cN )) converges to Gi(c) (resp.

Pi(c)) uniformly on [0;T ] × BR. So, we can pass to the limit in the weak
form of (2.6-2.7). �

3. The case of transport and diffusion

3.1. Setting of the problem

In this section, consider the problem

∂tci(t, x) + div(uci)(t, x)−∆ci(t, x) = Qi(c)(t, x) (3.28)
ci(0;x) = c0i (x), x ∈ Ω, (3.29)
∂ci
∂η

(t, σ) = 0 t > 0, σ ∈ ∂Ω, (3.30)

where Ω is an open bounded set of class C1 with ∂Ω as boundary and
where Q(c)i has been defined in (1.4). It corresponds to the case (1.3) when
the diffusion coefficients d(i) are taken equal to one. The solutions of the
problem (3.28-3.29-3.30) will be considered in the following sense.

Definition 3.1. — (ci)i∈N is a weak solution to the problem (3.28-3.29-
3.30) if for any i ∈ N

∗ and any T > 0, ci ∈ L2([0, T ]× Ω) and

−
∫

RD

c0i (x)ϕ(0, x)dx−
∫

R+

∫
RD

ci(t, x)∂tϕ(t, x)dx
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−
∫

R+

∫
RD

ci(s, x)u · ∇xϕ(s, x)dxds−
∫

R+

∫
RD

∇xci(s, x) · ∇xϕ(s, x)dxds

=
∫

R+

∫
RD

Qi(c)ϕ(s, x)dxds

for all ϕ ∈ C1(R+ × R
D) with compact support in R+ × R

D.

The main result of this part is

Theorem 3.2. — Let Ω be an open and bounded set of class C1. As-
sume that the kinetic coefficients (a)(i,j)∈N∗×N∗ and (b)(i,j)∈N∗×N∗ satisfy
the assumptions (1.5), that the initial data satisfies

c0i � 0, i ∈ N
∗, c0i ∈ L2(R+ × Ω), ρ0 =

+∞∑
i=1

ic0i ∈ L∞(Ω).

and that the velocity of the fluid u ∈ H1(R+;H1
0 (Ω) ∩ L∞(Ω)) fulfills the

incompressibility condition div(u) = 0.

Therefore the system (3.28-3.29-3.30) has a weak solution on R+ × R
D

in the sense of Definition 3.1.

As previously, we shall proceed into two parts. First, we shall solve a
truncated problem and after we will pass to the limit.

3.2. Resolution of a truncated problem

Let N ∈ N be given. The sizes greater than N are removed, by consid-
ering the following problem for any i ∈ {1 · · ·N},

∂tc
N
i + u · ∇xc

N
i −∆cNi = Qi(cN ), (3.31)

cNi (0;x) = c0,N
i (x) i ∈ N, t > 0, x ∈ Ω, (3.32)

∂

∂η
cNi (t, σ) = 0, t > 0, σ ∈ ∂Ω. (3.33)

Proposition 3.3. — Under the assumptions of Theorem 3.2, the prob-
lem (3.31-3.32-3.33) has a unique solution defined on R+ × R

D.

Consider the following iteration for any i ∈ {1 · · ·N},

∂td
n+1
i −∆dn+1

i + u(t, x) · ∇xd
n+1
i + νN

i (dn
i )dn+1

i = GN
i (dn), (3.34)

dn+1
i (0;x) = c0i (x), (3.35)
∂

∂η
dn+1

i (t, σ) = 0, t > 0, σ ∈ ∂Ω. (3.36)

Let S be the mapping defining this iteration.

– 450 –



Discrete coagulation-fragmentation system with transport and diffusion

Lemma 3.4. — If for any i ∈ {1...N}, ci � 0, then S(c)i � 0.

