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Existence, uniqueness and stability for spatially
inhomogeneous Becker-Döring equations
with diffusion and convection terms(∗)

P. B. Dubovski(1), S.-Y. Ha(2)

ABSTRACT. — We consider the spatially inhomogeneous Bekker-Döring
infinite-dimensional kinetic system describing the evolution of coagulating
and fragmenting particles under the influence of convection and diffusion.
The simultaneous consideration of opposite coagulating and fragment-
ing processes causes many additional difficulties in the investigation of
spatially inhomogeneous problems, where the space variable changes dif-
ferently for distinct particle sizes. To overcome these difficulties, we use
a modified maximum principle and establishes the local-in-time existence
and uniqueness of continuous solutions for unbounded kinetic coefficients
that allow their linear growth. The global-in-time existence, uniqueness,
and stability theorems for classical solutions are also obtained for bounded
kinetic coefficients, and these are based on a new trick, which enables to
obtain new a priori estimates for classical solutions regardless of the above
mentioned non-uniform change of the spatial variable in the distribution
function. We also show that the solutions are stable with respect to small
perturbations in l1 of both initial data and kinetic coefficients. Our meth-
ods allow to treat zero diffusion coefficients limit for some sizes of the
particles and, moreover, can be employed to prove the vanishing diffu-
sion limit that the solution of the system with diffusion approaches to the
solution of the system with the transport terms only. We establish the
uniform stability theorems in L1 for purely coagulating or purely frag-
menting kinetic systems. This new stability result is based on the explicit
construction of robust Lyapunov functionals and their decay estimates in
time.

RÉSUMÉ. — We consider the spatially inhomogeneous Bekker-Döring infi-
nite-dimensional kinetic system describing the evolution of coagulating
and fragmenting particles under the influence of convection and diffusion.
The simultaneous consideration of opposite coagulating and fragment-
ing processes causes many additional difficulties in the investigation of
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spatially inhomogeneous problems, where the space variable changes dif-
ferently for distinct particle sizes. To overcome these difficulties, we use
a modified maximum principle and establishes the local-in-time existence
and uniqueness of continuous solutions for unbounded kinetic coefficients
that allow their linear growth. The global-in-time existence, uniqueness,
and stability theorems for classical solutions are also obtained for bounded
kinetic coefficients, and these are based on a new trick, which enables to
obtain new a priori estimates for classical solutions regardless of the above
mentioned non-uniform change of the spatial variable in the distribution
function. We also show that the solutions are stable with respect to small
perturbations in l1 of both initial data and kinetic coefficients. Our meth-
ods allow to treat zero diffusion coefficients limit for some sizes of the
particles and, moreover, can be employed to prove the vanishing diffu-
sion limit that the solution of the system with diffusion approaches to the
solution of the system with the transport terms only. We establish the
uniform stability theorems in L1 for purely coagulating or purely frag-
menting kinetic systems. This new stability result is based on the explicit
construction of robust Lyapunov functionals and their decay estimates in
time.

1. Introduction

One of the basic mechanisms in the evolution of droplets, clusters and
polymer chains is the mechanism of merging and splitting. Consider the
situation where the cluster growth is caused by joining an active monomer
to its neighboring clusters, and its decrease is also due to the splitting to
a monomer and the remaining cluster. In the kinetic picture, the spatial-
temporal evolution of clusters is described by the spatially inhomogeneous
Becker-Döring system : For i � 1, N ∈ {1, 2, 3},

∂tci + divz(vici) = Qi(c), z ∈ RN , t > 0. (1.1)

Here Qi is the collision operator of the following form :

Qi(c) =




−k1c
2
1 −

∞∑
j=1

kjcjc1 + f2c2 +
∞∑

j=2

fjcj , i = 1,

ki−1ci−1c1 − kicic1 + fi+1ci+1 − fici, i � 2,

subject to initial condition :

ci(z, 0) = c
(0)
i (z) � 0, z ∈ RN . (1.2)

Here ci = ci(z, t) are the nonnegative distribution functions of size (volume)
proportional to i � 1 (i-mers) at the spatial point z ∈ RN and the time
t > 0. The velocities of spatial transport vi = vi(z, t) ∈ RN are known and
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usually determined by the viscosity properties of the medium where the
colliding particles move around. Nonnegative kinetic coefficients ki and fi

reflect the intensity of i-mer and monomer merging and i + 1-mer splitting
respectively, and are assumed to be known from the nature of the process
under consideration.

We next discuss some mathematical literatures regarding the system
(1.1). The spatially homogeneous problem to (1.1)-(1.2) was intensively
studied in [2, 3, 16, 17]. The mathematical theory for more general spatially
homogeneous coagulation-fragmentation equations is presented in [7] and
the papers cited therein. In contrast, the spatially inhomogeneous transport
problem for the Becker-Döring system with the convection term div(vici)
has not been analyzed yet. The spatially inhomogeneous transport equation
(1.1) was studied by Slemrod [18, 19] and some relevant arguments can be
also found in [20]. Below, we briefly discuss the existence theory for the
system (1.1).

In [11] the existence theorem was studied by Galkin for pure coagulation
equation with the convection term. However, this result cannot be applied
to the system (1.1) even without fragmentation terms because of the con-
dition k1 = 0 in [11]. Moreover, Galkin’s existence theorem was proved in
a class of generalized mild solutions. One of our motivation for the current
study is to justify their continuity properties. In [5, 7] the existence of a
continuous solution to (1.1) was also established provided that initial data
are sufficiently small.

In [8] the second author established the global existence of continuous
solutions to the continuous version of the coagulation-fragmentation trans-
port equation. However, this result cannot be applied to the system (1.1),
because the analysis there was performed for the continuous coagulation-
fragmentation equation only, and hence cannot be transformed to the dis-
crete coagulation-fragmentation version like (1.1).1

In the last few years, a number of interesting works regarding the system
(1.1) supplemented with diffusion term has been appeared (e.g., [4, 6, 14,
21]). This problem mathematically amounts to adding the term divz(di∇zci)
to the right-hand side of the system (1.1) :

∂tci + divz(vici) = Qi(c) + divz(di∇zci), z ∈ RN , t > 0. (1.3)

For the simplicity of presentation, it is assumed that diffusion coefficients
di are independent of (z, t). This regularizing diffusion term simplifies the

(1) The most of the results obtained for continuous versions of the coagulation–
fragmentation models can be easily transformed to the discrete case and vice versa.
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analysis, and this is why most of the results in the papers cited are ob-
tained for strictly positive diffusion coefficients di and further simplifying
assumptions (e.g. decay conditions for the kinetic coefficients) in cases when
the zero diffusion d = 0 is admitted. Unfortunately, these results cannot be
considered for the most interesting case of vanishing diffusion when di → 0
(see [4, 6, 14, 21] for the system (1.3) with no convection term). One of our
results is to justify the vanishing diffusion limit (di → 0). Let us point out
that the number of monomers that constitute particles involved in the evo-
lution process is independent in time. Hence the system (1.1)-(1.2) satisfies
formally the mass conservation law

∫
RN

∞∑
i=1

ici(z, t)dz =
∫
RN

∞∑
i=1

ic
(0)
i (z)dz = const. (1.4)

This fact follows from the property of the collision operator Qi(c) :

∫
RN

∞∑
i=1

iQi(c)(z, t)dz = 0, t � 0, (1.5)

provided that uniformly with respect to i � 1 lim|z|→∞(vici)(z, t) = 0, and
c is such that the summation and integration operations in (1.5) are valid
and can be mutually replaced.

The purpose of this paper is to develop the well-posedness theory to
the initial value transport problem (1.1)-(1.2), and to establish the vanish-
ing diffusion limit if the right-hand side of system (1.1) is supplied by the
diffusion summand. The rest of this paper is organized as follows.

In Section 2 we rewrite the problem (1.1)-(1.2) in the integral form,
and define the solution to (1.1)-(1.2) as a continuous function satisfying the
corresponding integral equation. We state the results for solutions of approx-
imate truncated systems when the kinetic coefficients ki, fi are equal to zero
as i > n. We also discuss some versions of a maximum principle, and prove
a lemma regarding the maximum properties of the collision operator Q.

In Section 3 we consider initial value problem (1.1)-(1.2) with unbounded
kinetic coefficients with the sub-linear growth in i and prove local existence,
uniqueness, and stability theorem (Theorem 3.2) in a certain time interval
depending on initial data and the ratio of coagulation and fragmentation
kinetic coefficients.