Proof of Lemma 3.4. — Consider ci � 0 and put di = S(c)i. Consider
f ∈ C1(R) such that f is nondecreasing on ]0; +∞[ and f(t) = 0 for t ∈ R−.
Multiply the equation (3.34) satisfied by di by f(−di) and integrate on
[0; t]× Ω leads to (∀t ∈ [0;T ]),

∫ t

0

∫
Ω

(∂tdi) f(−di) dxdt−
∫ t

0

∫
Ω

∆di f(−di)dxds+
∫ t

0

∫
Ω

u·∇xdi f(−di)dxdt

+
∫ t

0

∫
Ω

νN
i (c) di f(−di) =

∫ t

0

∫
Ω

GN
i (c)f(−di)dxds. (3.37)

But, from the Green formula and by using (3.36), it holds that

−
∫ t

0

∫
Ω

∆di f(−di)dxdt =
∫ t

0

∫
Ω

∇xdi · ∇xf(−di)dxdt.

Let F be the primitive function of f such that F (0) = 0. So, F is nonde-
creasing on ]0; +∞[ and is identically 0 on ]−∞; 0]. Hence, we get

∫ t

0

∫
Ω

uj(s, x)∂xjdi(s, x)f(−di)(s, x)dxds = −
∫ t

0

∫
Ω

uj(s, x)∂xjF (−di)(s, x)dsdx.

So, by using the Green formula, it comes that
∫

Ω

uj(s, x)∂xj
di(s, x)f(−di)(s, x)dxds = −

∫
Γ

uj(s, σ)F (−di)(s, σ)dσ

+
∫

Ω

∂uj

∂xj
F (−di)(s, x)dx.

But, as u ∈ H1
0 (Ω) and div(u) = 0, we get

∫ t

0

∫
Ω

u · ∇xdi f(−di)dxdt = 0.

So, (3.37) gives the inequality,

∫
Ω

F (−di)(x, v)dx−
∫

Ω

F (−di)(0, v)dx+
∫ t

0

∫
Ω

f ′(−di)|∇xdi|2dxdt

+
∫ t

0

∫
Ω

νN
i (−di)(s, x) (−d)f(−di)(s, x)dxds � 0. (3.38)
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But, as di(0;x) = c0i (x), F is identically 0 on ]−∞; 0] and F (−d)(0;x) = 0.
Moreover, νN

i (c) and K(x) = xf(x) are nonnegative quantities. So,
∫ t

0

∫
Ω

νN (−d)(s, x)(−d)f(−d)(s, x)dxds � 0.

f being nondecreasing f ′(−di) � 0, we get from (3.38),
∫

Ω

F (−di)(t, x)dx � 0.

F (−di) being nonnegative, we obtain that F (−di) is zero a.e. F (−di) being
continous, F (−di) is zero on [0;T ] × R

D. So, by definition of F , d � 0 on
[0;T ]× Ω. �

A bound in L∞ on the sequence dn
i is now researched. It is given by the

following lemma.

Lemma 3.5. — Let d = S(c). Then for any i ∈ {1, N}, di satisfies

‖di(t, ·)‖L∞(Ω) � ‖c0i ‖L∞(Ω) +
∫ t

0

[AN (‖c(s, ·)‖L∞(Ω)N )2

+ BN‖c(s, ·)‖L∞(Ω)N ]ds. (3.39)

Proof of lemma 3.5. — Let us put

f(t) =
∫ t

0

[AN (‖c(s, ·)‖L∞(Ω)N )2 +BN‖c(s, ·)‖L∞(Ω)N ]ds.

Consider now a function G such that G ∈ C1(R), G is nondecreasing on
]0; +∞[, (∀s � 0), G(s) = 0. Let us put Ki = ‖c0i ‖L∞(Ω), H(s) =

∫ s

0
G(σ)dσ.

For any i ∈ {1, N}, introduce the function ϕi defined by

ϕi(t) =
∫

Ω

H(di(t, x)−Ki −
∫ t

0

f(s)ds)dx.

For any i ∈ {1, N} ϕi satisfies ϕi(0) = 0, ϕi ∈ C1(]0; +∞[; R) ϕi � 0.
Derive ϕi with respect to the time variable t leads to

ϕ′
i(t) =

∫
Ω

G[di(t, x)−Ki −
∫ t

0

f(s)ds](∂tdi(t, x)− f(t))dx.