In Section 4, we present the proof of the global existence and unique-
ness theorem (Theorem 4.1) at any fixed time interval [0, T ], T < ∞, for
bounded kinetic coefficients. The stability result is obtained with a stability
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constant depending on the time interval T . It is worth pointing out that this
well-posedness result to the spatially inhomogeneous Becker-Döring equa-
tions with the convection term is essentially more complicated than that for
spatially homogeneous case with vi ≡ 0. The reasons for this are as follows.
First, for spatially homogeneous case the stronger mass conservation law is
valid (compare with (1.4))

∞∑
i=1

ici(t) =
∞∑

i=1

ic
(0)
i = const. (1.6)

Thanks to this equality, the upper bound estimate for Q1 with sub-linear
kinetic coefficients can be easily obtained as is done in [2] for the spatially
homogeneous problem. However, in our case vi 	≡ const we do not have an
estimate like (1.6), and Theorem 3.2 with local result for unbounded sub-
linear coefficients reflects this problem (for spatially homogeneous case the
global existence theorem for unbounded kinetic coefficients with sub-linear
growth holds). Secondly, in the spatially inhomogeneous case the solution
ci depends on the additional spatial variable. Problem (1.1)-(1.2) written in
integral form (2.1) contains functions cj taken at the spatial point zi, where
the indices i and j have no direct relation. Therefore the detailed analysis
given in [2], where the variables are independent of the indices, cannot be
applied. It is worth also noting that for spatially inhomogeneous problems
with diffusion taken into account the variables are also independent of the
indices. Hence, in this sense the problems with diffusion are more ”homoge-
neous” then transport problems with hyperbolic differential operator, which
we are concerned with.

In Section 5 we consider the initial value problems for equation (1.3) with
the explicit diffusion phenomenon taken into account and prove correspond-
ing existence, uniqueness and stability theorems in the one-dimensional case
(Theorem 5.3). It is worth noting that our mixed system may contain both
parabolic equations with diffusion term and hyperbolic ones. This case is
reasonable if we recall that for large-sized particles, the influence of diffusion
can be neglected.

In Section 6 we prove the convergence of the vanishing diffusion solution
to the purely convection solution (Theorem 6.1). The existence of such limit
solution is proved in sections 4 and 5. The methods employed in sections 3-6
use a priori boundedness estimates based on the maximum principle [7, 8]
and an anzatz that allows us to control uniformly the ”tails” of infinite series
involved in the right-hand side of (1.1).

Finally Section 7 is devoted to the study of uniform L1 stability esti-
mates, which are valid at the whole time half-axis t � 0 (Theorems 7.3
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and 7.6). The constants in these estimates are time-independent, this is the
essential difference from the stability results of Section 4. Unfortunately, the
results hold for small initial data only. The method is based on the careful
treatment of the convection velocities and explicit construction of a nonlin-
ear functional, which is equivalent to the L1-distance between two solutions.
Similar reasonings can be found in Liu-Yang [15] and Ha-Tzavaras [12, 13].

In summary we have proved the unique solvability and stability results
for the initial value problems to (1.1), (1.3) along with passage to the zero
diffusion limit.

2. Auxiliary properties and statements

Let us fix arbitrary T > 0. Let us denote by l1λ, λ > 0, the space of
sequences with bounded series

∑∞
i=1 λi|ci|. Let l̃1 =

⋃
λ>1

l1λ. Notation c ∈ l1λ

means
∑∞

i=1 λi sup
z,t

|ci(z, t)| < ∞.

Definition 2.1. — Let c = (ci) be a solution of the initial value problem
(1.1)-(1.2), if and only if ci = ci(z, t) is a continuous function in (z, t) ∈
RN × [0, T ] satisfying the following integral equation arising from (1.1)-
(1.2) :

ci(z, t) = c
(0)
i (zi(0)) +

∫ t

0

Qi(c)(zi(s), s)ds, i � 1. (2.1)

Here zi(s) is the value of characteristic curve dz/dt = vi(z, t) passing
through (z, t), 0 � s � t. If vi are independent of z and t, then zi(s) =
z − vi · (t− s).

Lemma 2.2. — Let kinetic coefficients ki, fi be non-negative and differ
from zero at a finite set of indices i only, 1 � i � n. Let initial distribution
c
(0)
i be a continuous non-negative function, its integral (1.4) be bounded,
c
(0)
i = 0, i � n + 1, and

sup
z∈RN , 1�i�∞

c
(0)
i (z) < ∞. (2.2)

Let for any i � 1 vi ∈ C1,0
z,t (RN × [0, T ])

⋂
L∞(RN × [0, T ]) and

inf
z∈RN ,0�t�T,i�1

divzvi(z, t) � 0. (2.3)
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Let the characteristic equation

dz

dt
= vi(z, t) (2.4)

be uniquely continuously solvable for all i � 1, z ∈ RN , t ∈ [0, T ]. Then
there exists a unique continuous non-negative solution of the initial value
problem (1.1), (1.2) ci ∈ C(RN × [0, T ])

⋂
C([0, T ];L1

+(RN )), 1 � i � n.
Also, the mass conservation law (1.4) holds. If (2.15) holds, then we also
have ci ∈ C([0, T ], L∞(RN )), i � 1.

If initial distribution is summable with weight φi uniformly in z ∈ Ω
then this property is conserved for all t > 0 :

∞∑
i=1

φi sup
z∈RN

ci(z, t) < ∞, 0 � t � T. (2.5)

If additionally the initial function c
(0)
i is continuously differentiable, then

the solution has continuous derivatives in both arguments.

The lemma’s proof is similar to that of [5, 7, 8], it is based on the
boundedness of sums in the right-hand side of (1.1) due to the truncation
of kinetic coefficients. Using the contraction mapping theorem the local
solvability in time is proved first. The non-negativity of the solution can
be proved using Lemma 2 from [8]. Then the use of simple boundedness
estimates allows us to extend the solution to all times 0 � t � T . The
continuous differentiability of the solution along characteristics zi(s) follows
from the continuity of the integrand in (2.1) due to the finite number of
summands in the truncated integrand. The summability of the solution with
weight φ, follows directly from the zero right-hand side of (1.1) at i > n+1.

Remark 2.3. — The inequality (2.3) is not actually restrictive because
for any b > 0 it may be easily replaced by

inf
z∈RN ,0�t�T,i�1

divzvi(z, t) � −b.

In this case the right-hand sides of all the estimates presented below should
be multiplied by ebt, which is bounded at 0 � t � T . For example, the
inequality (2.7) below will be replaced by ebt in its right-hand side. So, to
clarify the key issues of the paper we have just simplified the estimates
without the loss of generality.
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We next recall the existence of fundamental solution to the following
linearized version of (1.3) due to Aronson [1] and Friedman [9] :

∂tci + divz(vici) = di∆zci, i � 1. (2.6)

Below, we denote by C to be a generic positive constant independent of t.

Lemma 2.4. — [1, 9] Let the conditions of Lemma 2.2 hold and initial
data c(0) and coefficient functions di, vi, ∂zvi satisfy the following conditions.

1. c(0) is continuous and satisfy the growth condition

c(0)(z) � Ceh|z|2 , for some h > 0,

2. Coefficients di, vi and ∂zvi are uniformly continuous, bounded in RN×
[0, T ], and satisfy the uniform Hölder condition with exponent γ,
0 < γ � 1, with respect to z ∈ RN , that is, there exist positive
constants C and δi such that for any z′, z ∈ RN and i � 1,

di > 0, |vi(z′, t) − vi(z, t)| � C|z′ − z|γ ,

|∂zvi(z′, t) − ∂zvi(z, t)| � C|z′ − z|γ .

Then there exists a unique fundamental solution Gi(z, ξ, t) ≡ Gi(z, t; ξ, 0) >
0 to (2.6) satisfying the following estimate : For i � 1,∫

RN

Gi(z, ξ, t)dξ � C, for some constant C > 0, (2.7)

and there exists a unique continuous non-negative solution of the initial
value problem (1.3), (1.2) ci ∈ C2,1

z,t (RN × [0, T ])
⋂

C([0, T ];L1
+(RN ), and

this solution can be expressed in the form

ci(z, t) =
∫
RN

Gi(z, ξ, t)c
(0)
i (ξ)dξ+

t∫
0

∫
RN

Gi(z, ξ, t−s)Qi(c)(ξ, s)dξds. (2.8)

Also, relations (1.4) and (2.5) hold. If additionally (2.15) holds, then ci ∈
C([0, T ];L∞(RN )).

Let us consider the following version of a maximum principle. Let Ω be
a compact subset in RN . We consider the ”tube” TΩ(t) ⊂ RN × [0, t], which
is formed by all points at 0 � s � t � T lying on the characteristics

dz

dt
= vi(z, t), 1 � i � I, (2.9)
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that finish in Ω at time t :

TΩ(t) = {(zi(s), s) : 0 � s � t, dzi/ds = vi(zi, s), zi(t) ∈ Ω, 1 � i � I} .

Certainly, TΩ(0) = Ω. We say that transport velocities vi satisfy the tube
conditions if for any compact Ω and I < ∞ the tube TΩ(t) is compact
and no other characteristic curve, which starts at t = 0 outside the tube,
can intersect the tube. By other words, if a characteristic curve intersects
the tube then it cannot leave the tube in the future and, hence, belong
to the tube. Obviously, such tube properties hold if, for example, vi are
independent of z and t for any i � 1.

Lemma 2.5 (Maximum principle). — Let Ω be a compact simply con-
nected subset of RN . Let vi satisfy the tube conditions. Let characteristic
equations (2.9) be uniquely solvable for any initial conditions. Let ci(z, t) be
continuous in the tube TΩ(T ) along with its characteristic derivative dci/dt,
1 � i � I. For any fixed t ∈ (0, T ] let (i0, z0, t), where (z0, t) ∈ TΩ(t) and
1 � i0 � I, be a maximum point, that is,

ci0(z0, t) = max
1�i�I, (z,t)∈TΩ(t)

ci(z, t). (2.10)

Suppose that there exists a positive constant m > 0 such that whenever
vi0(z0, t) � m, then

dci0(z0, t)
dt

� 0. (2.11)

Here d/dt means the derivative along the characteristic curve zi0(t). Then
either the maximum of c does not exceed m, or this maximum is attained at
the initial time moment :

max
1�i�I, (z,t)∈TΩ(T )

ci(z, t) = max
{
m, max

1�i�I, (z,0)∈TΩ(T )
c
(0)
i (z)

}
. (2.12)

Proof. — To simplify the reasoning, let us consider first the strengthened
inequality (2.11) :

dci0(z0, t)
dt

< 0. (2.13)

Then we instantly obtain that there exists a point t1 ∈ (0, t) such that
ci0(zi0(t1), t1) > ci0(zi0(t), t). However, by the construction, this point be-
longs to the tube. Hence, this contradicts to the maximum value at (i0, z0, t).

Weakening strict inequality (2.13) to (2.11) is based on the consideration
of the sequence

ci(z, t) +
1
l
(T − t), l � 1,

and the limit pass as l → ∞. Lemma 2.5 has been proved. �
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This proof is similar to that for classical parabolic equation with the re-
placement of the classical parabolic cylinder by the tube TΩ(t). The closest
variants of this maximum principle and its proof can be found for pure co-
agulation equation in [10], and for the coagulation–fragmentation equation
in [7, 8]. It is worth noting that the introduction of the constant m as a
parameter in the maximum principle is essential because allows us to treat
the fragmentation case.

The following assertion follows from Lemma 2.5.

Corollary 2.6. — Let the conditions of Lemma 2.5 hold with the fol-
lowing change : the basic inequality (2.11) holds in the interior of a compact
simply connected domain only. Then there appears an additional option for
the maximum value : it can be also attained at the boundary of this domain.

Lemma 2.7. — Let the conditions of Corollary 2.6 hold for any parabolic
cylinder Ω× [0, T ]. Let function ci(z, t), 1 � i � I, be non-negative, z ∈ R1

and also ∫
R1

ci(z, t)dz < ∞, t � 0, 1 � i � I. (2.14)

Then the maximum value in R1 × [0, T ] is either less than m or is attained
at t = 0.

Proof. — Let the maximum in a compact cylinder Ω× [0, T ] be attained
at its boundary ∂Ω× [0, T ]. Let us enlarge the cylinder “bottom” Ω to cover
the whole line R1. During this continuous enlargement the maximum value
remains to be achieved on the parabolic boundary. However, such a value
can correspond to different indices i and time variable t. If the assertion of
the lemma is not valid then the non-negative function

c̃(z, t) = max
1�i�I

ci(z, t)

is monotonically increasing. So, its integral over z ∈ R1 is infinite. However,
in view of (2.14),

∫
R1

c̃(z, t)dz �
∫
R1

I∑
i=1

ci(z, t)dz < ∞.

This contradiction proves Lemma 2.7. �

It is worth pointing out that Lemma 2.7 cannot be proved in the multi-
dimensional case because the finite nature of an integral over R2 does not
contradict to the unboundedness of a non-negative function.
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Lemma 2.8 (Maximum property of the collision operator). — Let there
exist a constant m > 0 such that

kim � fi, i � 3, k2m � 2f2 (2.15)

and ci(z, t) � 0 at any i � 1. Let (z0, t0) be a maximum point of c1 and let
c1(z0, t0) exceed m :

c1(z0, t0) = sup
z∈TΩ(T ),I=1,0�t�T

c1(z, t) � m. (2.16)

Then
Q1(c)(z0, t0) � 0. (2.17)

Let, besides (2.15),

ki−1 + fi+1 � ki + fi, i � 2, (2.18)

and fi = 0, i > n. Then

Qi0(c)(z0, t0) � 0 (2.19)

where (i0, z0, t0) is the maximum point of c in TΩ(t0), 1 � i � n :

ci0(z0, t0) = sup
1�i�n,(z,t)∈TΩ(t0)

ci(z, t).

Remark 2.9. — Let us note that (2.18) corresponds to (2.15) for linear
coefficients ki = fi = i. As a particular case, (2.18) holds if the coagulation
coefficients increase while fragmentation ones decrease : ki−1 � ki, fi+1 �
fi, i � 2.

Proof. — We rewrite Q1 in the following form :

Q1(c)(z, t) = −2k1c
2
1(z, t)−(k2c1(z, t)−2f2)c2(z, t)−

∞∑
i=3

(
kic1(z, t)−fi

)
ci(z, t).

Then assertion (2.17) follows from (2.15), (2.16) instantly. To obtain esti-
mate (2.19) we write

Qi0(c)(z0, t0) = (ki0−1ci0−1 − ki0ci0) + (fi0+1ci0+1 − fi0ci0)
� (ki0−1 − ki0 + fi0+1 − fi0)ci0(z0, t0).

Using (2.18), we arrive at (2.19). Lemma 2.8 has been proved. �
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3. Local existence with unbounded kinetic coefficients

The function c1(z, t) plays a special role in the collision operator Q.
Let us estimate its upper value. The following lemma easily follows from
Lemmas 2.5 and 2.8.

Lemma 3.1. — Let the conditions of Lemma 2.2 and (2.15) hold. Let
ci(z, t) � 0 be a continuous solution to initial value problem (1.1), (1.2) at
any i � 1. Then

c1(z, t) � max
{
m, sup

z∈RN

c
(0)
1 (z)

}
= M0, 0 � t � T. (3.1)

If, in addition, (2.18) holds then

ci(z, t) � sup
2�i�n,z∈RN

c
(0)
i (z) � C0 < ∞, 0 � t � T. (3.2)

Let c
(n)
i , n � 1, be the solution of truncated initial value problem (1.1),

(1.2). To proceed further, we introduce the auxiliary function g
(n)
i (t) =

supz c
(n)
i (z, t) and, using (3.1), we obtain from (2.1)

g
(n)
i (t) � g

(0)
i +

∫ t

0

[
M0ki−1g

(n)
i−1(s) + fi+1g

(n)
i+1(s)

]
ds, i � 2,

Here g
(0)
i = supz c

(0)
i (z). Let us verify that

g
(n)
i (t) < hi(t), i, n � 1, (3.3)

where

dhi(t)
dt

= M0ki−1hi−1(t) + fi+1hi+1(t), h
(0)
i = g

(0)
i +

1
i!
. (3.4)

Note, if (3.3) is not valid then in view of g
(n)
i (t) ≡ 0, i � n + 2, there

exists the ”first” (both in t and i) point (i0, t0) where hi0(t0) = g
(n)
i0

(t0) and
hi0±1(s) � g

(n)
i0±1(s), 0 � s < t0. Then, taking into account (3.4), we obtain

g
(n)
i0

(t0) < h
(0)
i0

+
∫ t

0

[M0ki−1hi0−1(s) + fi0+1hi0+1(s)] ds = hi0(t),

and thus we arrive at the contradiction gi0(t0) 	= hi0(t0). This proves (3.3).
We need to demonstrate the existence of such functions hi, 1 � i < ∞, and
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to find an upper estimate for the majorant functions hi. Let us introduce
the generating function H(λ, t) =

∑∞
i=1 λihi(t) and impose the following

sub-linear conditions on the kinetic coefficients

ki � K · i, fi � F · i, i � 1. (3.5)

We assume that there exists Λ > 1 such that

H0(λ) =
∞∑

i=1

λih
(0)
i < ∞, 0 < λ � Λ, Λ � ∞.