As νN
i (dn

i )dn+1
i � 0, it holds that

∂tdi(t, x)− f(t) � ∆di(t, x)−
D∑

j=1

uj(t, x)∂xjdi(t, x).
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So, we get

ϕ′
i(t)�

∫
Ω

G(di(t, x)−Ki −
∫ t

0

f(s)ds)∆di(t, x)dx

−
D∑

j=1

∫
Ω

uj(t, x)∂xj
di(t, x)G(di(t, x)−Ki −

∫ t

0

f(s)ds)dx.(3.40)

The definition of H implies that

∂xj
H

(
di(t, x)−K −

∫ t

0

f(s)ds
)

= ∂xj
di(t, x)G

(
di(t, x)−K −

∫ t

0

f(s)ds
)
.

By using the Green formula, u ∈ H1
0 (Ω) and div(u) = 0, it comes that

D∑
j=1

∫
Ω

uj(t, x)∂xj
H[di(t, x)−K −

∫ t

0

f(s)ds]dx = 0.

Moreover from the Green formula, it holds that
∫

Ω

G(di(t, x)−Ki −
∫ t

0

f(s)ds)∆di(t, x)dx

=
∫

Ω

|∇xdi(t, x)|2G′(di(t, x)−K −
∫ t

0

f(s)ds
)
dx.

So, G′ being nondecreasing, (3.40) leads to

ϕ′
i(t) � −

∫
Ω

|∇xdi(t, x)|2G′((di(t, x)−K −
∫ t

0

f(s)ds)dx < 0.

Hence, ϕi is nonincreasing on R+. As, ϕi is nonnegative and satisfies
ϕi(0) = 0, ϕi yields 0 everywhere. So, by definition of H, (3.39) holds.
�

We shall use an analogous method as in the previous part. Consider the
Cauchy problem

dYN

dt
= ANY

2
N +BNYN , (3.41)

YN (0) = R0, t > 0. (3.42)

Let TN be the time of existence of YN and consider T ∈ [0;TN ]. Define the
space

E = {c ∈ (L∞([0, T ]× R
d))N ; c � 0; ‖c(t, .)‖[L∞(Rd)]N � YN (t), t ∈ [0, T ]}.
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Lemma 3.6. — E is stable by S.

Proof of Lemma 3.6. — Let c ∈ E and d = S(c). From Lemma 3.4, for
any i ∈ {1...N}, di � 0. As c ∈ E, for any i ∈ {1, N}, ci(t, x) � YN (t).
Then, from the maximum principle applied to the equation (3.34), it holds
that

‖di(t, ·)‖L∞(Ω) � ‖c0i ‖L∞(Ω)+
∫ t

0

[AN (‖c(s, ·)‖L∞(Ω)N )2+BN‖c(s, ·)‖L∞(Ω)N ]ds.

As c ∈ E, the equation (3.41) leads to

‖di(t, ·)‖L∞(Ω) � ‖c0i ‖L∞(Ω) +
∫ t

0

dYN (t)
dt

(s)ds.

By choosing R0 > ‖c0i ‖L∞(Ω), the result follows. �

E is equipped with the norm

‖|c‖| = sup
s∈[0;T ]

|e−ωN s‖c(s, ·)‖[L2(Ω)]N

and the constant ωN will be chosen so that S is a contraction for this norm.

Lemma 3.7. — There is a constant ωN depending only on N such that
S is a contraction from E into itself for the norm ‖| ‖|.