We multiply (3.4) by λi and sum the equations over 2 � i < ∞. Then for
0 < λ < Λ we obtain

H ′
t(λ, t) = λh′

1(t) +
(
M0Kλ2 + F

)
H ′

λ(λ, t), H
∣∣∣
t=0

= H0(λ). (3.6)

This problem satisfies the conditions of the Cauchy-Kovalevskaya theorem
and possesses a unique analytic local in time solution. Hence, the local
existence of functions hi, 1 � i < ∞ holds. To extend the function H(λ, t)
for larger time interval we point out that any solution of the corresponding
characteristic equation

dλ

dt
= −(M0Kλ2 + F ),

starting from λ0 at t = 0, intersects the line λ = 1 not later than

t1 =
1√

M0KF

(π

2
− arctan

√
M0K/F

)
(3.7)

So, this way allows us to obtain the uniform (in n) upper estimate for the
solutions at the finite time interval 0 � t < t1 only. Unfortunately, we
cannot say for sure if this fact reflects the real absence of the global in time
solution or not. We have picked up λ = 1 as the lowest value of λ since
the desired solution must at least be summable with weight i (to ensure, in
view of (3.5), the boundedness of series in the right-hand side of (1.1)). We
obtain from (3.4), (3.6) the upper estimate

sup
0�t�t1, 0�λ�λ(t)

H(λ, t) � sup
1�λ�Λ

H0(λ) + Λ · (M0 + 1) = C2.

Hence, at t ∈ [0, t1)

ci(z, t) � C2

λi
, z ∈ RN , t ∈ [0, t1), λ > 1, i � 1. (3.8)

We are in position now to formulate the following theorem.
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Theorem 3.2. — Let the conditions of Lemma 2.2 for c(0), v hold and

∞∑
i=1

λi sup
z∈RN

c
(0)
i (z) < ∞, 1 < λ � Λ, Λ � ∞. (3.9)

Let (2.15), (3.5) hold, vi, 1 � i < ∞, satisfies the tube conditions and be
such that ∀ ε > 0 ∃ δ > 0 ∀z′, z ∈ RN if |z′ − z| < δ then

|z′i(t) − zi(t)| < ε, i � 1, 0 � t � T. (3.10)

Then there exists a unique local in time continuous solution of the initial
value problem (1.1), (1.2)

c ∈ l̃1, ci ∈ C([0, t1], L1
+(RN )

⋂
L∞(RN ))

⋂
C(RN × [0, t1]), i � 1.

The solution is continuously differentiable along the characteristics and sat-
isfies the mass conservation law (1.4). It is stable with respect to the pertur-
bations of initial data and kinetic coefficients in l1λ, λ > 1. The time interval
of the existence depends on the initial data, it can be estimated by (3.7).

Remark 3.3. — Condition (3.10) holds, e.g., for vi independent of z and
t, in this case δ = ε.

Proof of Theorem 3.2. — As we have already pointed out, in view of
Lemma 2.2 we construct the sequence of solutions {c(n)} of problem (1.1),
(1.2) with kinetic coefficients equal to zero at i > n. The elements of this
sequence satisfy (3.8) uniformly because this estimate is independent of
n. Hence, the functions {c(n)} are not only bounded but also uniformly
summable. Let us consider the continuity modulus |c(n)

i (z′, t′) − c
(n)
i (z, t)|

on the compact set 1 � i � I, |z| � Z, 0 � t � T . Using (2.1) we obtain
that continuity modulae |c(n)

i (z′, t) − c
(n)
i (z, t)| and |c(n)

i (z, t′) − c
(n)
i (z, t)|

satisfy the Gronwall inequality with respect to continuity modulae of ini-
tial function c(0). Then the uniform smallness of ”tails” of infinite sums is
guaranteed by estimate (3.8) :

∞∑
i=k

c
(n)
i (z, t) � C2

∞∑
i=k

1
λi

→ 0, k → ∞. (3.11)

Hence, the sequence {c(n)} is equicontinuous. Using the Arzela theorem we
obtain its limit point on a certain compact set. Then we twin the compacta,
repeat the reasonings, and so on. Using the standard diagonal process we
choose a subsequence that converge as n → ∞ to a continuous function
ci(z, t) for all i � 1, z ∈ RN , 0 � t � T . We should now demonstrate that
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this limit function really satisfies (2.1), that is, that the limit pass under
the infinite sum is possible. However, this fact follows from (3.8) and the
estimate, which is similar to (3.11) :

∞∑
i=k

(ki + fi)c
(n)
i (z, t) � 2C2

∞∑
i=k

i

λi
→ 0, k → ∞ (λ > 1).

This proves existence. Since the solution ci(z, t) is continuous for any i � 1
and (3.8) holds then the integrand in (2.1) is continuous. Hence, the solution
ci is, in addition, continuously differentiable along the characteristics for any
i � 1. The mass conservation law (1.4) follows from the correctness of all
operations leading to (1.4). Such a correctness is due to (3.8). To prove
uniqueness and stability let us consider two solutions of (1.1), (1.2) with
different initial data. We denote the modulus of their difference by ui(z, t).
Then we obtain from (2.1), (3.5), (3.8)

ui(z, t) � u
(0)
i (zi(0)) (3.12)

+C2

∫ t

0

(
Kiui−1 + 2Kiu1 + (K + F )iui + Fiui+1

)
(zi(s), s)ds, i � 2,

u1(z, t) � u
(0)
1 +

∫ t

0

(
KM0u1 +KM0

∞∑
i=1

iui +KC2u1 +Fu2 +F

∞∑
i=2

iui

)
ds.

(3.13)
Perturbations of the kinetic coefficients can be added in (3.12), (3.13) in
the form C · (|ki − k̃i| + |fi − f̃i|) ∈ l1λ. We sum the solutions with weight
λi and use the above argument regarding the upper function like H(λ, t).
This function has small initial data and, hence, it is small on any fixed time
interval. This proves stability in the space l1λ, λ > 1. The uniqueness result
follows from the stability. This proves Theorem 3.2. �

Corollary 3.4. — If additional condition (2.18) holds then the unique-
ness result is valid for the whole time interval [0, T ].

Proof. — Due to (3.2) inequalities (3.13) and (3.13) can be summed for
any time t ∈ [0, T ] with weight λ < 1 and zero values of u

(0)
i . �

4. Global existence for bounded kinetic coefficients

Let us assume from now on that there exists a constant M such that

ki � M, fi � M, i � 1. (4.1)
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Also, let the maximum principle conditions (2.15) hold. Then (3.1) is valid.
Again, we multiply (2.1) by λi, i � 1, 1 < λ � Λ < ∞ but arrange the
functions using another substitution g

(n)
i (t) = sup

z∈RN

λic
(n)
i (z, t). Then we

obtain the following expressions :

g
(n)
1 (t) � g

(0)
1 +

∫ t

0

[
f2g

(n)
2 (s) +

∞∑
2

fig
(n)
i (s)

]
ds,

g
(n)
i (t) � g

(0)
i +

∫ t

0

[
λM0ki−1g

(n)
i−1(s) + λ−1fi+1g

(n)
i+1(s)

]
ds, i � 2.

Here g
(0)
i = λi sup

z∈RN

c
(0)
i (z). Summation of these inequalities yields

G(t) � G0 + M0λ

∫ t

0

( ∞∑
i=1

kigi(s)

)
ds + (1 + λ−1)

∫ t

0

( ∞∑
i=2

figi(s)

)
ds

� G0 + MM0Λ
∫ t

0

G(s)ds + 2M
∫ t

0

G(s)ds,

where G(t) =
∑∞

i=1 gi(t). Hence, we obtain the Gronwall inequality that
results in G(t) � C2 = const, 0 � t � T. Consequently, we obtain apriori
estimate (3.8), which holds at the whole interval t ∈ [0, T ]. Hence, we arrive
at the following theorem.

Theorem 4.1. — Let kinetic coefficients ki, fi be non-negative and con-
ditions (2.15), (4.1) hold. Let initial function c

(0)
i be a continuous non-

negative function, its integral (1.4) be bounded and (2.2), (3.9) hold. Let
transport velocities vi satisfy (2.3), (2.4), (3.10) and the tube conditions.
Then there exists a unique continuous non-negative solution “in the whole”
of initial value problem (1.1), (1.2) c ∈ l1λ, λ > 1, ci ∈ C([0, T ],
L1

+(RN )
⋂

L∞(RN )), i � 1. This solution is stable with respect to per-
turbations of initial data and kinetic coefficients in l1, it satisfies the mass
conservation law (1.4) and is continuously differentiable along characteris-
tics.

The proof is like that of Theorem 3.2.

5. The problem with the diffusion taken into account

Starting from this section we consider one-dimensional initial value prob-
lem (1.3), (1.2) where the diffusion term is taken into account. Usually diffu-
sion makes a considerable impact to small particles. Hence, di → 0, i → ∞,
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or we just set di = 0 for sufficiently large values of i. Consequently, the
system may contain both hyperbolic (1.1) and parabolic (1.3) equations.
To simplify the reasonings (without loss of generality), we assume d1 > 0
and di = 0, i � 2. However, all the reasonings are valid even if the sys-
tem has infinite number of both hyperbolic and parabolic equations. So, for
definiteness we have

∂tci(z, t) + ∂z(vici(z, t)) = Qi(c), i � 2, (5.1)
∂tc1(z, t) + ∂z(v1c1(z, t)) = Q1(c)(z, t) + d1∂

2
zzc1(z, t). (5.2)

Definition 5.1. — Under solution of initial value problem to (5.1), (5.2)
we understand continuous functions ci(z, t) that satisfy the following integral
equations :

c1(z, t) =

+∞∫
−∞

G1(z, ξ, t)c
(0)
1 (ξ)dξ +

t∫
0

+∞∫
−∞

G1(z, ξ, t− s)Q1(c)(ξ, s)dξds, (5.3)

ci(z, t) = c
(0)
i (zi(0)) +

t∫
0

Qi(c)(zi(s), s)ds, i � 2. (5.4)

The function G1(z, ξ, t) is the fundamental solution for equation (5.2).

From Lemmas 2.2, 2.4 we easily obtain the following lemma for mixed
hyperbolic-parabolic system (5.1), (5.2).

Lemma 5.2. — Let z ∈ R1, the conditions of Lemma 2.4 and (2.15)
be fulfilled. Then there exists a unique continuous non-negative solution
of the initial value problem to (5.1), (5.2) ci ∈ C(R1 × [0, T ])

⋂
C([0, T ],

L∞
+

⋂
L1(R)), 1 � i � n, c1 ∈ C2,1

z,t (R × [0, T ]), and the mass conservation
law (1.4) holds.

For the problem with diffusion the maximum principle can be applied
in the form of Corollary 2.6. Hence, we have to control the boundary values
∂Ω. However, in view of Lemma 2.7 we are able to control the values in
the one-dimensional case only. To apply the one-dimensional version of the
maximum principle (Lemma 2.7) we note that at a maximum point inside a
parabolic cylinder Ω×[0, T ] the time derivative of c1 is non-positive provided
that conditions (2.15) hold. Hence, from Lemma 2.7 we arrive at (3.1).
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Since there is no diffusion for i � 2 then the above substitution gi(t) =
λi sup

z∈R1
ci(z, t), λ > 1, yields

gi(t) � g
(0)
i +

∫ t

0

[
λM0ki−1gi−1(s) + λ−1fi+1gi+1(s)

]
ds, i � 2.

Hence,

G(t) � G0 + M0 + MM0λ

∫ t

0

G(s)ds + M

∫ t

0

G(s)ds, G(t) =
∞∑

i=1

gi(t).

The Gronwall inequality results in (3.8). We are now in position to prove
the following theorem.

Theorem 5.3. — Let the conditions of Lemma 5.2 hold without the
truncation condition. Let initial function c(0) ∈ l1λ for a certain λ > 1. Let
v satisfies the tube conditions and (3.10) hold. Then there exists a unique
continuous non-negative solution ”in the whole” of the initial value problem
to (5.1), (5.2)

c ∈ l1λ, ci ∈ C(R × [0, T ])
⋂

C([0, T ], L∞
+

⋂
L1(R)), i � 1.

The solution is stable with respect to perturbations of c(0) and kinetic coef-
ficients in l1, and satisfies the mass conservation law (1.4).

Proof. — In view of Lemma 5.2 we construct the sequence of solutions
{c(n)} of problem to (5.1) with truncated kinetic coefficients equalled to
zero at i > n. The elements of this sequence satisfy (3.1), (3.8) uniformly.

Let us consider the continuity modulus ω
(n)
i (t) = |c(n)

i (z′, t) − c
(n)
i (z, t)|

on a compact set 1 � i � n, Ω = {z : |z| � Z}, 0 � t � T . We obtain

ω
(n)
1 (t) �

∫ t

0

∫
R1

{
|G1(z′, ξ, t− s) −G1(z, ξ, t− s)||Q1(c(n))(ξ, s)|

}
dξds,

(5.5)

ω
(n)
i (t) �

∫ t

0

|Qi(c(n))(z′i(s), s) −Qi(c(n))(zi(s), s)|ds. (5.6)

Since in view of (3.1), (3.8), (4.1)

|Q1(c(n))(z, t)| � 2MC2(M0 + 1) = const, z ∈ R1, 0 � t � T, (5.7)
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then for any ε > 0 there exists δ > 0 such that if |z′ − z| < δ then indepen-
dently of n � 1

ω
(n)
1 (t) �

∫ t

0

∫
R1

|G1(z′, ξ, t− s) −G1(z, ξ, t− s)||Q1(c(n))(ξ, s)|dξds � ε,

−Z � z, z′ � Z, 0 � t � T. (5.8)

Let us estimate the continuity modulus in (5.6) omitting for the simplicity
index “n” :

|Qi(c)(z′i(s), s) −Qi(c)(zi(s), s)| � ki−1|c1(z′i(s), s) − c1(zi(s), s)|ci−1(z′i(s), s)
+ki−1c1(zi(s), s)|ci−1(z′i(s), s) − ci−1(zi(s), s)|
+ki|c1(z′i(s), s) − c1(zi(s), s)|ci(z′i(s), s)
+kic1(zi(s), s)|ci(z′i(s), s) − ci(zi(s), s)|
+fi+1|ci+1(z′i(s), s) − ci+1(zi(s), s)|
+fi|ci(z′i(s), s) − ci(zi(s), s)|. (5.9)

Due to (3.10) there exists δ > 0 such that |z′i(s) − zi(s)| � δ1, 0 � s � t.
Our aim is to take supremum over 1 � i � I in (5.9). However, its right-
hand side contains the term |ci+1(z′i(s), s)− ci+1(zi(s), s)|, which is outside
1 � i � I. To control this term we assume that the value of I is sufficiently
large and in view of (3.8) it can be estimated as

|ci+1(z′i(s), s) − ci+1(zi(s), s)| � 2C2

λI
, i � I.

We introduce
ω(t) = sup

1�i�I,z′,z∈Ω,|z′−z|<δ

ωi(t)

and, in view of (4.1), (5.6), (5.8), (5.9), we obtain for ω(t) the Gronwall
inequality

ω(t) � ε +
∫ t

0

ω(s)ds.

Hence, there exists δ > 0 such that independently of truncation parameter
n

sup
1�i�I,z′,z∈Ω,|z′−z|<δ

ωi(t) < ε, 0 � t � T. (5.10)

Similar reasonings hold for the continuity modulus θi(z) = |ci(z, t′)−ci(z, t)| :

sup
1�i�I,|t′−t|<δ

θi(z) < C|t′ − t|, z ∈ Ω, 0 � t, t′ � T. (5.11)

Using (3.8), (5.10), (5.11) and Arzela theorem, we conclude that the se-
quence of approximate solutions c(n) is compact in C(Ω × [0, T ]). By the
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standard diagonal process we pick up from {c(n)} the subsequence, which
converges to a continuous function ci(z, t) ∈ C(R × [0, T ]). Obviously, this
limit function satisfies (3.8). To show that this limit function is the solution
to (5.3), (5.4), we replace c(n) by c(n) − c + c. Then we obtain

[c(n)
1 − c1] (z, t) + c1(z, t) =

+∞∫
−∞

G1(z, ξ, t)c
(0)
1 (ξ)dξ

+

t∫
0

+∞∫
−∞

G1(z, ξ, t− s)Q1([c(n) − c] + c)(ξ, s)dξds, (5.12)

[c(n)
i −ci](z, t)+ci(z, t) = c

(0)
i (zi(0))+

t∫
0

Qi([c(n)−c]+c)(zi(s), s)ds, i � 2.