Proof Lemma 3.7. — Substract two consecutive terms of the iteration,
multiply the last equation by (dn+1

i − dn
i )(t, x) and integrate on [0, T ] × Ω

leads to
∫ t

0

∫
Ω

(dn+1
i −dn

i )∂t(dn+1
i −dn

i )dxds−
∫ t

0

∫
Ω

(dn+1
i −dn

i )∆(dn+1
i −dn

i )dxds

+
∫ t

0

∫
Ω

(dn+1
i −dn

i )u · ∇x(dn+1
i −dn

i )dxds+
∫ t

0

∫
Ω

νN
i (dn

i )(dn+1
i −dn

i )dxds

=
∫ t

0

∫
Ω

(dn+1
i −dn

i )[GN
i (dn

i )−GN
i (dn−1

i )]dxds

+
∫ t

0

∫
Ω

dn
i (dn+1

i −dn
i )[νN (dn−1)−νN (dn))]dxds. (3.43)

But, as dn+1
i (0, x) = dn

i (0, x) = c0i (x), it holds that

∫ t

0

∫
Ω

(dn+1
i − dn

i )∂t(dn+1
i − dn

i )(s, x)dxds =
1
2

∫
Ω

(dn+1
i − dn

i )2(t, x)dx.
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The Green formula implies

−
∫

Ω

(dn+1
i − dn

i )(s, x)∆(dn+1
i − dn

i )(s, x)dx =
∫

Ω

|∇x[dn+1
i − dn

i ](s, x)|2dx.

On the other hand, by using again the Green formula, u(t, ·) ∈ H1
0 (Ω) and

div(u) = 0, it comes that
∫ t

0

∫
Ω

u · ∇x(dn+1
i − dn

i )(dn+1
i − dn

i )dxdt = 0.

From (3.43), we get that
∫ t

0

∫
Ω

[∇x(dn+1
i − dn

i )(s, x)]2dxdt+
1
2

∫
Ω

(dn+1
i − dn

i )2(t, x)dx

=
∫ t

0

∫
Ω

(dn+1
i − dn

i )(s, x)[GN
i (dn

i )−GN
i (dn−1

i )](s, x)dxds

+
∫ t

0

∫
Ω

dn
i (dn+1

i − dn
i )(s, x)[νN (dn−1)− νN (dn))](s, x)dxds.

Which leads to the inequality

1
2

∫
Ω

(dn+1
i − dn

i )2(t, x)dx �
∫ t

0

∫
Ω

(dn+1
i − dn

i )[GN
i (dn

i )−GN
i (dn−1

i )](s, x)dxds

+
∫ t

0

∫
Ω

dn
i (dn+1

i − dn
i )(s, x)[νN (dn−1)− νN (dn))](s, x)dxds.

According to (2.19) and as dn
i (t, x) � YN (t), we get

∫
Ω

(dn+1
i − dn

i )2(t, x)dx

� C(N,T )
∫ t

0

∫
Ω

sup
j∈{1..N}

[|dn
j − dn−1

j |](s, x)[dn
i − dn−1

i ](s, x)dxds.

The Young inequality gives that
∫

Ω

(dn+1
i − dn

i )2(t, x)dx � C(N,T )
2

∫ t

0

∫
Ω

( sup
j∈{1..N}

[|dn
j − dn−1

j |](s, x))2dxds

+
C(N,T )

2

∫ t

0

∫
Ω

([dn
i − dn−1

i ](s, x))2dxds.

From the Gronwall Lemma, it holds that
∫

Ω

(dn+1
i − dn

i )2(t, x)dx � C̃(N,T )(
∫ t

0

∫
Ω

sup
j∈{1..N}

[|dn
j − dn−1

j |]2(s, x))dsdx.
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Stéphane Brull

Multiply the last inequality by e−ωN t leads to

e−ωN t

∫
Ω

(dn+1
i − dn

i )2(t, x)dx � e−ωN tC̃(N,T )
1− eωN t

ωN

sup
s∈[0;T ]

e−ωN s

∫
Ω

sup
i∈1..N

(dn+1
i − dn

i )2(s, x)dx.

So, by putting k =
2C̃(N,T )

ωN
and by choosing ωN big enough so that k < 1,

the result holds. �

Proof of Proposition 3.3. — From lemma 3.7, for any i ∈ {1 · · ·N},
(dn

i )n∈N is a Cauchy sequence in E and so converges in E to the fixed point
of S. Moreover, S being a contraction, this solution is unique on [0;T ]×Ω.
In order to get a global solution in time, we shall proceed as in section 2 by
considering ρ and ρN defined in (2.20). ρN is solution to

∂tρ
N (t, x)−∆ρN (t, x) + u(t, x) · ∇xρ

N (t, x) = 0, (3.44)

ρN (0;x) = ρN
0 (x) =

N∑
i=1

ic0i (x) x ∈ R
D, (3.45)

∂ρN

∂η
(t, σ) = 0, t ∈ [0;T ], σ ∈ ∂Ω. (3.46)

The maximum principle proved in Lemma 3.5 yields

ρN (t, x) � ‖ρN
0 ‖∞ � ‖ρ0‖∞ � M0. (3.47)

We obtain by definition of cNi , cNi (t, x) � ‖ρ0‖∞. Next, we choose R0 =
‖ρ0‖∞ and we solve (3.31) on [T, 2T ], with the Cauchy data at t = T equal
to ci(T, .). Then, a reiteration of this process gives global existence and
uniqueness of the solution on R+ × R

D. �

3.3. Solution of the problem

In order to pass to the limit in the truncated problem, we need to ob-
tain compactness on the sequence of approximations. This is given by the
following proposition.

Proposition 3.8. — For any i ∈ N and for any T > 0, the sequence
(cNi )N∈N is strongly compact in L2([0;T ];L2(Ω)).

First, let us show that
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Lemma 3.9. — For i ∈ N
∗ and for any T > 0, cNi is bounded in

L2([0;T ];H1(Ω)).

Proof of Lemma 3.9. — Multiply equation (3.31) by cNi (t, x) and inte-
grate on [0;T ]× Ω leads to

∫
Ω

∫ T

0

d

dt
cNi (t, x)dtdx+

∫
Ω

∫ T

0

u · ∇xc
N
i (t, x)cNi (t, x)dtdx

−
∫

Ω

∫ T

0

∆cNi (t, x)cNi (t, x)dtdx =
∫

Ω

∫ T

0

QN (cNi )(t, x)cNi (t, x)dtdx. (3.48)

The boundary condition (3.33) gives

−
∫

Ω

∆cNi (t, x)cNi (t, x)dtdx =
∫

Ω

|∇xc
N
i |2(t, x)dx,

Use the Green formula together with u ∈ H1
0 (Ω) and div(u) = 0 leads to

N∑
j=1

∫
Ω

(uj(t, x)∂xj [(c
N
i )2](t, x)dx = 0. (3.49)

From (3.3), we get that
∫

Ω

[cNi (T, x)]2dx+
∫ T

0

∫
Ω

|∇xc
N
i (t, x)|2dxdt

�
∫

Ω

(c0i (x))2dx+
∫

Ω

∫ T

0

cNi Q
N
i (t, x)dtdx. (3.50)

On the other hand, as cNi (t, x) � ‖ρ0‖∞ � M0, it comes that

∫
Ω

∫ T

0

|cNi (t, x)QN
i (cN )(t, x)|dtdx � M0

∫
Ω

∫ T

0

|QN
i (cN )(t, x)|dtdx.

By using the assumptions 1.5 of Theorem 3.2, we get a L∞ bound on
QN

i (cN ). So,

∫ T

0

∫
Ω

|∇xc
N
i (t, x)|2dxdt �

∫
Ω

(c0i (x))2dx+M0M1T mes(Ω)

and
∫
Ω
(c0i (x))2dx being also bounded, the result holds. �

Proof of Proposition 3.8. — We shall apply the Aubin-Simon Lemma
([13]). From Lemma 3.9, cNi is bounded in L2([0;T ];H1(Ω)). It remains to
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show that ∂tc
N
i is bounded in L1([0;T ];H−1(Ω)). Let ϕ ∈ C∞

c (Ω). Multiply
(3.31) by ϕ and integrate on Ω leads to∫

Ω

∂tc
N
i (t, x)ϕ(x)dx=

∫
Ω

([GN
i − PN

i ](cN )(t, x)ϕ(x)dx+
∫

Ω

∆cNi (t, x)ϕ(x)dx

−
∫

Ω

u(t, x) · ∇xc
N
i (t, x)ϕ(x)dx. (3.51)

ϕ being compactly supported, the Green formula gives that∫
Ω

∆cNi (t, x)ϕ(x)dx = −
∫

Ω

∇xc
N
i (t, x) · ∇xϕ(x)dx.