(5.13)
We estimate the right-hand side of (5.12), (5.13) :

Q1([c(n) − c] + c) = −k1[c
(n)
1 − c1](c

(n)
i + c1) − k1c

2
1

−
n∑

i=1

ki[c
(n)
1 − c1]c

(n)
i −

n∑
i=1

kic1[c
(n)
i − ci] −

n∑
i=1

kic1ci

+
n∑

i=2

fi[c
(n)
i − ci] +

n∑
i=2

fici = Q1(c) + rn(z, t). (5.14)

Since on each compacta c = limn→∞ c(n) then the contents of brackets
goes to zero as n → ∞. However, the sums in (5.14) become infinite and to
demonstrate their uniform in n smallness we have to estimate the series

∞∑
i=1

kic
(n)
i [c(n)

1 −c1] � MM0

A∑
i=1

[c(n)
1 −c1]+2MM0C2

∞∑
i=A+1

λ−i → 0, A → ∞,

n → ∞.

Here we used (3.1), (3.8), (4.1). We first fix sufficiently large A to deal with
small series ”tail” and then tend n to the infinity. Similar reasonings are
true for other summands in (5.14). Consequently, for any ε > 0 there exists
n0 such that for any n > n0 the residual rn(z, t) < ε, z ∈ Ω, t ∈ [0, T ]. We
choose sufficiently large Z to be sure that in view of (5.7)

∫ t

0

∫
R1\Ω

G1(z, ξ, t− s)Q1(c)(ξ, s)dξds < ε, Ω = {z : |z| � Z}.
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Finally, the substitution of these observations in (5.12) yields

c1(z, t) =

+∞∫
−∞

G1(z, ξ, t)c
(0)
1 (ξ)dξ +

t∫
0

+∞∫
−∞

G1(z, ξ, t− s)Q1(c)(ξ, s)dξds.

So, the function c1 satisfies (5.3). Easier reasonings hold for equality (5.13).
Consequently, the function c satisfies (5.3), (5.4). The uniqueness and stabil-
ity properties are proved like in Theorem 3.2 with (2.7) taken into account.
This proves Theorem 5.3.

6. Vanishing diffusion limit

Let kinetic coefficients be uniformly bounded and (4.1) hold. Then in
view of Theorems 4.1 and 5.3 there exist continuous solutions c and c of
equations (5.3), (5.4) and (2.1), respectively. Our aim now is to demonstrate
that c → c as the diffusion coefficient d1 in (5.2) goes to zero.

Theorem 6.1. — Let the conditions of Theorems 4.1 and 5.3 hold. Then
∞∑

i=1

sup
z∈R,0�t�T

|ci(z, t) − ci(z, t)| → 0, d1 → 0, (6.1)

provided that the initial data are close in l1 :
∞∑

i=1

sup
z∈R

|c(0)i (z) − c
(0)
i (z)| → 0, d1 → 0. (6.2)

Proof. — We estimate the difference c − c. From (2.1), (5.3), (5.4) we
obtain

(c1 − c1)(z, t) =
∫
R

G1(z, ξ, t)[c
(0)
1 − c

(0)
1 ](ξ)dξ

+


∫

R

G1(z, ξ, t)c
(0)
1 (ξ)dξ − c

(0)
1 (z1(0))




+

t∫
0

∫
R

G1(z, ξ, t− s)[Q1(c) −Q1(c)](ξ, s)dξds

+


 t∫

0

∫
R

G1(z, ξ, t− s)Q1(c)(ξ, s)dξds−
t∫

0

Q1(c)(z1(s), s)ds


(6.3)
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Similar expression holds for the difference ci−ci (however, without function
G1) :

(ci − ci)(z, t) = [c(0)i − c
(0)
i ](zi(0)) +

t∫
0

[Qi(c) −Qi(c)](zi(s), s)ds. (6.4)

The most complicated term is written in the second line of (6.3) :

t∫
0

∫
R

G1(z, ξ, t− s)|Q1(c) −Q1(c)|(ξ, s)dξds

� M(1 + M0)

t∫
0

∫
R

G1(z, ξ, t− s)
∞∑

i=1

|ci − ci|dξds

� M(1 + M0)
∫ t

0

∞∑
i=1

sup
z∈R

|ci − ci|(z, s)ds. (6.5)

Other summands in brackets go to zero as d1 → 0. Taking relation (6.5)
into account, we take supremum over z ∈ R and summarize (6.3), (6.4).
Then for any given ε > 0 we obtain

∞∑
i=1

sup
z

|ci − ci|(z, t) � ε + 2M(1 + M0)

t∫
0

∞∑
i=1

sup
z∈R

|ci − ci|(z, s)ds (6.6)

provided that d < δ(ε). The use of the Gronwall inequality finishes the proof
of Theorem 6.1.

7. L1 stability of one-dimensional systems

In this section, we study the L1 stability of one-dimensional pure coagu-
lation system and pure fragmentation system using the nonlinear functional
approach in [12, 13, 15]. We assume that z ∈ R1 and no diffusion happens.
We denote the weighted L1 norm by || · ||

||c(·, t)|| ≡
∫
R1

∞∑
i=1

ici(z, t)dz.

The nonlinear functional approach for the L1 stability is based on the con-
struction of a Lyapunov functional H[t] which has the following two key
properties : For two nonnegative mass conserving continuous solutions c(z, t)
and c̄(z, t), H[t] satisfies
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1. 1
C0

||c(·, t) − c̄(·, t)|| � H[t] � C0||c(·, t) − c̄(·, t)||, for some constant
C0 > 0,

2. H[t] is non-increasing in time t : H[t] � H[0], t > 0.

In the following, we briefly explain the component functionals of H[t]. Let us
assume that c(z, t) and c̄(z, t) are non-negative mass preserving continuous
solutions with initial data c(0) and c̄(0). The functional L[t] is defined to be
the weighted L1 distance ||c(·, t) − c̄(·, t)||,

L[t] ≡
∫
R1

∞∑
i=1

i|ci − c̄i|(z, t)dz (� ||c(0)|| + ||c̄(0)|| < ∞).

Then by the direct calculation (Lemma 7.2), the functional L[t] can be
increasing locally in time t due to the coupling of particles with same and

different velocities. However, in the estimates
dL(t)
dt

, the errors due to the
coupling of particles with same velocities can be shown to be non-positive
so that we only need to control the errors due to the coupling of particles
with different velocities. For this, we employ the interaction potential Qd[t]
as in [12, 13, 15] :

Qd[t] ≡
∫ ∫

R2
1z<y

( ∞∑
i=1

i|ci − ci|(z, t)
)
c1(y, t)dz dy

+
∫ ∫

R2
1z<y

( ∞∑
i=1

ici(z, t)
)
|c1 − c1|(y, t)dz dy

= Q1
d[t] + Q2

d[t],

where 1z<y is the characteristic function of the set {(z, y) ∈ R2 : z < y},
and Qi

d[t], (i = 1, 2) are bounded by the quantities depending only on the
initial data, i.e.,

Q1
d[t] � (||c(0)||+ ||c̄(0)||)||c(0)|| < ∞, Q2

d[t] � ||c̄(0)||(||c(0)||+ ||c̄(0)||) < ∞.

Finally, we combine above two functionals by a linear combination, i.e.,

H[t] := L[t] + κQd[t] =
∫
R1

∞∑
i=1

Wi(z, t)i|ci − c̄i|(z, t)dz,

where κ is a large constant which will be determined later, and nonlocal
weights Wi(z, t) are defined as follows

W1(z, t) = 1 + κ

(∫ z

−∞

∞∑
i=1

ic̄i(y, t)dy +
∫ ∞

z

c1(y, t)dy

)
,
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Wi(z, t) = 1 + κ

(∫ ∞

z

c1(y, t)dy
)

, i � 2.

Then it is easy to see that H[t] is equivalent to the weighted L1 distance
|| · ||. On the other hand, since the possible quadratic increase of L[t] will be
expected to be compensated by the good quadratic decay of Qd[t], H[t] will
be non-increasing in time t. In the following two subsections, we consider
the pure coagulation system and pure fragmentation system. At present, the
above nonlinear functional approach does not work for the coagulation and
fragmentation system, we will discuss this issue at the end of this section.

7.1. Pure coagulation system

In this subsection we prove L1 stability for the system (1.1) in the one-
dimensional case when the particles do not split, and the diffusion can be
neglected. So, (1.1) takes the form :

∂tci(z, t) + ∂z(vici(z, t))
= ki−1ci−1(z, t)c1(z, t) − kici(z, t)c1(z, t), i � 2, (7.1)

∂tc1(z, t) + ∂z(v1c1(z, t))

= −k1c
2
1(z, t) −

∞∑
i=1

kici(z, t)c1(z, t), t > 0, z ∈ R1. (7.2)

Let us denote the source term for the equation of ci by Qi(c), and notice
that Q1(c) is non-positive and Qi(c), (i � 3) consists of only transversal
terms. Let (1.4), (2.15) and (4.1) hold. Then in accordance with Theorem
4.1 there exists a unique continuous non-negative solution to the initial value
problem for (7.1), (7.2). This solution satisfies (2.1). Let us assume

inf
i�2

|vi − v1| � v∗ > 0, sup
1�i<∞

ki � M, for some constant M > 0, (7.3)

and initial data are sufficiently small, i.e.,

∞∑
i=1

∫
R1

ic
(0)
i (z)dz � 1. (7.4)

To estimate the difference i|ci − ci| of two solutions to (7.1), (7.2), corre-
sponding different initial data c(0) and c(0) and satisfying (7.4), we introduce
a simplified notation

δi(z, t) = Sgn(ci(z, t) − ci(z, t)),
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and obtain

∂t|c1 − c1| + ∂z(v1|c1 − c1|) = −2k1(c1 + c1)|c1 − c1|

−
∞∑

i=2

ki

(
δ1
δi

c1|ci − ci| + ci|c1 − c1|
)

:= R1(c, c), (7.5)

∂t(2|c2 − c2|) + ∂z(2v2|c2 − c2|) =
2δ2
δ1

k1(c1 + c1)|c1 − c1|

−2k2c1|c2 − c2| − 2k2
δ2
δ1

c2|c1 − c1| := R2(c, c), (7.6)

∂t(i|ci − ci|) + ∂z(ivi|ci − ci|) = ki−1

(
δi

δi−1
c1i|ci−1 − ci−1|

+
δi

δ1
ci−1i|c1 − c1|

)
− ki

(
ic1|ci − ci| + i

δi

δ1
ci|c1 − c1|

)

� 2ki−1

(
(i− 1)c1|ci−1 − ci−1| + (i− 1)ci−1|c1 − c1|

)

−ki

(
ic1|ci − ci| + i

δi

δ1
ci|c1 − c1|

)
:= Ri(c, c), i � 3. (7.7)

Here we have used the fact that 2(i − 1) � i for i � 3. Unlike the collision
terms Qi(c) in system (7.1) and (7.2), the term Ri(c, c) does not satisfy
the conservation of mass and notice that Ri(c, c), (i � 3) consists of only
transversal terms. For the simplicity of notation, we introduce two instan-
taneous interaction productions as follows.

Λ[c(·, t)] ≡
∫
R1

( ∞∑
i=2

ici(z, t)
)
c1(z, t)dz,

Λ[c(·, t), c̄(·, t)] ≡ Λ1[c(·, t), c̄(·, t)] + Λ2[c(·, t), c̄(·, t)],

Λ1[c(·, t), c̄(·, t)] ≡
∫
R1

( ∞∑
i=2

i|ci − c̄i|(z, t)
)
c1(z, t)dz,

Λ2[c(·, t), c̄(·, t)] ≡
∫
R1

( ∞∑
i=2

ic̄jiz, t)
)
|c1 − c̄1|(z, t)dz.

In the following theorem, we show that the source terms are integrable in
space and time which can be useful to the study of large time behavior of
solutions.

Theorem 7.1. — Suppose that c(z, t) is a non-negative continuous so-
lution of system (7.1), (7.2). Then∫ ∞

0

∫
R1

∞∑
i=1

ici(z, t)c1(z, t)dz dt � γ(µ2 + µ),
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where γ is some positive constant independent of time t, and µ = ||c(0)|| is
the initial mass.

Proof. — We only prove the theorem for C1 solutions. The generalization
to continuous solutions is straighforward. First, we introduce the interaction
potential Q(t) in order to show that the transversal terms are bounded by
O(µ2). Define a quadratic interaction potential Q(t) by

Q(c)[t] ≡
∫ ∫

R2
1z<y

( ∞∑
i=1

ici(z, t)

)
c1(y, t)dzdy (� ||c(0)||2 < ∞).

Next we estimate the time-derivative of Q[t]. Recall that

∂t(ici(z)) + ∂z(ivici(z)) = iQi(c)(z), (7.8)
∂tc1(y) + ∂y(v1c1(y)) = Q1(c)(y). (7.9)

Using integration by parts, 1z<y[(7.8) · c1(y) + (7.9) · ci(z)] becomes

∂t[1z<yici(z)c1(y)] + ∇(z,y)[(vi, v1)1z<yici(z)c1(y)]
+ δ(z − y)(vi − v1)ici(z)c1(y)
= 1z<y[iQi(c)(z)c1(y) + Q1(c)(y)ici(z)]. (7.10)

If we integrate
∑∞

i=1(7.10) over R2, then we have

dQ[t]
dt

= −
∫
R1

∞∑
i=1

(vi − v1)ici(z)c1(z)dz

+
∫ ∫

R2

( ∞∑
i=1

iQi(c)(z)

)
c1(y)dzdy

+
∫ ∫

R1
Q1(c)(y)

( ∞∑
i=1

ici(z)

)
dydz

� −v∗

∫
R1

∞∑
i=1

ici(z)c1(z)dz. (7.11)

In the above calculation, we have used that fact that

inf
i 
=1

|vi − v1| � v∗ > 0,
∑
i�1

iQi(c)(z) = 0, Q1(c)(y) � 0.

If we integrate (7.11) over [0, T ], then we have∫ T

0

∫
R1

∞∑
i=2

ici(z, t)c1(z, t)dzdt � 1
v∗

[Q(c)(0) −Q(c)(T )]

� Q(c)(0)
v∗

= O(µ2). (7.12)
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Since the right hand side does not depend on T , by letting T → ∞, the
transversal source terms are bounded by O(µ2). Next we estimate the square
terms

∫ ∞
0

∫
R1 c21(z, t)dzdt as follows. From the equation (7.2), we have

2k1c
2
1(z, t) = −

∞∑
i=2

kici(z, t)c1(z, t) − ∂tc1(z, t) − ∂z(v1c1(z, t))

� −∂tc1(z, t) − ∂z(v1c1(z, t)).

If we integrate above equation from [0, T ] × R1 in (t, z), then we have

∫ T

0

∫
R1

c21(z, t)dzdt � ||c(0)1 ||
2k1

= O(µ). (7.13)

Hence combining (7.12) and (7.13), we obtain the desired result. This com-
pletes the proof of Theorem 7.1. �

In the following lemma, we estimate the time-evolution of the above
nonlinear functionals.

Lemma 7.2. — Let c and c̄ be continuously differentiable solutions of
(7.1) and (7.2) corresponding to continuously differentiable initial data c(0)

and c̄(0). Then we have the following estimates for the nonlinear functionals.

dL[t]
dt

� O(1)MΛ(c, c̄)(t),
dQd[t]

dt
� −αΛ(c, c̄)(t),

dH[t]
dt

� −βΛ(c, c̄)(t),

where α and β are positive constants independent of time t.

Proof. — We estimate the nonlinear functionals separately.
(i) From the equations for the difference i|ci − c̄i|, we have

dL[t]
dt

=
∫
R1

∂t

( ∞∑
i=1

i|ci − c̄i|(z)
)

dz

�
∫
R1

k1

(
−2 + 2

δ2
δ1

)
(c1 + c̄1)|c1 − c̄1|(z)dz + O(1)MΛ(c, c)(t)

� O(1)MΛ(c, c̄)(t).

(ii) First we consider
dQ1

d[t]
dt

. Recall that

∂t(i|ci − ci|) + ∂z(ivi|ci − ci|) = Ri(c, c̄), (7.14)
∂tc1 + ∂yc1 = Q1(c). (7.15)
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Using integration by parts, 1z<y[(7.14) · c1(y)+(7.15) · i|ci− c̄i|(z)] becomes

∂t[1z<yi|ci − c̄i|(z)c1(y)] + ∇(z,y)[(vi, v1)1z<yi|ci − c̄i|(z)c1(y)]
+ δ(z − y)(vi − v1)i|ci − c̄i|(z)c1(y)
= 1z<y[Ri(c, c̄)(z)c1(y) + Q1(c)(y)i|ci − c̄i|(z)]. (7.16)

If we integrate
∑∞

i=1(7.16) over R2, then we have

dQ1
d[t]
dt

� −v∗

∫
R1

∞∑
i=2

i|ci − c̄i|(z)c1(z)dz

+

(∫
R1

∞∑
i=3

Ri(c, c̄)z)dz

)(∫
R1

c1(y)dy
)

+
(∫

R1
(R2(c, c̄)(z) + R1(c, c̄)(z))dz

) (∫
R1

c1(y)dy
)

�
(
−v∗ + O(1)M

∫
R1

c1(y)dy
)

Λ1(c, c̄)(t).