From the Cauchy-Schwartz inequality, it comes that∫
Ω

∆cNi (t, x)ϕ(x)dx � (
∫

Ω

|∇xc
N
i (t, x)|2dx)

1
2 ‖ϕ‖H1(Ω).

On the other hand, from the Green formula,
D∑

j=1

∫
Ω

uj(t, x)∂xjc
N
i (t, x)ϕ(x)dx = −

D∑
j=1

∫
Ω

cNi (t, x)∂xj (uj(t, x)ϕ(x))dx.(3.52)

But, as ∂xj (uj(t, x)ϕ(x)) = ∂xj (uj(t, x))ϕ(x) + ∂xj (ϕ(x))(uj)(t, x) and as
div(u) = 0, the equation (3.52) reads
D∑

j=1

∫
Ω

uj(t, x)∂xj
cNi (t, x)ϕ(x)dx = −

D∑
j=1

∫
Ω

cNi (t, x)∂xj
(ϕ(x))(uj)(t, x)dx.

From (3.47), we get (∀(t, x) ∈ [0;T ]× R
D, cNi (t, x) � M0. So,

|
D∑

j=1

∫
Ω

uj(t, x)∂xjc
N
i (t, x)ϕ(x)dx| � M0[

D∑
j=1

∫
Ω

(uj(t, x))2]dx]
1
2 ‖ϕ‖H1(Ω).

[GN
i − PN

i ](cN ) being bounded in L∞([0;T ] × Ω), there is a nonnegative
constant M1 independant with respect to the quantities t, x, i and N such
that

|
∫

Ω

[GN
i − PN

i ](cN )(t, x)ϕ(x)dx| � M1

√
mes(Ω)‖ϕ‖H1(Ω).

Hence, from (3.51), it holds that

|
∫

Ω

∂tc
N
i (t, x)ϕ(x)dx| � (

∫
Ω

|∇xc
N
i t, x)|2dx)

1
2

+ M0[
D∑

j=1

∫
Ω

(uj(t, x))2dx)‖ϕ‖H1(Ω)

+ M1

√
mes(Ω)‖ϕ‖H1(Ω).
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By using the density of C∞
c (Ω) in H1

0 (Ω), the previous inequality holds for
any ϕ ∈ H1

0 (Ω). So,
∫ T

0

‖∂tc
N
i (t, x)‖H−1(Ω)dt � M0

∫ T

0

‖u‖[L2(Ω)]Ddt

+
∫ T

0

(
∫

Ω

|∇xc
N
i |2dx)

1
2 dt+ TM1

√
mes(Ω).

From the Cauchy-Schwartz inequality, it holds that
∫ T

0

(
∫

Ω

|∇xc
N
i |2dx)

1
2 dt �

√
T‖cNi ‖L2(0,T ;H1(Ω)),

∫ T

0

‖u‖[L2(Ω)]Ddt � ‖u‖L2(0,T ;L2(Ω))
√
T .

But, cNi being bounded in L2(0, T ;H1(Ω)), ∂tc
N
i is then bounded in

L1(0, T ;H−1(Ω)). So, from Aubin-Simon Lemma ([13]), cNi is strongly com-
pact in L2(0, T ;L2(Ω)). �

Proof of Theorem 3.2. — From a diagonal process there is a subsequence
of (cNi )N∈N (still denoted (cNi )N∈N) such that (∀T > 0), (∀i ∈ N

∗) cNi → ci
in L2([0;T ]×R

D) strongly. By arguing as in ([7]), we can prove that GN
i (cN )

(resp. Pi(cN )) converges to Gi(c) (resp. Pi(c)) in L2. So we can pass to the
limit in the weak form of (3.31, 3.32, 3.33).
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