In the above calculation, we have used that fact that
∞∑

i=3

Ri(c, c̄) and

R2(c, c̄)+R1(c, c̄) are bounded by transversal terms and Q1(c)(y) � 0. Since∫
R
c1(y)dy � 1, we have

dQ1
d[t]
dt

� −v∗
2

Λ1(c, c̄)(t).

Next, we consider Q2
d[t]. Good terms from the convection part in the esti-

mates of
dQ2

d[t]
dt

are :

−
∫
R1

∞∑
i=2

(vi − v1)ic̄i(z)|c1 − c̄1|(z)dz � −v∗

∫
R1

( ∞∑
i=2

ic̄i(z)

)
|c1 − c̄1|(z)dz.

In contrast, we have possible bad terms from the source terms :

I1 ≡
∫ ∫

R2
1z<y

( ∞∑
i=1

iQi(c̄)(z)

)
|c1 − c̄1|(y)dzdy,

I2 ≡
∫ ∫

R2
1z<y

( ∞∑
i=1

ic̄i(z)

)
R1(c, c̄)(y)dzdy.

By the conservation of mass
∞∑

i=1

iQi(c̄)(z) = 0, we have

I1 =
∫
R1

∫
R1

1z<y

( ∞∑
i=1

iQi(c̄)(z)
)
|c1 − c̄1|(y)dzdy = 0.
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On the other hand, we have

I2 =
∫ ∫

R2
1z<y

( ∞∑
i=1

ic̄i(z)

)
R1(c, c̄)(y)dzdy

=
∫ ∫

R1
1z<y


 ∞∑

j=1

jc̄j(z)


 (−2k1(c1 + c̄1)(y)|c1 − c̄1|(y)

+ transversal terms) dzdy

� O(1)M

(∫
R1

∞∑
i=1

ic̄i(z)dz

)
Λ2(c, c̄)(t) � Λ2(c, c̄)(t).

Hence we have

dQ2
d[t]
dt

�
(
−v∗ + O(1)M

∫
R

∞∑
i=1

ic̄i(z)dz

)
Λ2(c, c̄)(t)

� −v∗
2

Λ2(c, c̄)(t).

Combining the estimates for Q1
d[t] and Q2

d[t], we obtain

dQd[t]
dt

� −v∗
2

Λ(c, c̄)(t).

(iii) By definition of H[t], we have

dH[t]
dt

=
dL[t]
dt

+ κ
dQd[t]

dt

=
(
O(1)M − κv∗

2

)
Λ(c, c̄)(t).

Choose κ large enough so that

O(1)M − κv∗
2

< 0.

Then for such κ, we have

dH[t]
dt

� −βΛ(c, c̄)(t), for some constant β > 0.

This completes the proof of Lemma 7.2. �

Using the above decay estimate of the nonlinear functional H[t], we
establish the L1 stability of solutions.
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Theorem 7.3. — Let c and c̄ be continuous solutions corresponding to
two initial data c(0) and c̄(0) whose initial masses are sufficiently small.
Then we have the L1 stability.

||c(·, t) − c̄(·, t)|| � G||c(0)(·) − c̄(0)(·)||,

where G is a generic constant independent of time t.

Remark 7.4. — The existence of such continuous solutions is proved in
Theorem 4.1.

Proof. — Let c and c be solutions corresponding to two initial data c(0)

and c(0). Let c(n) and c(n) be C1-finite approximations of c and c such that
for given t,

c(n)(z, t) → c(z, t), c(n)(z, t) → c(z, t), in L1(R) as n → ∞.

We define a nonlinear functional H(t) for c and c as follows.

H(c, c)[t] ≡ lim
n→∞

H(c(n), c(n))[t].

Then by the estimate of H(c(n), c(n))[t], we have

1
C0

||c(·, t) − c(·, t)|| � H[t] � C0||c(·, t) − c(·, t)||, H[t] � H[0].

Using above two key properties of H[t], we have

||c(·, t) − c(·, t)|| � C0H[t] � C0H[0] � C2
0 ||c(0)(·) − c(0)(·)||.

This completes the proof of Theorem 7.3. �

In the following section, we consider the pure fragmentation system and
show that pure fragmentation system is L1-contractive.

7.2. Pure fragmentation system

In this subsection, we consider the pure fragmentation system which
contains the only linear source terms.

∂tc1 + ∂z(v1c1) = f2c2 +
∞∑

i=2

fici,

∂t(ici) + ∂z(viici) = ifi+1ci+1 − ifici, i � 2.
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As in the previous subsection, we derive equations for the difference i|ci−c̄i|.

∂t|c1 − c̄1| + ∂z(v1|c1 − c̄1|) =
δ1
δ2

f2|c2 − c̄2| +
∞∑

i=2

δ1
δi

fi|ci − c̄i|,

∂t(i|ci − c̄i|) + ∂z(vii|ci − c̄i|) =
iδi

δi+1
fi+1|ci+1 − c̄i+1| − ifi|ci − c̄i|.

Then in the following lemma, we estimates the time evolution of L[t].

Lemma 7.5. — Let c and c̄ be continuously differentiable solutions cor-
responding to continuously differentiable initial data c(0) and c̄(0). Then the
functional L[t] is non-increasing in time t.

dL[t]
dt

� 0.

Proof. — Summing all equations for i|ci − ci| over i, we have

∂t

( ∞∑
i=1

i|ci − ci|
)

+ ∂z

( ∞∑
i=1

ivi|ci − ci|
)

=
(
−2 + 2

δ1
δ2

)
f2|c2 − c2| +

∞∑
i=3

(
δ1
δi

+ (i− 1)
δi−1

δi
− i

)
fi|ci − c̄i| � 0.

Hence, we have the following differential inequality :

∂t

( ∞∑
i=1

i|ci − c̄i|
)

+ ∂z

( ∞∑
i=1

ivi|ci − c̄i|
)

� 0.

Integrating the above inequality over R1, we obtain

dL[t]
dt

=
d

dt

∫
R1

∞∑
i=1

i|ci − c̄i|(z)dz � 0.

This completes the proof of Lemma 7.5. �

Using the same density argument as in Theorem 7.3, we obtain the
following L1 contraction of the solution.

Theorem 7.6. — Let c and c̄ be mass conserving continuous solutions
corresponding to two initial data c(0) and c̄(0). Then we have a L1 contrac-
tion

||c(·, t) − c̄(·, t)|| � ||c(0)(·) − c̄(0)(·)||, 0 � t < ∞.

– 491 –



P. B. Dubovski, S.-Y. Ha

Remark 7.7. — Let us discuss the question why we have considered only
pure coagulation and pure fragmentation cases. Unfortunately, the original
system (1) which takes into account both processes cannot be analyzed to
obtain L1 stability estimate. In fact by a direct calculation, one can show
that

dL[t]
dt

� |O(1)|Λ(c, c̄).

The local errors in the increment of L(t) can be dominated by the errors
from the coupling of particles with different velocities as pure coagulation

system. However, in the estimates of
dQd[t]

dt
, one will have uncontrollable

terms due to the linear fragmentation source terms. More precisely, in the

time-evolution estimates of
dQ2

d[t]
dt

, one needs to estimates the following
quantity :

dQ2
d[t]
dt

=
∫
R1

1z<y∂t

( ∞∑
i=1

ic̄i(z, t)

)
|c1 − c̄1|(y, t)dzdy

+
∫
R1

1z<y

( ∞∑
i=1

ic̄i(z, t)

)
∂t|c1 − c̄1|(y, t)dzdy. (7.17)

Then the first term in the right hand side of (7.17) will be zero because of
conservation of mass, and one of the bad terms in second term will be equal
to ∫ ∫

R2
1z<y

( ∞∑
i=1

ic̄i(z, t)

)
|c2 − c̄2|(y, t)dzdy,

which will not be controlled by quadratic good decay terms. Because of this,
we are not able to show the decay of the interaction potential and, conse-
quently, the global L1-stability for the combined coagulation-fragmentation
kinetic system.
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